历年中考数学模拟试题(含答案) (99)
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)计算:(﹣1)+2的结果是()A.﹣1 B.1 C.﹣3 D.32.(4分)某校开展形式多样的“阳光体育”活动.七(3)班同学积极响应.全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示).由图可知参加人数最多的体育项目是()A.排球B.乒乓球C.篮球D.跳绳3.(4分)如图所示的物体有两个紧靠在一起的圆柱体组成.它的主视图是()A.B.C.D.4.(4分)已知点P(﹣1.4)在反比例函数的图象上.则k 的值是()A.B.C.4 D.﹣45.(4分)如图.在△ABC中.∠C=90°.AB=13.BC=5.则sin A的值是()A.B.C.D.6.(4分)如图.在矩形ABCD中.对角线AC.BD交于点O.已知∠AOB=60°.AC=16.则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.(4分)为了支援地震灾区同学.某校开展捐书活动.九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示.则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(4分)已知线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离9.(4分)已知二次函数y=(x﹣1)2﹣1(0≤x≤3)的图象.如图所示.关于该函数在所给自变量取值范围内.下列说法正确的是()A.有最小值0.有最大值3 B.有最小值﹣1.有最大值0 C.有最小值﹣1.有最大值3 D.有最小值﹣1.无最大值10.(4分)如图.O是正方形ABCD的对角线BD上一点.⊙O与边AB.BC都相切.点E.F分别在AD.DC上.现将△DEF沿着EF对折.折痕EF与⊙O相切.此时点D恰好落在圆心O处.若DE=2.则正方形ABCD的边长是()A.3 B.4 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣1=.12.(5分)某校艺术节演出中.5位评委给某个节目打分如下:9分.9.3分.8.9分.8.7分.9.1分.则该节目的平均得分是分.13.(5分)如图.a∥b.∠1=40°.∠2=80°.则∠3=度.14.(5分)如图.AB是⊙O的直径.点C.D都在⊙O上.连接CA.CB.DC.DB.已知∠D=30°.BC=3.则AB的长是.15.(5分)汛期来临前.滨海区决定实施“海堤加固”工程.某工程队承包了该项目.计划每天加固60米.在施工前.得到气象部门的预报.近期有“台风”袭击滨海区.于是工程队改变计划.每天加固的海堤长度是原计划的1.5倍.这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米.则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).16.(5分)我国汉代数学家赵爽为了证明勾股定理.创制了一副“弦图”.后人称其为“赵爽弦图”(如图1).图2由弦图变化得到.它是由八个全等的直角三角形拼接而成.记图中正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.若S1+S2+S3=10.则S2的值是.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)化简:a(3+a)﹣3(a+2).18.(8分)如图.在等腰梯形ABCD中.AB∥CD.点M是AB的中点.求证:△ADM≌△BCM.19.(8分)七巧板是我们祖先的一项卓越创造.用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.(1)拼成矩形.在图2中画出示意图.(2)拼成等腰直角三角形.在图3中画出示意图.注意:相邻两块板之间无空隙.无重叠;示意图的顶点画在小方格顶点上.20.(8分)如图.AB是⊙O的直径.弦CD⊥AB于点E.过点B作⊙O 的切线.交AC的延长线于点F.已知OA=3.AE=2.(1)求CD的长;(2)求BF的长.21.(10分)一个不透明的布袋里装有3个球.其中2个红球.1个白球.它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球.记下颜色后放回.并搅均.再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋.搅均后.使摸出1个球是白球的概率为.求n的值.22.(10分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣2.4).过点A作AB⊥y轴.垂足为B.连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位.使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界).求m的取值范围(直接写出答案即可).23.(12分)2011年5月20日是第22个中国学生营养日.某校社会实践小组在这天开展活动.调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息.解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%.求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.求其中所含碳水化合物质量的最大值.24.(14分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣4.0).点B的坐标是(0.b)(b>0).P是直线AB上的一个动点.作PC⊥x轴.垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上).连接PP′.P′A.P′C.设点P的横坐标为a.(1)当b=3时.①求直线AB的解析式;②若点P′的坐标是(﹣1.m).求m的值;(2)若点P在第一象限.记直线AB与P′C的交点为D.当P′D:DC=1:3时.求a的值;(3)是否同时存在a.b.使△P′CA为等腰直角三角形?若存在.请求出所有满足要求的a.b的值;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】异号两数相加.取绝对值较大加数的符号.再用较大绝对值减去较小绝对值.【解答】解:(﹣1)+2=+(2﹣1)=1.故选:B.【点评】此题主要考查了有理数的加法.做题的关键是掌握好有理数的加法法则.2.【分析】因为总人数是一样的.所占的百分比越大.参加人数就越多.从图上可看出篮球的百分比最大.故参加篮球的人数最多.【解答】解:∵篮球的百分比是35%.最大.∴参加篮球的人数最多.故选:C.【点评】本题对扇形图的识图能力.扇形统计图表现的是部分占整体的百分比.因为总数一样.所以百分比越大.人数就越多.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看.圆柱从正面看是长方形.两个圆柱.看到两个长方形.故选:A.【点评】此题主要考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据反比例函数图象上的点的坐标特征.将P(﹣1.4)代入反比例函数的解析式.然后解关于k的方程即可.【解答】解:∵点P(﹣1.4)在反比例函数的图象上. ∴点P(﹣1.4)满足反比例函数的解析式.∴4=.解得.k=﹣4.故选:D.【点评】此题比较简单.考查的是用待定系数法求反比例函数的解析式.是中学阶段的重点.解答此题时.借用了“反比例函数图象上的点的坐标特征”这一知识点.5.【分析】本题可以利用锐角三角函数的定义求解.sin A为∠A的对边比上斜边.求出即可.【解答】解:∵在△ABC中.∠C=90°.AB=13.BC=5.∴sin A===.故选:A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中.锐角的正弦为对边比斜边.余弦为邻边比斜边.正切为对边比邻边.6.【分析】因为矩形的对角线相等且互相平分.所以AO=BO=CO =DO.已知∠AOB=60°.所以AB=AO.从而CD=AB=AO.从而可求出线段为8的线段.【解答】解:∵在矩形ABCD中.AC=16.∴AO=BO=CO=DO=×16=8.∵AO=BO.∠AOB=60°.∴AB=AO=8.∴CD=AB=8.∴共有6条线段为8.故选:D.【点评】本题考查矩形的性质.矩形的对角线相等且互相平分.以及等边三角形的判定与性质.7.【分析】频率=.从直方图可知在5.5~6.5组别的频数是8.总数是40可求出解.【解答】解:∵在5.5~6.5组别的频数是8.总数是40.∴=0.2.故选:B.【点评】本题考查频数分布直方图.从直方图上找出该组的频数.根据频率=.可求出解.8.【分析】针对两圆位置关系与圆心距d.两圆半径R.r的数量关系间的联系得出两圆位置关系.【解答】解:依题意.线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.∴R+r=3+2=5.d=7.所以两圆外离.故选:D.【点评】此题主要考查了圆与圆的位置关系.圆与圆的位置关系与数量关系间的联系.此类题为中考热点.需重点掌握.9.【分析】根据函数图象自变量取值范围得出对应y的值.即是函数的最值.【解答】解:根据图象可知此函数有最小值﹣1.有最大值3.故选:C.【点评】此题主要考查了根据函数图象判断函数的最值问题.结合图象得出最值是利用数形结合.此知识是部分考查的重点.10.【分析】延长FO交AB于点G.根据折叠对称可以知道OF⊥CD.所以OG⊥AB.即点G是切点.OD交EF于点H.点H是切点.结合图形可知OG=OH=HD=EH.等于⊙O的半径.先求出半径.然后求出正方形的边长.