高中数学必修二第二章同步练习(含答案)
人教A版高中数学必修二 第二章2.1-2.1.4平面与平面之间的位置关系 同步练习(I)卷

人教A版高中数学必修二第二章2.1-2.1.4平面与平面之间的位置关系同步练习(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共16分)1. (2分)已知直线m,l,平面,且,给出下列命题(1)若,则(2)若,则(3)若,则(4)若,则其中正确的命题个数是()A . 1B . 2C . 3D . 42. (2分)如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是()A . 平行B . 相交C . 平行或相交D . 不能确定3. (2分)(2016·花垣模拟) 下列能保证a⊥∂(a,b,c为直线,∂为平面)的条件是()A . b,c⊂∂.a⊥b,a⊥cB . b,c⊂∂.a∥b,a∥cC . b,c⊂∂.b∩c=A,a⊥b,a⊥cD . b,c⊂∂.b∥c,a⊥b,a⊥c4. (2分)设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则m//n ④若,,则其中正确命题的序号是()A . ①②B . ②③C . ③④D . ①②③④5. (2分)若是空间中互不相同的直线,是不重合的两平面,则下列命题中为真命题的是()A . 若,则B . 若,则C . 若,则D . 若,则6. (2分)如图所示,平面α∩β=l , A、B∈α ,C∈β且C∉l ,AB∩l=R ,设过A、B、C三点的平面为γ ,则β∩γ等于()A . 直线ACB . 直线BCC . 直线CRD . 以上都不对7. (1分) (2016高二上·金华期中) 过平面外一点可以作________直线与已知平面平行.8. (1分) (2018高一下·北京期中) 下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度;②基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;③某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为;④如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交。
最新人教版必修二高中数学同步习题第二章2.2.3和答案

2.2.3 直线与平面平行的性质一、基础过关1.a,b是两条异面直线,P是空间一点,过P作平面与a,b都平行,这样的平面( )A.只有一个B.至多有两个C.不一定有D.有无数个2. 如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BD B.AC∥截面PQMNC.AC=BD D.异面直线PM与BD所成的角为45°3. 如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是( )A.平行 B.相交C.异面 D.平行和异面4.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线( )A.至少有一条B.至多有一条C.有且只有一条D.没有5.设m、n是平面α外的两条直线,给出三个论断:①m∥n;②m∥α;③n∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示) 6. 如图所示,ABCD—A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B 1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.7. ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.8. 如图所示,三棱锥A—BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是( )A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图 11题图11.如图所示,在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的点,它们共面,并且AC ∥平面EFGH ,BD ∥平面EFGH ,AC =m ,BD =n ,当四边形EFGH 是菱形时,AE ∶EB =________.12. 如图所示,P 为平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l . (1)求证:BC ∥l ;(2)MN 与平面PAD 是否平行?试证明你的结论. 三、探究与拓展13.如图所示,三棱柱ABC —A 1B 1C 1,D 是BC 上一点,且A 1B ∥平面AC 1D ,D 1是B 1C 1的中点,求证:平面A 1BD 1∥平面AC 1D .答案1.C 2.C 3.A 4.B 5.①②⇒③(或①③⇒②) 6.223a 7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有PA ∥平面BMD .∵平面PAHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∥平面PAD .又平面PAD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面PAD .证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面PAD,MN⊄平面PAD,∴MN∥平面PAD.13.证明连接A1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.。
高中数学必修2第二章试题(含答案)

A高一数学必修2第二章测试题班别 姓名 考号 得分 一、选择题1.下列说法不正确的....是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面;C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D .过一条直线有且只有一个平面与已知平面垂直.2.设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则n m ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( )A .①和②B .②和③C .③和④D .①和④ 3.垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能4.如右图所示,正三棱锥V A B C -中,,,D E F 分别是,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( )A .6πB . 2πC . 3πD .随P 点的变化而变化。
