数学建模简介(2)

合集下载

新教材北师大版必修第一册 第8章数学建模活动一一数学建模简介 课件(5张)

新教材北师大版必修第一册     第8章数学建模活动一一数学建模简介   课件(5张)
点)
1.数学建模的概念 数学建模是对现实问题进行数学抽象,用数学语言表达问题、用 数学知识与方法构建模型解决问题的过程,也是推动数学发展的动 力.
2.数学建模一般步骤
3.数学建模活动的主要过程 (1)选题:就是选定研究的问题. (2)开题:就是进一步明确研究的问题和设计解决问题的方案. (3)做题:是研究者(研究小组)建立数学模型、用数学解决实际问 题的实践活动. (4)结题:是研究小组向老师和同学们报告研究成果、进行答辩的 过程,一般来讲,结题会是结题的基本形式.
第八章 数学建模活动(一)一、数学建ຫໍສະໝຸດ 简介学习目标核心素养
1.了解数学建模的意义; 1.经历数学建模的全过程,培养
2.了解数学建模的基本过程.(重 数学抽象、数据分析的数学素养.
点) 2.通过数学建模解决实际应用问
3.能够运用已有函数模型或建立 题,提升数学运算、逻辑推理和直
函数模型解决实际问题.(重点,难 观想象的数学素养.

数学建模简介

数学建模简介

数学建模简介
数学建模竞赛活动是架于数学理论和实际问题之间的桥梁,•数学建模是应用数学解决实际问题的重要手段和途径。

通过实例介绍数学建模的全过程。

通过向学生展示各种不同实际领域中的数学问题和数学建模方法,通过对一系列来自不同领域的实际问题的提出、分析、建模和求解的学习与训练,激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,培养创新精神,提高学生分析问题、解决问题和计算机应用的能力。

数学建模旨在通过建模训练培养:(1)学生用数学工具分析解决实际问题的意识。

(2)学生用数学思想和方法综合分析实际问题的能力。

(3)学生的联想能力。

即培养学生的建模能力和解决实际问题的能力。

数学建模概述

数学建模概述

• 在国民经济中的数学模型:
产品的设计与制造 系统的控制与优化 质量控制 预报与决策
• 数学模型和数学技术 :
资源环境 其它:气象预报等
在高新技术领域数学建模几乎是必不可少的工具 数学是一种关键的、普遍的、能够实行的技术。 高技术本质上是一种数学技术。
课程简介
1 现状: •数学建模是一门新兴的学科,20世纪70年代 初诞生于英、美等现代工业国家。在短短几十 年的历史瞬间辐射至全球大部分国家和地区。 •80年代初,我国高等院校也陆续开设了数学 建模课程,随着数学建模教学活动(包括数学 建模课程、数学建模竞赛(1992,每年9月)和数 学(建模)试验课程等)的开展,这门课越来 越受到重视。
从智力游戏到数学建模 ——人、狗、鸡、米过河问题
问题: 某人要带狗、鸡、米过河,但小船除需 要人划外,最多只能载一物过河,而当人不 在场时,狗要咬鸡、鸡要吃米,问此人应如 何过河才能将狗、鸡和米都带过河。
第1章 数学建模概述
1.1 数学建模介绍 1.2 数学建模的一般步骤 1.3 数学建模示例
根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学建模(Mathematical Modeling):
建立数学模型的全过程 (包括表述、求解、解释、检验等) 现实对象的 信息
证验 解释 表述
数学模型
求 解
( 演 绎 )
(归纳)
现实对象的 解答
数学模型的 解答
现实对象与数学模型的关系
§1.3 数学建模示例
我们通过一些最简单的实例来说明微分方程建 模的一般方法。在连续变量问题的研究中,微分 方程是十分常用的数学工具之一。
我们来建立如下的一些问题的模型:

数学建模简介

数学建模简介

中国大学生建模竞赛题目汇集
2011年赛题 • (A)城市表层土壤重金属污染分析 • (B)交巡警服务平台的设置与调度 • (C)企业退休职工养老金制度的改革 • (D)天然肠衣搭配问题 2012年赛题 • (A)葡萄酒的评价 • (B)太阳能小屋的设计 • (C)脑卒中发病环境因素分析及干预
四、我校数学建模协会简介及 成果
徐州工程学院数学建模协会成立于2003年10月,它是 由本校对数学建模有共同爱好且有一定基础的学生 发起成立学习型社团组织,协会由数理学院院长李 苏北担任长期顾问,以姜英姿,赵建强等老师为核心 的多位优秀老师担任指导老师,并同时接受校院两级 团委的指导。
建模协会活动
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态 xk, yk=0,1,2,3; k=1,2,
S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2} uk, vk=0,1,2; uk~第k次渡船上的商人数 vk~第k次渡船上的随从数 k=1,2, dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合 sk+1=sk+(-1)kdk ~状态转移律
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
中国人口增长概况
年 1908 人口(亿) 3
1933 1953 1964 1982 1990 1995 4.7 6 7 10.1 11.3 12
控制人口过快增长
研究人口变化规律
Logistic模型在经济领域中的应用(如耐用消费品的售量)