【解答】解:如图:延长FO交AB于点G.则点G是切点.OD交EF于点H.则点H是切点.∵ABCD是正方形.点O在对角线BD上.∴DF=DE.OF⊥DC.∴GF⊥DC.∴OG⊥AB.∴OG=OH=HD=HE=AE.且都等于圆的半径.在等腰直角三角形DEH中.DE=2.∴EH=DH==AE.∴AD=AE+DE=+2.故选:C.【点评】本题考查的是切线的性质.利用切线的性质.结合正方形的特点求出正方形的边长.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】符合平方差公式的特征.直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式.熟记公式是解题的关键.12.【分析】把5位评委的打分加起来然后除以5即可得到该节目的平均得分.【解答】解:==9.∴该节目的平均得分是9分.故答案为:9.【点评】本题考查的是平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数.它是反映数据集中趋势的一项指标.熟记公式是解决本题的关键.13.【分析】先根据两直线平行.同位角相等.求出∠2的同位角的度数.再利用三角形的外角的性质求得∠3的度数.【解答】解:如图.∵a∥b.∠2=80°.∴∠4=∠2=80°(两直线平行.同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.【点评】本题比较简单.考查的是平行线的性质及三角形外角的性质.特别注意三角形的一个外角等于与它不相邻的两个内角的和.14.【分析】利用直径所对的圆周角是直角得到直角三角形.然后利用同弧所对的圆周角相等.在解直角三角形即可.【解答】解:∵AB是⊙O的直径.∴∠ACB=90°.∵∠D=30°.∴∠A=∠D=30°.∵BC=3.∴AB=6.故答案为:6.【点评】本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力.有利于培养同学们的发散思维能力.15.【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.【解答】解:由已知得:原计划用的天数为..实际用的天数为.=.则完成整个任务的实际时间比原计划时间少用的天数为.﹣=.故答案为:.【点评】此题考查的知识点是列代数式.解题的关键是根据题意先列出原计划用的天数和实际用的天数.16.【分析】根据图形的特征得出四边形MNKT的面积设为x.将其余八个全等的三角形面积一个设为y.从而用x.y表示出S1.S2.S3.得出答案即可.【解答】解:将四边形MTKN的面积设为x.将其余八个全等的三角形面积一个设为y.∵正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.S1+S2+S3=10.∴得出S1=8y+x.S2=4y+x.S3=x.∴S1+S2+S3=3x+12y=10.故3x+12y=10.x+4y=.所以S2=x+4y=.故答案为:.【点评】此题主要考查了图形面积关系.根据已知得出用x.y表示出S1.S2.S3.再利用S1+S2+S3=10求出是解决问题的关键.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律.去括号.合并同类项即可.【解答】解:(1)(﹣2)2+(﹣2011)0﹣.=4+1﹣2.=5﹣2;(2)a(3+a)﹣3(a+2).=3a+a2﹣3a﹣6.=a2﹣6.【点评】本题考查实数的综合运算能力.整式的混合运算及零指数幂.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算.18.【分析】由等腰梯形得到AD=BC.∠A=∠B.根据SAS即可判断△ADM≌△BCM.【解答】证明:在等腰梯形ABCD中.AB∥CD.∴AD=BC.∠A=∠B.∵点M是AB的中点.∴MA=MB.∴△ADM≌△BCM.【点评】本题主要考查对等腰梯形的性质.全等三角形的判定等知识点的理解和掌握.证出证三角形全等的三个条件是解此题的关键.19.【分析】(1)根据七巧板中有两个较小的等腰直角三角形.由一个小正方形进行拼凑即可;(2)根据七巧板中有两个较小的等腰直角三角形.且小正方形的边长与等腰三角形的腰长相等进行拼凑.【解答】解:参考图形如下(答案不唯一).【点评】本题考查的是作图与应用设计作图.熟知七巧板中各图形的特点是解答此题的关键.20.【分析】(1)连接OC.在△OCE中用勾股定理计算求出CE的长.然后得到CD的长.(2)根据切线的性质得AB⊥BF.然后用△ACE∽△AFB.可以求出BF的长.【解答】解:(1)如图.连接OC.∵AB是直径.弦CD⊥AB.∴CE=DE在直角△OCE中.OC2=OE2+CE232=(3﹣2)2+CE2得:CE=2.∴CD=4.(2)∵BF切⊙O于点B.∴∠ABF=90°=∠AEC.又∵∠CAE=∠F AB(公共角).∴△ACE∽△AFB∴=即:=∴BF=6.【点评】本题考查的是切线的性质.(1)利用垂径定理求出CD的长.(2)根据切线的性质.得到两相似三角形.然后利用三角形的性质计算求出BF的长.21.【分析】(1)由一个不透明的布袋里装有3个球.其中2个红球.1个白球.根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果.然后根据概率公式求出该事件的概率;(3)根据概率公式列方程.解方程即可求得n的值.【解答】解:(1)∵一个不透明的布袋里装有3个球.其中2个红球.1个白球.∴摸出1个球是白球的概率为;(2)画树状图、列表得:第二次白红1 红2 第一次白白.白白.红1白.红2红1红1.白红1.红1红1.红2红2红2.白红2.红1红2.红2∴一共有9种等可能的结果.两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:.解得:n=4.经检验.n=4是所列方程的解.且符合题意.∴n=4.【点评】此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据点A的坐标是(﹣2.4).得出AB.BO的长度.即可得出△OAB的面积;(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标.根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.【解答】解:(1)∵点A的坐标是(﹣2.4).AB⊥y轴.∴AB=2.OB=4.∴△OAB的面积为:×AB×OB=×2×4=4.(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.﹣(﹣2)2﹣2×(﹣2)+c=4.∴c=4.②∵y=﹣x2﹣2x+4=﹣(x+1)2+5.∴抛物线顶点D的坐标是(﹣1.5).过点D作DE⊥AB于点E交AO于点F.AB的中点E的坐标是(﹣1.4).OA的中点F的坐标是(﹣1.2). ∴m的取值范围是:1<m<3.【点评】此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.23.【分析】(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克.列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.列出不等式求解即可.【解答】解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克.由题意得:x+4x+20+400×40%=400.∴x=44.∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克.则所含蛋白质质量为4y克.所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%.∴y≥40.∴﹣5y≤﹣200.∴380﹣5y≤380﹣200.即380﹣5y≤180.∴所含碳水化合物质量的最大值为180克.【点评】本题由课本例题改编而成(原题为浙教版七年级下P96例题).这使学生对试题有“亲切感”.而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点.给出两个量的和的范围.求其中一个量的最值.隐含着函数最值思想.本题切入点较多.方法灵活.解题方式多样化.可用不等式解题.也可用极端原理求解.不同的解答反映出思维的不同层次.24.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1.m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD.根据相似三角形的对应边的比相等.即可求解;(3)分P在第一.二.三象限.三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3.把x=﹣4.y=0代入得:﹣4k+3=0.∴k=.∴直线的解析式是:y=x+3.②P′(﹣1.m).∴点P的坐标是(1.m).∵点P在直线AB上.∴m=×1+3=;(2)∵PP′∥AC.△PP′D∽△ACD.∴=.即=.∴a=;(3)以下分三种情况讨论.①当点P在第一象限时.1)若∠AP′C=90°.P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC.△ACP∽△AOB∴==.即=.∴b=22)若∠P′AC=90°.(如图2).则四边形P′ACP是矩形.则PP′=AC.若△P´CA为等腰直角三角形.则:P′A=CA.∴2a=a+4∴a=4∵P′A=PC=AC.△ACP∽△AOB∴==1.即=1∴b=43)若∠P′CA=90°.则点P′.P都在第一象限内.这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时.∠P′CA为钝角(如图3).此时△P′CA 不可能是等腰直角三角形;③当P在第三象限时.∠P′AC为钝角(如图4).此时△P′CA不可能是等腰直角三角形.所有满足条件的a.b的值为:..【点评】本题主要考查了梯形的性质.相似三角形的判定和性质以及一次函数的综合应用.要注意的是(3)中.要根据P点的不同位置进行分类求解.。
