离散数学课件第六章 格与布尔代数 第4节 布尔代数
合集下载
离散数学第6章 格与布尔代数
设c是a∧b 的任一下界,即c ≤ a,c ≤ b 则 c∧a=c, c∧b=c c∧(a∧b)=(c∧a)∧b=c∧b=c ∴c ≤ a∧b 故 a∧b是a和b的最大下界
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念
11%20布尔代数与格ppt
19
在格中定义运算
在格中可以定义如下的运算:
“保联”:x,yS, x⋁y=lub{x,y}
“保交”:x,yS, x⋀y=glb{x,y}
20
偏序格的例子
({1,2,3,4,6,8,12,16,24,48}, | )
x⋀y=gcd(x,y), x⋁y=lcm(x,y) x⋀y=x⋂y, x⋁y=x⋃y x⋀y=min{x,y}, x⋁y=max{x,y}
9
布尔恒等式(1)
等 式 x=x x+x = x xx = x x+0 = x x1 = x x+1 = 1 x0 = 0 x+y = y+x xy = yx 名 称 双重补律 幂等律 同一律
支配律
交换律
10
布尔恒等式(2)
等 式 x+(y+z)=(x+y)+z x (yz)=(xy) z x+(yz)=(x+y)(x+z) x (y+z)=xy +x z ( x y) = x + y (x+y) = x y x+(xy)=x x (x+y)=x x + x =1 x x =0 名 称 结合律 分配律 德摩根律 吸收律 补律
29
a*b即{a,b}的最大下界
注意:a◦b=b 当且仅当 a*b=a,因此aRb a*b=a
a*b即{a,b}的下界
(a*b)*a=a*(a*b)=(a*a)*b=a*b, (a*b)Ra (a*b)*b=a*(b*b)=a*b,(a*b)Rb
a*b即{a,b}的最大下界
离散数学代数结构部分-PPT
所以乘法运算就是封闭得。 而对于加法运算A上得 二元运算,如果对于任意得x,y∈A,都 有x*y=y*x,则称该二元运算*就是可 交换得。
例5、2 设Q就是有理数集合,*就是Q上得 二元运算,对任意得a,b∈Q,a*b=a+ba· b,问运算*就是否可交换。
例5、3 设A=Z,“+”就是整数中得加法: 则
“+”在Z中适合结合律。 “。”就是整数中得减法:则特取
而 运算“。”不满足结合律
➢定义5、4 设*就是定义在集合A上得 一个二元运算,如果对于任意得x∈A, 都有x*x=x,则称运算*就是等幂得。
例5、4 设P(S)就是集合S得幂集,在P(S) 上定义得两个二元运算,集合得“并”运 算∪和集合得“交”运算∩,验证∪,∩ 就是等幂得。
➢ 定理6、19 设
例6、16 例6、17 设
➢ 定义6、18 设 例6、18 设
➢ 定义6、19 设 例6、19 4元置换
➢ 定义6、20设
➢ 定理6、20
➢ 定义6、21
例6、20 如图 进行旋转,也可以围绕她得对称轴进行翻转,但 经过旋转或翻转后仍要与原来得方格重合(方格 中得数字可以改变)。如果把每种旋转或翻转看 作就是作用在
➢定理5、2 设*就是S上得二元运算,
如果S中既存在关于运算*得左幺元 el ,
又存在关于运算得右幺元 er
则S中必存在关于运算*得幺元e并且
2、 零元 ➢定义5、8 设*就是S上得二元运算,
在自然数集N上普通乘法得零元就是0, 而加法没有零元。
➢ 定理5、3 设 *就是S上得二元运算,如果S 中存在(关于运算*得)零元,则必就是唯一得。 所以零元就是唯一得。
证明: 略。 推论6、1
例5、2 设Q就是有理数集合,*就是Q上得 二元运算,对任意得a,b∈Q,a*b=a+ba· b,问运算*就是否可交换。
例5、3 设A=Z,“+”就是整数中得加法: 则
“+”在Z中适合结合律。 “。”就是整数中得减法:则特取
而 运算“。”不满足结合律
➢定义5、4 设*就是定义在集合A上得 一个二元运算,如果对于任意得x∈A, 都有x*x=x,则称运算*就是等幂得。