数学建模简介2

数学建模简介2

罗钟瑞
张驹翔
王俊智
蔡少杰
王鸣涛
林瑶
黄维娜
林亦然
体育类省金奖 拓步体育旅游文化有限责任公司 09电信 09计科 林天飞 何陈文 09旅管 09财管 叶韩英 林丽婷 10电信 陈华津 10食科 林正方 10财管 10财管 许小青 陈巧炜
2013全国大学生创新创业计划训练项目
康跃体育旅游文化研究与企业开发利用 2013福建省大学生创新创业计划训练项目 小区智能监控系统的研制 基于时间序列与灰色拓扑的节假日火灾损失预测及综合治理
五、数学建模的实例
模型建立与求解
w(k) ~ 第k周(末)体重 c(k) ~第k周吸收热量
w(k 1) w(k ) c(k 1) w(k )
=1/8000(kg/kcal)
~ 代谢消耗系数(因人而异)
五、数学建模的实例
1)不运动情况的两阶段减肥计划
• 确定某甲的代谢消耗系数
赖晓燕
10财管 10食科 10农区 09土木
林莉莉 赖燕秋 陈志微 王世宇
11动医
林武涛
漳州市育松绞股蓝茶品加工厂
10国贸 10财管
林少郎 叶成群
10国贸 10财管 10计科 10广告
骆昊远 吴月 林燕凌 李鹏辉 乐圈传媒有限责任公司
09英语
邵瑛
09英语
周海燕
10机械 10财管
10食科 10工程
10食科 10电信 10电信 09土木
卢伟杰
石永杰
戴雪香
张凡凡
郑蓉芳
陈达隆 庄宇斌
刘芳伟
省优胜奖 农保生物农药有限公司 10食科 10电气 10财管 10食科 10土木 10农区 09土木 10国贸

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指对现实世界的一特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代辅予更为重要的意义。

大学生数学建模竞赛自1985年由美国开始举办,竞赛以三名学生组成一个队,赛前有指导教师培训。

赛题来源于实际问题。

比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。

数学建模竞赛宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种方式鼓励师生积极参与并强调实现完整的模型构造的过程。

以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。

他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。

这项赛事自诞生起就引起了越来越多的关注,逐渐有其他国家的高校参加。

我国自1989年起陆续有高校参加美国大学生数学建模竞赛。

1992年起我国开始举办自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一竞赛简介:本竞赛每年9月下旬举行,竞赛面向全国大专院校的学生,不分专业。

数学建模简介[1] 2

数学建模简介[1] 2

数学建模这个世界太需要数学了!但我们却往往视而不见。

自人类萌发了认识自然之念、幻想着改造自然之时,数学便一直成为人们手中的有力武器。

牛顿的万有引力定律、伽利略发明的望远镜让世界震惊,其关键的理论工具却是数学。

然而,社会的发展却使数学日益脱离自然的轨道,逐渐发展成为高深莫测的“专项技巧”。

数学被神化,同时,又被束之高阁。

近半个世纪以来,数学的形象有了很大变化。

数学己不再单纯是数学家和少数物理学家、天文学家、力学家等人手中的神秘武器,它越来越深入地引用到各行各业之中,几乎在人类社会生活的每个角落都在展示它的无穷威力。

这一点尤其表现在生物、政治、经济以及军事等数学应用的非传统领域。

数学不再仅仅作为一种工具和手段,而日益成为一种“技术”参与实际问题中。

近年来,随着计算机的不断发展,数学的应用更得到突飞猛进的发展。

一、什么是数学模型?数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。

随着社会的发展,生物、医学、社会、经济……,各学科、各行业都涌现现出大量的实际课题,急待人们去研究、去解决。

但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。

他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。

而且不止是要用到数学,很可能还要用到别的学科、领域的知识,要用到工作经验和常识。

特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。

数学建模简介

数学建模简介

数学建模简介一、什么是数学建模随着社会的发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通、社会科学等领域渗透。

所谓数学技术已经成为当代高新技术的重要组成部分。

社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,更大量的是需要在各部门中从事实际工作的人,善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。

要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,然后对这个问题进行分析和计算,最后将所求得的解答回归实际,看能不能有效地回答原先的实际问题。

这个全过程,特别是其中的第一步,就称为数学建模,即为所考察的实际问题建立数学模型。

建立数学模型的这个过程就称为数学建模。

二、全国大学生数学建模竞赛介绍从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年9月上中旬举行,目的在于鼓励大学生运用所学知识,参与解决实际问题。