中考数学模拟考试试卷(附含参考答案)
中考数学模拟考试试卷(附含参考答案)1.本试题分第I卷(选择题)和第II卷(非选择题)两部分、第1卷满分为40分:第II卷满分为110分,本试题共8页,满分150分,考试时间为120分钟2.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第I卷(选择题共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.图中立体图形的俯视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。
可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,若∠1=20°,则∠2的度数为()A.20°B.30°C.15°D.25°5.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.已知a、b在数轴上对应的点如图所示,则下列结论正确的是()A.a>bB.|a|>|b|C.b>-aD.a+b<0(第6题图) (第7题图)(第9题图)7.如图随机闭合开关K1、K2、K3中的两个,能让灯泡L1、L2至少一盏发光的概率为()A.16B.13C.12D.238.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象可能是()9.如图,在平行四边形ABCD中,BC=2AB=8,连接BD,分别以点B、D为国心,大于12BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H、点H恰为BC的中点,连接AH,则AH的长为()A.4√3B.6C.7D.4√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0第II卷(非选择题共110分)注意事项:1.第1卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上:如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式:a2-14= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.(第12题图) (第14题图) (第15题图)(第16题图)13.已知整数m满足√3<m<√15,则m的最大值是。
河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)
2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。
初三数学中考模拟试卷,附详细答案【解析版】
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
初三模拟试题及答案数学
初三模拟试题及答案数学一、选择题(本题共10小题,每小题3分,满分30分)1. 若a、b、c是△ABC的三边长,且a²+b²+c²=ab+ac+bc,那么△ABC的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 不等边三角形2. 已知x²-5x-6=0的两根为x₁和x₂,则x₁+x₂的值为()A. 5B. -5C. 6D. -63. 某商品原价为a元,打八折后售价为b元,那么商品的折扣率为()A. 80%B. 20%C. 25%D. 75%4. 已知函数y=kx+b(k≠0)的图象经过点(1,2)和(-1,0),则k和b的值分别为()A. k=2,b=1B. k=-2,b=1C. k=2,b=-1D. k=-2,b=-15. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 66. 若x=2是方程x²-3x+2=0的根,则方程的另一个根是()A. 1B. 2C. -1D. 07. 已知抛物线y=ax²+bx+c(a≠0)的对称轴为x=-1,那么抛物线与x轴的交点个数为()A. 0B. 1C. 2D. 无法确定8. 已知a、b、c是△ABC的三边长,且满足a²+b²=c²,那么△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形9. 已知方程x²-6x+8=0的两个根为x₁和x₂,则x₁x₂的值为()A. 8B. 6C. 2D. 110. 已知一个等腰三角形的两边长分别为3和5,那么这个等腰三角形的周长为()A. 11B. 13C. 16D. 14二、填空题(本题共5小题,每小题3分,满分15分)11. 已知等腰三角形的底边长为6,腰长为5,则该三角形的周长为________。
12. 已知函数y=2x+3与y=-x+4的交点坐标为(________,________)。
中考模拟数学试题及答案
中考模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 以下哪个方程是一元一次方程?A. 2x + 3 = 0B. x^2 - 4 = 0C. 3x - 2y = 5D. x/2 + 3 = 0答案:A4. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 以下哪个选项是整式的乘法?A. (x + 2)(x - 2)B. x^2 + 2x + 1C. x/(x + 1)D. x^2 - 4x + 4答案:A7. 一个圆的半径为3,那么这个圆的面积是:A. 9πB. 18πD. 36π答案:C8. 如果一个角的补角是120°,那么这个角是:A. 60°B. 30°C. 90°D. 120°答案:B9. 以下哪个选项是不等式?A. x + 2 = 3B. 2x - 3 > 0C. 4x^2 - 9 = 0D. 3x + 2y = 510. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 1/xD. y = √x答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。
答案:±512. 一个角的余角是30°,那么这个角是______。
答案:60°13. 一个数的平方是16,这个数是______。
答案:±414. 一个等腰直角三角形的斜边长为5,那么这个三角形的面积是______。
中考模拟数学试题及答案
中考模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列算式的结果:\(\frac{1}{2} + \frac{1}{3} = ?\)A. \(\frac{5}{6}\)B. \(\frac{1}{6}\)C. \(\frac{2}{3}\)D. \(\frac{3}{6}\)答案:A3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:D4. 一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 一个三角形的三个内角分别是30°、60°和90°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不是三角形答案:B6. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 计算下列算式的值:\((-2)^3 = ?\)A. -8B. 8C. -2D. 2答案:A8. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 不存在答案:A9. 一个数的倒数是\(\frac{1}{3}\),那么这个数是:A. 3B. -3C. \(\frac{3}{1}\)D. 1答案:A10. 计算下列算式的值:\(\sqrt{9} = ?\)A. 3B. -3C. 3或-3D. 0答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
答案:1612. 一个数的立方根是2,那么这个数是______。
答案:813. 一个数的绝对值是8,那么这个数可以是______。
答案:8或-814. 一个数的相反数是-2,那么这个数是______。
答案:215. 一个数的倒数是\(\frac{2}{3}\),那么这个数是______。
中考数学模拟测试卷(带答案)
1.解方程3x−5=2x+8。
2.计算
3.一个工厂生产一种零件,每个零件的成本是5元,售价是10元。如果工厂希望获得的利润至少是2000元,那么至少需要卖出多少个零件?
4.一个圆形花坛的直径是10米,围绕花坛周围铺设了一条2米宽的小路。这条小路的面积是多少?
四、应用题(每题20分,共40分)
5.函数y=2x+3与x轴的交点坐标是。
6.一个圆的半径是7厘米,那么它的面积是平方厘米。
7.函数y=x2−6x+9可以写成顶点式y=(x−3)2所以它的最小值是。
8.一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,那么它的表面积是平方厘米。
9.计算 的结果是。
10.解方程3x−7=2x+3的解是。
D. x=4
4.函数y=3x2+6x+3的顶点坐标是:
A. (−1,0)
B. (1,0)
C. (−1,2)
D. (1,2)
5.下列哪个选项是无理数?
A.
B. π
C. 0.5
D. 22/7
6.一个圆的直径是14厘米,那么它的半径是:ຫໍສະໝຸດ A. 7厘米B. 14厘米
C. 28厘米
D. 2厘米
7.下列哪个选项是等腰三角形?
3.A
4.C
5.B
6.A
7.A
8.A
9.A
10.D
二、填空题
1.5
2.3
3.180
4.9
5.