例5、4 设P(S)就是集合S得幂集,在P(S) 上定义得两个二元运算,集合得“并”运 算∪和集合得“交”运算∩,验证∪,∩ 就是等幂得。
➢ 定理6、19 设
例6、16 例6、17 设
➢ 定义6、18 设 例6、18 设
➢ 定义6、19 设 例6、19 4元置换
➢ 定义6、20设
➢ 定理6、20
➢ 定义6、21
例6、20 如图 进行旋转,也可以围绕她得对称轴进行翻转,但 经过旋转或翻转后仍要与原来得方格重合(方格 中得数字可以改变)。如果把每种旋转或翻转看 作就是作用在
➢定理5、2 设*就是S上得二元运算,
如果S中既存在关于运算*得左幺元 el ,
又存在关于运算得右幺元 er
则S中必存在关于运算*得幺元e并且
2、 零元 ➢定义5、8 设*就是S上得二元运算,
在自然数集N上普通乘法得零元就是0, 而加法没有零元。
➢ 定理5、3 设 *就是S上得二元运算,如果S 中存在(关于运算*得)零元,则必就是唯一得。 所以零元就是唯一得。
证明: 略。 推论6、1
离散数学 格与布尔代数共89页
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
离散数学 格与布尔代数
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
离散数学格与布尔代数优秀课件
于是有 a∨(b∧c) ≤(a∨b)∧(a∨c) 。
由对偶原理得 a∧(b∨c)≥ (a∧b)∨(a∧c) 。
即 (a∧b)∨(a∧c)≤ a∧(b∨c) 。
b c d
由<A,≤>诱导的代数系统。B是A的
非空子集,如果∧
a
和∨在B上封闭,则 称<B, ≤>是<A, ≤>
b
c b
d
e
f e
的子格。
g
a
e
c
a
b f
c
g
d
<C,≤>是<A,≤>的子格。 <A,≤>
<B,≤> <C,≤>
而<B,≤>不是. b∧c=dB, (运算规则要从格<A,≤>中找)
二. 格的对偶原理
界,所以 a∨c≤b∨d。 类似可证 a∧c≤b∧d。 推论:在一个格中,任意 a,b,c∈A,如果b≤c,则
a∨b≤a∨c,a∧b≤a∧c。 此性质称为格的保序性。
3. ∨和∧都满足交换律。即 a∨b=b∨a,a∧b=b∧a 此性质由运算∨和∧的定义直接得证。
4. ∨和∧都满足幂等律。即 a∨a=a a∧a=a 证明:由性质1, a≤a∨a (再证a∨a≤a)
P’: a∨b≥a
{a,b}的最大下界≤a {a,b}的最小上界≥a
三. 格的性质
<A,∨,∧>是由格<A,≤>诱导的代数系统。a,b,c,d∈A 1. a≤a∨b b≤a∨b a∧b≤a a∧b≤b
此性质由运算∨和∧的定义直接得证。 2.如果a≤b,c≤d,则 a∨c≤b∨d,a∧c≤b∧d。 证明:如果a≤b,又b≤b∨d,由传递性得 a≤b∨d, 类似由c≤d, d≤b∨d,由传递性得 c≤b∨d, 这说明b∨d是 {a,c} 的一个上界,而a∨c是 {a,c} 的最小上
中北大学离散数学第六章格和布尔代数分析
证明:(反证法)设有两个全上界a和b,则由定义 a≤b,且b≤a,由“≤”的反对称性, a=b。
[定义]设<L,≤>是一个格,格中存在全上界和全下 界,则称该格为有界格。
16
§6.3 有补格
[定理]如果<L,≤>是有界格,全上界和全下界分别 是1和0,则对任意元素aL,有: a1=1a=1 ,a1=1a=a, a0=0a=a ,a0=0a=0。
证明:因为1≤a1, 又因(a1)L且1是全上界,∴a1≤1, ∴ a1=1。由交换律:1a=a1=1。 因为a≤a,a≤1,∴a a≤a1,即:a≤a1, 又a1≤a, ∴ a1=a。仿此可得另两式。
17
§6.3 有补格
[定义]设<L,≤>是一个有界格,对于L中的一个元素 a,如果存在bL,使得ab=1和ab=0,则称元素 b是元素a的补元。
6
§6.1格的概念
(2)对格<L,≤>中任意a和b,有a≤ab及ab≤a。 (3)<L,≤>是格。对任意a,b,c,dL,如a≤b,