5.互不重合的三个平面最多可以把空间分成( )个部分 A .4 B .5 C .7 D .86.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A .090 B .060 C .045 D .030 7.在四面体ABCD 中,已知棱AC ,其余各棱长都为1,则二面角A C D B --的余弦值为( )A .12 B.13C 3D .38.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )A .0B .1C .2D .3请将选择题的答案填入下表:二、填空题:1. 已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。
2022年高中数学第二章数列2-2等差数列的性质练习含解析新人教A版必修

课时训练8 等差数列的性质一、等差数列性质的应用1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=( )A.12B.16C.20D.24答案:B2.等差数列{a n}中,若a2+a4 024=4,则a2 013=( )A.2B.4C.6D.-2答案:A解析:2a2013=a2+a4024=4,∴a2013=2.3.在等差数列{a n}中,a3+3a8+a13=120,则a3+a13-a8等于( )A.24B.22C.20D.-8答案:A解析:根据等差数列的性质可知a3+a13=2a8,所以已知等式可变为2a8+3a8=120,解得a8=24,所以a3+a13-a8=2a8-a8=a8=24.4.如果等差数列{a n}中,a1=2,a3=6,则数列{2a n-3}是公差为 的等差数列.答案:4解析:设数列{a n}的公差为d,则a3-a1=2d=4,∴d=2.∴数列{2a n-3}的公差为4.5.在等差数列{a n}中,a3=7,a5=a2+6,则a6= .答案:13解析:设等差数列{a n}的公差为d.∵a5=a2+6,∴a5-a2=6,即3d=6,d=2.∴a6=a3+3d=7+3×2=13.6.(2015河南郑州高二期末,14)若2,a,b,c,9成等差数列,则c-a= .答案:72解析:由等差数列的性质可得2b=2+9,解得b=112.又可得2a=2+b=2+112=152,解得a=154,同理可得2c=9+112=292,解得c=294,故c-a=294−154=144=72.二、等差数列的综合应用7.已知等差数列{a n}中,a7=π4,则tan(a6+a7+a8)等于( )A.-√33B.-√2C.-1D.1答案:C解析:在等差数列中,a6+a7+a8=3a7=3π4,∴tan(a6+a7+a8)=tan3π4=-1.8.已知数列{a n}是等差数列,a4=15,a7=27,则过点P(3,a3),Q(5,a5)的直线斜率为( )A.4B.14C.-4 D.-14答案:A解析:由数列{a n}是等差数列,知a n是关于n的一次函数,其图象是一条直线上的等间隔的点(n,a n),因此过点P(3,a3),Q(5,a5)的直线斜率即过点(4,15),(7,27)的直线斜率,所以直线的斜率k=27-157-4 =4.9.在等差数列{a n}中,若a4+a6+a8+a10+a12=90,则a10-13a14的值为( )A.12B.14C.16D.18答案:A解析:由等差数列的性质及a4+a6+a8+a10+a12=90得5a8=90,即a1+7d=18,∴a10-13a14=a1+9d-13(a1+13d)=23(a1+7d)=23×18=12,故选A.10.数列{a n}满足a1=1,a n+1=(n2+n-λ)a n(n=1,2,…),λ是常数.(1)当a2=-1时,求λ与a3的值;(2)数列{a n}是否可能为等差数列?若可能,求出它的通项公式;若不可能,请说明理由.解:(1)由条件得a2=(2-λ)a1,又a1=1,a2=-1,所以λ=3,从而a3=(22+2-3)a2=-3.(2)假设数列{a n}是等差数列,由a1=1,a n+1=(n2+n-λ)a n得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).由假设知2a2=a1+a3,即2(2-λ)=1+(6-λ)(2-λ),解得λ=3,于是a2=-1,a3=-3,a4=-27,所以a2-a1=-2,而a4-a3=-24,与数列{a n}是等差数列矛盾,故数列{a n}不可能是等差数列.(建议用时:30分钟)1.已知{a n}为等差数列,a2+a8=12,则a5等于( )A.4B.5C.6D.7答案:C解析:由等差数列性质得a2+a8=2a5=12,所以a5=6.2.在等差数列{a n}中,a1+3a8+a15=120,则3a9-a11的值为( )A.6B.12C.24D.48答案:D解析:∵a1+a15=2a8,∴a1+3a8+a15=5a8.∴5a8=120,a8=24.而3a9-a11=3(a8+d)-(a8+3d)=2a8=48.∴选D.3.若数列{a n}为等差数列,a p=q,a q=p(p≠q),则a p+q为( )A.p+qB.0C.-(p+q)D.p+q2答案:B解析:公差d=p-qq-p=-1,∴a p+q=a p+(p+q-p)d=q+q×(-1)=0.4.由公差d≠0的等差数列a1,a2,…,a n,…组成一个数列a1+a3,a2+a4,a3+a5,…,下列说法正确的是( )A.该新数列不是等差数列B.是公差为d的等差数列C.是公差为2d的等差数列D.是公差为3d的等差数列答案:C解析:∵(a n+1+a n+3)-(a n+a n+2)=(a n+1-a n)+(a n+3-a n+2)=2d,∴数列a1+a3,a2+a4,a3+a5,…是公差为2d的等差数列.5.已知{a n}为等差数列,若a1+a5+a9=8π,则cos(a3+a7)的值为( )A.√32B.-√32C.12D.-12答案:D解析:∵{a n}为等差数列,a1+a5+a9=8π,∴a5=83π,cos(a3+a7)=cos(2a5)=cos163π=-12.6.等差数列{a n}中,已知a3=10,a8=-20,则公差d= . 答案:-6解析:由题知d=a8-a38-3=-305=-6.7.在等差数列{a n}中,已知a8+m=10,a8-m=6,其中m∈N*,且1≤m≤7,则a8= . 答案:8解析:∵a 8+m +a 8-m =2a 8,∴a 8=8.8.如果有穷数列a 1,a 2,…,a m (m 为正整数)满足条件:a 1=a m ,a 2=a m-1,…,a m =a 1,则称其为“对称”数列.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列{c n }中,c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,c 2= .答案:19解析:因为c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,又{c n }为21项的对称数列,所以c 2=c 20=c 11+9d=1+9×2=19.9.已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.解:∵a 1+a 7=2a 4,∴a 1+a 4+a 7=3a 4=15.∴a 4=5.又∵a 2a 4a 6=45,∴a 2a 6=9.即(a 4-2d )(a 4+2d )=9,即(5-2d )(5+2d )=9,解得d=±2.若d=2,a n =a 4+(n-4)d=2n-3;若d=-2,a n =a 4+(n-4)d=13-2n.10.已知{a n }为等差数列,a 15=8,a 60=20,求a 75.解:解法一:因为{a n }为等差数列,∴a 15,a 30,a 45,a 60,a 75也成等差数列,设其公差为d ,a 15为首项,则a 60为其第4项,∴a 60=a 15+3d ,得d=4.∴a 75=a 60+d=20+4=24.解法二:设{a n }的公差为d ,因为a 15=a 1+14d ,a 60=a 1+59d ,∴{a 1+14d =8,a 1+59d =20,解得{a 1=6415,d =415.故a 75=a 1+74d=6415+74×415=24.。