6.153.85
7.0
8.52
9.6.125
10.5
三、解答题
1.3x−5=2x+8
中考数学模拟考试卷(附带有答案)
中考数学模拟考试卷(附带有答案)(满分:120分 ;考试时间:120分钟)第I 卷 (选择题 共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3-的相反数是( )A .3B .-3C .31D .31-2. 下列运算正确的是( )A .326a a a =÷ B .222a b a b -=-)( C .6223b a ab =)( D .b 3-a 2-b 3-a 2-=)(3. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( ) A .∠AOD =∠BOC B .∠AOE +∠BOD =90° C .∠AOC =∠AOE D .∠AOD +∠BOD =180°4.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A .众数是20B .中位数是17C .平均数是12D .方差是26 5. 下列一元二次方程中,没有实数根的是( )A .2x +3x =0B .22x –4x +1=0C .2x –2x +2=0D .52x +x –1=06.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为A .8mB .6mC .5mD .4m7.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米EOD CBA8. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,可列出的方程是 ( ) A .(x +1)(4–0.5x )=15 B .(x +3)(4+0.5x )=15 C .(x +4)(3–0.5x )=15 D .(3+x )(4–0.5x )=159. 在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A .B .C .D .10.如图,在正方形ABCD 中,AC 、BD 相交于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AG 交BD 于点F ,连结EG 、EF 下列结论:①tan ∠AGB =2; ②若将△GEF 沿EF 折叠,则点G 一定落在AC 上;③ BG =BF ; ④S 四边形GFOE =S △AOF ,上述结论中正确的个数是( ) A .1个 B .2个 C .3个 D .4个第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.GFE OD CBA11. 华为正式发布2020年财报,报告显示,华为去年销售收入8914亿元人民币,销售收入遥遥领先。
中考数学模拟试题及答案
中考数学模拟试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 以上都是答案:D3. 计算下列算式的结果:(3x - 2) - (x + 4) =A. 2x - 6B. 2x + 2C. x - 6D. x + 2答案:C4. 一个直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 6C. 7D. 8答案:A5. 下列哪个函数是二次函数?A. y = xB. y = x^2C. y = 2x + 1D. y = x^3答案:B6. 一个数的立方等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D7. 计算下列算式的结果:(2x + 3)(2x - 3) =A. 4x^2 - 9B. 4x^2 + 9C. 9 - 4x^2D. 9 + 4x^2答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C9. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 计算下列算式的结果:(a^2 - b^2) / (a - b) =A. a + bB. a - bC. a^2 - b^2D. a^2 + b^2答案:B二、填空题(每题2分,共20分)1. 一个数的平方根是它本身,这个数是________。
答案:0或12. 一个数的立方根是它本身,这个数是________。
答案:0,1,-13. 一个数的相反数是它本身,这个数是________。
答案:04. 一个数的倒数是它本身,这个数是________。
答案:1或-15. 一个数的绝对值是它本身,这个数是________。
答案:非负数6. 一个数的平方是25,这个数是________。
答案:5或-57. 一个数的立方是-8,这个数是________。
初三中考数学模拟试题及答案
初三中考数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列实数中,绝对值最小的是()A. 2B. -3C. 0D. 1/22. 一个数的相反数是3,这个数是()A. 3B. -3C. 0D. 13. 下列运算中,正确的是()A. (-2)^2 = 4B. √16 = 4C. √(-4) = 2D. (-3)^3 = -274. 一个角的补角是120°,则这个角是()A. 60°B. 30°C. 90°D. 120°5. 下列方程中,是一元二次方程的是()A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 3x - 2 = 0D. x^2 - 2xy + y^2 = 06. 在直角坐标系中,点P(-2, 3)关于x轴的对称点坐标是()A. (-2, -3)B. (2, 3)C. (-2, 3)D. (2, -3)7. 下列不等式中,解集为x > 2的是()A. x - 2 < 0B. x + 2 > 0C. x - 2 > 0D. x + 2 < 08. 一个三角形的两边长分别为3和5,第三边的长x满足()A. 2 < x < 8B. 3 < x < 8C. 2 < x < 7D. 3 < x < 79. 函数y = 2x + 3的图象是()A. 一条直线B. 一条双曲线C. 一条抛物线D. 一条曲线10. 下列统计量中,描述数据集中趋势的是()A. 中位数B. 众数C. 方差D. 极差二、填空题(本题共5小题,每小题3分,共15分)11. 一个数的平方根是2,这个数是______。
12. 一个数的立方根是-8,这个数是______。
13. 一个角的余角是30°,则这个角是______。
14. 一个等腰三角形的底角是45°,则顶角是______。
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。
初三中考数学模拟试卷和答案(4套)
图1图2 1节链条2节链条50节链条初三中考数学模拟试卷及答案(一)一.选择题(本大题共有8小题,每小题3分,共24分.) 1.下列各式计算不正确...的是( ) A .-(-3)=3 B .4=2 C .(3x)3=9x 3 D .2-1= 122.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ) A .a >b B . a >-bC .-a >bD .-a <-b3.据报道,中国首个火星探测器“萤火一号”将于2011年发射升空。
这项计划是我国继载人航天、探月工程后,又一次重大航天科学计划。
火星和地球的最近距离5670万公里,最远距离则有4亿公里。
其中的数据“5670万公里”用科学记数法表示为( )A .75.6710km ⨯B .85.6710km ⨯C .95.6710km ⨯D .105.6710km ⨯4.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是 ( )A .1 3B .512C .112D .1 25.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y6.一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .9或12 D . 127.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ) A .正视图的面积最大 B .俯视图的面积最大 C .左视图的面积最大 D .三个视图的面积一样大8.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm ,如果某种型号自行车的链条(没有安装前)共有60节链条组成,那么链条的总长度是( )A .100 cmB .85.8 cmC .85 cmD .102.8 cm二.填空题(本大题共有10小题,每小题3分,共30分.)9.函数13y x =-中,自变量x 的取值范围是 . 10. 分解因式:3x 2+6x +3= .11. 红星化工厂要在两年内使工厂的年利润翻一番,那么在这两年中利润的年平均增长_______.12. 已知一组数据1,a ,3,6,7,它的平均数是4,这组数据的方差是 . 13. 若12=+a a ,则2a 2+2a -2010的值为 .14. 如图,梯形ABCD 中,AD ∥BC ,∠B=70°,∠C=40°,若AD=3cm ,BC=10cm ,则CD 等于 cm . 15. 不等式2x-5>0的最小整数解是16. 如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于 .17. 如图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋45O后,B 点的坐标为 .18. 如图,Rt △AOB 中,O 为坐标原点,∠AOB=90°,∠B=30°,如果点A 在反比例函数y=x1(x>0)的图像上运动,那么点B 在函数 (填函数解析式)的图像上运动.三.解答题(本大题共有10小题,共96分.) 19.(本大题满分8分,每小题4分) (1)计算: 10)31()145(sin 313---︒+⨯- (2)解方程:2512112x x+=--20.(本题满分8分)2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动. 同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果做出的统计图的一部分.请根据以上信息解答问题: (1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.第14题OCFGD E第16题 第17题第18题AECBF D21.(本题满分8分)从我市火车站开往南京站的某车次城市快铁,中途只停靠泰州站和扬州站。
