高中数学必修一集合经典题型总结
高中数学必修一集合与函数概念知识点总结及练习题
高中数学必修一集合与函数概念知识点总结1.元素与集合(1)元素与集合的定义:一般地,把统称为元素,把一些元素组成的叫做集合(简称为集).(2)集合中元素的性质:①确定性:即给定的集合,它的元素是.②互异性:即给定集合的元素是.③无序性.(3)集合相等:只要构成两个集合的元素是,就称这两个集合是相等的.(4)元素与集合的关系:a是集合A的元素,记作,a不是集合A的元素,记作2.集合的表示方法除了用自然语言表示集合外,还可以用和表示集合.(1)列举法:把集合中的元素,并用花括号“{}”括起来表示集合的方法.(2)描述法:用集合所含元素的表示集合的方法.3.常用数集及其记法集合自然数集正整数集整数集有理数集实数集记法4.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B中的元素,就说这两个集合有包含关系,则称集合A是集合B的子集5.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B,且B⊆A,就说集合A与B相等真子集如果集合A⊆B,但存在元素x∈B,且x∉A,则称集合A是B的真子集6.空集(1)定义:的集合叫做空集.(2)用符号表示为:(3)规定:空集是任何集合的. 是任何非空集合的7.子集的有关性质(1)任何一个集合是它本身的,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么8.集合的并集与交集的定义并集交集自然语言由所有属于集合A或属于集合B的元素组成的集合由属于集合A且属于集合B的所有元素组成的集合符号语言图形语言9.并集与交集的运算性质并集的运算性质交集的运算性质A∪B B∪A A∩B B∩AA∪A=A∩A=A∪∅=A∩∅=A⊆B⇔A∪B=A⊆B⇔A∩B=A∪B⊇A,A∪B B A∩B⊆B,A∩B A10.全集(1)定义:如果一个集合含有我们所研究问题中涉及的,那么称这个集合为全集.(2)符号表示:通常记作第1 页共4 页。
高中数学必修一集合专题练习(知识点+练习题)
必修一第一章:集合专题一、集合概念1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.二、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 若集合A 中含有n 个元素,则集合A 有n 2个子集,21n -个真子集.三、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且集合专题训练1. 设集合A ={1,2,3},B ={2,3,4},则A ∪B =( )A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,3,4} 2. 设集合A ={x|x 2−4x +3<0},B ={x|2x −3>0},则A ∩B =( ) A. (−3,−32) B. (−3,32) C. (1,32) D. (32,3)3. 设集合A ={1,2,4},B ={x|x 2−4x +m =0},若A ∩B ={1},则B =( )A. {1,−3}B. {1,0}C. {1,3}D. {1,5}4. 已知集合A ={1,2,3,4},B ={y|y =3x −2,x ∈A},则A ∩B =( )A. {1}B. {4}C. {1,3}D. {1,4}5. 已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( )A. 1B. 2C. 3D. 46. 已知集合A ={x|1<2x <8},集合B ={x|0<log 2x <1},则A ∩B =( )A. {x|1<x <3}B. {x|1<x <2}C. {x|2<x <3}D. {x|0<x <2}7. 集合A ={0,1,2}的真子集的个数是______ .8. 已知集合,,A ∪B =A ,则实数p 的取值范围是______.9. 若集合A ={x|ax 2+3x +2=0}中至多有一个元素,则a 的取值范围是_____________10. 如图,若集合A ={1,2,3,4,5},B ={2,4,6,8,10},则图中阴影部分表示的集合为______.11.已知全集U =R ,集合A ={x|x 2−4x ≤0},B ={x|m ≤x ≤m +2}.(1)若m =3,求∁U B 和A ∪B ;(2)若B ⊆A ,求实数m 的取值范围;(3)若Φ=⋂B A ,求实数m 的取值范围.。
人教A版高中数学必修一第一章——集合知识要点及重要题型复习讲义
例1、已知集合A ={a -2,2a 2+5a,12},且-3∈A ,求a .2、设a 、b ∈R ,集合{1,a +b ,a }与⎩⎨⎧⎭⎬⎫0,b a ,b 相等,则b -a =________. 3、已知A ={1,2,x 2-5x +9},B ={3,x 2+ax +a },如果A ={1,2,3},2∈B ,求实数a 的值.集合间的基本关系强调 空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅. ∅∅{∅},∅∅{∅},0∅∅,0∅{∅},0∅{0},∅∅{0}.1、已知a ,b ∅R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1B .0C .-1D .±12、已知P ={x |2<x <k ,x ∅N},若集合P 中恰有3个元素,则k 的取值范围为 .3、已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∅R},若B ∅A ,则实数m 的取值范围为________.5已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值集合.(6).设集合A ={x |a -2<x <a +2},B ={x |-2<x <3}.4、(1)若B 是A 的真子集,求实数a 的取值范围;(2)是否存在实数a 使B ⊆A?2.交集与并集的运算性质(1)A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅;(2)A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ;(3)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .集合基本运算1、已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( )A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2、已知集合A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},求A ∩B ,A ∪B . 3、已知A ={x |2a ≤x ≤a +3},B ={x |x <-1,或x >5},若A ∩B =∅,求实数a 的取值范围.4、设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求实数a 的取值范围.5、设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求实数a 的取值范围.6、设全集U=R,A={x|1≤x≤3},B={x|2<x<4},C={x|a≤x≤a+1}.(1)分别求A∩B,A∪(∁U B);(2)若B∪C=B,求实数a的取值范围.7.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.48.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B=A,则()A.-3≤m≤4B.-3<m<4C.2<m<4D.2<m≤49.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2},且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.10.已知A={x|-2≤x≤4},B={x|x>a}.(1)若A∩B≠A,求实数a的取值范围;(2)若A∩B≠∅,且A∩B≠A,求实数a的取值范围.11.设集合A={x|x2+ax-12=0},B={x|x2+bx+c=0},且A≠B,A∪B={-3,4},A∩B ={-3},求a,b,c的值12.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.。
高中数学必修一集合与集合的关系知识点总结与练习
1.2子集、全集、补集 一、课本扫描 二、基本概念 1、子集的概念对于两个集合A 与B(1)如果集合A 中的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或说集合B 包含集合A ,记作A B ⊆或B A ⊇,这时,集合A 叫做集合B 的子集。
(2)如果A B A B ⊆≠且,我们就说集合A 是集合B 的真子集,记作A ⊄B 。
(3)如果A B ⊆同时B A ⊆,那么A B =。
子集的概念是由讨论集合与集合间的关系引出的,两个集合A 与B 之间的关系如下:A B A B B A A B A B A BA B ⎧=⇔⊆⊆⎧⊆⎨⎪≠⇔⊄⎨⎩⎪⎩且 其中记号AB (或B A )表示集合A 不包含于集合B (或者集合B 不包含集合A )。
2、子集具有以下性质: ①A A ⊆,即任何一个集合都是它本身的子集。
②如果,A B B A ⊆⊆,那么A B =。
③如果,A B B C ⊆⊆,那么A C ⊆。
④如果,AB BC ,那么AC 。
⑤空集是任何集合的子集,是任何非空集合的真子集。
3、关于有限集合子集个数的讨论。
①n 个元素的集合有2n个子集。
②n 个元素的集合有21n -个真子集。
③n 个元素的集合有21n-个非空子集。
④n 个元素的集合有22n-个非空真子集。
4、全集与补集设S 是一个集合,A 是S 的一个子集,由S 中所有不属于集合A 的元素组成的集合,叫做S 中的子集A 的补集,记作s C A 用数学式子表示为:{}S C A x x S x A =∈∉且。
如果集合S 含有我们所要研究的各个集合的全部元素,我们称集合S 为全集,记作U 。
5、全集与补集的性质 (1)()U U C C A A =,(2),U A U C A U ⊆⊆,(3),U U C U C U=∅∅=6、关于全集与补集的理解(1)全集具有相对性,是相对于我们所研究的问题而言的一个概念。
如:小学数学研究的问题常在有理数集内,则有理数集是全集。
高中数学必修一第一章集合与常用逻辑用语必练题总结(带答案)