c≤d,则ac≤ bdபைடு நூலகம் ac≤bd
(4)(交换律)交和并运算是可交换的。 (5)(结合律)交和并运算是可结合的。
7
§6.1 格的概念
(6)(幂等律)对L中每一个a,有aa=a,aa=a。
2
§6.1 格的概念
1.偏序集合格
L,
[定义]格是一个偏序集合
,其中每一对元素
a,b L都拥有一个最小上界和最大下界。通常用
a b表示a和b的最大下界,用 a b 表示a和b的最 小上界。即:
GLB{a,b} a b ——称为元素a和b的保交运算,
LUB{a,b} a b——称为元素a和b的保联运算。
[定义]设<L,≤>是一个格,格中存在全上界和全下 界,则称该格为有界格。
16
§6.3 有补格
[定理]如果<L,≤>是有界格,全上界和全下界分别 是1和0,则对任意元素aL,有: a1=1a=1 ,a1=1a=a, a0=0a=a ,a0=0a=0。
证明:因为1≤a1, 又因(a1)L且1是全上界,∴a1≤1, ∴ a1=1。由交换律:1a=a1=1。 因为a≤a,a≤1,∴a a≤a1,即:a≤a1, 又a1≤a, ∴ a1=a。仿此可得另两式。
17
§6.3 有补格
[定义]设<L,≤>是一个有界格,对于L中的一个元素 a,如果存在bL,使得ab=1和ab=0,则称元素 b是元素a的补元。
6
§6.1格的概念
(2)对格<L,≤>中任意a和b,有a≤ab及ab≤a。 (3)<L,≤>是格。对任意a,b,c,dL,如a≤b,
c≤d,则ac≤ bdபைடு நூலகம் ac≤bd
(4)(交换律)交和并运算是可交换的。 (5)(结合律)交和并运算是可结合的。
7
§6.1 格的概念
(6)(幂等律)对L中每一个a,有aa=a,aa=a。
2
§6.1 格的概念
1.偏序集合格
L,
[定义]格是一个偏序集合
,其中每一对元素
a,b L都拥有一个最小上界和最大下界。通常用
a b表示a和b的最大下界,用 a b 表示a和b的最 小上界。即:
GLB{a,b} a b ——称为元素a和b的保交运算,
LUB{a,b} a b——称为元素a和b的保联运算。
离散数学格与布尔代数
<L, > <L, , *>
§7.1 格
例 < P(S) , >是格 表示为<P(S), , * > 又可表示为< P(S) ,∪,∩>
例 <Z+,≤>,或 <Z+,|> <Z+, , * > <Z+, LCM,GCD>
§7.2 格——代数系统
格〈L,≤〉中自然存在两个运算 和 * ,从而 派生出一个代数系统〈L,,*〉
6
<S15,|>,
2
2019/10/5
30
10
15
3
5
1
§7.1 格
例 判断图中的哈斯图表示的偏序集是否构成格,说明为什么。
d c
b a
(a)
e d
c b
a (b)
f
d
e
d
e
c
b
c
a (c)
a
b
(d)
e
c
d
a
b
(e)
2019/10/5
§7.1 格
例 设Z+为正整数集合,对于a,b Z+,关系“≤”定义为: a≤b当 且仅当a整除b。则偏序集<Z+,≤>构成格,
并、交 运算的性质
定理1 设〈L,≤〉是一个格,并运算与交运算 * 满足 如下性质:
L1 a a = a
a*a=a
(幂等律)
L2 a b = b a a * b = b * a (交换律)
L3 (a b) c = a (b c)
§7.1 格
例 < P(S) , >是格 表示为<P(S), , * > 又可表示为< P(S) ,∪,∩>
例 <Z+,≤>,或 <Z+,|> <Z+, , * > <Z+, LCM,GCD>
§7.2 格——代数系统
格〈L,≤〉中自然存在两个运算 和 * ,从而 派生出一个代数系统〈L,,*〉
6
<S15,|>,
2
2019/10/5
30
10
15
3
5
1
§7.1 格
例 判断图中的哈斯图表示的偏序集是否构成格,说明为什么。
d c
b a
(a)
e d
c b