高中数学必修2第二章知识点+习题+答案

第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的2 平面的画法与表示 〔1〕平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长〔如图〕〔2〕平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等. 3 三个公理:〔1〕公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内〔2〕公理2:过不在一条直线上的三点,有且只有一个平面. 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α.公理2作用:确定一个平面的依据.〔3〕公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号表示为:P ∈α∩β =>α∩β=L,且P ∈L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点. 2 公理4:平行于同一条直线的两条直线互相平行. 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4作用:判断空间两条直线平行的依据.3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈<0, >;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;D C B A α A·α C ·B· A · α P · α Lβ 共面直线=>a ∥c 2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角.— 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:〔1〕直线在平面内——有无数个公共点〔2〕直线与平面相交——有且只有一个公共点〔3〕直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定与其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.简记为:线线平行,则线面平行.符号表示:a αb β => a∥αa∥b平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行.符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:〔1〕用定义;〔2〕判定定理;〔3〕垂直于同一条直线的两个平面平行.— 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 简记为:线面平行则线线平行.符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题.2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行.符号表示:α∥βα∩γ= a a∥bβ∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定与其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面.如图,直线与平面垂直时,它们唯一公共点P叫做垂足.Lpα2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.注意点: a>定理中的"两条相交直线〞这一条件不可忽视;b>定理体现了"直线与平面垂直〞与"直线与直线垂直〞互相转化的数学思想.平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭 l βBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.2.3.3—2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行.2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.第二章点、直线、平面之间的位置关系A组一、选择题1.设,为两个不同的平面,l,m为两条不同的直线,且l⊂,m⊂β,有如下的两个命题:①若∥,则l∥m;②若l⊥m,则⊥.那么< >.A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题2.如图,ABCD-A1B1C1D1为正方体,下面结论错误..的是< >.A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°<第2题> 3.关于直线m,n 与平面,,有下列四个命题:①m ∥,n ∥且∥,则m∥n;②m ⊥,n ⊥且⊥,则m⊥n;③m ⊥,n ∥且∥,则m⊥n;④m ∥,n ⊥且⊥,则m∥n.其中真命题的序号是< >.A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是<>.A.1B.2C.3D.45.下列命题中正确的个数是< >.①若直线l 上有无数个点不在平面内,则l ∥②若直线l 与平面平行,则l 与平面内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l 与平面平行,则l 与平面内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面< >.A.不存在B.有唯一的一个C.有无数个D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为< >.A.90°B.60°C.45°D.30°8.下列说法中不正确的....是<>.A.空间中,一组对边平行且相等的四边形一定是平行四边形B .