初三中考数学模拟试题及答案
初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。
A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。
A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。
A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。
2. 一个数的平方是9,那么这个数是______或______。
初三数学中考模拟试卷(附详细答案)
初三数学中考模拟试卷(附详细答案)初三数学中考模拟试卷(附详细答案)题目一:选择题1. 下列选项中,与集合{a, b, c}等势的集合是()。
A. {1, 2, 3}B. {a, b, a}C. {a, b, c, d}D. {a, a, a}答案:B2. 等差数列的前三项分别是1,3,5,那么它的通项公式是()。
A. an = a1 + (n-1)dB. an = a1 + dC. an = 2a1 + (n-1)dD. an = 2a1 + d答案:A3. 已知集合A = {x | x是奇数,0 < x < 10},那么集合A的元素个数是()。
A. 5B. 6C. 7D. 8答案:A4. 以下哪个数是无理数()。
A. √4B. πC. 3D. 0.5答案:B5. 若2x - 5 = 7,则x的值是()。
A. -1B. 1C. 3D. 6答案:C题目二:填空题1. 题设如图所示,根据图示线段,其中AC与BD相交于点E,则AE : CE = _______。
A--------B| || * || |C--------D答案:1:32. 甲、乙两人分别从A、B两地同时出发,相向而行,甲速度2km/h,乙速度1km/h,相遇时他们共走了______千米。
答案:23. 若2x - 5 = 7,则x = _______。
答案:64. 将81用素因数分解的形式表示为3的指数幂,则为3^_______。
答案:4题目三:解答题1. 解方程5x + 3 = 23。
解答:首先,将方程变形为5x = 23 - 3。
然后,计算出5x = 20。
最后,求得x = 4。
2. 一条河流中,两艘船以相同的速度向上游驶过某一点,并从该点同时向下游驶离开。
若上游行驶时间是下游行驶时间的3倍,并已知下游行驶的距离是上游行驶距离的两倍,求上游和下游的速度比。
解答:设上游的速度为v,下游的速度为2v。
根据题意,下游的时间是上游时间的3倍,下游的距离是上游距离的两倍。
中考数学模拟考试卷(附答案与解析)
中考数学模拟考试卷(附答案与解析)本试卷共4页,23小题,满分120分,考试用时90分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)4的倒数是()A.4B.C.D.﹣42.(3分)2022年中国空间站已基本建成,内部空间大约有220立方米,空间站离地球约410000米远,则410000用科学记数法表示为()A.4.1×105B.4.1×106C.41×104D.0.41×106 3.(3分)下列几何体的三视图中没有圆的是()A.B.C.D.4.(3分)某校七年级选出三名同学参加学校组织的“校园安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序,主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星同学第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到1,2,3的可能性相同5.(3分)如图,在3×3正方形网格中,点A,B在格点上,若点C也在格点上,且△ABC 是等腰三角形,则符合条件的点C的个数为()A.1B.2C.3D.46.(3分)下列一元二次方程中最适合用因式分解法来解的是()A.(x﹣2)(x+5)=2B.2x2﹣x=0C.x2+5x﹣2=0D.12(2﹣x)2=37.(3分)已知a,b是方程x2+x﹣3=0的两个实数根,则a+b+2022的值是()A.2024B.2023C.2022D.20218.(3分)某市为解决冬季取暖问题需铺设一条长3500米的管道,为尽量减少施工对交通造成的影响,实际施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果提前15天完成B.每天比原计划少铺设10米,结果延期15天完成C.每天比原计划少铺设15米,结果延期10天完成D.每天比原计划多铺设15米,结果提前10天完成9.(3分)已知二次函数y=ax2+(b﹣1)x+c+1的图象如图所示,则在同一坐标系中y1=ax2+bx+1与y2=x﹣c的图象可能是()A.B.C.D.10.(3分)如图,已知在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=11,BC=13,AB =12.动点P、Q分别在边AD和BC上,且BQ=2DP.线段PQ与BD相交于点E,过点E作EF∥BC,交CD于点F,射线PF交BC的延长线于点G,设DP=x.下列说法正确的有几个()(1)四边形PQCD为平行四边形时,x=;(2)=;(3)当点P运动时,四边形EFGQ的面积始终等于;(4)当△PQG是以线段PQ为腰的等腰三角形时,则x=、2或.A.1B.2C.3D.4二.填空题(共5小题,满分15分,每小题3分)11.(3分)分解因式:2x﹣x2=.12.(3分)如图所示的网格是正方形网格,A,B,C是网格线交点,则∠ACB的度数为.13.(3分)若关于x的不等式组的解集是x>2a,则a的取值范围是.14.(3分)如图,在平面直角坐标系xOy中,等腰直角三角形OAB的斜边OB在x轴的负半轴上,顶点A在反比例函数y=(x<0)的图象上,若△OAB的面积为4,则k的值是.15.(3分)如图,已知正方形ABCD,延长AB至点E使BE=AB,连接CE、DE,DE与BC交于点N,取CE的中点F,连接BF,AF,AF交BC于点M,交DE于点O,则下列结论:①DN=EN;②OA=OE;③CN:MN:BM=3:1:2;④tan∠CED=;⑤S四边形BEFM=2S△CMF.其中正确的是.(只填序号)三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(2x+y)(2x﹣y)﹣(8x3y﹣2xy3﹣x2y2)÷2xy,其中x=﹣1,y=2.17.(8分)解分式方程:.18.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(3)在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.19.(9分)在平面直角坐标系内,△ABC的位置如图所示.(1)画出与△ABC关于y轴对称的△A1B1C1.(2)以原点O为位似中心,在第四象限内作出△ABC的位似图形△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.20.(9分)已知:a是不等式组的最小整数解,反比例函数的图象与一次函数y=kx+b的图象相交于A(﹣4,m),B(n,﹣4)两点.(1)求反比例函数与一次函数的表达式;(2)直接写出使一次函数值小于反比例函数值的x的取值范围.21.(9分)2022年北京冬奥会点燃了人们对冰雪运动的热情,各种有关冬奥会的纪念品也一度脱销.某实体店购进了甲、乙两种纪念品各30个,共花费1080元.已知乙种纪念品每个进价比甲种纪念品贵4元.(1)甲、乙两种纪念品每个进价各是多少元?(2)这批纪念品上架之后很快售罄.该实体店计划按原进价再次购进这两种纪念品共100件,销售官网要求新购进甲种纪念品数量不低于乙种纪念品数量的(不计其他成本).已知甲、乙纪念品售价分别为24元/个,30元/个.请问实体店应怎样安排此次进货方案,才能使销售完这批纪念品获得的利润最大?22.(12分)如图,AB为⊙O的直径,弦CD交AB于点E,且DE=OE.(1)求证:∠BAC=3∠ACD;(2)点F在弧BD上,且∠CDF=∠AEC,连接CF交AB于点G,求证:CF=CD;(3)①在(2)的条件下,若OG=4,设OE=x,FG=y,求y关于x的函数关系式;②求出使得y有意义的x的最小整数值,并求出此时⊙O的半径.23.(12分)如图,二次函数y=ax2+bx+4与x轴交于A(﹣4,0)、B(8,0)两点,且与y轴交于点C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,过点P作PM⊥BC于点M,交x轴于点N,过点P作PQ∥y轴交BC于点Q,求的最大值及此时P点坐标;(3)将抛物线y=ax2+bx+4沿射线CB平移个单位,平移后得到新抛物线y',D是新抛物线对称轴上一动点.在平面内确定一点E,使得以B、C、D、E四点为顶点的四边形是矩形.直接写出点E的坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:4的倒数是.故选:B.2.解:410000=4.1×105.故选:A.3.解:A.该几何体的三视图都是圆,故不符合题意;B.该几何体的主视图是矩形,左视图是矩形,俯视图是三角形,故符合题意;C.该几何体的俯视图是圆,故不符合题意;D.该几何体的俯视图是一个有圆心的圆,故不符合题意;故选:B.4.解:∵3张同样的纸条上分别写有1,2,3∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是∴小星抽到每个数的可能性相同;故选:D.5.解:以AB为腰的等腰三角形有两个,以AB为底的等腰三角形有一个,如图:所以符合条件的点C的个数为3个故选:C.6.解:A、化简(x﹣2)(x+5)=2得:x2+3x﹣12=0,等式左边不能因式分解,故不符合题意;B、∵2x2﹣x=0,∴x(2x﹣1)=0,故符合题意;C、∵x2+5x﹣2=0,∴方程的左边不能分解因式,故不符合题意;D、∵12(2﹣x)2=3,∴方程可以利用直接开平方法解方程,故不符合题意.