a (b)
f
d
e
d
e
c
b
c
a (c)
a
b
(d)
e
c
d
a
b
(e)
2019/10/5
§7.1 格
例 设Z+为正整数集合,对于a,b Z+,关系“≤”定义为: a≤b当 且仅当a整除b。则偏序集<Z+,≤>构成格,
并、交 运算的性质
定理1 设〈L,≤〉是一个格,并运算与交运算 * 满足 如下性质:
L1 a a = a
a*a=a
(幂等律)
L2 a b = b a a * b = b * a (交换律)
L3 (a b) c = a (b c)
离散数学-格和布尔代数
的次序图如下
-1 的次序图如下
6 2 1 3 2
1 3 6
若 < L; > 是一个偏序集,则对于任意元素 l1, l2, l3 L,有以 下六个关系式成立: l1 l1 若 l1 l2,l2 l1,则 l1 = l2 若 l1 l2,l2 l3,则 l1 l3 l1 l1 若 l1 l2,l2 l1,则 l1 = l2 (7-1) (7-2) (7-3) (7-1) (7-2)
60以上说明与格一样布尔代数也是一个代数系统该代数系统可取交换律分配律同一律和互补律作为公二元运算是一元运算若这些运算满足交换律分配律同一律和互补律则称称作集合代数它是一个布尔代数
第二部分 抽象代数
0
第七章
格和布尔代数
格是 Birkhoff (1884 - 1944) 在 20 世纪 30 年代提出的,格的提出 以子集为背景。 历史上最初出现的格是英国数学家 George Boole 于 1854 年提出 的,是他在研究命题演算中发现的,通常称为布尔格或布尔代 数。 格和布尔代数的理论成为计算机硬件设计和通讯系统设计中的 重要工具。格论是计算机语言的指称语义的理论基础。格是一 种特殊的偏序集,也可以看作是有两个二元运算的代数系统, 布尔代数是一种特殊的格。在保密学、开关理论、计算机理论 和逻辑设计以及其他一些科学和工程领域中,都直接应用了格 与布尔代数。 1
7.2 格及其性质
一、格的定义
定义7-5 设 < L; > 是一个偏序集,如果 L 中任意两个元素都 存在着最大下界和最小上界,则称 < L; > 是格。 由于每对元素的最大下界和最小上界唯一,故引入记号: l1 l2 = glb(l1, l2),l1 l2 = lub(l1, l2), 其中 和 均可看作是集合 L 上的二元运算,分别称为交和并。 注:若 < L; > 是一个格,则意味着 < L; > 也是一个形为 < L; , > 的代数系统,其中 和 是 L 上的两个二元运算, 对于任意 l1, l2 L,l1 l2 表示在偏序 “ ” 意义下,l1 和 l2 的最小上界,l1 l2 表示 l1 和 l2 的最大下界。
离散数学布尔代数
一个非零元素b,至少存在一个原子a,使得a ≤ b。 1
证明:若b本身就是一个原子,则b ≤ b,得证。c
df
若b不是原子,肯定存在b1,使得0 ≤ b1 ≤ b, a
be
若b1是原子,则定理得证;
0
否则,若b1不是原子,则必存在b2,使得0 ≤ b2 ≤ b1 ≤ b
∵<A, ≤>是一个有全下界的有限格,
定理1:对于布尔代数中任意两个元素 a, b,必定有
(1) ( a ) = a, (2) a∨b = a∧b , (3) a∧b = a∨b
3
❖ 布尔代数
定义3:设<A,∨1,∧1, - > 和<B,∨2,∧2, ~ >是两个布尔代数, 如果存在A到B的双射 f,对于a,bA,有
f (a∨1b) = f (a) ∨2 f (b)
2、对a,bA,有 f (a∧b) = f (a)∩f (b)
9
❖ 格与布尔代数
定理3 ( Stone表示定理 ) :
设<A,∨,∧, - >是由有限布尔格<A, ≤>所诱导的一个有 限布尔代数,S是布尔格<A, ≤>中的所有原子的集合,则 < A,∨,∧, - >< P(S),∪,∩, ~ >同构。 分析:要证两个代数系统同构,分为以下几步:
1、找一个双射函数 f: A P(S)