十几年来这项竞赛的规模以平均年增长25%以上的速度发展,目前数学建模竞赛是全国最大的大学生课外科技活动。

竞赛以通讯形式进行,三名学生组成一队,在三天时间内可以自由地收集资料、调查研究,使用计算机、软件和互联网,但不得与队外任何人(包括指导教师)讨论。

每个队要完成一篇包括模型的假设、建立和求解,计算方法的设计和计算机实现,结果的分析和检验,模型的改进等方面的论文。

竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

三、数学建模竞赛活动的意义数学建模及其竞赛活动打破了原有数学课程自成体系、自我封闭的局面,为数学和外部世界的联系在教学过程中打开了一条通道,提供了一种有效的方式。

同学们通过参加数学建模的实践,亲自参加了将数学应用于实际的尝试,亲自参加发现和创造的过程,取得了在课堂里和书本上所无法获得的宝贵经验和亲身感受,从而启迪数学心灵,能更好地应用数学、品味数学、理解数学和热爱数学,在知识、能力及素质三方面迅速地成长。

数学建模简介及数学建模常用方法

数学建模简介及数学建模常用方法
根据所作的假设以及事物之间的联系,利用适当的数学工具去刻画各 变量之间的关系,建立相应的数学结构 —— 即建立数学模型。把问题化为 数学问题。要注意尽量采取简单的数学工具,因为简单的数学模型往往更 能反映事物的本质,而且也容易使更多的人掌握和使用。 4 .模型求解。
利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要 做出进一步的简化或假设。在难以得出解析解时,也应当借助计算机求出 数值解。 5 .模型分析。
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简
化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起
数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之
,
建立数学模型的这个过程就称为数学建模。
模型是客观实体有关属性的模
至于它是否真的能飞则无关紧要;
拟。陈列在橱窗中
然而参加航模比赛的飞机模
的飞机模型外形应
型则全然不同, 如果飞行性能
当像真正的飞机,
不佳, 外形再像飞机, 也不能
算是一个好的模型。模型不一定是 对实体的一种仿照,也可以是对实 体的某些基本属性的抽象,例如, 一张地质图并不需要用实物来模 拟,它可以用抽象的符号、文字和 数字来反映出该地区的地质结构。 数学模型也是一种模拟,是用数学 符号、数学式子、程序、图形等对 实际课题本质属性的抽象而又简洁 的刻画,它或能解释某些客观现象, 或能预测未来的发展规律,或能为 控制某一现象的发展提供某种意义 下的最优策略或较好策略。数学模 型一般并非现实问题的直接翻版, 它的建立常常既需要人们对现实问 题深入细微的观察和分析,又需要 人们灵活巧妙地利用各种数学知 识。这种应用知识从实际课题中抽 象、提炼出数学模型的过程就称为 数学建模。 实际问题中有许多因素, 在建立数学模型时你不可能、也没 有必要把它们毫无遗漏地全部加以

数学建模论文标准格式

数学建模论文标准格式

数学建模论文标准格式为了适应数学发展的潮流和未来社会人才培养的需要,美国、德国、日本等发达国家普遍都十分重视数学建模教学。

以下是小编整理的数学建模论文标准格式,欢迎阅读。

1.数学建模简介1985年,数学建模竞赛首先在美国举办,并在高等院校广泛开设相关课程。

我国在1992年成功举办了首届大学生数学竞赛,并从1994年起,国家教委正式将其列为全国大学生的四项竞赛之一。

数学建模是分为国内和国外竞赛两种,每年举行一次。

三人为一队,成员各司其职:一个有扎实的数学功底,再者精于算法的实践,最后一个是拥有较好的文采。

数学建模是运用数学的语言和工具,对实际问题的相关信息(现象、数据等)加以翻译、归纳的产物。

数学模型经过演绎、求解和推断,运用数学知识去分析、预测、控制,再通过翻译和解释,返回到实际问题中[1]。

数学建模培养了学生运用所学知识处理实际问题的能力,竞赛期间,对指导教师的综合能力提出了更高的要求。

2.数学建模科技论文撰写对学生个人能力成长的帮助2.1.提供给学生主动学习的空间在当今知识经济时代,知识的传播和更新速度飞快,推行素质教育是根本目标,授人与鱼不如授人与渔。

学生掌握自学能力,能有效的弥补在课堂上学得的有限知识的不足。

数学建模所涉及到的知识面广,除问题相关领域知识外,还要求学生掌握如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学、数学软件包的使用等。