故选:B.7.解:∵a,b是方程x2+x﹣3=0的两个实数根∴a+b=﹣1∴a+b+2022=﹣1+2022=2021.故选:D.8.解:∵利用工作时间列出方程:∴缺失的条件为:每天比原计划多铺设10米,结果提前15天完成.故选:A.9.解:∵二次函数y=ax2+(b﹣1)x+c+1的图象与x轴的交点的横坐标为m、n ∴二次函数y=ax2+bx+1与直线y=x﹣c的交点的横坐标为m、n∴在同一坐标系中y1=ax2+bx+1与y2=x﹣c的图象可能是A故选:A.10.解:(1)如图,作EM⊥BC,垂足为点M在△BCD中∵EF∥BC∴==∵BC=13∴EF=∴四边形PQCD为平行四边形时,EF=PD=x=;(2)在梯形ABCD中∵AD∥BC∴=∵EF∥BC∴=又∵BQ=2DP∴=;(3)在△BCD中∵EF∥BC∴==∵BC=13∴EF=又∵PD∥CG∴==∴CG=2PD.∴CG=BQ,即QG=BC=13.作DN⊥BC,垂足为点N.∴===∵AB=12∴EM=8.∴S=(+13)×8=;(4)作PH⊥BC,垂足为点H.(i)当PQ=PG时,QH=GH=QG=∴2x+=11﹣x解得x=(ii)当PQ=GQ时,PQ==13解得x=2或x=综上所述,当△PQG是以PQ为腰的等腰三角形时,x的值为、2或.所以正确的结论有4个.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.解:原式=x(2﹣x).故答案为:x(2﹣x).12.解:如图:∵∠ADC=90°,AD=CD∴∠ACD=∠DAC=45°∴∠ACB=180°﹣∠ACD=135°故答案为:135°.13.解:化简原不等式组得,因为不等式组的解集为x>2a∴2a≥4∴a≥2.故答案为:a≥2.14.解:过点A作AM⊥x轴于点M因为△ABO是等腰直角三角形,且S△OAB=4 所以S△OAB=2.令A(m,n)则OM=﹣m,AM=n所以,得mn=﹣4.又点A在的图象上所以k=mn=﹣4.故答案为:﹣4.15.解:∵四边形ABCD为正方形,AB=BE ∴AB=CD=BE,AB∥CD∴△NCD∽△NBE∴==1∴CN=BN,DN=EN,故①正确;如图,连接AN∵DN=NE,∠DAE=90°∴AN=NE∵AO>AN,NE>OE∴AO>OE,故②错误;∵∠CBE=90°,BC=BE,F是CE的中点∴∠DCE=45°,BF=CE=BE,FB=FE,BF⊥EC ∴∠BCE=90°+45°=135°,∠FBE=45°∴∠ABF=135°∴∠ABF=∠ECD∵==∴△ABF∽△ECD∴∠CED=∠FBG如图,作FG⊥AE于G,则FG=BG=GE∴∴tan∠F AG=∴tan∠CED=,故④正确;∵tan∠F AG=∴=∴∴S△FBM=S△FCM∵F是CE的中点∴S△FBC=S△FBE∴S四边形BEFM=2S△CMF,故⑤正确;∵∴设BM=2x,MC=4x∴BC=6x∴CN=BN=3x∴MN=x∴CN:MN:BM=3:1:2,故③正确;故答案为:①③④⑤.三.解答题(共8小题,满分75分)16.解:(2x+y)(2x﹣y)﹣(8x3y﹣2xy3﹣x2y2)÷2xy=4x2﹣y2﹣(4x2﹣y2﹣xy)=4x2﹣y2﹣4x2+y2+xy=xy当x=﹣1,y=2时,原式=×(﹣1)×2=﹣1.17.解:方程两边都乘x﹣1,得x=﹣1+3(x﹣1)解得:x=2检验:当x=2时,x﹣1≠0所以x=2是分式方程的解即分式方程的解是x=2.18.解:(1)这次活动共调查的人数为30÷15%=200(人)故答案为:200;(2)“支付宝”的人数为200﹣(200×30%+30+50+15)=45(人)所以表示“支付宝”支付的扇形圆心角的度数为360°×=81°故答案为:81°;(3)将微信记为A,支付宝记为B,银行卡记为C,列表格如下:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)共有9种等可能性的结果,其中两人恰好选择同一种支付方式的结果有3种则P(两人恰好选择同一种支付方式)=.19.解:(1)如图,△A1B1C1即为所作.(2)如图,△A2B2C2即为所作.20.解:(1)解不等式组,得﹣5<x≤﹣1∴a=﹣4∴反比例函数解析式为y=﹣.∵A(﹣4,m),B(n,﹣4)两点在反比例函数y=﹣的图象上∴m=﹣=1,n=﹣=1∴A(﹣4,1),B(1,﹣4).∵y=kx+b经过A(﹣4,1),B(1,﹣4)∴,解得∴一次函数的解析式为y=﹣x﹣3;(2)使一次函数值小于反比例函数值的x的取值范围为:﹣4<x<0或x>1.21.解:(1)设甲种纪念品每件进价是x元,乙种纪念品每件进价为y元由题意得解得:答:甲种纪念品每件进价是16元,乙种纪念品每件进价为20元.(2)设新购甲种纪念品m件,则乙种纪念品为(100﹣m)件,设销售完这批纪念品获得的利润为w元.由题意可得,,解得m≥25.∴25≤m≤100.w=(24﹣16)m+(30﹣20)(100﹣m)=﹣2m+1000.∵﹣2<0∴w随m的增大而减小且25≤m≤100∴当m=25时,w有最大值,此时100﹣m=75.答:购进甲种纪念品25件,乙种纪念品75件时利润最大.22.(1)证明:如图1中,连接OD,OC,设∠D=x.∵ED=EO∴∠D=∠EOD=x∵OD=OC∴∠D=∠OCD=x∴∠CEO=∠D+∠EOD=2x,∠COB=∠OEC+∠OCD=3x∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COB=3x∴∠A=∠ACO=x∴∠ACD=x∴∠BAC=3∠ACD;(2)证明:连接CO,延长CO交DF于T.由(1)可知,∠AEC=180°﹣2x∵∠AEC=2∠CDF∴∠CDF=90°﹣x∴∠CDF+∠DCO=90°∴CT⊥DF∴DT=TF∴CD=CF.(3)解:①连接CO,延长CO交DF于T,过点O作OM⊥CD于M,ON⊥CF于N.由(2)可知,CD=CF,CT⊥DF∴∠DCO=∠FCO∵ON⊥CF,OM⊥CD∴OM=ON∵∠GEC=∠GCE∴GE=GC=x+4∴CD=CF=CG+FG=x+y+4∵ED=OE=x∴EC=CD﹣DE=y+4∵==∴=∴y=x2+x﹣4.②设OA=OB=R当y>0时,x2+x﹣4>0解得x>2﹣2或x<﹣2﹣2∴x的最小整数值为3∴CG=7,FG=∵AG•GB=CG×FG∴(R+4)(R﹣4)=7×∴R=(负根已经舍去)∴此时⊙O的半径为.23.解:(1)∵二次函数y=ax2+bx+4的图象与x轴交于A(﹣4,0)、B(8,0)两点∴解得∴抛物线的解析式为;(2)延长PQ交x轴于H点,则PH⊥x轴,如图:在y=﹣x2+x+4中,令x=0得y=4∴C(0,4)由B(8,0),C(0,4)得直线BC解析式为y=﹣x+4,BC==4设P(m,﹣m2+m+4),则Q(m,﹣m+4)∴PQ=﹣m2+m+4﹣(﹣m+4)=﹣m2+m,PH=﹣m2+m+4∵∠PMQ=∠PHB=90°,∠PQM=∠BQH∴∠NPH=∠OBC∴cos∠NPH=cos∠OBC===∴=∴PH=PN∴PQ+PN=PQ+PH=﹣m2+m﹣m2+m+4=﹣m2+m+4=﹣(m﹣3)2+∵﹣<0∴当m=3时,PQ+PN取最大值,此时P(3,);∴PQ+PN的最大值为,P的坐标为(3,);(3)∵C(0,4),B(8,0)∴将抛物线y=﹣x2+x+4沿射线CB平移个单位相当于先向下平移2个单位,再向右平移4个单位∵抛物线y=﹣x2+x+4的对称轴为直线x=﹣=2∴新抛物线的对称轴为直线x=6设D(6,t),E(p,q)①若BC,DE为对角线,则BC,DE的中点重合,且BC=DE∴解得或∴E(2,﹣2)或(2,6);②若CD,BE为对角线,同理可得;解得∴E(﹣2,0);③当CE,BD为对角线时解得∴E(14,12);综上所述,E的坐标为(2,﹣2)或(2,6)或(﹣2,0)或(14,12).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年黑龙江省绥化市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB ∥CD的是()A.∠2=35° B.∠2=45°C.∠2=55°D.∠2=125°2.(3分)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×1043.(3分)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a34.(3分)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.(3分)不等式组的解集是()A.x≤4 B.2<x≤4 C.2≤x≤4 D.x>26.(3分)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:97.(3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.8.(3分)在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米10.(3分)如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S=12;④△AEF~△ACD,其中一定正确的是()△ABEA.①②③④B.①④C.②③④D.①②③二、填空题(每小题3分,共33分)11.(3分)﹣的绝对值是.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)一个多边形的内角和等于900°,则这个多边形是边形.14.(3分)因式分解:x2﹣9=.15.(3分)计算:(+)•=.16.(3分)一个扇形的半径为3cm,弧长为2πcm,则此扇形的面积为cm2(用含π的式子表示)17.(3分)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为.18.(3分)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.19.(3分)已知反比例函数y=,当x>3时,y的取值范围是.20.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC 的顶角的度数为.21.(3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.三、解答题(本题共8小题,共57分)22.