同一平面的两条垂线一定共面C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D .过一条直线有且只有一个平面与已知平面垂直 9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行 ④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直 其中真命题的个数是<>.A .4B .3C .2D .110.异面直线a ,b 所成的角60°,直线a ⊥c ,则直线b 与c 所成的角的X 围为<>. A .[30°,90°] B.[60°,90°] C.[30°,60°]D.[30°,120°] 二、填空题11.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两相互垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为.12.P 是△ABC 所在平面外一点,过P 作PO ⊥平面,垂足是O ,连PA ,PB ,PC .<1>若PA =PB =PC ,则O 为△ABC 的心; <2>PA ⊥PB ,PA ⊥PC ,PC ⊥PB ,则O 是△ABC 的心;<3>若点P 到三边AB ,BC ,CA 的距离相等,则O 是△ABC 的心; <4>若PA =PB =PC ,∠C =90º,则O 是AB 边的点; <5>若PA =PB =PC ,AB =AC ,则点O 在△ABC 的线上. 13.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为.14.直线l 与平面所成角为30°,l ∩=A ,直线m∈,则m 与l 所成角的取值X 围是.15.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,J<第13题>则d 1+d 2+d 3+d 4的值为.16.直二面角-l -的棱上有一点A ,在平面,内各有一条射线AB ,AC与l 成45°,AB ⊂,AC ⊂,则∠BAC =.三、解答题17.在四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形. <1>求证:BC ⊥AD ;<2>若点D 到平面ABC 的距离等于3,求二面角A -BC -D 的正弦值;<3>设二面角A -BC -D 的大小为,猜想为何值时,四面体A -BCD 的体积最大.<不要求证明>18. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .<1>求证:平面EDB ⊥平面EBC ; <2>求二面角E -DB -C 的正切值.19*.如图,在底面是直角梯形的四棱锥S-ABCD 中,AD ∥BC ,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21.<1>求四棱锥S —ABCD 的体积;<2>求面SCD 与面SBA 所成的二面角的正切值. <提示:延长 BA ,CD 相交于点 E ,则直线 SE 是 所求二面角的棱.><第19题>20*.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.<提示:在 AA 1 上取一点 P ,过 P 作棱柱的截面,使 AA 1 垂直于这个截面.><第20题>第二章 点、直线、平面之间的位置关系参考答案<第18题><第17题>一、选择题1.D 解析:命题②有反例,如图中平面∩平面=直线n ,l ⊂,m ⊂,且l ∥n ,m ⊥n ,则m ⊥l ,显然平面不垂直平面,<第1题>故②是假命题;命题①显然也是假命题, 2.D 解析:异面直线AD 与CB 1角为45°.3.D 解析:在①、④的条件下,m ,n 的位置关系不确定.4.D 解析:利用特殊图形正方体我们不难发现①②③④均不正确,故选择答案D . 5.B 解析:学会用长方体模型分析问题,A 1A 有无数点在平面ABCD 外,但AA 1与平面ABCD 相交,①不正确;A 1B 1∥平面ABCD ,显然A 1B 1不平行于BD ,②不正确;A 1B 1∥AB ,A 1B 1∥平面ABCD ,但AB ⊂平面ABCD 内,③不正确;l 与平面α平行,则l 与无公共点,l 与平面内的所有直线都没有公共点,④正确,应选B . <第5题>6.B 解析:设平面 过l 1,且 l 2∥,则 l 1上一定点 P 与 l 2 确定一平面,与的交线l 3∥l 2,且 l 3 过点 P . 又过点 P 与 l 2 平行的直线只有一条,即 l 3 有唯一性,所以经过 l 1 和 l 3 的平面是唯一的,即过 l 1 且平行于 l 2 的平面是唯一的.7.C 解析:当三棱锥D -ABC 体积最大时,平面DAC ⊥ABC ,取AC 的中点O ,则△DBO 是等腰直角三角形,即∠DBO =45°.8.D 解析:A .一组对边平行就决定了共面;B .同一平面的两条垂线互相平行,因而共面;C .这些直线都在同一个平面内即直线的垂面;D .把书本的书脊垂直放在桌上就明确了.9.B 解析:因为①②④正确,故选B .10.A 解析:异面直线a ,b 所成的角为60°,直线c ⊥a ,过空间任一点 P ,作直线 a ’∥a , b ’∥b , c ’∥c . 若a ’,b ’,c ’ 共面则 b ’ 与 c ’ 成 30°角,否则b ’与c ’所成的角的X 围为<30°,90°],所以直线b 与c 所成角的X 围为[30°,90°].二、填空题 11.313212S S S .解析:设三条侧棱长为a ,b ,c .则21ab =S 1,21bc =S 2,21ca =S 3 三式相乘:∴ 81a 2 b 2 c 2=S 1S 2S 3,∴ abc =23212S S S . ∵ 三侧棱两两垂直,∴ V =31abc ·21=313212S S S .12.外,垂,内,中,BC 边的垂直平分.解析:<1>由三角形全等可证得O 为△ABC 的外心;<2>由直线和平面垂直的判定定理可证得,O 为△ABC 的垂心; <3>由直线和平面垂直的判定定理可证得,O 为△ABC 的内心; <4>由三角形全等可证得,O 为 AB 边的中点;<5>由<1>知,O 在 BC 边的垂直平分线上,或说O 在∠BAC 的平分线上.13.60°.解析:将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为60°. 14.[30°,90°].解析:直线l 与平面所成的30°的角为m 与l 所成角的最小值,当m 在内适当旋转就可以得到l ⊥m ,即m 与l 所成角的的最大值为90°. 15.36.解析:作等积变换:4331⨯×<d 1+d 2+d 3+d 4>=4331⨯·h ,而h =36. 16.60°或120°.解析:不妨固定AB ,则AC 有两种可能. 三、解答题17.证明:<1>取BC 中点O ,连结AO ,DO . ∵△ABC ,△BCD 都是边长为4的正三角形, ∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O, ∴BC ⊥平面AOD .