∴a ≤ c ,又∵a ≤ c, ∴a ≤ c ∧ c,即 a ≤ 0,
这与a是原子相矛盾, ∴假设错
∴b ∧ c = 0,由引理1得: b≤c ∴b=c,即:b= a1∨a2∨... ∨ak
7
❖ 格与布尔代数
证明(2):设b的另一种表示形式为 b = aj1∨aj2∨... ∨ajt 其中aj1,aj2,……,ajt是A中原子。∵b是 aj1,aj2,……,ajt 的最小上界, ∴有aj1≤b, aj2≤b,…,ajt≤b,而a1,a2,……,ak是A中满足 a j ≤b的所有原子, {aj1,aj2,…,ajt}是{a1,a2,…,ak}的子集,即 |{aj1,aj2,…,ajt}|<=|{a1,a2,…,ak}|, 即:t ≤ k。(下面证 t < k 是不可能的)
离散数学格与布尔代数
6
<S15,|>,
2
2019/10/12
30
10
15
3
5
1
§7.1 格
例 判断图中的哈斯图表示的偏序集是否构成格,说明为什么。
d c
b a
(a)
e d
c b
a (b)
f
d
e
d
e
c
b
c
a (c)
a
b
(d)
e
c
d
a
b
(e)
2019/10/12
§7.1 格
例 设Z+为正整数集合,对于a,b Z+,关系“≤”定义为: a≤b当 且仅当a整除b。则偏序集<Z+,≤>构成格,
Input A B Cin
00 0 00 1 01 0 01 1 10 0 10 1 11 0 11 1
Output S Cout
00 10 10 01 10 01 01 11
S A BCin A BCin A BCin A BCin
Cout A B Cin A B Cin A B Cin A B Cin
§7.2 格——代数系统
证〈L,≤〉为要求的格
a,b∈L,(a * b)* a = a*(a * b)=(a * a)*b=a*b,
故a*b≤a,
L3
L1
同理a*b≤b,因此a*b是{a,b}的下界,
又设c是{a,b}的任一下界,即c≤a,c≤b,则a * c=c,b * c=c,于是(a * b)* c=a *(b * c)=a * c=c,即c≤a * b, 所以a * b是{a,b}的最大下界,即a * b=inf{a,b},
离散数学讲义(第6章)
18
6-2 分配格(续)
定理:如果在一个格中交运算对并运算可分配,则并运算 对交运算一定可分配。反之亦然。
定理:每个链是分配格。
定理:设〈A, ≤ 〉为一个分配格,则对任意的a,b,c A,如果有a b = a c且a b = a c,则b=c。
19
6-2 分配格(续)
定义:设〈A,,〉是由格〈A, ≤ 〉所诱导的代数系统。 如果对任意的a,b,cA,当b ≤ a时,有: a (b c) = b (a c) 则称〈A, ≤ 〉是模格。
5
6-1 格的概念(续)
偏序集但不是格
e d f
格
c a b
6
6-1 格的概念(续)
代数系统
设〈A, ≤ 〉是一个格,如果在A上定义两个二元运 算和,使得对于任意的a,bA,ab等于a和b的最小 上界,ab等于a和b的最大下界,那么就称〈A, , 〉 为由格〈A, ≤ 〉所诱导的代数系统。二元运算, 分 别称为并运算和交运算。
定理:分配格一定是模格。
21
6-3 有补格
定义:设〈A, ≤ 〉是一个格,如果存在元素aA,对 任意的xA,都有a ≤ x, 则称a为格〈A, ≤ 〉的全下界。记作 0。 定义:设〈A, ≤ 〉是一个格,如果存在元素bA,对 任意的xA,都有x ≤ b, 则称b为格〈A, ≤ 〉的全上界。记作 1。
{a,b} {a,b} {a,b} {a,b} {a,b}
{b} {a,b}
6-4 布尔代数(续)
定理:对布尔代数中的任意两个元素a,b,有
(a ) a
ab a b
a b ab
定义:具有有限个元素的布尔代数称为有限布尔代数。
26
离散数学第六章
6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.