高中数学必修一第一章集合与常用逻辑用语必练题总结单选题1、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D2、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:A.5B.10C.15D.20答案:C分析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x=y+5,因为y max=10,所以x max=10+5=15.故选:C.小提示:关键点点睛:本题考查集合的应用,解题关键是用集合A,B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.3、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.4、命题“∀x<0,x2+ax−1≥0”的否定是()A.∃x≥0,x2+ax−1<0B.∃x≥0,x2+ax−1≥0C.∃x<0,x2+ax−1<0D.∃x<0,x2+ax−1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x<0,x2+ax−1≥0”的否定是“∃x<0,x2+ax−1<0”.故选:C5、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.6、集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.7、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C8、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.多选题9、(多选题)下列各组中M,P表示不同集合的是()A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=x2+1,x∈R},P={x|x=t2+1,t∈R}D.M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}答案:ABD分析:选项A中,M和P的代表元素不同,是不同的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,解出集合M和P.选项D中,M和P的代表元素不同,是不同的集合.选项A中,M是由3,-1两个元素构成的集合,而集合P是由点(3,-1)构成的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,M={y|y=x2+1,x∈R}=[1,+∞),P={x|x=t2+1,t∈R}=[1,+∞),故M=P;选项D中,M是二次函数y=x2-1,x∈R的所有因变量组成的集合,而集合P是二次函数y=x2-1,x∈R图象上所有点组成的集合.故选ABD.10、已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={−1,0,1,2},则()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={−1}D.A∩B的真子集个数是7答案:ACD分析:求出集合A,再由集合的基本运算以及真子集的概念即可求解.A={x|2x+1≥0,x∈Z}={x|x≥−1,x∈Z},B={−1,0,1,2},2A∩B={0,1,2},故A正确;A∪B={x|x≥−1,x∈Z},故B错误;,x∈Z},所以(∁U A)∩B={−1},故C正确;∁U A={x|x<−12由A∩B={0,1,2},则A∩B的真子集个数是23−1=7,故D正确.故选:ACD11、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.填空题12、请写出不等式a>b的一个充分不必要条件___________.答案:a>b+1 (答案不唯一)分析:根据充分不必要条件,找到一个能推出a>b,但是a>b推不出来的条件即可.因为a>b+1能推出a>b,但是a>b不能推出a>b+1,所以a>b+1是不等式a>b的一个充分不必要条件,所以答案是:a>b+1(答案不唯一)13、已知集合A={x|−2≤x≤7},B={x|m+1≤x≤2m−1},若B⊆A,则实数m的取值范围是____________.答案:(−∞,4]分析:分情况讨论:当B=∅或B≠∅,根据集合的包含关系即可求解.当B=∅时,有m+1≥2m−1,则m≤2;当B≠∅时,若B⊆A,如图,则{m+1≥−2, 2m−1≤7,m+1<2m−1,解得2<m≤4.综上,m的取值范围为(−∞,4].所以答案是:(−∞,4]14、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).解答题15、已知集合A={x|−1≤x≤2},B={y|y=ax+3,x∈A},C={y|y=2x+3a,x∈A},(1)若∀y 1∈B ,∀y 2∈C ,总有y 1≤y 2成立,求实数a 的取值范围;(2)若∀y 1∈B ,∃y 2∈C ,使得y 1≤y 2成立,求实数a 的取值范围; 答案:(1)a ≥5;(2)a ≥−14. 分析:(1)设y 1=ax +3,y 2=2x +3a ,由题设可得y 1max ≤y 2min ,建立不等式组,解之可得答案. (2)由题设可得y 1max ≤y 2max ,建立不等式组,解之可得答案.(1)设y 1=ax +3,y 2=2x +3a ,其中−1≤x ≤2, 由题设可得y 1max ≤y 2min ,即y 1max ≤3a −2,故{−a +3≤−2+3a 2a +3≤−2+3a , 解得a ≥5.(2)由题设可得y 1max ≤y 2max ,故{−a +3≤4+3a 2a +3≤4+3a ,解得a ≥−14.。
高中数学必修一集合经典题型总结
慧诚教育2017年秋季高中数学讲义必修一第一章复习知识点一集合的概念1.集合一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集不含任何元素的集合叫做空集,记为∅.知识点二集合与元素的关系1.属于如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性________、________、________.2.集合的分类(1)有限集:含有________元素的集合.(2)无限集:含有________元素的集合.3.常用数集及符号表示知识点四1.列举法把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的________表示集合的方法称为描述法. 知识点五 集合与集合的关系 1.子集与真子集2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A ,都有________. (2)任何一个集合A 都是它本身的子集,即________. (3)如果A ⊆B ,B ⊆C ,则________. (4)如果A ⊆B ,B ⊆C ,则________. 3.集合相等4.如果A ⊆B ,B ⊆A ,则A =B ;反之,________________________.知识点六 集合的运算1.交集2.并集3.交集与并集的性质4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________.5.补集典例精讲题型一 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)
(每日一练)高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)单选题1、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.2、设集合A、B均为U的子集,如图,A∩(∁U B)表示区域()A.ⅠB.IIC.IIID.IV答案:B分析:根据交集与补集的定义可得结果.由题意可知,A∩(∁U B)表示区域II.故选:B.3、已知集合A={x|x≤1},B={x∈Z|0≤x≤4},则A∩B=()A.{x|0<x<1}B.{x|0≤x≤1}C.{x|0<x≤4}D.{0,1}答案:D分析:根据集合的交运算即可求解.由B={x∈Z|0≤x≤4}得B={0,1,2,3,4},所以A∩B={0,1},故选:D4、已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A.{−4,1}B.{1,5}C.{3,5}D.{1,3}答案:D分析:首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得A∩B,得到结果.由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},又因为B={−4,1,3,5},所以A∩B={1,3},故选:D.小提示:本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.5、若全集U=R,集合A={0,1,2,3,4,5,6},B={x|x<3},则图中阴影部分表示的集合为()A.{3,4,5,6}B.{0,1,2}C.{0,1,2,3}D.{4,5,6}答案:A分析:根据图中阴影部分表示(∁U B)∩A求解即可.由题知:图中阴影部分表示(∁U B)∩A,∁U B={x|x≥3},则(∁U B)∩A={3,4,5,6}.故选:A6、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.7、已知命题p:∃x∃N,e x<0(e为自然对数的底数),则命题p的否定是()A.∃x∃N,e x<0B.∃x∃N,e x>0C.∃x∃N,e x≥0D.∃x∃N,e x≥0答案:D分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.8、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,则甲是丁的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要答案:A分析:记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,根据题目条件得到集合之间的关系,并推出A D,,所以甲是丁的充分不必要条件.记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,由甲是乙的充分不必要条件得,A B,由乙是丙的充要条件得,B=C,由丁是丙的必要不充分条件得,C D,所以A D,,故甲是丁的充分不必要条件.故选:A.9、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D10、已知集合A={﹣1,0,1,2},B={x|0<x<3},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1,2}D.{1,2}答案:D分析:根据交集的定义写出A∩B即可.集合A={﹣1,0,1,2},B={x|0<x<3},则A∩B={1,2},故选:D多选题11、若x2−x−2<0是−2<x<a的充分不必要条件,则实数a的值可以是().A.1B.2C.3D.4答案:BCD分析:根据充分必要条件得出a范围,可得选项.由x2−x−2<0得−1<x<2,因此,若x2−x−2<0是−2<x<a的充分不必要条件,则a≥2.故选:BCD.小提示:本题考查根据充分必要条件求参数的范围,属于基础题.12、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;A.由(−4,4)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;B.由(−3,3)⊂≠C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.13、已知集合A={4,a},B={1,a2},a∈R,则A∪B可能是()A.{-1,1,4}B.{1,0,4}C.{1,2,4}D.{-2,1,4}答案:BCD分析:根据集合元素的互异性讨论参数范围即可得结果.若A∪B含3个元素,则a=1或a=a2或a2=4,a=1时,不满足集合元素的互异性,a=0,a=2或a=−2时满足题意,结合选项可知,A∪B可能是{1,0,4},{1,2,4},{-2,1,4}.故选:BCD.14、(多选)下列“若p,则q”形式的命题中,p是q的必要条件的有()A.若x,y是偶数,则x+y是偶数B.若a<2,则方程x2-2x+a=0有实根C.若四边形的对角线互相垂直,则这个四边形是菱形D.若ab=0,则a=0答案:BCD分析:根据必要条件的定义逐一判断即可.A:x+y是偶数不一定能推出x,y是偶数,因为x,y可以是奇数,不符合题意;B:当方程x2-2x+a=0有实根时,则有(−2)2−4a≥0⇒a≤1,显然能推出a<2,符合题意;C:因为菱形对角线互相垂直,所以由四边形是菱形能推出四边形的对角线互相垂直,符合题意;D:显然由a=0推出ab=0,所以符合题意,故选:BCD15、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.16、已知集合A ={x ∣x 2−2x −3=0},B ={x ∣ax =1},若B ⊆A ,则实数a 的可能取值( )A .0B .3C .13D .−1答案:ACD解析:由集合间的关系,按照a =0、a ≠0讨论,运算即可得解.