又AD ⊂平面AOD , ∴BC ⊥AD .<第17题>解:<2>由<1>知∠AOD 为二面角A -BC -D 的平面角,设∠AOD =,则过点D 作DE ⊥AD ,垂足为E .∵BC ⊥平面ADO ,且BC ⊂平面ABC ,∴平面ADO ⊥平面ABC .又平面ADO ∩平面ABC =AO , ∴DE ⊥平面ABC .∴线段DE 的长为点D 到平面ABC 的距离,即DE =3.又DO =23BD =23, 在Rt △DEO 中,sin =DODE =23,故二面角A -BC -D 的正弦值为23. <3>当=90°时,四面体ABCD 的体积最大.18.证明:<1>在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . <2>解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51,<第18题> 又OE =1,所以,tan ∠EFO =5.19*.解:<1>直角梯形ABCD 的面积是M 底面=AB AD BC ⋅)(+21=43=1221+1⨯, ∴四棱锥S —ABCD 的体积是V =31·SA ·M 底面=31×1×43=41.<2>如图,延长BA ,CD 相交于点E ,连结SE ,则SE 是所求二面角的棱. ∵AD ∥BC ,BC =2AD , ∴EA =AB =SA ,∴SE ⊥SB∵SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线. 又BC ⊥EB ,∴BC ⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE ,∠BSC 是所求二面角的平面角. ∵SB =22+AB SA =2,BC =1,BC ⊥SB ,∴tan ∠BSC =22=SB BC ,<第19题> 即所求二面角的正切值为22. 20*.解:如图,设斜三棱柱ABC —A 1B 1C 1的侧面BB 1C 1C 的面积为10,A 1A 和面BB 1C 1C 的距离为6,在AA 1上取一点P 作截面PQR ,使AA 1⊥截面PQR ,AA 1∥CC 1,∴截面PQR ⊥侧面BB 1C 1C ,过P 作PO ⊥QR 于O ,则PO ⊥侧面BB 1C 1C ,且PO =6.∴V 斜=S △PQR ·AA 1=21·QR ·PO ·AA 1 =21·PO ·QR ·BB 1 =21×10×6 =30.<第20题>。
高中数学 必修二 第二章 2.1 2.1.1课后练习题

第二章 2.1 2.1.1基础巩固一、选择题1.空间中,可以确定一个平面的条件是()A.两条直线B.一点和一条直线C.一个三角形D.三个点[答案] C2.如图所示,下列符号表示错误的是()A.l∈αB.P∉lC.l⊂αD.P∈α[答案] A[解析]观察图知:P∉l,P∈α,l⊂α,则l∈α是错误的.3.下面四个说法(其中A,B表示点,a表示直线,α表示平面):①∵A⊂α,B⊂α,∴AB⊂α;②∵A∈α,B∉α,∴AB∉α;③∵A∉a,a⊂α,∴A∉α;④∵A∈a,a⊂α,∴A∈α.其中表述方式和推理都正确的命题的序号是()A.①④B.②③C.④D.③[答案] C[解析]①错,应写为A∈α,B∈α;②错,应写为AB⊄α;③错,推理错误,有可能A∈α;④推理与表述都正确.4.如图所示,平面α∩β=l,A,B∈α,C∈β且C∉l,AB∩l=R,设过A,B,C三点的平面为γ,则β∩γ等于()A.直线AC B.直线BCC.直线CR D.以上都不对[答案] C[解析]由C,R是平面β和γ的两个公共点,可知β∩γ=CR.5.若一直线a在平面α内,则正确的图形是()[答案] A6.下图中正确表示两个相交平面的是()[答案] D[解析]A中无交线;B中不可见线没有画成虚线;C中虚、实线没按画图规则画,也不正确.D的画法正确.画两平面相交时,一定要画出交线,还要注意画图规则,不可见线一般应画成虚线,有时也可以不画.二、填空题7.已知如图,试用适当的符号表示下列点、直线和平面的关系:(1)点C与平面β:________.(2)点A与平面α:________.(3)直线AB与平面α:________.(4)直线CD与平面α:________.(5)平面α与平面β:________.[答案](1)C∉β(2)A∉α(3)AB∩α=B(4)CD⊂α(5)α∩β=BD8.在正方体ABCD-A1B1C1D1中,下列说法正确的是________(填序号).(1)直线AC1在平面CC1B1B内.(2)设正方体ABCD与A1B1C1D1的中心分别为O,O1,则平面AA1C1C与平面BB1D1D 的交线为OO1.(3)由A,C1,B1确定的平面是ADC1B1.(4)由A,C1,B1确定的平面与由A,C1,D确定的平面是同一个平面.[答案](2)(3)(4)[解析](1)错误.如图所示,点A∉平面CC1B1B,所以直线AC1⊄平面CC1B1B.(2)正确.如图所示.因为O∈直线AC⊂平面AA1C1C,O∈直线BD⊂平面BB1D1D,O1∈直线A1C1⊂平面AA1C1C,O1∈直线B1D1⊂平面BB1D1D,所以平面AA1C1C与平面BB1D1D的交线为OO1.(3)(4)都正确,因为AD∥B1C1且AD=B1C1,所以四边形AB1C1D是平行四边形,所以A,B1,C1,D共面.三、解答题9.求证:两两相交且不过同一点的三条直线必在同一个平面内.[分析][解析]已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.证明:方法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C ∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.方法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α.又A∈α,同理AC⊂α,故直线AB,BC,AC共面.方法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.规律总结:1.利用公理2及三个推论,可以确定平面及平面的个数,公理中要求“不共线的三点”,推论1要求“平面外一点”,推论2要求“两条相交直线”,推论3要求“两条平行线”,因此对公理、推论的条件和结论必须理解清楚.2.对于证明几个点(或几条直线)共面的问题,在由其中几个点(或几条直线)确定一个平面后,只要再证明其他点(或直线)也在该平面内即可.10.如图所示,AB∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D三点共线.[解析]∵AB∥CD,∴AB,CD共面,设为平面β,∴AC在平面β内,即E在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E为平面α与平面β的公共点,根据公理3可得,B,D,E三点共线.能力提升一、选择题1.(2015·天津武清月考)下列说法正确的是()A.两两相交的三条直线确定一个平面B.四边形确定一个平面C.梯形可以确定一个平面D.圆心和圆上两点确定一个平面[答案] C[解析]因为梯形的两腰是相交直线,所以根据确定平面的条件,梯形应确定一个平面.2.