多元的学科领域、灵活多变的技能方法是学生从未接触过的,并且也不可能在短时间内由老师一一的讲解清楚,势必会促使学生通过自学、探讨的方式来将其研懂。

给出问题,让学生针对问题去广泛搜集资料,并将其中与问题有关的信息加以消化,化为己用,解决问题。

这样的能力将对学生在今后的工作和科研受益匪浅[2]。

在培训期间,大部分学生会以为老师将把数学建模比赛所涉及到的知识全部传授给学生,学生只要在那里坐着听老师讲就能参加比赛拿到名次了。

但是当得知竞赛主要由学生自学完成,老师只是起引导作用时,有部分学生选择了放弃。

数学建模ppt课件-文档资料

数学建模ppt课件-文档资料
数学建模
• 数学建模简介 • 大学生数学建模竞赛 • 数学建模的步骤 • 初等数学模型
• 数学建模简介 1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表 达式(或是用数学术语对部分现实世界的描述),即 用数学式子(如函数、图形、代数方程、微分方程、 积分方程、差分方程等)来描述(表述、模拟)所研 究的客观对象或系统在某一方面的存在规律。
• 大学生数学建模竞赛
大学生数学建模竞赛最早是1985年在美国出现的, 1989年我国大学生开始参加美国的竞赛。经过两 三年的参与,大家认为竞赛是推动数学建模教学 在高校迅速发展的好形式,1992年由中国工业与 应用数学学会数学模型专业委员会组织举办了我 国10城市的大学生数学模型联赛。 • 教育部领导及时发现、并扶植、培育了这一 新生事物,决定从1994年起由教育部高教司和中 国工业与应用数学学会共同主办全国大学生数学 建模竞赛,每年一次。十几年来这项竞赛的规模 以平均年增长25%以上的速度发展。
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙 T 建模 热传导定律 Q k d 双层玻璃模型 T T T T T T 1 a a b b 2 Q k k k 1 1 2 1 d l d
• 从一组数据中可以看出它的蓬勃发展之势:从 1994年196个学校的867支参赛队,到2000年 517个学校的3210支参赛队,再到2019年795个 学校的8492支参赛队,参赛队壮大了近10倍, 2019年竞赛的选手达到25000多名。 2019年竞 赛的选手达到25000多名。 • 2019年全国967所高校一万余支队伍、三万多名 大学生参加2019年度的数学建模竞赛,山东省有 59所高校,近七百支队参加竞赛。

数学建模简介

数学建模简介

数学建模与数学建模竞赛一. 什么是数学模型二. 为什么要学数学建模三. 如何建立数学模型_建立数学模型的步骤和方法四. 全国大学生数学建模竞赛简介1. 竞赛的由来及现状2. 数学建模竞赛的特点。

3. 如何写作数学建模竞赛论文一. 什么是数学模型?⑴厡型与模型厡型与模型是一对对偶体,厡型是指人们在现实世界里关心、研究或者从事生产、管理的实际对象。

而模型是指为了某个特定目的将厡型的某一部分信息简缩、提炼而构造的替代物。

模型不是厡型,它既简单于厡型,又高于厡型.例如飞机模型,虽然比飞机厡型简单,而且也不一定会飞,但是很逼真,足以让人想像飞机在飞行过程中机翼的位置与形状的影响和作用。

一个城市的交通图是城市的一种模型,看模型比看厡型清楚,此时城市的人口、道路、车辆、建筑物的形状都不重要。

但是,城市的街道、交通钱路和各单位的位置等信息都一目了然,这比看厡型清楚得多。

模型可以分为形象模型和抽象模型,抽象模型最主要的就是数学模型。

⑵数学模型数学模型并不是新事物,自从有了数学,也就有了数学模型。

即要用数学去解决实际问题,就一定要使用数学的语言、方法去近似地刻画这个实际问题,这就是数学模型。

事实上,人所共知的欧几里得几何、微积分、万有引力定律、能量转化定律、夹义相对论、广义相对论等都是很好的数学模型。

那么,什么是数学模型呢?目前没有确切的定义,但可以这样讲:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具得到的一个数学结构式。

也就是说,数学模型是通过抽象、简化的过程,使用数学语言对实际现像的一个近似的刻画,以便于人们更深刻地认识所研究对像。

应用数学知识解决实际问题的第一步就是通过实际问题本身,从形式上杂乱无章的现象中抽象出恰当的数学关系式,也就是构建这个实际问题的数学模型,其过程就是数学建模的过程。