∵集合A ={−1,3},B ={x |ax =1},B ⊆A ,当a =0时,B =∅,满足题意;当a ≠0时,B ={x |ax =1}={1a },要使B ⊆A ,则需要满足1a =−1或1a =3,解得a =−1或a =13,∴a 的值为0或−1或13.故选:ACD .17、设A ={x|x 2−8x +15=0},B ={x|ax +1=0},若A ∩B =B ,则实数a 的值可以为()A .−15B .0C .3D .−13答案:ABD分析:根据A ∩B =B ,得到B ⊆A ,然后分a =0, a ≠0讨论求解.∵A ∩B =B ,∴B ⊆A ,A ={x|x 2−8x +15=0}={3,5} ,当a =0时,B =∅,符合题意;当a ≠0时,B ={−1a } ,要使B ⊆A ,则−1a =3或−1a =5,解得a =−13或a =−15. 综上,a =0或a =−13或a =−15.故选:ABD .18、下列说法正确的是( )A .“对任意一个无理数x ,x 2也是无理数”是真命题B .“xy >0”是“x +y >0”的充要条件C .命题“∃x ∈R, x 2+1=0”的否定是“∀x ∈R ,x 2+1≠0”D .若“1<x <3”的必要不充分条件是“m −2<x <m +2”,则实数m 的取值范围是[1,3]答案:CD解析:根据命题的真假,充分必要条件,命题的否定的定义判断各选项.x =√2是无理数,x 2=2是有理数,A 错;x =−1,y =−2时,xy >0,但x +y =−3<0,不是充要条件,B 错;命题∃x ∈R,x 2+1=0的否定是:∀x ∈R,x 2+1≠0,C 正确;“1<x <3”的必要不充分条件是“m −2<x <m +2”,则{m −2≤1m +2≥3,两个等号不同时取得.解得1≤m ≤3.D 正确.故选:CD .小提示:关键点点睛:本题考查命题的真假判断,解题要求掌握的知识点较多,需要对四个选项一一判断.但求解时根据充分必要条件的定义,命题的否定的定义判断,对有些错误的命题可以举例说明其不正确.19、(多选)下列是“a <0,b <0”的必要条件的是( )A .(a +1)2+(b +3)2=0B .a +b <0C .a −b <0D .a b >0答案:BD分析:由a<0,b<0判断各个选项是否成立可得.取a=−2,b=−4,得(a+1)2+(b+3)2=2≠0,故A不是“a<0,b<0”的必要条件;由a<0,b<0,得a+b<0,故B是“a<0,b<0”的必要条件;取a=−2,b=−4,得a−b=−2−(−4)=2>0,故C不是“a<0,b<0”的必要条件;>0,故D是“a<0,b<0”的必要条件.由a<0,b<0,得ab故选:BD.20、下列关系正确的是()A.0∉∅B.∅⊆{0}C.{∅}⊆{0}D.∅{∅}答案:ABD分析:利用元素与集合之间的关系,集合与集合之间的关系判断即可.由空集的定义知:0∉∅,A正确.∅⊆{0},B正确.{∅}⊄{0},C错误.∅{∅},D正确.故选:ABD.填空题21、已知集合A={x|x<-1,或x>2},B={x|2a≤x≤a+3},若“x∃A”是“x∃B”的必要条件,则实数a的取值范围是______.答案:(-∞,-4)∃(1,+∞)分析:根据题目条件可得B ∃A ,对B 进行分类讨论求出实数a 的取值范围.因为“x ∃A ”是“x ∃B ”的必要条件,所以B ∃A ,当B =∃时满足题意,即2a >a +3,所以a >3;当B ≠∃时,{2a ≤a +3a +3<-1 或{2a ≤a +32a >2, 解得:a <-4或1<a ≤3;综上可得,实数a 的取值范围是(-∞,-4)∃(1,+∞).所以答案是:(-∞,-4)∃(1,+∞).22、设非空集合Q ⊆M ,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合M ={1,2,3,4,5,6,7},则其偶子集Q 的个数为___________.答案:63分析:对集合Q 中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q 的个数,综合可得结果.集合Q 中只有2个奇数时,则集合Q 的可能情况为:{1,3}、{1,5}、{1,7}、{3,5}、{3,7}、{5,7},共6种, 若集合Q 中只有4个奇数时,则集合Q ={1,3,5,7},只有一种情况,若集合Q 中只含1个偶数,共3种情况;若集合Q 中只含2个偶数,则集合Q 可能的情况为{2,4}、{2,6}、{4,6},共3种情况;若集合Q 中只含3个偶数,则集合Q ={2,4,6},只有1种情况.因为Q 是M 的偶子集,分以下几种情况讨论:若集合Q 中的元素全为偶数,则满足条件的集合Q 的个数为7;若集合Q 中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q 中的元素是2个奇数1个偶数,共6×3=18种;若集合Q 中的元素为2个奇数2个偶数,共6×3=18种;若集合Q中的元素为2个奇数3个偶数,共6×1=6种;若集合Q中的元素为4个奇数1个偶数,共1×3=3种;若集合Q中的元素为4个奇数2个偶数,共1×3=3种;若集合Q中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q的个数为7+7+18+18+6+3+3+1=63.所以答案是:63.23、若“x>3”是“x>m”的必要不充分条件,则m的取值范围是________.答案:m>3分析:由题,“x>3”是“x>m”的必要不充分条件,则(m,+∞)是(3,+∞)的真子集,可得答案. 因为“x>3”是“x>m”的必要不充分条件,所以(m,+∞)是(3,+∞)的真子集,所以m>3,故答案为m>3.小提示:本题考查了不要不充分条件,属于基础题.。
高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)
高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.2、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q> 0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.多选题9、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.10、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.11、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.填空题12、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).13、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:014、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.解答题15、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
人教版高中数学必修一集合知识总结例题
(每日一练)人教版高中数学必修一集合知识总结例题单选题1、已知集合M={(x,y)|x2+y2≤2,x∈Z,y∈Z},则集合M的真子集的个数为()A.29−1B.28−1C.25D.24+1答案:A解析:首先确定集合M的元素个数,接着根据公式求出集合M的所有子集个数,减掉集合M本身得出结果即可.因为集合M={(x,y)|x2+y2≤2,x∈Z,y∈Z},画出如下示意图:由图可知集合M有9个元素,集合M的所以子集的个数为29,所以集合M的真子集的个数为29−1,故选:A.小提示:集合M有n个元素,则集合M的所有子集个数为2n,集合M的所有非空子集个数为2n−1,集合M的所有真子集个数为2n−1,集合M的所有非空真子集个数为2n−2;2、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B解析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值. 求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.3、已知集合A={x|x2−2x−3<0},集合B={x|x−1≥0},则∁R(A∩B)=().A.(−∞,1)∪[3,+∞)B.(−∞,1]∪[3,+∞)C.(−∞,1)∪(3,+∞)D.(1,3)答案:A解析:算出集合A、B及A∩B,再求补集即可.由x2−2x−3<0,得−1<x<3,所以A={x|−1<x<3},又B={x|x≥1},所以A∩B={x|1≤x<3},故∁R(A∩B)={x|x<1或x≥3}.故选:A.小提示:本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.填空题4、已知集合A={12,a2+4a,a−2},且−3∈A,则a=_________.答案:-3解析:由集合A={12,a2+4a,a−2},且−3∈A,得a2+4a=−3或a−2=−3,由此能求出结果.解:∵集合A={12,a2+4a,a−2},且−3∈A,∴a2+4a=−3或a−2=−3,解得a=−1,或a=−3,当a=−1时,A={12,−3,−3},不合题意,当a=−3时,A={12,−3,−5},符合题意.综上,a=−3.所以答案是:−3.5、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为_________答案:15解析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x= y+5,因为y max=10,所以x max=10+5=15.所以答案是:15.。
通用版高中数学必修一集合常考点
(每日一练)通用版高中数学必修一集合常考点单选题1、已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.5答案:B解析:采用列举法列举出A∩B中元素的即可.由题意,A∩B={5,7,11},故A∩B中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2、已知集合A={x|x2−1<0},B={x|0<x<2},则A∩B=()A.(−1,1)B.(−1,0)C.(0,1)D.(1,2)答案:C解析:解一元二次不等式化简集合A,再进行交运算,即可得答案;因为A={x|x2−1<0}=(−1,1),∴A∩B=(0,1).故选:C.小提示:本题考查集合的交运算,考查运算求解能力,求解时注意一元二次不等式的求解.3、已知全集U={−2,−1,0,1,2},集合M={x|x2−x−2<0,x∈N},则∁U M=()A.{−2,1,2}B.{−2,−1,2}C.{−2}D.{2}答案:B解析:根据题意,求出集合M,进而可得∁U M.由题意得,M={0,1},故∁U M={−2,−1,2}.故选:B.解答题4、设P表示平面内的动点,属于下列集合的点组成什么图形?(1){P|PA=PB}(A,B是两个不同定点);(2){P|PO=3cm}(O是定点)答案:(1)线段AB的垂直平分线;(2)以点O为圆心,3cm长为半径的圆.解析:(1)PA=PB指平面内到A,B距离相等的点的集合;(2)PO=3cm指平面内到定点O的距离为3cm的点的集合.(1) PA=PB指平面内到A,B距离相等的点的集合,这样的点在线段AB的垂直平分线上,即集合的点组成的图形是线段AB的垂直平分线;(2) PO=3cm指平面内到定点O的距离为3cm的点的集合,这样的点在以O为圆心,以3cm为半径的圆上,即集合的点组成的图形是以点O为圆心,3cm长为半径的圆.小提示:本题考查描述法表示集合,是基础题.5、在①B ⊆(∁R A ),②(∁R A )∪B =R ,③A ∩B =B 这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由. 已知集合A ={x |x 2−5x +4≤0},B ={x |a +1<x <2a −1},是否存在实数a ,使得________? 答案:答案见解析.解析:若选①:求出∁R A ,分B =∅和B ≠∅两种情况,列出不等式组可得答案; 若选②:由(∁R A )∪B =R ,得B ≠∅,列出不等式组可得答案;若选③:由A ∩B =B 可知B ⊆A ,分B =∅和B ≠∅列出不等式组可得答案. 集合A ={x |x 2−5x +4≤0}={x |1≤x ≤4}.若选①:∁R A ={x |x <1或x >4},由B ⊆(∁R A )得,当B =∅时,a +1≥2a −1,解得a ≤2;当B ≠∅时,{a +1<2a −12a −1≤1 或{a +1<2a −1a +1≥4, 解得a ∈∅或a ≥3,所以实数a 的取值范围是[3,+∞).综上,存在实数a ,使得B ⊆(∁R A ),且a 的取值范围为(−∞,2]∪[3,+∞).若选②:∁R A ={x |x <1或x >4},由(∁R A )∪B =R ,得B ≠∅,所以{2a −1>4a +1<1,解得a ∈∅, 所以不存在实数a ,使得(∁R A )∪B =R . 若选③:由A ∩B =B 可知B ⊆A ,当B =∅时,a +1≥2a −1,解得a ≤2;当B ≠∅时,{a +1<2a −1a +1≥12a −1≤4,解得2<a ≤52. 综上,存在实数a ,使得A ∩B =B ,且a 的取值范围为(−∞,52]. 小提示:本题考查了集合的运算,解题关键点是对于B ⊆(∁R A )和(∁R A )∪B =R 中含有参数的集合要分情况进行讨论,要熟练掌握集合间的基本运算.。