(5分)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)23.(6分)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.24.(6分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.25.(6分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.(7分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE 于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.27.(8分)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).28.(9分)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE 的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.29.(10分)在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).(1)求抛物线的解析式;(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y 轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.2017年黑龙江省绥化市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是()A.∠2=35° B.∠2=45°C.∠2=55°D.∠2=125°【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;故选:C.【点评】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.(3分)(2017•绥化)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:数据“700000”用科学记数法可表示为7×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•绥化)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a3【分析】分别对每一个选项进行合并同类项,即可解题.【解答】解:A、3a+2a=5a,A选项错误;B、3a+3b=3(a+b),B选项错误;C、2a2bc﹣a2bc=a2bc,C选项正确;D、a5﹣a2=a2(a3﹣1),D选项错误;故选C.【点评】本题考查了合并同类项,合并同类项就是利用乘法分配律,熟练运用是解题的关键.4.(3分)(2017•绥化)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得出答案.【解答】解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形或线段.故正方形纸板ABCD的正投影不可能是梯形,故选:D.【点评】此题主要考查了平行投影的性质,利用太阳光线是平行的,那么对边平行的图形得到的投影依旧平行是解题关键.5.(3分)(2017•绥化)不等式组的解集是()A.x≤4 B.2<x≤4 C.2≤x≤4 D.x>2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1≤3,得:x≤4,解不等式x+1>3,得:x>2,∴不等式组的解集为2<x≤4,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2017•绥化)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:9【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴=故选:A.【点评】本题考查的是位似变换的概念和性质,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.7.(3分)(2017•绥化)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.【分析】让红桃的张数除以扑克牌的总张数即为所求的概率.【解答】解:∵一副扑克牌共54张,其中红桃13张,∴随机抽出一张牌得到红桃的概率是.故选B.【点评】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)(2017•绥化)在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质确定两条直线所经过的象限可得结果.【解答】解:直线y=4x+1过一、二、三象限;当b>0时,直线y=﹣x+b过一、二、四象限,两直线交点可能在一或二象限;当b<0时,直线y=﹣x+b过二、三、四象限,两直线交点可能在二或三象限;综上所述,直线y=4x+1与直线y=﹣x+b的交点不可能在第四象限,故选D.【点评】本题主要考查了两直线相交问题,熟记一次函数图象与系数的关系是解答此题的关键.9.(3分)(2017•绥化)某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米【分析】由sin∠ACB=得AB=BCsin∠ACB=3.5sin29°.【解答】解:在Rt△ABC中,∵sin∠ACB=,∴AB=BCsin∠ACB=3.5sin29°,故选:A.【点评】本题主要考查解直角三角形的应用,熟练掌握正弦函数的定义是解题的关键.10.(3分)(2017•绥化)如图,在▱ABCD中,AC,BD相交于点O,点E是OA 的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③【分析】根据平行四边形的性质得到AE=CE,根据相似三角形的性质得到==,等量代换得到AF=AD,于是得到=;故①正确;根据相似三角形的性质得到S△BCE =36;故②正确;根据三角形的面积公式得到S△ABE=12,故③正确;由于△AEF与△ADC只有一个角相等,于是得到△AEF与△ACD不一定相似,故④错误.【解答】解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故①正确;=4,=()2=,∵S△AEF=36;故②正确;∴S△BCE∵==,∴=,∴S=12,故③正确;△ABE∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题(每小题3分,共33分)11.(3分)(2017•绥化)﹣的绝对值是.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得||=.【点评】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.(3分)(2017•绥化)函数y=中,自变量x的取值范围是x≤2.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2017•绥化)一个多边形的内角和等于900°,则这个多边形是七边形.【分析】根据多边形的内角和,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=900,解得n=7,故答案为:七.【点评】本题考查了多边形的内角与外角,利用多边形的内角和公式是解题关键.14.(3分)(2017•绥化)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.15.(3分)(2017•绥化)计算:(+)•=.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型16.(3分)(2017•绥化)一个扇形的半径为3cm,弧长为2πcm,则此扇形的面积为3πcm2(用含π的式子表示)【分析】利用扇形面积公式计算即可得到结果.【解答】解:根据题意得:S=Rl=×2π×3=3π,则此扇形的面积为3πcm2,故答案为:3π【点评】此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.17.(3分)(2017•绥化)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为2.【分析】运用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代入数据求出即可.【解答】解:五次射击的平均成绩为=(5+7+8+6+9)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(9﹣7)2]=2.故答案为:2.【点评】本题考查了方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.(3分)(2017•绥化)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为1::.【分析】根据题意可以求得半径为2的圆内接正三角形,正四边形,正六边形的边心距,从而可以求得它们的比值.【解答】解:由题意可得,正三角形的边心距是:2×sin30°=2×=1,正四边形的边心距是:2×sin45°=2×,正六边形的边心距是:2×sin60°=2×,∴半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为:1::,故答案为:1::.【点评】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.19.(3分)(2017•绥化)已知反比例函数y=,当x>3时,y的取值范围是0<y<2.【分析】根据反比例函数的性质可以得到反比例函数y=,当x>3时,y的取值范围.【解答】解:∵y=,6>0,∴当x>0时,y随x的增大而减小,当x=3时,y=2,∴当x>3时,y的取值范围是0<y<2,故答案为:0<y<2.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.20.