⑶数学模型无处不在目前,数学的应用已经渗透到了各个领域,或者说各行各业日益依赖于数学,在人们日常生活的各种活动中,数学无处不在。

数学建模简介word文档-华南师范大学数学科学学院

数学建模简介word文档-华南师范大学数学科学学院

1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。

即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。

例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。

模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。

――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。

―――适用于卫星的发射。

二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。

上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。

数学建模课引--建立函数模型解决实际问题

数学建模课引--建立函数模型解决实际问题
象直观地分析这组数据的变化规律,从而帮助我们选择函数
模型.
由图可以看出,5个点显示出随着旋钮角度逐渐增大,燃气量
有一个从大到小又从小到大的过程.在我们学习过的函数图
象中,二次函数的图象与之最接近,所以可以用二次函数
y=ax2+bx+c(a≠0)近似地表示这种变化(其中x表示旋钮角
度,y表示燃气量).
所获纯利润与投资金额有关,随投资金额的变化而变化,二者
之间存在某种函数关系,但这种函数关系没有明确给出,我们
可以根据给出的数据画出散点图,借助散点图直观地分析这
组数据的变化规律,从而帮助我们选择函数模型.
以投资额x为横坐标,纯利润y为纵坐标,在平面直角坐标系中
画出散点图如下图.
由散点图可知,可以用二次函数模型近似表示投资A种商品所
= . × - ,
解得 = -. × - ,
= . × - .
故函数解析式为 y=1.903 3×10-5x2-1.472 2×10-3x+1.503 3×10-1.
检验模型 将已知的表中数据代入上述得到的函数解析式,或
者画出函数的图象,可以发现,这个函数模型与实际数据基本
建立函数模型的过程:首先要对实际问题中的变化过程进行
分析,析出其中的常量、变量及其相互关系;明确其运动变化
的基本特征,从而确定它的运动变化类型;然后根据分析结果,
选择适当的函数类型构建数学模型,将实际问题化归为数学
问题;通过运算、推理,求解函数模型;最后利用函数模型的解
说明实际问题的变化规律,达到解决问题的目的.在构建函数
算得y≈63.98,因为78÷63.98≈1.22>1.2,所以这个男性体型偏胖.

数学建模简介

数学建模简介

数学建模简介1.课程定位:数学建模与实验课程是一门充分应用其它各数学分支的应用类课程,其主要任务是运用数学知识和计算机软件,建立实际问题的数学模型,解决实际问题。

本课程的开设将对提高学生的数学素质,应用和创新能力等方面起到重要作用。

其目的在于用数学解决实际问题,而不在于追求高深的数学理论。

2.关于数学建模竞赛数学建模竞赛的形式也与通常一支笔、一张纸、一个人完成的数学竞赛不同,它是开卷的通讯比赛,可以自由的收集资料、调查研究,随意使用计算机、软件和互联网,三名学生组成一队,团结合作、奋力攻关,在三天时间内,用数学方法和计算机完成一篇数学建模全过程的论文。

这种方式与同学们将来工作时的情况相近,有利于培养勇于创新、理论联系实际的学风,和相互协调、团结合作的精神,有利于优秀人才脱颖而出。

如果您注意在完成学业的同时,培养自己的综合能力,这项竞赛可是一个不可多得的机会。

许多参加过数学建模竞赛的同学都用“一次参赛,终身受益”来表达自己的感受。

有的同学说,“无论是在竞赛短短的72小时还是在赛前的学习中,我们都充分体验到了独立思考的乐趣、合作的愉悦和创业的艰辛,初次尝试了从事科学研究的苦涩与成功的欢乐,这一切都是在课堂中难以学到的。

当最终那一本整洁的论文从打印机里缓缓输出时,每个人心中都感到一阵强烈的成就感。

依靠自己的能力,成功的解决了一个工业、农业或是医学上的问题,对于每个参赛这真可以说是最好的奖励。

也许我们的结果不全面、不准确,但是论文中闪烁着我们创新的思想、合作的结晶,而创新正是数模竞赛的精髓所在”。

几位即将毕业的同学提到数模竞赛时说,“参加这项活动是我们大学四年中最值得庆幸的事之一。

有了这次经历,真正体会到我们这几年学到了什么,我们自己能干什么,有了这次的经历,我们会更早的由学生转变成一个工程技术人员,在不久的将来,顺利走上工作岗位”3.课程内容1.数学建模课程简介:概念、方法与步骤、实例分析2.运筹学模型线性规划、整数规划、非线性规划、网络规划、目标规划、多目标规划库存模型、对策模型、随即规划、决策模型、投入产出模型、评价模型3.微分方程模型一阶常微分模型、高阶常微分模型、差分方程模型4.概率统计模型预测模型、经济计量模型、市场占有率模型、最佳服务地点选择5.数学软件介绍世界上在数值计算、图形处理方面最优秀的一些数学软件:MAPLE、MATLAB4.全国大学生数学建模竞赛全国大学生数学建模竞赛,是由教育部高教司和中国工业与应用数学学会共同举办的。

数学建模简介

数学建模简介

C、D题专科生、农、林、医专业的学生做。
1994年至2004年全国各高校参赛的校数及队数
年 94年 95年 96年 97年 98年 99 份 年 校 196 数 队 867 数 259
1234
00年 01 年 517 529
02年 03年 572 637
5406
04年 724
6881
337
1683
在我国不少高校教师也萌发了组织我国自 己的大学生数学建模竞赛的想法.
上海市率先于1990年12月7-9日举办了“上海市 大学生(数学类)数学模型竞赛”,于1991年6月79日举办了“上海市大学生(非数学类)数学模型竞赛”.
西安也于1992年4月3-5日举办了“西安市第一 届大学生数学模型竞赛”. 由中国工业与应用数学学会举办的“1992年全国 大学生数学模型联赛”也于1992年11月27-29日 举行,全国有74所大学的314个队参加,且决定每 年举办一次. 原国家教委对这项活动十分重视,决定从1994 年起由国家教委(现国家教育部)高教司和中国 工业与应用数学学会共同举办,每年举办一次.
由于上面提到的数学竞赛的缺陷,特别是由于计算机、计算 技术和能力以及网络技术的迅速发展,数学的应用范围日益 扩大,越来越多的人认识到数学特别是数学建模的重要性, 要求数学教育(包括数学竞赛)作出相应的改变。