1.2 集合间的基本关系知识题型总结【新教材】人教A版(2019)高中数学必修第一册(含答案)
1.2 集合间的基本关系知识题型总结1.子集的概念2.真子集的概念3.集合相等的概念如果集合A的任何一个元素是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么,集合A与集合B相等,记作A=B.也就是说,若A⊆B且B⊆A,则A=B.4.空集的概念【题型1 子集、真子集的概念】【方法点拨】①集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B,这是判断A⊆B的常用方法.②不能简单地把“A⊆B”理解成“A是B中部分元素组成的集合”,因为若A=∅时,则A中不含任何元素;若A=B,则A中含有B中的所有元素.③在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.【例1】(2020秋•宁县校级月考)对于集合A,B,“A⊆B”不成立的含义是()A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A【分析】“A⊆B”不成立,是对命题的否定,任何的反面是至少,即可得到结论.【解答】解:∵“A⊆B”成立的含义是集合A中的任何一个元素都是B的元素,∴不成立的含义是A中至少有一个元素不属于B,故选:C.【点评】本题考查集合的包含关系,考查命题的否定,属于基础题.【变式1-1】(2020秋•海淀区期末)已知集合U={1,2,3,4,5,6},A={1,2,3},集合A与B的关系如图所示,则集合B可能是()A.{2,4,5}B.{1,2,5}C.{1,6}D.{1,3}【分析】根据Venn图表达集合的关系可得集合A与集合B的关系,然后根据选项找符号条件的即可.【解答】解:由图可知B⊆A,而{1,3}⊆{1,2,3}.故选:D.【点评】本题主要考查了集合之间的关系,弄清元素与集合的隶属关系以及集合之间的包含关系是解题的关键.【变式1-2】(2020秋•东湖区校级期中)下列各式:①{a}⊆{a}②Ø⊊{0}③0⊆{0}④{1,3}⊊{3,4},其中正确的有()A.②B.①②C.①②③D.①③④【分析】根据子集,真子集的定义,以及元素与集合的关系即可判断每个式子的正误,从而找到正确选项.【解答】解:任何集合是它本身的子集,∴①正确;空集是任何非空集合的真子集,∴②正确;0表示元素,应为0∈{0∈},∴③错误;1∉{3,4},∴{1,3}不是{3,4}的真子集,∴④错误;∴正确的为①②.故选:B.【点评】考查任何集合和它本身的关系,空集和任何非空集合的关系,以及元素与集合的关系,真子集的定义.【变式1-3】[多选题]下列命题中,正确的有()A.空集是任何集合的真子集;B.若A⫋B,B⫋C,则A⫋C;C.任何一个集合必有两个或两个以上的真子集;D.如果不属于B的元素也不属于A,则A⊆B【分析】根据集合的相关知识,可以进行判断.【解答】解:空集是不是空集的真子集,A错;真子集具有传递性,B对;空集没有真子集,C错;如果不属于B的元素也不属于A,则A⊆B,D对,故选:BD.【点评】本题考查集合的相关知识,属于基础题.【题型2 集合的相等与空集】【方法点拨】①利用集合相等的定义和集合中的元素的性质去解题.②利用空集的定义去解题.【例2】(2020秋•雨花区校级月考)[多选题]下列选项中的两个集合相等的有()A.P={x|x=2n,n∈Z},Q={x|x=2(n+1),n∈Z}B.P={x|x=2n﹣1,n∈N*},Q={x|x=2n+1,n∈N+}C.P={x|x2﹣x=0},Q={x|x=1+(−1)n2,n∈Z}D.P={x|y=x+1},Q={(x,y)|y=x+1}【分析】利用集合相等的定义和集合中的元素的性质,对各个选项逐个判断即可.【解答】解:选项A :因为集合P ,Q 表示的都是所有偶数组成的集合,所以P =Q ; 选项B :集合P 中的元素是由1,3,5,…,所有正奇数组成的集合,集合Q 是由3,5,7…,所有大于1的正奇数组成的集合,即1∉Q ,所以P ≠Q ;选项C :集合P ={0,1},集合Q 中:当n 为奇数时,x =0,当n 为偶数时,x =1,所以Q ={0,1},则P =Q ;选项D :集合P 表示的是数集,集合Q 表示的是点集,所以P ≠Q ; 综上,选项AC 表示的集合相等, 故选:AC .【点评】本题考查了集合相等的性质,考查了学生对集合的元素的理解,属于基础题.【变式2-1】(2020秋•五华区校级期中)已知集合A ={1,a ,b },B ={a 2,a ,ab },若A =B ,则a 2021+b 2020=( ) A .﹣1B .0C .1D .2【分析】根据集合元素的互异性得到关于a 的方程组{1=ab b =a 2或{1=a 2b =ab ,通过解方程组求得a 、b 的值,则易求a 2021+b 2020的值.【解答】解:由题意得①组{1=ab b =a 2或②{1=a 2b =ab,由②得a =±1,当a =1时,A ={1,1,b },不符合,舍去; 当a =﹣1时,b =0,A ={1,﹣1,0},B ={﹣1,1,0},符合题意. 由①得a =1,舍去, 所以a =﹣1,b =0. ∴a 2021+b 2020=﹣1. 故选:A .【点评】本题考查了集合相等的应用,注意要验证集合中元素的互异性,属于基础题. 【变式2-2】(2020秋•武邑县校级期末)下列四个集合中,是空集的是( ) A .{x |x +3=3} B .{(x ,y )|y 2=﹣x 2,x ,y ∈R } C .{x |x 2≤0}D .{x |x 2﹣x +1=0,x ∈R }【分析】根据空集的定义,分别对各个选项进行判断即可.【解答】解:根据题意,由于空集中没有任何元素,对于选项A ,x =0; 对于选项B ,(0,0)是集合中的元素;对于选项C,由于x=0成立;对于选项D,方程无解.故选:D.【点评】本题考查了集合的概念,是一道基础题.【变式2-3】(2020春•保定期中)如果A={x|ax2﹣ax+1<0}=∅,则实数a的取值范围为()A.0<a<4B.0≤a<4C.0<a≤4D.0≤a≤4【分析】由A=∅得不等式ax2﹣ax+1<0的解集是空集,然后利用不等式进行求解.【解答】解:因为A={x|ax2﹣ax+1<0}=∅,所以不等式ax2﹣ax+1<0的解集是空集,当a=0,不等式等价为1<0,无解,所以a=0成立.当a≠0时,要使ax2﹣ax+1<0的解集是空集,则{a>0△=a2−4a≤0,解得0<a≤4.综上实数a的取值范围0≤a≤4.故选:D.【点评】本题主要考查一元二次不等式的应用,将集合关系转化为一元二次不等式是解决本题的关键.【题型3 集合间关系的判断】【方法点拨】①列举法:用列举法将两个集合表示出来,再通过比较两集合中的元素来判断两集合之间的关系.②元素特征法:根据集合中元素满足的性质特征之间的关系判断.③图示法:利用数轴或Venn图判断两集合间的关系.【例3】(2021春•江油市校级期末)在下列选项中,能正确表示集合A={﹣2,0,2}和B={x|x2+2x=0}关系的是()A.A=B B.A⊆B C.A⊋B D.A⊊B【分析】先求出集合B,然后利用两个集合之间的关系进行判断即可.【解答】解:解方程x2+2x=0,得x=0或x=﹣2,所以B={﹣2,0},又A={1﹣2,0,2},所以A⊋B.故选:C .【点评】本题考查了集合之间关系的判断,属于基础题.【变式3-1】(2021•市中区校级模拟)设集合P ={y |y =x 2+1),M ={x |y =x 2+1},则集合M 与集合P 的关系是( ) A .M =PB .P ∈MC .M ⫋PD .P ⫋M【分析】由函数得:P ={y |y ≥1},M =R ,即P ⫋M ,得解 【解答】解:因为y =x 2+1≥1, 即P ={y |y ≥1}, M ={x |y =x 2+1}=R , 所以P ⫋M , 故选:D .【点评】本题考查了集合的表示及函数,属简单题.【变式3-2】(2020春•九龙坡区校级期中)已知集合A ={x |x 2﹣2x ﹣3≤0},集合B ={x ||x ﹣1|≤3},集合C ={x|x−4x+5≤0},则集合A ,B ,C 的关系为( ) A .B ⊆AB .A =BC .C ⊆BD .A ⊆C【分析】解出不等式,从而得出集合A ,B ,C ,再根据子集的定义判断A ,B ,C 的关系. 【解答】解:∵x 2﹣2x ﹣3≤0,即(x ﹣3)(x +1)≤0, ∴﹣1≤x ≤3,则A =[﹣1,3], 又|x ﹣1|≤3,即﹣3≤x ﹣1≤3, ∴﹣2≤x ≤4,则B =[﹣2,4], ∵x−4x+5≤0⇔{(x −4)(x +5)≤0x +5≠0, ∴﹣5<x ≤4,则C =(﹣5,4], ∴A ⊆C ,B ⊆C , 故选:D .【点评】本题主要考查集合间的基本关系的判断,考查一元二次不等式、绝对值不等式、分式不等式的解法,属于基础题.【变式3-3】(2020秋•湖北期中)[多选题]集合M ={x |x =2k ﹣1,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m ∈Z }之间的关系表述正确的有( )A.S⊆P B.S⊆M C.M⊆S D.P⊆S【分析】根据题意判断集合M,P,S表示的意义,进行判断.【解答】解:M={x|x=2k﹣1,k∈Z}表示被2整除余1的数的集合;P={y|y=3n+1,n∈Z}表示被3整除余1的数的集合;S={z|z=6m+1,m∈Z}={z|z=3×(2m)+1,m∈Z}={z|z=2×(3m)+1,m∈Z},表示被6整除余1的集合;故S⫋P,S⫋M.故S⊆P,S⊆M,正确,即AB正确.故选:AB.【点评】本题考查了集合的交集、补集问题,属于基础题.【题型4 有限集合子集、真子集的确定】【方法点拨】①确定所求集合,是子集还是真子集.②合理分类,按照子集所含元素的个数依次写出.③注意两个特殊的集合,即空集和集合本身.空集是任何集合的子集,是任何非空集合的真子集.假设集合A中含有n个元素,则有:①A的子集的个数为2n个;②A的真子集的个数为2n-1个;③A的非空真子集的个数为2n-2个.【例4】(2020秋•南昌县校级月考)已知集合M={2,4,8},N={1,2},P={x|x=ab,a∈M,b∈N},则集合P的子集个数为()A.4B.6C.16D.63【分析】由集合M={2,4,8},N={1,2},P={x|x=ab,a∈M,b∈N},求出集合P,由此能求出集合P的子集个数.【解答】解:集合M={2,4,8},N={1,2},P={x|x=ab,a∈M,b∈N},∴P={1,2,4,8},∴集合P的子集个数为:24=16.故选:C.【点评】本题考查集合的子集个数的求法,考查子集的定义等基础知识,考查运算求解能力,是基础题.