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面[答案] D[解析]如果两个平面重合,则排除A、B;两个平面相交,则有一条交线,交线上任取3个点都是两个平面的公共点,故排除C;而D中的三点不论共线还是不共线,则一定能找到一个平面过这3个点.3.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④[答案] D[解析]当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确,选D.4.如图,α∩β=l,A∈α,C∈β,C∉l,直线AD∩l=D,过A,B,C三点确定的平面为γ,则平面γ、β的交线必过()A.点A B.点BC.点C,但不过点D D.点C和点D[答案] D[解析]A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.二、填空题5.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定的平面的个数是________.[答案] 6[解析]如图.6.如图所示,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.(1)如果EH∩FG=P,那么点P在直线________上.(2)如果EF∩GH=Q,那么点Q在直线________上.[答案](1)BD(2)AC[解析](1)若EH∩FG=P,那么点P∈平面ABD,P∈平面BCD,而平面ABD∩平面BCD =BD,所以P∈BD.(2)若EF∩GH=Q,则点Q∈平面ABC,Q∈平面ACD,而平面ABC∩平面ACD=AC,所以Q∈AC.三、解答题7.在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:(1)E 、C 、D 1、F 、四点共面; (2)CE 、D 1F 、DA 三线共点. [证明] (1)分别连结EF 、A1B 、D 1C , ∵E 、F 分别是AB 和AA 1的中点, ∴EF ∥A 1B 且EF =12A 1B .又∵A 1D 1綊B 1C 1綊BC , ∴四边形A 1D 1CB 是平行四边形, ∴A 1B ∥CD 1,从而EF ∥CD 1. EF 与CD 1确定一个平面. ∴E 、F 、D 1、C 四点共面. (2)∵EF 綊12CD 1,∴直线D 1F 和CE 必相交.设D 1F ∩CE =P , ∵D 1F ⊂平面AA 1D 1D ,P ∈D 1F ,∴P ∈平面AA 1D 1D . 又CE ⊂平面ABCD ,P ∈EC ,∴P ∈平面ABCD , 即P 是平面ABCD 与平面AA 1D 1D 的公共点. 而平面ABCD ∩平面AA 1D 1D =直线AD ,∴P ∈直线AD (公理3),∴直线CE 、D 1F 、DA 三线共点.8.(2015·江苏淮安模拟)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .(1)画出直线l 的位置;(2)设l ∩A 1B 1=P ,求线段PB 1的长.[解析] (1)延长DM 交D 1A 1的延长线于E ,连接NE ,则NE 即为直线l 的位置.(2)∵M 为AA 1的中点,AD ∥ED 1, ∴AD =A 1E =A 1D 1=a . ∵A 1P ∥D 1N ,且D 1N =12a ,∴A 1P =12D 1N =14a ,于是PB 1=A 1B 1-A 1P =a -14a =34a .。
高中数学必修2第二章测试(含答案).docx

第二章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①②B.②④C.①③D.②③答案:B2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.不相交解析:由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案:B3.一直线/与其外三点A, B, C可确定的平面个数是()A.1个B. 3个C. 1个或3个D. 1个或3个或4个解析:当A、B、C共线且与/平行或相交时,确定一个平面;当A、B、C共线且与/ 异面时,可确定3个平面;当A、B. C三点不共线时,可确定4个平面.答案:D4.若三个平面两两相交,有三条交线,则下列命题中止确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案:D5.如图,在AABC中,ZBAC=90°,丄面ABC, AB=AC, D是BC的中点,则图中直角三角形的个数是()A. 5B. 8C. 10D. 6解析:这些直角三角形是:△B4B, △B4D, AMC, MAC, ABAD, ACAD,△PBD, △PCD.共8 个.答案:B6.下列命题正确的有()①若厶ABC在平面a外,它的三条边所在直线分别交a于P、Q、R,则P、0、R三点、共线.②若三条平行线a、b. c都与直线/相交,则这四条直线共面.③三条直线两两相交,则这三条直线共面.A. 0个B. 1个C. 2个D. 3个解析:易知①与②正确,③不正确.答案:C7.若平面a丄平面沟a^p=l,且点Pea, PH,则下列命题中的假命题是()A.过点P且垂直于a的直线平行于0B.过点P且垂直于/的直线在a内C.过点P且垂直于0的直线在a内D.过点P且垂直于/的平面垂直于0答案:B& 如右图,在棱长为2的正方体ABCD-ArBiCiDr中,O是底面ABCD的中心,M、N分别是棱DDi、DiCi的中点,则直线OM()A.与AC、MN均垂直相交B.与AC垂直,与MN不垂直C.与A/N垂直,与AC不垂直D.与AC、MN均不垂直解析:易证 AC 丄面 BB X D\D, OMU 面 BBQQ, :.AC±OM.计算得 OM 2 + MN 1 = ON 1=5, OMLMN.答案:A 9. (2010-江西高考)如图,M 是正方体ABCD-AiBrCiDi 的棱DDi 的中点,给出下列四 个命题:D.①②③ 解析:将过点M 的平面CDDiCi 绕直线DDi 旋转任意非零的角度,所得平面与直线AB, BiCi 都相交,故③错误,排除A, B, D.答案:C10.已知平面a 外不共线的三点A 、B 、C 到a 的距离相等,则正确的结论是()A. 平面ABC 必平行于aB. 平面ABC 必不垂直于aC. 平面ABC 必与a 相交D. 存在/\ABC 的一条中位线平行于a 或在a 内解析:排除A 、B 、C,故选D.答案:D11. (2009-广东高考)给定下列四个命题:① 若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ② 若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③ 垂直于同一直线的两条直线相互平行;④ 若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂 直.其中,为真命题的是()A.①和②B.②和③ ①过M 点有且只有一条直线与直线AB,Bi 。