第6章 格与布尔代数
借助于子代数给子格下的定义: Def 设(L, +, ∙)是格, M L, 若(M, +, ∙)是 格, 则称(M, +, ∙)为(L, +, ∙)的子格(sunlattice).
显然, (M, +, ∙)为(L, +, ∙)的子格 M关于+和 ∙封闭.
Remark 设(L, +, ∙)是格, M L, (M, )是 格与(M, )是子格存在差异. 正因为这样, 才 借助于子代数对子格定义.
(L, )与(L, )? Def 对于任意关于格(L, )的命题, 将命题前 提和结论中的(1) 改为; (2)+ 改为; (3) 改 为+;(4)0改为1;(5)1改为0所得到的命题称 为原命题的对偶命题. Theorem 6-2 对于任意关于格(L, )的真命题, 其对偶命题亦为真.
Chapter 6 格与布尔代数
格论(1935)是一种重要的代数结构, 它是计算机语 言的指称语义的理论基础,在计算机应用逻辑研 究中有着重要作用. 布尔代数是英国数学家George Boole在1847年左右 在对逻辑思维法则进行研究时提出的,后来很多 数学家特别是E. V. Hungtington和E. H. Stone对布 尔代数的进行了一般化研究,在1938年C. E. Shannon发表的A Symbolic Analysis of Relay and Switching Circuits 论文,为布尔代数在工艺技术
2.格的两种定义的等价性 格的这两种定义是否是一回事? Theorem 6-7 偏序格(L, )与代数格(L, +, ∙)是 等价的. Proof () () x, y L : x y x y x. (1) 是偏序.
离散数学 代数系统 ppt课件
1
33 0 1 2 8
代数系统举例
设A={1,2,3,4,6,12} A上的运算*定义为:a*b=|a-b| (1)写出二元运算的运算表; (2)<A,*>能构成代数系统吗?
9
解答
由运算表可知*运算在集合A上不封闭
所以: <A,*>不能构成代数系统
* 1 2 3 4 6 12
1 0 1 2 3 5 11
U=<I,+, > 证明:V=< m,+m, m >
满同态
g:I→Nm 对于所有的iI,有:
g(i)=(i)(modm)
32
证明
类型映射f定义为:f(+)=+m,f()=m (1)显然U=<I,+, >和V=< Nm,+m, m >同类型
(2)运算的象=象的运算
对任意的x,yI: g(x+y)=g(x) +m g(y) g(x y)=g(x) m g(y)
12
4、同类型的代数系统
V1=<S1,Ω1>:代数系统 类型映射 V2=<S2,Ω2>:代数系统 同元运算
存在一个双射函数f: Ω1 → Ω2 每一个ω∈Ω1和f(ω) ∈Ω2具有相同的阶 ωf V1和V2是同类型的代数系统
13
同类型的代数系统举例
V1=<Nm,+m , m > 和V2=<R,+, >是 同类型的代数系统吗?其中:
41
满同态举例(续)
(5)对“+”存在e=0,则: 对“+3”存在e=g(0)=0; (6)对“”存在e=1,则: 对“3”存在e=g(1)=1; (7)对“”存在零元=0,则: 对“3”存在零元=g(0)=0;
《格和布尔代数》课件
第二部分:格的基础知识
有限格和无限格
介绍有限格和无限格的概念, 讨论其特点和应用。
笛卡尔积和格的同构
解释格的笛卡尔积以及同构 关系,揭示它们在格理论中 的重要性。
原子性和可分性
详细阐述格的原子性和可分 性,论述它们在实际问题中 的应用价值。
第三部分:布尔代数
1
ቤተ መጻሕፍቲ ባይዱ
3.2 布尔代数运算
2
系统阐述布尔代数的与、或、非运算,
总结格和布尔代数的重要性及其在学术和实
多研究和应用探索,促进学科的发展与创新。
践中的潜力,并对未来的研究方向进行展望。