【变式4-1】(2020秋•南沙区校级月考)已知集合A={x|x2﹣3x+2=0},B={x|0<x<6,x∈N},则满足A⊆C⊆B的集合C的个数为()A.4B.8C.7D.16【分析】求出集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},由此利用列举法能求出满足A⊆C⊆B的集合C的个数.【解答】解:集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},∴满足A⊆C⊆B的集合C有:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.故选:B.【点评】本题考查满足条件的集合的个数的求法,是基础题,解题时要认真审题,注意子集定义、列举法的合理运用.【变式4-2】(2020秋•临猗县校级月考)已知集合A={x|x2﹣3x+2=0},B={x|0<x<6,x∈N},则满足A⫋C⊆B的集合C的个数为()A.4B.7C.8D.16【分析】求出集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},由此利用列举法能求出满足A⫋C⊆B的集合C的个数.【解答】解:集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},∴满足A⫋C⊆B的集合C有:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故选:B.【点评】本题考查满足条件的集合的个数的求法,是基础题,解题时要认真审题,注意子集定义、列举法的合理运用.【变式4-3】(2020秋•海曙区校级期中)已知集合A={x|(a﹣1)x2+3x﹣2=0},若A的子集个数为2个,则实数a=.【分析】推导出(a﹣1)x2+3x﹣2=0只有一个实数解,当a﹣1=0时,a=1,(a﹣1)x2+3x﹣2=0即3x﹣2=0,当a﹣1≠0时,(a﹣1)x2+3x﹣2=0只有一个实数根,△=9+8(a﹣1)=0,由此能求出实数a 的值.【解答】解:∵集合A ={x |(a ﹣1)x 2+3x ﹣2=0},且A 的子集个数为2个, ∴(a ﹣1)x 2+3x ﹣2=0只有一个实数解,当a ﹣1=0时,a =1,(a ﹣1)x 2+3x ﹣2=0即3x ﹣2=0,解得x =23, 当a ﹣1≠0时,(a ﹣1)x 2+3x ﹣2=0只有一个实数根, △=9+8(a ﹣1)=0,解得a =−18. ∴实数a 的值为1或−18. 故答案为:1或−18.【点评】本题考查实数值的求法,考查子集定义等基础知识,考查运算求解能力,是基础题. 【题型5 利用集合间的关系求参数】 【方法点拨】①当集合为连续数集时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点.②当集合为不连续数集时,常根据集合包含关系的意义,建立方程求解,此时应注意分类讨论思想的运用. 【例5】(2020秋•南开区校级月考)设集合A ={x |﹣1≤x +1≤6},B ={x |m ﹣1<x <2m +1},若A ⊇B ,则m 的取值范围是 .【分析】B ⊆A ,则说明B 是A 的子集,然后分m ≤﹣2和m >﹣2两种情况求出m 的取值范围. 【解答】解:∵A ={x |﹣1≤x +1≤6}={x |﹣2≤x ≤5}, 当m ﹣1≥2m +1,即m ≤﹣2时,B =∅满足B ⊆A . 当m ﹣1<2m +1,即m >﹣2时,要使B ⊆A 成立, 需 {m −1≥−22m +1≤5,可得﹣1≤m ≤2,即﹣1≤m ≤2,综上,m ≤﹣2或﹣1≤m ≤2时有B ⊆A . 故答案为:{m |m ≤﹣2或﹣1≤m ≤2}.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用. 【变式5-1】(2020秋•武汉期中)已知关于x 不等式x 2﹣2mx +m +2≤0(m ∈R )的解集为M . (1)[1,2]⊆M ,求实数m 的取值范围;(2)当M 不为空集,且M ⊆[1,4]时,求实数m 的取值范围.【分析】(1)由题意得到关于m 的不等式组,求解不等式组确定实数m 的取值范围即可; (2)由题意分类讨论即可求得实数m 的取值范围.【解答】解:(1)由题意[1,2]⊆M 可知,令 f (x )=x 2﹣2mx +m +2,则{f(1)≤0f(2)≤0△>0,解得:m ≥3.(2)∵M 不为空集,且M ⊆[1,4],当△>0 时,则{ f(1)≥0f(4)≥0△>01≤m ≤4,解得:2≤m ≤187,当△=0 时,m =2也符合题目要求: 综上:2≤m ≤187. 【点评】本题主要考查集合的包含关系,分类讨论的数学思想,二次方程根的分布等知识,意在考查学生的转化能力和计算求解能力.【变式5-2】(2020秋•南阳期中)集合A ={x |﹣3≤x ≤7},B ={x |m +1≤x ≤2m ﹣1}. (1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.【分析】(1)根据B ⊆A 可讨论B 是否为空集:B =∅时,m +1>2m ﹣1;B ≠∅时,{m +1≤2m −1m +1≥−32m −1≤7,解出m 的范围即可;(2)根据题意可知A ∩B =∅,讨论B 是否为空集:B =∅时,m <2;B ≠∅时,{m ≥2m +1>7或{m ≥22m −1<−3,然后解出m 的范围即可. 【解答】解:(1)∵B ⊆A ,∴①B =∅时,m +1>2m ﹣1,解得m <2; ②B ≠∅时,{m ≥2m +1≥−32m −1≤7,解得2≤m ≤4,综上,实数m 的取值范围为(﹣∞,4]; (2)由题意知,A ∩B =∅, ①B =∅时,m <2;②B ≠∅时,{m ≥2m +1>7或{m ≥22m −1<−3,解得m >6,∴实数m 的取值范围为(﹣∞,2)∪(6,+∞).【点评】本题考查了描述法的定义,子集的定义,空集的定义,分类讨论的思想,考查了计算能力,属于基础题.【变式5-3】(2020春•荔湾区校级期中)已知不等式x2﹣(a+1)x+a≤0的解集为A.(1)若a=2,求集合A;(2)若集合A是集合{x|﹣4≤x≤2}的真子集,求实数a的取值范围.【分析】(1)代入a的值,根据一元二次不等式的解法即可求解;(2)对a分类讨论,进而可以确定集合A,再根据集合的子集关系即可求解.【解答】解:(1)由题意,当a=2时,不等式x2﹣(a+1)x+a≤0,即x2﹣3x+2≤0,解得1≤x≤2,所以集合A={x|1≤x≤2};(2)设集合B={x|﹣4≤x≤2},由x2﹣(a+1)x+a≤0,可得(x﹣1)(x﹣a)≤0,当a<1时,不等式(x﹣1)(x﹣a)≤0的解集{x|a≤x≤1},由已知A⊆B可得a≥﹣4,所以﹣4≤a<1;当a=1时,不等式(x﹣1)(x﹣a)≤0的解集{x|x=1},满足题意;当a>1时,不等式(x﹣1)(x﹣a)≤0的解集{x|1≤x≤a},由A⊆B可得a≤2,所以1<a≤2;综上可得﹣4≤a≤2,即实数a的取值范围为[﹣4,2].【点评】本题考查了求解一元二次不等式以及子集的应用,考查了分类讨论思想,属于基础题.【题型6 集合间关系中的新定义问题】【例6】(2020秋•沭阳县期中)已知非空集合A,若对于任意x∈A,都有4x∈A,则称集合A具有“反射性”.则在集合{1,2,4,8}的所有子集中,具有“反射性”的集合个数为.【分析】利用列举法能求出在集合{1,2,4,8}的所有子集中,具有“反射性”的集合个数.【解答】解:在集合{1,2,4,8}的所有子集中,具有“反射性”的集合有:{1,4},{2},{1,2,4},∴在集合{1,2,4,8}的所有子集中,具有“反射性”的集合个数为3.故答案为:3.【点评】本题考查集合的子集中具有“反射性”的集合个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.【变式6-1】(2020秋•山东期中)若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合A={﹣1,2},B={x|ax2=2,a ≥0},若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为 . 【分析】讨论a =0和a >0,求得集合B ,再由新定义,得到a 的方程,即可解得a 的值. 【解答】解:集合A ={﹣1,2}, B ={x |ax 2=2,a ≥0}, 若a =0,则B =∅, 即有B ⊆A ;若a >0,可得B ={−√2a ,√2a },不满足B ⊆A ;若A ,B 两个集合有公共元素,但互不为对方子集,可得√2a =2或−√2a =−1,解得a =12或a =2.综上可得,a =0或12或2;故答案为:{0,12,2}.【点评】本题考查集合的运算以及包含关系,考查新定义的理解和运用,运用分类讨论的思想方法是解题的关键,属于中档题.【变式6-2】(2020秋•南昌县校级月考)若x ∈A ,则1x∈A ,就称A 是伙伴关系集合,集合M ={﹣1,0,12,2,3}的所有非空子集中具有伙伴关系的集合的个数是( ) A .1B .3C .7D .31【分析】由定义求出集合A 中的元素可为﹣1,2与12必然同时出现,然后利用n 集合的非空子集个数为2n ﹣1.【解答】解:∵﹣1∈A ,1−1=−12∈A 则12∈A12∈A 则2∈A∴A ={﹣1}或A ={2,12}或A ={﹣1,2,12} 故选:B .【点评】本题考查集合与元素的关系,注意运用列举法,属于基础题.【变式6-3】(2021春•如皋市校级月考)对于任意两个数x ,y (x ,y ∈N *),定义某种运算“◎”如下:①当{x =2m ,m ∈N ∗y =2n ,n ∈N ∗或{x =2m −1,m ∈N ∗y =2n −1,n ∈N ∗时,x ◎y =x +y ;②当{x =2m ,m ∈N ∗y =2n −1,n ∈N ∗时,x ◎y =xy .则集合A ={(x ,y )|x ◎y =10}的子集个数是( ) A .214个B .213个C .211个D .27个【分析】利用列举法分别针对两种情况列出A 中对应的元素即可求解. 【解答】解:①若x ,y 同为奇数或偶数时; ∵x ◎y =x +y =10,∴同时为偶数时:(2,8),(4,6),(6,4),(8,2);同时为奇数时:(1,9),(3,7),(5,5),(7,3),(9,1); ②当x 为偶数,y 为奇数时; ∵x ◎y =xy .∴(2,5),(10,1)∴综上所诉:集合A 中共含有11个元素,故其子集个数为:211个. 故选:C .【点评】本题考查了集合子集的个数问题,考查学生的分析能力,属于基础题.。
高中数学必修一第一章集合与常用逻辑用语知识点总结(超全)