美国大学生数学建模竞赛的创始人Ben A. Fusaro,去找
了许多著名的应用数学家、Putnam数学竞赛的专家以及 美国非盈利机构“数学及其应用联合会(缩写为COMAP)” 的负责人征求意见,他得到的响应几乎都是同意的意见和 很好的建议,他也与他人合作申请到了相关的课题和经费。 1985 年 开 始 了 美 国 第 一 届 数 学 建 模 竞 赛

数学建模简介

数学建模简介

图. 地貌示意图
进一步问题: 你怎样使你的模型适合于下面两个限制 条件的情况呢? 1.当道路转弯时,角度至少为140度; 2.道路必须通过一个已知地点(如P)。
其他例子:
• 关于肥猪的最佳销售时机问题 • 中国男女人口失衡问题研究与对策
谢谢大家!
据标本的主要制作者辽宁大学生命科 学系刘明玉教授介绍,这头猪体长2.5米, 腰围2.23米,体重900公斤,獠牙长144毫米, 属于长白与梅山杂交品种。这头猪能长到 如此重的 程度,主要是由于猪的主人精心 饲养以及生长年限较长所致。
在我国饲养猪主要是用来食用,很少 有人能将猪养至3年以上,而这头猪的主人 徐长金老人5年多来,一直将猪养在室内, 精心地饲喂,直至猪由于躯体过于庞大, 无法正常活动而死亡。
数学建模入门简介


1. 数学建模的基本概念 2. 数学建模竞赛 3. 数学建模技术与数学方法 4. 学习建议 5. 建模案例
1. 数学建模的基本概念
1.1 数学模型 1.2 数学建模目的 1.3 数学建模一般过程 1.4 数学建模综合技能
1.1数学模型
数学模型(E.A.Bendar 定义):关于部分 现实世界为一定目的而做的抽象、简化 的数学结构。
数学模型是现实世界的简化而本质的描述, 是用数学符号、数学公式、程序、图、表 等刻画客观事物的本质属性与内在联系的 理想化表述.
1.2数学建模目的
• 优化决策及控制 • 预测目的 • 解释现象
1.3数学建模一般过程
Step1:问题分析:明确目标,分析条件与数据 Step2:建立模型:简化及假设,总体任务设计, 模型建立 Step3:模型求解:借助软件(包括数学软件), 编写程序求解(直接调用或自己设计算法) Step4:结果分析与检验 Step5:如果发现结果有问题或不满意,从上面 某些步骤开始重新操作(自己分析再定) Step6:回答实际问题、模型评价与改进方向

数学模型简介

数学模型简介
所以f(0) = g(0) = 0.
评注和思考:
建模的关键 : 和 f(), g()的确定 考察四脚呈长方形的椅子,是否还有相同的结论
2、商人安全过河问题
问题(智力游戏) 随从们秘密约定, 在河的任一岸, 一旦随从 的人数比商人多, 就杀人越货。但是乘船渡河的 方案由商人决定。商人们怎样才能安全过河?
用数学语言把椅子位臵和四只脚着地的关系表示出来
椅子位臵: 利用正方形(椅脚连线)的对称性 B B´ 用表示对角线与x轴的夹角
两个距离: A,C 两脚与地面距离之和为f() B,D 两脚与地面距离之和为g()


C
O


A
x
D
正方形ABCD 绕O点旋转
地面为连续曲面 椅子在任意位臵 至少三只脚着地
1、尽量使用实数优化模型,减少整数约束和整 数变量的个数。因为求解离散优化问题比连续优 化问题难得多 2、尽量使用光滑优化,避免使用非光滑函数( 是指存在不可微点的函数)。如绝对值函数、符 号函数、多个变量求最大(小)值、四舍五入、 取整函数等,通常采用连续、可微问题处理起来 比较简单。
3、尽量使用线性模型,减少非线性约束和线性 x 变量的个数。如: 5 改为 x 5 y 。
3、席位公平的数学建模问题
三个系的学生共有200名(甲系100,乙系60, 丙系40),代表会议共20席,按比例分配,三个 系分别为10,6,4席。 1、由于学生转系,三个系的学生人数分别为 103、 63、 34, 问20席又该如何分配? 2、若代表增加为21席,又如何分配?
(1)问题提出
系别 学生 比例
p1/n1– p2/n2=5 p1/n1– p2/n2=5
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100