《格和布尔代数》PPT课 件
本《格和布尔代数》PPT课件将带您深入了解格和布尔代数的基础知识、运 算规则以及其在现实世界中的重要应用。全方位解析格和布尔代数,帮助您 掌握这一重要数学领域的核心概念与技巧。
第一部分:引言
什么是格和布尔代数?探讨格和布尔代数的定义、特性和相关领域应用,以 及其在数学、计算机科学和工程中的重要性。
以及相关的异或和置位运算。
3
3.1 布尔代数的起源和发展
探索布尔代数的历史渊源与发展轨迹, 重点介绍George Boole对其的贡献。
3.3 布尔代数的完备性和最小化
讲解布尔代数的完备性定理、最小化方 法和卡诺图的应用。
第四部分:格和布尔代数的应用案例
逻辑电路设计
展示格和布尔代数在逻辑电路设 计中的重要应用,以及其在计算 机工程领域的意义。
程序设计中的控制流分析
阐述格和布尔代数在程序设计中 的控制流分析应用,帮助程序员 编写高效的代码。
数据库查询优化
探究格和布尔代数在数据库查询 优化中的关键作用,提高查询效 率和性能。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义6-4.3 具有有限个元素的布尔代数称为有限 布尔代数。 定义6-4.4 设<A,∨,∧,- >和<B,∨,∧,- >是两个布 尔代数,如果存在着A到B的双射f,对于任意的a,b A,都 有 f(a∨b)=f(a)∨f(b)
f(a∧b)=f(a)∧f(b)
f(a)=f(a) 则称<A,∨,∧,- >和<B,∨,∧,- >同构。 可以证明,对于每一正整数n,必存在着2n个元素的布 尔代数;反之,任一有限布尔代数,它的元素个数必为2的 幂次。
导致的0= aj0矛盾。tk假设不成立 。 t=k定理得证。
引理6-4.4 在一个布尔格<A, ≤>中,对A中 任意 一个原子a和另一个非零元素b,a≤b 和a≤b两式中
有且仅有一式成立。
证明:(1)先证a ≤b 和a ≤b两式不可能同时成立
反设a ≤ b 和a ≤ b同时成立,就有a ≤ b∧b=0,
b1 ≤ b
若b1是原子,则定理得证,否则,必存在b2使得
由于是一个有下界的有限格,所以通过有限不骤总可 以找到一个原子bi ,使得0≤bi≤...≤b2≤b1≤b
0 ≤ b2 ≤ b1 ≤ b
引理6-4.1 设在一个布尔格中,b∧c=0当且仅当b≤c。 证明:(1)先证 b∧c=0 若
则 根据分配性,就有
证明:(1)先证 a1∨a2∨…∨ak ≤ b 记a1∨a2∨…∨ak =c,因为aj ≤ b,所以c ≤ b。 (2)再证 b ≤ a1∨a2∨…∨ak 由引理6-4.1知,要证b ≤ c若是原子,只需证b∧c=0, 反设b∧c≠0,于是必有一个原子a,使得a ≤ b∧c。 又因b∧c≤b,和 b∧c≤c, 所以 a≤b 和 a≤c , 因为a是原子,且a≤b,所以a必是a1, a2, …, ak中的一 个, 因此 a≤c,已有a≤c,得a≤c∧c,即a≤0, 与a是原子矛盾。 b∧c≠0假设不成立 。综合(1)和(2)定理得证。
(3)总结概括结论。
第(1)部分证明:对于任意aA,必有的唯一表示: a=a1∨a2∨…∨ ak (引理6-4.2a的原子表示) 其中aia (i=1,2,…,k),作映射 f(a)=S1 那么,这个映射是 一个从A到(S)的一个双射。 第1部分双射证明: . 对于全下界0A,规定 f(0)= 。 .如果 S1 ={a1,a2 ,…, ak} (S),而有a,bA,使得 f(a)= f(b)=S1 ,则a=a1∨a2∨…∨ ak = b, 所以 f是一个从A到(S)的一个入射。 .对于任一个S1 (S),若S1 ={a1,a2 ,…, ak},则 由于运算∨的封闭性,所以 a1∨a2∨…∨ak = aA 这就说明(S)中任一元素,必是A中某个元素的象,所 以是一个从A到(S)的一个满射。 第1部分双射证明完毕。