(每日一练)高中数学必修一第一章集合与常用逻辑用语知识点总结(超全)单选题1、已知集合A ={(x,y)|x,y ∈N ∗,y ≥x},B ={(x,y)|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6答案:C分析:采用列举法列举出A ∩B 中元素的即可.由题意,A ∩B 中的元素满足{y ≥xx +y =8,且x,y ∈N ∗,由x +y =8≥2x ,得x ≤4,所以满足x +y =8的有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2、已知集合A ={(x,y )∣2x −y +1=0},B ={(x,y )∣x +ay =0},若A ∩B =∅,则实数a =()A .−12B .2C .−2D .12答案:A分析:根据集合的定义知{2x −y +1=0x +ay =0 无实数解.由此可得a 的值.因为A ∩B =∅,所以方程组{2x −y +1=0x +ay =0 无实数解.所以12=a −1≠0,a =−12.故选:A.3、已知a、b、c、d∈R,则“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的()注:max{p,q}表示p、q之间的较大者.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B分析:利用特殊值法、不等式的基本性质结合充分条件、必要条件的定义判断可得出结论.充分性:取a=d=1,b=c=−1,则max{a,b}+max{c,d}=max{1,−1}+max{−1,1}=1+1>0成立,但max{a+c,b+d}=max{0,0}=0,充分性不成立;必要性:设max{a+c,b+d}=a+c,则max{a,b}≥a,max{c,d}≥c,从而可得max{a,b}+max{c,d}≥a+c>0,必要性成立.因此,“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的必要不充分条件.故选:B.小提示:方法点睛:判断充分条件和必要条件,一般有以下几种方法:(1)定义法;(2)集合法;(3)转化法.4、已知集合A={x∈N|x≤1},B={−1,0,1,2},则A∩B的子集的个数为()A.1B.2C.3D.4答案:D分析:根据集合交集的定义,结合子集个数公式进行求解即可.由题意A∩B={0,1},因此它的子集个数为4.故选:D.5、下列元素与集合的关系中,正确的是()∉RA.−1∈N B.0∉N∗C.√3∈Q D.25答案:B分析:由N,N∗,Q,R分别表示的数集,对选项逐一判断即可.−1不属于自然数,故A错误;0不属于正整数,故B正确;√3是无理数,不属于有理数集,故C错误;2属于实数,故D错误.5故选:B.6、已知集合A={x|x≤1},B={x∈Z|0≤x≤4},则A∩B=()A.{x|0<x<1}B.{x|0≤x≤1}C.{x|0<x≤4}D.{0,1}答案:D分析:根据集合的交运算即可求解.由B={x∈Z|0≤x≤4}得B={0,1,2,3,4},所以A∩B={0,1},故选:D7、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.8、设集合A={x|x≥2},B={x|−1<x<3},则A∩B=()A.{x|x≥2}B.{x|x<2}C.{x|2≤x<3}D.{x|−1≤x<2}答案:C分析:根据交集的定义求解即可由题,A∩B={x|2≤x<3}故选:C9、设x∈R,则“1<x<2”是“−2<x<2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要答案:A分析:根据集合{x|1<x<2}是集合{x|−2<x<2}的真子集可得答案.因为集合{x|1<x<2}是集合{x|−2<x<2}的真子集,所以“1<x<2”是“−2<x<2”的充分不必要条件.故选:A小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.10、命题“∀x <0,x 2+ax −1≥0”的否定是( )A .∃x ≥0,x 2+ax −1<0B .∃x ≥0,x 2+ax −1≥0C .∃x <0,x 2+ax −1<0D .∃x <0,x 2+ax −1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x <0,x 2+ax −1≥0”的否定是“∃x <0,x 2+ax −1<0”. 故选:C多选题11、已知A 、B 为实数集R 的非空集合,则A ⫋B 的必要不充分条件可以是( )A .A ∩B =A B .A ∩∁R B =∅C .∁R B ⫋∁R AD .B ∪∁R A =R答案:ABD分析:根据集合之间的关系和必要不充分条件的定义即可判断.解:因为A ⫋B ⇔∁R B ⫋∁R A ,所以∁R B ⫋∁R A 是A ⫋B 的充分必要条件,因为A ⫋B ⇒A ⊆B ⇔A ∩B =A ⇔A ∩∁R B =∅⇔B ∪∁R A =R ,故选:ABD .12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( )A .函数F (x )是偶函数B.方程F(x)=0有三个解C.函数F(x)在区间[−1,1]上单调递增D.函数F(x)有4个单调区间答案:ABD分析:结合题意作出函数F(x)=min{f(x),g(x)}的图象,进而数形结合求解即可.解:根据函数f(x)=2−x2与g(x)=x2,,画出函数F(x)=min{f(x),g(x)}的图象,如图.由图象可知,函数F(x)=min{f(x),g(x)}关于y轴对称,所以A项正确;函数F(x)的图象与x轴有三个交点,所以方程F(x)=0有三个解,所以B项正确;函数F(x)在(−∞,−1]上单调递增,在[−1,0]上单调递减,在[0,1]上单调递增,在[1,+∞)上单调递减,所以C项错误,D项正确.故选:ABD13、若“∃x0∈(0,2),使得2x02−λx0+1<0成立”是假命题,则实数λ可能的值是()A.1B.2√2C.3D.3√2答案:AB解析:由题意可知,命题“∀x∈(0,2),2x2−λx+1≥0成立”,利用参变量分离法结合基本不等式可求得λ的取值范围,由此可得结果.由题意可知,命题“∀x∈(0,2),2x2−λx+1≥0成立”,所以,λx ≤2x 2+1,可得λ≤2x +1x , 当x ∈(0,2)时,由基本不等式可得2x +1x ≥2√2x ⋅1x =2√2, 当且仅当x =√22时,等号成立,所以,λ≤2√2.故选:AB.小提示:名师点评利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x ∈D ,m ≤f (x )⇔m ≤f (x )min ;(2)∀x ∈D ,m ≥f (x )⇔m ≥f (x )max ;(3)∃x ∈D ,m ≤f (x )⇔m ≤f (x )max ;(4)∃x ∈D ,m ≥f (x )⇔m ≥f (x )min .14、解关于x 的不等式:ax 2+(2−4a)x −8>0,则下列说法中正确的是( )A .当a =0时,不等式的解集为{x|x >4}B .当a >0时,不等式的解集为{x|x >4或x <−2a }C .当a <0时,不等式的解集为{x|−2a <x <4}D .当a =−12时,不等式的解集为∅ 答案:ABD分析:讨论参数a ,结合一元二次不等式的解法求解集即可判断各选项的正误.A :a =0,则2x −8>0,可得解集为{x|x >4},正确;B :a >0,则(ax +2)(x −4)>0,可得解集为{x|x >4或x <−2a },正确;C :a <0,当−2a <4时解集为{x|−2a <x <4};当−2a =4时无解;当−2a >4时解集为{x|4<x <−2a},错误; D :由C 知:a =−12,即−2a =4,此时无解,正确.故选:ABD15、若集合A={x|x=m2+n2,m,n∈Z},则()A.1∈A B.2∈A C.3∈A D.4∈A答案:ABD解析:分别令m2+n2等于1,2,3,4,判断m,n是否为整数即可求解.对于选项A:m2+n2=1,存在m=0,n=1或m=1,n=0使得其成立,故选项A正确;对于选项B:m2+n2=2,存在m=1,n=1,使得其成立,故选项B正确;对于选项C:由m2+n2=3,可得m2≤3,n2≤3,若m2=0则n2=3可得n=±√3,n∉z,不成立;若m2=1则n2=2可得n=±√2,n∉z,不成立;若m2=3,可得n2=0,此时m=±√3,m∉z,不成立;同理交换m与n,也不成立,所以不存在m,n为整数使得m2+n2=3成立,故选项C不正确;对于选项D:m2+n2=4,此时存在m=0,n=2或m=2,n=0使得其成立,故选项D正确,故选:ABD.16、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.B∩A=B D.A=B=C答案:BC解析:根据集合A,B,C中角的范围,对选项逐一分析,由此得出正确选项.对于A选项,A∩C除了锐角,还包括其它角,比如−330∘,所以A选项错误.对于B选项,锐角是小于90∘的角,故B选项正确.对于C选项,锐角是第一象限角,故C选项正确.对于D选项,A,B,C中角的范围不一样,所以D选项错误.故选:BC小提示:本小题主要考查角的范围比较,考查集合交集、并集和集合相等的概念,属于基础题.17、已知下列说法:①命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1<3x”;②命题“∀x,y∈R,x2+y2≥0”的否定是“∃x,y∈R,x2+y2<0”;③“a>2”是“a>5”的充分不必要条件;④命题:对任意x∈R,总有x2>0.其中说法错误的是()A.①B.②C.③D.④答案:ACD分析:①根据特称命题的否定是全称命题即可判断;②根据全称命题的否定是特称命题即可判断;③根据必要条件和充分条件的概念即可判断;④判断命题的真假.对于①,命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”,故错误;对于②,命题“∀x,y∈R,x2+y2≥0”的否定是“∃x,y∈R,x2+y2<0”,正确;对于③,“a>2”是“a>5”的必要不充分条件,故错误;对于④,当x=0时x2=0,故错误.故选:ACD.18、下列各题中,p是q的充要条件的有()A.p:四边形是正方形;q:四边形的对角线互相垂直且平分B.p:两个三角形相似;q:两个三角形三边成比例C.p:xy>0;q:x>0,y>0D.p:x=1是一元二次方程ax2+bx+c=0的一个根;q:a+b+c=0(a≠0)答案:BD分析:根据充要条件的定义对各选项逐一进行分析讨论并判定作答.对于A,四边形是正方形则四边形的对角线互相垂直且平分成立,但四边形的对角线互相垂直且平分四边形可能是菱形,即p不是q的充要条件,A不是;对于B,两个三角形相似与两个三角形三边成比例能互相推出,即p是q的充要条件,B是;对于C,xy>0不能推出x>0,y>0,可能x<0,y<0,即p不是q的充要条件,C不是;对于D,x=1是一元二次方程ax2+bx+c=0的一个根,可得a+b+c=0,反之,当a+b+c=0时,把c=-a-b代入方程ax2+bx+c=0得ax2+bx-a-b=0,即(ax+a+b)(x-1)=0,显然x=1是方程的一个根,即p是q的充要条件,D是.故选:BD19、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B⊊A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.20、已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=∅B.A∩B=BC.A∪B=U D.(∁U B)∪A=A答案:CD分析:采用特值法,可设U={1,2,3,4},A={2,3,4},B={1,2},根据集合之间的基本关系,对选项A,B,C,D逐项进行检验,即可得到结果.令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠∅,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C,D均正确.故选:CD.填空题21、若p:x(x-3)<0是q:2x-3<m的充分不必要条件,则实数m的取值范围是________.答案:m≥3≥3求解.分析:先化简命题p,q,再根据p是q的充分不必要条件,由m+32p:x(x-3)<0,则0<x<3;q:2x-3<m,则x<m+3,2因为p:x(x-3)<0是q:2x-3<m的充分不必要条件,≥3,所以m+32解得m≥3.所以答案是:m≥3(a+b+c),则该三角形的面积S=22、若一个三角形的三边长分别为a,b,c,设p=12√p(p−a)(p−b)(p−c),这就是著名的“秦九韶-海伦公式”若△ABC的周长为8,AB=2,则该三角形面积的最大值为___________.答案:2√2分析:计算得到p=4,c=2,a+b=6,根据均值不等式得到ab≤9,代入计算得到答案.(a+b+c)=4,c=2,a+b=6,a+b=6≥2√ab,ab≤9,p=12当a=b=3时等号成立.S=√p(p−a)(p−b)(p−c)=√8(4−a)(4−b)=√128−32(a+b)+8ab≤2√2.所以答案是:2√2.23、已知命题p:“∀x≥3,使得2x−1≥m”是真命题,则实数m的最大值是____.答案:分析:根据任意性的定义,结合不等式的性质进行求解即可.当x≥3时,2x≥6⇒2x−1≥5,因为“∀x≥3,使得2x−1≥m”是真命题,所以m≤5.所以答案是:5。
高中数学必修一第一章集合与常用逻辑用语重难点归纳(带答案)