高二数学必修2第二章测试题及答案

高中数学必修高2第二章测试题试卷满分:150分 考试时间:120分钟班级___________ 姓名__________ 学号_________ 分数___________一、选择题(每小题5分,共60分) 1、线段AB 在平面α内,则直线AB 及平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 及DC 成45角 D 、11AC 及1B C 成60角5、若直线l ∥平面α,直线aα⊂,则l 及a 的位置关系是A 、l ∥aB 、l 及a 异面C 、l 及a 相交D 、l 及a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取EFGH 、、、四点,如果及EF GH、能相交于点P ,那么A 、点必P 在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个9、点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA=PB=PC ,则点O 是ΔABC 的( ) A 、内心 B 、外心 C 、重心 D 、垂心10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 A 、23 B 、76C 、45D 、5611、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于A 、34B 、35C 、77 D 、37712、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2V B 、3VC 、4VD 、5V二、填空题(每小题5分,共20分)13、已知直线a ⊥直线b, a//平面β,则b 及β的位置关系为 .14、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为15、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .16.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线, 给出四个论断: ① m n ②αβ ③ m β ④ nα以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:______________________________________. 三、解答题(共70分,要求写出主要的证明、解答过程)18、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (10分)17、如图,PA ⊥平面ABC ,平面PAB ⊥平面PBC 求证:AB ⊥BC (12分)19、已知ABC ∆中90ACB∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)20.如图,PA ⊥平面ABC ,AE ⊥PB ,AB ⊥BC ,AF ⊥PC,PA=AB=BC=2(1)求证:平面AEF ⊥平面PBC ;(2)求二面角P —BC —A 的大小;(3)求三棱锥P —AEF 的体积.(12分)21、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 柱、锥、台、球的的结构特征练习一一、选择题1、下列命题中,正确命题的个数是()(1)桌面是平面;(2)一个平面长2米,宽3米;(3)用平行四边形表示平面,只能画出平面的一部分;(4)空间图形是由空间的点、线、面所构成。
A 、 1 B、 2C、 3D、 42、下列说法正确的是()A、水平放置的平面是大小确定的平行四边形B、平面ABCD就是四边形ABCD的四条边围来的部分C、 100个平面重叠在一起比10个平面重叠在一起厚D、平面是光滑的,向四周无限延展的面3、下列说法中表示平面的是()A、水面B、屏面C、版面D、铅垂面4、下列说法中正确的是()A、棱柱的面中,至少有两个面互相平行B、棱柱的两个互相平行的平面一定是棱柱的底面C、棱柱的一条侧棱的长叫做棱柱的高D、棱柱的侧面是平行四边形,但它的底面一定不是平行四边形5、长方体的三条棱长分别是AA/=1,AB=2,AD=4,则从A点出发,沿长方体的表面到C/的最短距离是()A、 5B、 7C、 D、6、若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A、三棱锥B、四棱锥C、五棱锥D、六棱锥]7、过球面上两点可能作出球的大圆()A、 0个或1个B、有且仅有1个C、无数个D、一个或无数个8、一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为()A、 10B、 20C、 40D、 15二、填空题9、用一个平面去截一个正方体,截面边数最多是----------------条。
10、正三棱台的上、下底面边长及高分别为1、2、2,则它的斜高是------------。
11、一个圆柱的轴截面面积为Q,则它的侧面面积是----------------。
12、若圆锥的侧面面积是其底面面积的2倍,则这个圆锥的母线与底面所成的角为----------------,圆锥的侧面展开图扇形的圆心角为----------------。
13、在赤道上,东经1400与西经1300的海面上有两点A、B,则A、B两点的球面距离是多少海里---------------。
(1海里是球心角1/所对大圆的弧长)。
三、解答题14、一个正三棱柱的底面边长是4,高是6,过下底面的一条棱和该棱所对的上底面的顶点作截面,求这截面的面积。
15、圆锥底面半径是6,轴截面顶角是直角,过两条母线的截面截去底面圆周的16,求截面面积。
答案:一、选择题1、B ;2、D ;3、D ;4、A ;5、A ;6、D ;7、D ;8、B二、填空题9、610、736 11、Q 12、600,1800 13、5400三、解答题14、解:如图,正三棱柱ABC —A /B /C /,符合题意的截面为A /BC ,在R t A /B /B 中,A /B /=4,BB /=6∴A /B=//2/2A B BB +=2246+ =213在等腰A /BC 中,BO=142⨯=2 A /OBC ,∴A /O=/22A B BO - =()222132-=43 ∴S A /BC =12BC ·A /O=12·4·43=83 ∴这截面的面积为8315、解:由题意知:SA=SB=SC=62,∠BOC=26π=3π,∴OB=OC=BC=6。
∴∴S SCB =12·6· 解题提示: 通过解三角形可使问题自然获解。
1.1.2 简单组合体的结构特征练习一一、 选择题1、平面是绝对的平、无厚度、可以无限延展的抽象的数学概念。