6-4 布尔代数 定义6-4.1 一个有补分配格称为布尔格。 求一个元素的补元素可以看作一元运算,称为补
运算。
定义6-4.2 设<A,∨,∧,- > 是由布尔格<A,
≤>是所诱导的代数系统。称这个代数系统为布尔代数。 例1
尔代数。 当S={a,b}时的运算表如表6-4.1所示。P-253页
设<(S), ∪,∩,~>是由布尔格
这与a是原子相矛盾,即a ≤ b 和a ≤ b同时成立。
b 和a ≤ b两式中必有一式成立 因为a∧b ≤ a, a是原子,所以只能是 a∧b=0 或 a∧b=a 若a∧b=0,则 a∧(b) =0 ,由引理6-4.1得 a ≤ b; 若a∧b=a,由引理6-1.6得a ≤ b。
(2)再证a ≤
b≤c b∧c=0, 因为 0∨c=c , (b∧c)∨c=c
(b∨c) ∧ (c∨c) =c 即 (b∨c) ∧1 =c 所以 b∨c =c 又因为 b ≤ b∨ c 所以 b≤c (2)再证 b ≤ c b∧c=0 若b≤c,则b∧c≤c∧c,即b∧c≤0,所以b∧c=0
引理6-4.2 设<A,∨,∧,- >是一个有限布尔代数,若b是 A中 任意非零元素, a1, a2, … , ak是A中满足aj ≤ b 的所 有原子(j=1,2,…,k) ,则 b = a 1 ∨ a 2 ∨ …∨ a k
<(S),>是所诱导的代数系统。这个代数系统为布
定理6-4.1 在一个有界分配格中,对于布尔代数中的 任意两个元素a,b,必定有
( a )=a a∨b= a∧b a∧b= a∨b 证明:只证第(2)个等式
先证互补的两个式子相并等于全上界“1”。
(a∨b)∨(a∧b)= ((a∨b)∨a)∧((a∨b)∨b) =(b∨(a∨a))∧(a∨(b∨b)) =(b∨1)∧(a∨1) =1 再证互补的两个式子相交等于全下界“0”。 (a∨b)∧(a∧b)= 0
引理6-4.3 设<A,∨,∧,- >是一个有限布尔代数,若b 是A中 任意非零元素, a1, a2, … ,ak是A中满足aj ≤ b的
所有原子(j=1,2,…,k) ,则b = a1∨a2∨…∨ak是将b表示
为原子之并的唯一形式。
证明:设有另一种表示形式为b=aj1∨aj1∨…∨ajt
其中aj1,aj1,…,ajt是原子。因为b是aj1,aj1,…,ajt的最小 上界,所以必有aj1 ≤ b, aj2 ≤ b,..., ajt ≤ b。而a1, a2, … , ak是A中所有满足ai ≤ b (i=1,2,…,k)的不同原子。 所以必有 t≤k
定理6-4.3(Stone 表示定理) 设<A,∨,∧,- > 是由 有限布尔格<A, >所诱导的一个有限布尔代数, S是 布尔格中的所有原子的集合,则<A,∨,∧,- >和< (S), ∪,∩,~>同构。 证明:本定理的证明过程分三部分 (1)构造一个映射,并证明它是双射(既是入射又 是满射); (2)描述代数系统<A,∨,∧,- >和< (S), ∪,∩,~>同 构并证明之;
定义6-4.5 设<A, ≤>是一个格,且具有全下界0,如
果有元素a盖住0,则称元素a为原子。 原子:与0相邻且比0“大” 定理6-4.2 设<A, ≤>是一个具有全下界0的有限格,
则对于任何一个非零元素b(即不等于全下界0的元素) 至少存在一个原子a ,使得a ≤ b 。 证明:若b是原子,则有b ≤ b ,若b不是原子,则 必有b1存在,使得0 ≤
反设tk,那么在a1, a2, … , ak中必有aj0且 aj0≠ajl (1≤l≤t) 于是,由 aj0∧(aj1∨aj1∨…∨ajt)= aj0∧(a1∨a2∨…∨ak)
即 (aj0∧aj1)∨ (aj0∧aj2)∨ … ∨ (aj0∧ ajt)
= (aj0∧a1)∨ (aj0∧a2)∨ … ∨ (aj0∧ ak)