高中数学必修一第一章集合与常用逻辑用语重难点归纳单选题1、若集合A ={x ∣|x |≤1,x ∈Z },则A 的子集个数为( )A .3B .4C .7D .8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A ={x ∥x ∣≤1,x ∈Z } ={−1,0,1},则A 的子集个数为23=8个,故选:D.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=()A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B ={−2,−1,1},则A ∩(∁U B )={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、已知集合A={x|x+2x−4<0},B={0,1,2,3,4,5},则(∁R A)∩B=()A.{5}B.{4,5}C.{2,3,4}D.{0,1,2,3}答案:B分析:首先化简集合A,再根据补集的运算得到∁R A,再根据交集的运算即可得出答案.因为A={x|x+2x−4<0}=(−2,4),所以∁R A={x|x≤−2或x≥4}.所以(∁R A)∩B={4,5}故选:B.5、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可. 解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.6、设集合A={x|x2=1},B={x|ax=1}.若A∩B=B,则实数a的值为()A.1B.−1C.1或−1D.0或1或−1答案:D分析:对a进行分类讨论,结合B⊆A求得a的值.由题可得A={x|x2=1}={1,−1},B⊆A,当a=0时,B=∅,满足B⊆A;当a≠0时,B={1a },则1a=1或1a=−1,即a=±1.综上所述,a=0或a=±1.故选:D.7、下列命题中正确的是()①∅与{0}表示同一个集合②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}③方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2}④集合{x∣4<x<5}可以用列举法表示A.只有①和④B.只有②和③C.只有②D.以上都对答案:C分析:由集合的表示方法判断①,④;由集合中元素的特点判断②,③.解:对于①,由于“0”是元素,而“{0}”表示含0元素的集合,而 ϕ 不含任何元素,所以①不正确;对于②,根据集合中元素的无序性,知②正确;对于③,根据集合元素的互异性,知③错误;对于④,由于该集合为无限集、且无明显的规律性,所以不能用列举法表示,所以④不正确.综上可得只有②正确.故选:C.8、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.小提示:本题考查了积事件的概率公式,属于基础题.多选题9、设集合M={x|a<x<3+a},N={x|x<2或x>4},则下列结论中正确的是()A.若a<−1,则M⊆N B.若a>4,则M⊆NC.若M∪N=R,则1<a<2D.若M∩N≠∅,则1<a<2答案:ABC解析:根据集合包含的定义即可判断AB;根据交集并集结果求出参数范围可判断CD.对于A,若a<−1,则3+a<2,则M⊆N,故A正确;对于B,若a>4,则显然任意x∈M,则x>4,则x∈N,故M⊆N,故B正确;对于C,若M∪N=R,则{a<23+a>4,解得1<a<2,故C正确;对于D,若M∩N=∅,则{a≥23+a≤4,不等式无解,则若M∩N≠∅,a∈R,故D错误.故选:ABC.10、定义:若集合A非空,且是集合B的真子集,就称集合A是集合B的孙子集.下列集合是集合B={1,2,3}的孙子集的是()A.∅B.{1}C.{1,2}D.{1,2,3}答案:BC分析:根据孙子集的定义,结合各选项集合与集合B的关系,即可确定正确选项.A:∅为集合B的真子集,当不是非空集,不合要求;B:{1}为集合B的真子集,且为非空集,符合要求;C:{1,2}为集合B的真子集,且为非空集,符合要求;D:{1,2,3}为集合B的子集,但不是真子集,不合要求.故选:BC11、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.B∩A=B D.A=B=C解析:根据集合A,B,C中角的范围,对选项逐一分析,由此得出正确选项.对于A选项,A∩C除了锐角,还包括其它角,比如−330∘,所以A选项错误.对于B选项,锐角是小于90∘的角,故B选项正确.对于C选项,锐角是第一象限角,故C选项正确.对于D选项,A,B,C中角的范围不一样,所以D选项错误.故选:BC小提示:本小题主要考查角的范围比较,考查集合交集、并集和集合相等的概念,属于基础题.填空题12、已知集合A={x|ax2﹣3x+1=0,a∈R},若集合A中至多只有一个元素,则a的取值范围是 _____.,+∞).答案:{0}∪[94分析:分类讨论方程解的个数,从而确定a的取值范围.当a=0时,方程可化为﹣3x+1=0,,故成立;解得x=13当a≠0时,Δ=9﹣4a≤0,;解得a≥94综上所述,a的取值范围是{0}∪[9,+∞).4,+∞).所以答案是:{0}∪[9413、已知命题“存在x∈R,使ax2−x+2≤0”是假命题,则实数a的取值范围是___________.答案:a>18分析:转化为命题“∀x∈R,使得ax2−x+2>0”是真命题,根据二次函数知识列式可解得结果.因为命题“存在x∈R,使ax2−x+2≤0”是假命题,所以命题“∀x∈R,使得ax2−x+2>0”是真命题,当a=0时,得x<2,故命题“∀x∈R,使得ax2−x+2>0”是假命题,不合题意;当a≠0时,得{a>0Δ=1−8a<0,解得a>18.所以答案是:a>18小提示:关键点点睛:转化为命题“∀x∈R,使得ax2−x+2>0”是真命题求解是解题关键.14、已知集合A={x|x≥4或x<−5},B={x|a+1≤x≤a+3},若B⊆A,则实数a的取值范围_________.答案:{a|a<−8或a≥3}分析:根据B⊆A,利用数轴,列出不等式组,即可求出实数a的取值范围.用数轴表示两集合的位置关系,如上图所示,或要使B⊆A,只需a+3<−5或a+1≥4,解得a<−8或a≥3.所以实数a的取值范围{a|a<−8或a≥3}.所以答案是:{a|a<−8或a≥3}解答题15、用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.答案:(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}分析:(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)}。
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)(带答案)
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)单选题1、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.2、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.3、设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. 所以甲是乙的充分不必要条件.故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.4、已知命题p:∃x ∈(−1,3),x 2−a −2≤0.若p 为假命题,则a 的取值范围为( )A .(−∞,−2)B .(−∞,−1)C .(−∞,7)D .(−∞,0)答案:A解析:由题可得命题p 的否定为真命题,即可由此求解.∵ p 为假命题,∴ ¬p:∀x ∈(−1,3),x 2−a −2>0为真命题,故a <x 2−2恒成立,∵ y =x 2−2在x ∈(−1,3)的最小值为−2,∴a <−2.故选:A.5、若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则实数a 的范围是( )A .a >2B .a ⩾2C .a >−2D .a ⩽−2答案:A解析:根据命题的否定为真命题可求.若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则命题“∀x ∈[−1,2],−x 2+2<a ”是真命题,当x =0时,(−x 2+2)max =2,所以a >2.6、若不等式|x −1|<a 成立的充分条件为0<x <4,则实数a 的取值范围是( )A .{a ∣a ≥3}B .{a ∣a ≥1}C .{a ∣a ≤3}D . {a ∣a ≤1}答案:A分析:由已知中不等式|x −1|<a 成立的充分条件是0<x <4,令不等式的解集为A ,可得{x |0<x <4 }⊆A ,可以构造关于a 的不等式组,解不等式组即可得到答案.解:∵不等式|x −1|<a 成立的充分条件是0<x <4,设不等式的解集为A ,则{x |0<x <4 }⊆A ,当a ≤0时,A =∅,不满足要求;当a >0时,A ={x ∣1−a <x <1+a},若{x |0<x <4 }⊆A ,则{1−a ⩽01+a ⩾4,解得a ≥3. 故选:A.7、下列命题是假命题的有( )A .若x ∈A ,那么x ∈A ∩B B .若x ∈A ∩B ,那么x ∈AC .若x ∈A ∩B ,那么x ∈A ∪BD .若x ∈A ,那么x ∈A ∪B答案:A分析:由集合与元素的关系和交集并集的定义逐一判断,即可求解对于A ,若x ∈A ,那么x 可能不属于B ,故A 错误;对于B ,若x ∈A ∩B ,则x 是集合A 和B 的公共元素,那么x ∈A ,故B 正确;对于C ,若x ∈A ∩B ,那么x ∈A ∪B ,故C 正确;对于D ,若x ∈A ,那么x ∈A ∪B ,故D 正确.故选:A .8、已知命题p :∃x ∃N ,e x <0(e 为自然对数的底数),则命题p 的否定是( )A .∃x ∃N ,e x <0B .∃x ∃N ,e x >0C .∃x ∃N ,e x ≥0D .∃x ∃N ,e x ≥0分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、若“∀x∈M,|x|>x”为真命题,“∃x∈M,x>3”为假命题,则集合M可以是()A.(−∞,−5)B.(−3,−1]C.(3,+∞)D.[0,3]答案:AB解析:根据假命题的否定为真命题可知∀x∈M,x≤3,又∀x∈M,|x|>x,求出命题成立的条件,求交集即可知M满足的条件.∵∃x∈M,x>3为假命题,∴∀x∈M,x≤3为真命题,可得M⊆(−∞,3],又∀x∈M,|x|>x为真命题,可得M⊆(−∞,0),所以M⊆(−∞,0),故选:AB小提示:本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.11、下列说法中不正确的是()A.0与{0}表示同一个集合B.集合M={3, 4}与N={(3, 4)}表示同一个集合C.方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 1, 2}D.集合{x|4<x<5 }不能用列举法表示答案:ABC分析:根据集合的概念,以及元素与集合的关系,以及元素的特征,逐项判定,即可求解.对于A中,0是一个元素(数),而{0}是一个集合,可得0∈{0},所以A不正确;对于B中,集合M={3, 4}表示数3,4构成的集合,集合N={(3, 4)}表示点集,所以B不正确;对于C中,方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2},根据集合元素的互异性,可得方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 2},所以C不正确;对于D中,集合{x|4<x<5}含有无穷个元素,不能用列举法表示,所以D正确.故选:ABC.填空题12、关于x的方程ax2+2x+1=0的实数根中有且只有一个负实数根(含两相等实根)的充要条件为____________.