第二节数学建模简介与建立函数关系举例

第二节数学建模简介与建立函数关系举例
第一章
第二节 数学建模简介与
建立函数关系举例
一、数学建模简介
二、建立函数关系举例
一、数学建模简介
数学模型:数学模型是一种抽象的模拟,它用数学 符号数学式子、程序、图形等刻画客观事物的本质 属性与内在联系,也就是对现实问题作出一些必要 的简化、假设,运用适当的数学工具,得到的一个 数学结构,简称模型。
(5)分析和检验模型的解,以验证模型的正确性。
建模的步骤如下图所示
现实对象的信息 应用
假设
反复
验证
建模 求解
数学模型的分类 按应用领域分: 人口模型、交通模型、生态模型、经济模型等; 按建模目的分: 描述模型、分析模型、预报模型、优化模型、 决策模型、控制模型等;
按模型中变量的特征分: 连续模型、离散模型、线性模型、非线性模型、 静态模型、动态模型等; 按建模的数学方法分:
宿舍吃,中午带饭在学习或工作的地方吃.A、 BC、位于同一条街的一侧,且酒店在培训中心与
公司之间,中心与酒店相距3km,酒店与公司
相距4km,问该打工者在这条街道的A与B之间
何处找一宿舍,才可使每天往返的路程最少。
解 假设街道是平直的,并设宿舍D距培训中心
A为x(km),每天往返的 3km
4km
路程为f (x)(km) O(A)
x y
= (2acosθ − l )sinθ,
=
a

( 2a
2 cosθ −
l
(0 )cosθ,
2
<
θ
<
π). 2
A
O yC B
x θ ay
G(x, y)
x
x = GB sinθ. y = a − GB cos θ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模简介(2)
一、数学模型的概念和意义
1、数学模型的概念
随着数学建模竞赛影响的日益扩大,数学模型及数学建模已为越来越多的人所知晓。

但对于大多数的人而言,数学模型仍是一个看似高深的概念。

因为在一般人的思维中,与模型有关的是飞机、舰艇或者航空、航海等字眼,是一个看得见摸得着的东西,虽然有别于实物,但毕竟是现实的。

而数学给人的印象是公式,是理论,这两者是如何联系起来的呢?
其实数学模型对每个人而言都是非常熟悉的,在上小学时我们都曾经做过这样的题目:“从甲地到乙地距离100公里,汽车的速度为每小时20公里,问从甲地到乙地需多少时间?”解答这类应用题便是最简单、最基本的数学建模问题,而在此过程中得到的数学式子便是我们建立的数学模型。

数学模型的定义可以描述为,对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构【1】。

2、建立数学模型的意义
马克思曾说过:“一门科学只有成功地运用数学时,才算达到了完善的地步”。

可以认为数学在各门科学中被应用的水平,标志着这门科学发展的水平。

回顾科学发展的历史,物理学是最早与数学结合的科学。

力学,这是物理学里面最先完成精确化的一个分支,是最先从物理学中独立出来,成为一门单独学科的。

随后,光学、热学、声学、电磁学等学科也由于数学方法的加入,逐一从物理学的母体中脱胎而出。

由伽利略开创而由牛顿完成的经典力学体系,是近代科学发展初期应用数学的必然结果。

牛顿把他的力学著作称之为《自然哲学的数学原理》,说明他对数学的高度重视,也反映了这门学科的精确化水平。

牛顿是以他的力学三大定律闻名于世的,作为一个伟大的物理学家,数学中也深深地留下了他的烙印,即微积分的牛顿-莱布尼兹公式。

在整个十八、十九世纪,是牛顿力学体系绝对统治物理科学的时期。

这期间,力学和数学相互带动,彼此促进,成为科学发展史上得天独厚的一对。

与此同时,数学被逐渐推广到物理学的替他学科,如热学、声学、光学、电磁学,使这些学科也欣欣向荣,茁壮成长起来。

以傅立叶、麦克斯韦和玻耳兹曼等人为代表,把数学应用到热学、电磁学和分子运动论中,因而物理学获得了一系列重要成果。

二十世纪,爱因斯坦创立的相对论,就是运用偏微分方程、张量分析和黎曼几何等新的数学工具,以严密的数学结构表达的物理理论,从而使人类对物质运动的认识从宏观低速领域发展到宇观高速领域,使整个自然科学开始了一场崭新的革命。

1916年,爱因斯坦通过引进非欧几何这一新数学理论,从而把引力和几何概念联系在一起;1925年,量子力学中引进了Hilbert空间,才使这门描述微观物体运动规律的新学科建立起完整的理论体系。