其中正确命题的个数是( )A 、 1个B 、 2个C 、 3个D 、 4个2、在空间中,下列说法中正确的是( )A 、 一个点运动形成直线B 、 直线平行移动形成平面或曲面C 、 直线绕定点运动形成锥面D 、 矩形上各点沿同一方向移动形成长方体3、在四面体中,平行于一组相对棱,并平分其余各棱的截面的形状是( )A 、 等边三角形B 、 等腰梯形C 、 长方体D 、 正方形4、在四棱锥的四个侧面中,直角三角形最多可有( )A 、 1个B 、 2个C 、 3个D 、 4个5、设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体乙:底面是矩形的平行六面体是长方体丙:直四棱柱是直平行六面体以上命题中,真命题的个数是( )A 、 0个B 、 1个C、 2个D、 3个6、边长为5cm的长方形EFGH是圆柱的轴截面,则从E点沿圆柱的侧面到相对顶点G的最短距离是()A、 10cmB、 cmC、 cmD、7、半径为5的球,截得一条直线的线段长为8,则球心到直线的距离是()A、 B、 2C、 D、 3二、填空题8、、空间中构成几何体的基本元素是------------、--------------、---------------------。
9、、用六根长度相等的火柴,最多搭成----------------个正三角形。
10、下列关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱。
其中真命题的序号是----------------。
11、能否不通过拉伸把球面切割为平面图形-----------------(填能、否)三、解答题12、圆锥的底面半径为r,母线长是底面半径的3倍,在底在圆周上有一点A,求一个动点P自A出发在侧面上绕一周到A点的最短距离。
13、已知棱棱锥的底面积是150cm2,平行于底面的一个截面面积是54cm2,截得棱台的高为12cm,求棱锥的高。
14、如图,侧棱长为23的正三棱锥V—ABC中, AVB=BVC=CVA=400,过A作截面AEF,求截面三角形AEF周长的最小值。
15、从北京(靠近北纬400,东经1200,以下经纬度均取近似值)飞往南非首都约翰内斯堡(南纬300,东经300)有两条航空线可选择:甲航空线:从北京沿纬度弧向西飞到土耳其首都安卡拉(北纬400,东经300),然后向南飞到目的地;乙航空线:从北京向南飞到澳大利亚的珀斯(南纬300,东经1200),然后向西飞到目的地。
请问:哪一条航空线最短?(地球视为半径R=6370km的球)(提示:把北京、约翰内斯堡、安卡拉、珀斯分别看作球面上的A、B、C、D四点,则甲航程为A、C »AC与C、B两地间的球面距离»BC之和,乙航程是A、D两地间的球面距离»AD加上两地间的纬度长D、B两地间的纬度线长。
)答案:一、选择题1、A;2、B;3、D;4、D;5、B;6、C;7、D二、填空题8、点、线、面。
9、410、②④11、不能三、解答题12、解:如图,扇形SAA 1为圆锥的侧面展开图,AA 1即为所求的最短路程。
已知SA=SA 1=3r ,ASA 1=1200,在等腰三角形SAA 1中可求得:AA 1=33r 。
13、导析:本题主要考查平行于底面的截面的性质,即棱锥被平行于底面的平面所截,该截面面积与底面面积之比等于截得小锥的高与原锥的高的比的平方。
解:不妨高是三棱锥。
设棱锥的高为h ,∵ 212h h -⎛⎫ ⎪⎝⎭=54150∴ h=30(cm)14、解:将三棱锥沿侧棱VA 剪开,并将其侧面展开平铺在一个平面上,如图。
线段AA 1的长为所求三角形AEF 周长的最小值,取AA 1的中点D ,则VDAA 1, AVD=600,可求AD=3,则AA 1=6。
15、解:设球心为O ,O 1、O 2分别是北纬400圆与南纬300圆的圆心,则∠AO 1C=∠DO 2B=1200-300=900 从而»AC =2π·O 1C=2πRcos400, »BD =2π·O 2B=2πRcos300=34πR , »CB =R ·∠COB=R (40+30)·180π =718R , »AD = R ·∠AOD=R (40+30)·180π =718R 故甲航程为s 1=»AC +»CB=2πR cos400+718R , 故乙航程为s 2=»BD+»AD = 3πR+718R 由cos400<cos300,知s 1<s 2,所以甲航空线较短。
1.2.1 空间几何体的三视图练习一一、 选择题1、关于三视图,判断正确的是( )A 、 物体的三视图唯一确定物体B 、 物体唯一确定它的三视图C 、 俯视图和左视图的宽相等D 、 商品房广告使用的三视图的主视图一定是正面的投影2、 下列说法正确的是( )A 、 作图时,虚线通常表达的是不可见轮廓线B 、 视图中,主视图反映的是物体的长和高,左视图反映的是长和宽,而俯视图反映的是高和宽C 、 在三视图中,仅有点的两个面上的投影,不能确定点的空间位置D 、 用2:1的比例绘图时,这是缩小的比例3、一个几何体由几个相同的小正方体组合而成,它的主视图、左视图、俯视图如图所示,则这个组合体包含的小正方体的个数是( )A 、 7B 、 6C 、 4D 、 54、一个物体的三视图如图所示,则该物体形状的名称为( )A、三棱柱B、四棱柱C、圆柱D、圆锥二、填空题5、对于一个几何体的三视图要证主视图与左视图一样________,主视图和俯视图一样________,俯视图和左视图一样________.6、对于正投影,垂直于投射面的直线或线段的正投影是---------------------。
7、一个几何体的三视图是全等的平面图形,这样的几何体可能是------------。
(写出符合的一种几何体即可)8、如果一个几何体的视图之一是三角形,那么这个几何体可能是--------------。
(写出两个几何体即可)。
三、做图9、画出下面几何体的三视图。
10、据下面三视图,想象物体的原形。
11、画出下面几何体的三视图。
12、画出下面几何体的三视图13、画出下面几何体的三视图14、已知某几何体的主视图,左视图和俯视图,求作此几何体。
主视图左视图15、已知某几何体,求作此几何体的主视图,左视图和俯视图。
答案:一、选择题1、C;2、A;3、C;4、B二、填空题5、高长宽6、点7、球或正方体8、三棱锥;圆锥三、做图9、解:10、解:由几何体的三视图知道:本题图的几何体是一个简单组合体,上部是个圆柱,下部是个正四棱柱。
且圆柱的下底面圆和正四棱柱的上底面正方形内切。
11、解:评述:本题主要考查三视图的画法。
12、解:三视图如下13、解:如图主视图左视图俯视图14、解:如图15、俯视图1.2.1 空间几何体的三视图练习二一、选择题1、若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则这个几何体可能是()A、圆柱B、三棱柱C、圆锥D、球体2、若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则这个几何体可能是()A、圆柱B、三棱柱C、圆锥D、球体3、甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“ ”,丙说他看到的是“ ”,丁说他看到的是“9”,则下列说法正确的是( )A、甲在丁的对面,乙在甲的左边,丙在丁的右边B、丙在乙的对面,丙的左边是甲,右边是乙C、甲在乙的对面,甲的右边是丙,左边是丁D、甲在丁的对面,乙在甲的右边,丙在丁的右边二、填空题4、一个几何体的三视图是全等的平面图形,这样的几何体可能是------------------。