(3分)(2017•绥化)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为30°或150°或90°.【分析】分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.【解答】解:①BC为腰,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为:30°或150°或90°.【点评】本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.21.(3分)(2017•绥化)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.【分析】记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,求出s1,s2,s3,探究规律后即可解决问题.【解答】解:记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,∵s1=•s=•s,s2=•s=•s,s3=•s,∴s n=•s=••2•2=,故答案为.【点评】本题考查三角形的中位线定理,三角形的面积等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.三、解答题(本题共8小题,共57分)22.(5分)(2017•绥化)如图,A、B、C为某公园的三个景点,景点A和景点B 之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)【分析】如图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于P.点P即为所求的点.【解答】解:如图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于P.点P即为所求的点.理由:∵MN垂直平分线段AC,∴PA=PC,∴PC+PB=PA+PB=AB.【点评】本题考查基本作图、线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(6分)(2017•绥化)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.【分析】(1)用1减去其它组的百分比即可求得a的值,然后求得各组的人数,根据中位数定义求得中位数;(2)利用加权平均数公式即可求解.【解答】解:(1)a=1﹣15%﹣25%﹣40%=20%.100×20%=20(人),100×40%=40(人),100×25%=25(人),100×15%=15(人).则本次抽查中学生每天参加活动时间的中位数是1;(2)=1.175(小时).答:本次抽查中学生每天参加户外活动的平均时间是1.175小时.【点评】本题考查读扇形统计图获取信息的能力,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.24.(6分)(2017•绥化)已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=4m+17>0,解之即可得出结论;(2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.【解答】解:(1)∵方程x2+(2m+1)x+m2﹣4=0有两个不相等的实数根,∴△=(2m+1)2﹣4(m2﹣4)=4m+17>0,解得:m>﹣.∴当m>﹣时,方程有两个不相等的实数根.(2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=m2﹣4.∵2a、2b为边长为5的菱形的两条对角线的长,∴a2+b2=(a+b)2﹣2ab=(﹣2m﹣1)2﹣2(m2﹣4)=2m2+4m+9=52=25,解得:m=﹣4或m=2.∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣4.若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣4.【点评】本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=4m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.25.(6分)(2017•绥化)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.26.(7分)(2017•绥化)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC 的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.【分析】(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O 的切线;(2)连接OF,依据垂径定理可知BE=EF=12,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.【解答】解:(1)过点O作OG⊥DC,垂足为G.∵AD∥BC,AE⊥BC于E,∴OA⊥AD.∴∠OAD=∠OGD=90°.在△ADO和△GDO中,∴△ADO≌△GDO.∴OA=OG.∴DC是⊙O的切线.(2)如图所示:连接OF.∵OA⊥BC,∴BE=EF=BF=12.在Rt△OEF中,OE=5,EF=12,∴OF==13.∴AE=OA+OE=13+5=18.∴tan∠ABC==.【点评】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.27.(8分)(2017•绥化)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).【分析】(1)根据图象可知甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)可得x+(x+60)=180可得结果;(2)根据(1)中所得速度可得卡车和轿车全程所用的时间,利用卡车所用的总时间减去轿车来回所用时间可得结论;(3)根据s=180﹣120×(t﹣0.5﹣0.5)可得结果.【解答】解:(1)甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)得,x+(x+60)=180解得x=60,∴x+60=120,∴轿车和卡车的速度分别为120千米/时和60千米/时;(2)卡车到达甲城需180÷60=3(小时)轿车从甲城到乙城需180÷120=1.5(小时)3+0.5﹣1.5×2=0.5(小时)∴轿车在乙城停留了0.5小时,点D的坐标为(2,120);(3)s=180﹣120×(t﹣1.5﹣0.5)=﹣120t+420.【点评】此题主要考查了一次函数的应用以及待定系数法求一次函数解析式等知识,利用数形结合得出函数解析式是解题关键.28.(9分)(2017•绥化)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H 两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.【分析】(1)根据平行线的性质以及角平分线的定义,即可得到∠DCE=∠DEC,进而得出DE=DC;(2)连接DF,根据等腰三角形的性质得出∠DFC=90°,再根据直角三角形斜边上中线的性质得出BF=CF=EF=EC,再根据SAS判定△ABF≌△DCF,即可得出∠AFB=∠DFC=90°,据此可得AF⊥BF;(3)根据等角的余角相等可得∠BAF=∠FEH,再根据公共角∠EFG=∠AFE,即可判定△EFG∽△AFE,进而得出EF2=AF•GF=28,求得EF=2,即可得到CE=2EF=4.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠DCE=∠CEB,∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;(2)如图,连接DF,∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=EC,∴∠ABF=∠CEB,∵∠DCE=∠CEB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,∴AF⊥BF;(3)CE=4.理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH∥BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴=,即EF2=AF•GF,∵AF•GF=28,∴EF=2,∴CE=2EF=4.【点评】本题属于四边形综合题,主要考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质的综合应用,解决问题的关键是作辅助线,构造全等三角形.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.29.(10分)(2017•绥化)在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).(1)求抛物线的解析式;(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.【分析】(1)利用待定系数法求抛物线的解析式;(2)如图1,A与E重合,根据直线y=﹣x+1求得与x轴交点坐标可得OA的长,由勾股定理得AB的长,利用等角的三角函数得:sin∠ABO=,cos∠ABO==,则可得DE和DM的长,根据M的横坐标代入抛物线的解析式可得纵坐标,即ME的长,相加得△DEM的周长;(3)由旋转可知:O1A1⊥x轴,O1B1⊥y轴,设点A1的横坐标为x,则点B1的横坐标为x+1,所以点O1,A1不可能同时落在抛物线上,分以下两种情况:①如图2,当点O1,B1同时落在抛物线上时,根据点O1,B1的纵坐标相等列方程可得结论;②如图3,当点A1,B1同时落在抛物线上时,根据点B1的纵坐标比点A1的纵坐标大,列方程可得结论.【解答】解:(1)∵直线y=﹣x+1交y轴于点B,∴B(0,1),∵抛物线y=﹣x2+bx+c经过点B和点C(4,﹣2).∴,。