随着量子力学的理论与方法被引入化学领域,诞生了量子化学以后,现代化学的面貌发生了根本性的变化。

特别是它根据量子力学中的薛定谔方程来计算分子间电子运动的规律。

这样,量子化学既能从量子理论上做计算,又能对一百多年来所积累的大量实践经验和知识给予总结,而且还能进行科学预见。

化学这门古老的“经验科学”,在数学方法的帮助下,正在转化为严密的逻辑结构的精确科学。

一百多年以前,数学在生物学中的应用是很少的。

但是在今天,生物学应用数学的情况较之那时已形成鲜明的对比。

十九世纪达尔文提出的进化论,只不过是应用了比较的方法,也就是主要通过生物的外形习性等各种的比较,来判断生物间的亲缘关系。

近年来,运用数学来定量地研究不同种生物的亲缘关系,使生物进化论有了可靠的科学依据。

在生态学中,已知动物的自然生长率及其相互影响的效能,就能够建立数学模型,刻画生态平衡关系。

生物学中诞生生物数学,以及由此派生出的数量遗传学、分子生物数学、生物运筹学等小的学科分支。

这个世纪,也许将是生物学的世纪。

在自然科学日益精确化的形势下,社会科学也变得日益依赖数学了。

不论社会现象比自然现象如何复杂,也不论社会科学不具有自然科学掌握规律的量的精确性这一差别怎样明显,然而随着数学方法日益渗入社会科学,社会科学的数学化也是大势所趋,不可阻挡。

数学方法渗入经济科学领域,诞生了新的经济数学方法,这是符合经济需要的专门的数学工具,它包括计量经济学、经济控制论和数学规划。

系统论、信息论和控制论等方法性学科的迅速崛起;运筹学、随机数学等数学分支在国民经济领域中的广泛应用,更加说明数学已成为明显的社会推动力。

随着科学技术的进步,特别是计算机技术的迅速发展,数学已经从渗透到自然科学技术到工农业生产建设,从经济活动到社会生活的各个领域。

一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节。

二、数学模型建立的全过程
数学模型的建立一般可以分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成对现实对象到数学模型,再从数学模型回到现实对象的循环。

表述是根据建模的目的和掌握的信息,将实际问题翻译成数学问题,用数学语言确切地表达出来;求解是选择适当的数学方法求得数学模型的解答;解释是指把数学语言表述的解答翻译回现实对象,给出实际问题的解答;验证是指用现实对象的信息检验得到的解答,以确认结果的正确性。

建模过程是一种创造性思维过程,除了想象、洞察、判断这些属于形象思维、逻辑思维范畴的能力之外,直觉和灵感往往也起着不可忽视的作用。

当然,直觉和灵感不是凭空产生的,它要求人们具有丰富的背景知识,对问题进行反复思考和艰苦探索,对各种思维方法运用娴熟。

相互讨论和思想交锋,特别是不同专业的成员之间的探讨,是激发直觉和灵感的重要因素,所以由各种专门人才组成的所谓团队工作方式越来越受到重视。

三、数学建模竞赛参赛须知
参赛所需要的基础课程包括数学分析(高等数学)、高等代数(线性代数)、概率论、数理统计、计算机语言等,因此最合适的参赛时间在大三。

由于课程设置的关系,运筹学、图论、数据结构、算法设计等课程还未学习,志在参赛的同学应进行一定程度的预习。

除了数学基础知识之外,计算机编程能力是尤为重要的,而这也是我们财大同学最为欠缺的。

按理说,这应该是数学系同学的长处,但除少数同学之外,大多数同学均乏善可陈。

一个问题,经过一个小组同学的集体智慧,得到一个模型(暂不论优劣),尚不是一件难事,但如果得不到一个解,肯定不是一个成功的模型。

因此,应重点加强计算机编程和数学软件运用的训练。

写作水平也是很重要的,一篇好的论文,可以给评委留下深刻的印象,尤其是条理清楚、重点突出的摘要,可以吸引评委的眼球。

美国数学建模竞赛,是以摘要作为评审的第一道关,
由此可见摘要的重要性。

我国虽然还未实行这样的规则,但随着参赛队伍的逐年增多,评委工作量的大量增加,摘要的重要性日益显见。

当然,这些都是以一个优秀的模型为前提的。

每年的竞赛题目都与当年的重大事件有或多或少的联系,如03年的非典防治、04年的奥运场馆,乃至今年的水污染仿佛是松花江污染的预言,因此关心时事,扩大知识面也是有必要的。

除了上述“硬件”以外,团队精神是比赛成功的关键。

三个同学三天三夜的奋斗,为的是一个共同的目标,因此,一定要团结一心,精诚合作。

相互之间可以有学术的争论,但不能赌气任性,一切应以集体利益为重。

因此,如果可能的话,组队时应考虑个性的因素。

中国大学生数学建模竞赛的影响越来越显著,希望本书对同学们有所帮助,在竞赛中取得优异成绩!。

相关文档
最新文档