答案:a≤0或a=1分析:根据方程根的情况,讨论a=0和a≠0两种情况,结合一元二次方程根的分布情况,以及充要条件的概念,即可求解.,符合题意.若方程ax2+2x+1=0有且仅有一个负实数根,则当a=0时,x=−12当a≠0时,方程ax2+2x+1=0有实数根,则Δ=4−4a≥0,解得a≤1,当a=1时,方程有且仅有一个负实数根x=−1,当a<1且a≠0时,若方程有且仅有一个负实数根,则1<0,即a<0.a所以当a≤0或a=1时,关于x的方程ax2+2x+1=0的实数根中有且仅有一个负实数根.综上,“关于x的方程ax2+2x+1=0的实数根中有且仅有一个负实数根”的充要条件为“a≤0或a=1”.所以答案是:a≤0或a=1.13、设非空集合Q⊆M,当Q中所有元素和为偶数时(集合为单元素时和为元素本身),称Q是M的偶子集,若集合M={1,2,3,4,5,6,7},则其偶子集Q的个数为___________.答案:63分析:对集合Q中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q的个数,综合可得结果.集合Q中只有2个奇数时,则集合Q的可能情况为:{1,3}、{1,5}、{1,7}、{3,5}、{3,7}、{5,7},共6种,若集合Q中只有4个奇数时,则集合Q={1,3,5,7},只有一种情况,若集合Q中只含1个偶数,共3种情况;若集合Q中只含2个偶数,则集合Q可能的情况为{2,4}、{2,6}、{4,6},共3种情况;若集合Q中只含3个偶数,则集合Q={2,4,6},只有1种情况.因为Q是M的偶子集,分以下几种情况讨论:若集合Q中的元素全为偶数,则满足条件的集合Q的个数为7;若集合Q中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q中的元素是2个奇数1个偶数,共6×3=18种;若集合Q中的元素为2个奇数2个偶数,共6×3=18种;若集合Q中的元素为2个奇数3个偶数,共6×1=6种;若集合Q中的元素为4个奇数1个偶数,共1×3=3种;若集合Q中的元素为4个奇数2个偶数,共1×3=3种;若集合Q中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q的个数为7+7+18+18+6+3+3+1=63.所以答案是:63.14、写出一个使得命题“∀x∈R,ax2−2ax+3>0恒成立”是假命题的实数a的值__________.(写出一个a的值即可)答案:−1分析:根据题意,假设命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,根据不等式恒成立,分类讨论当a=0和a≠0时两种情况,从而得出实数a的取值范围,再根据补集得出命题“∀x∈R,ax2−2ax+3>0恒成立”为假命题时a的取值范围,即可得出满足题意的a的值.解:若命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,则当a=0时成立,当a≠0时有{a>0Δ=4a2−12a<0,解得:0<a<3,所以当0≤a<3时,命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,所以当a∈(−∞,0)∪[3,+∞)时,命题“∀x∈R,ax2−2ax+3>0恒成立”为假命题,所以答案是:−1.(答案不唯一,只需a∈(−∞,0)∪[3,+∞))解答题15、已知命题p:∀1≤x≤2,x2−a≥0,命题q:∃x∈R,x2+2ax+2a+a2=0.(1)若命题¬p为真命题,求实数 a 的取值范围;(2)若命题 p 和¬q均为真命题,求实数 a 的取值范围.答案:(1){a|a>1};(2){a|0<a≤1}.分析:(1)写出命题p的否定,由它为真命题求解;(2)由(1)易得命题p为真时a的范围,再由q为真命题时a的范围得出非q为真时a的范围,两者求交集可得.解:(1)根据题意,知当1≤x≤2时,1≤x2≤4.¬p:∃1≤x≤2,x2−a<0,为真命题,∴a>1.∴实数 a 的取值范围是{a|a>1}.(2)由(1)知命题 p 为真命题时,a≤1.命题 q 为真命题时,Δ=4a2−4(2a+a2)≥0,解得a≤0,∴¬q为真命题时,a>0.∴{a≤1a>0,解得0<a≤1,即实数 a 的取值范围为{a|0<a≤1}.。
高中数学必修一第一章集合与常用逻辑用语易错知识点总结(带答案)
高中数学必修一第一章集合与常用逻辑用语易错知识点总结单选题1、设集合M={x|0<x<4},N={x|13≤x≤5},则M∩N=()A.{x|0<x≤13}B.{x|13≤x<4}C.{x|4≤x<5}D.{x|0<x≤5}答案:B分析:根据交集定义运算即可因为M={x|0<x<4},N={x|13≤x≤5},所以M∩N={x|13≤x<4},故选:B.小提示:本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.2、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.3、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C分析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.4、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N⊈P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n-2与3p+1都是表示同一类数,6m-5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m-56,m∈Z},x=m-56=6m-56=6(m-1)+16,对于集合N={x|x=n2-13,n∈Z},x=n2-13=3n-26=3(n-1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n-1)+1与3p+1表示的数都是3的倍数加1,6(m-1)+1表示的数是6的倍数加1,所以6(m-1)+1表示的数的集合是前者表示的数的集合的子集,所以M∈N=P.故选:B.5、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可. 解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.6、已知集合A={x|−1<x≤2},B={−2,−1,0,2,4},则(∁R A)∩B=()A.∅B.{−1,2}C.{−2,4}D.{−2,−1,4}答案:D分析:利用补集定义求出∁R A,利用交集定义能求出(∁R A)∩B.解:集合A={x|−1<x≤2},B={−2,−1,0,2,4},则∁R A={x|x≤−1或x>2},∴(∁R A)∩B={−2,−1,4}.故选:D7、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.8、已知集合A={−1,1,2,4},B={x||x−1|≤1},则A∩B=()A.{−1,2}B.{1,2}C.{1,4}D.{−1,4}答案:B分析:方法一:求出集合B后可求A∩B.[方法一]:直接法因为B={x|0≤x≤2},故A∩B={1,2},故选:B.[方法二]:【最优解】代入排除法x=−1代入集合B={x||x−1|≤1},可得2≤1,不满足,排除A、D;x=4代入集合B={x||x−1|≤1},可得3≤1,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.多选题9、定义:若集合A 非空,且是集合B 的真子集,就称集合A 是集合B 的孙子集.下列集合是集合B ={1,2,3}的孙子集的是( )A .∅B .{1}C .{1,2}D .{1,2,3}答案:BC分析:根据孙子集的定义,结合各选项集合与集合B 的关系,即可确定正确选项.A :∅为集合B 的真子集,当不是非空集,不合要求;B :{1}为集合B 的真子集,且为非空集,符合要求;C :{1,2}为集合B 的真子集,且为非空集,符合要求;D :{1,2,3}为集合B 的子集,但不是真子集,不合要求.故选:BC10、已知p :x 2+x −6=0;q :ax +1=0.若p 是q 的必要不充分条件,则实数a 的值可以是()A .﹣2B .−12C .13D .−13答案:BC解析:根据集合关系将条件进行化简,利用充分条件和必要条件的定义即可得到结论.由题意得p:A ={−3,2},当a =0时,q :B =∅,当a ≠0时,q :B ={−1a },因为p 是q 的必要不充分条件,所以B A ,所以a =0时满足题意,当−1a =−3或−1a =2时,也满足题意,解得a =13或a =−12,故选:BC.小提示:本题考查利用集合间的关系判断命题间充分必要条件,属于中档题.11、命题“∃x ∈[1,2],x 2≤a ”为真命题的一个充分不必要条件是( )A .a ≥1B .a ≥4C .a ≥−2D .a =4答案:BD分析:求出给定命题为真命题的a的取值集合,再确定A,B,C,D各选项所对集合哪些真包含于这个集合而得解.命题“∃x∈[1,2],x2≤a"等价于a≥1,即命题“∃x∈[1,2],x2≤a”为真命题所对集合为[1,+∞),所求的一个充分不必要条件的选项所对的集合真包含于[1,+∞),显然只有[4,+∞)[1,+∞),{4}[1,+∞),所以选项AC不符合要求,选项BD正确.故选:BD填空题12、含有三个实数的集合可表示为{a,b,1},也可以示为{a2,a+b,0},则a2013+b2014的值为____.a答案:−1分析:根据集合相等的定义及集合中元素的互异性即可求解.解:由题意,若a=a2,则a=0或1,检验可知不满足集合中元素的互异性,所以a=a+b,则b=0,所以a2=1,则a=−1,故a2013+b2014=−1.所以答案是:−1.13、非空有限数集S满足:若a,b∈S,则必有a2,b2,ab∈S.则满足条件且含有两个元素的数集S=______.(写出一个即可)答案:{0,1}(或{−1,1})分析:设S={a,b},结合题意与集合的性质分析即可.不妨设S={a,b},根据题意有a2,ab,b2∈S所以a2,b2,ab中必有两个是相等的.若a2=b2,则a=−b,故ab=−a2,又a2=a或a2=b=−a,所以a=0(舍去)或a=1或a=−1,此时S={−1,1}.若a2=ab,则a=0,此时b2=b,故b=1,此时S={0,1}.若b2=ab,则b=0,此时a2=a,故a=1,此时S={0,1}.综上,S ={0,1}或S ={−1,1}.所以答案是:{0,1}(或{−1,1})14、若“x >3”是“x >a “的充分不必要条件,则实数a 的取值范围是_____.答案:a <3解析:根据充分不必要条件的含义,即可求出结果.因为“x >3”是“x >a ”的充分不必要条件, ∴a <3.所以答案是:a <3.小提示:本题考查了不等式的意义、充分、必要条件的判定方法,考查了推理能力与计算能力,属于基础题. 解答题15、已知a ∈R ,集合A ={x ∈R |ax 2−3x +2=0}.(1)若A 是空集,求实数a 的取值范围;(2)若集合A 中只有一个元素,求集合A ;(3)若集合A 中至少有一个元素,求实数a 的取值范围.答案:(1)(98,+∞);(2)当a =0时,A ={23};当a =98时,A ={43};(3)(−∞,98].分析:(1)根据空集,结合一元二次方程的判别式求参数范围;(2)(3)讨论a =0、a ≠0,结合集合元素个数及一元二次方程判别式求集合或参数范围.(1)若A 是空集,则关于x 的方程ax 2−3x +2=0无解,此时a ≠0,且Δ=9−8a <0,所以a >98,即实数a 的取值范围是(98,+∞).(2)当a =0时,A ={23},符合题意;当a ≠0时,关于x 的方程ax 2−3x +2=0应有两个相等的实数根,则Δ=9−8a =0,得a =98,此时A ={43},符合题意. 综上,当a =0时A ={23};当a =98时A ={43}. (3)当a =0时,A ={23},符合题意;当a ≠0时,要使关于x 的方程ax 2−3x +2=0有实数根,则Δ=9−8a ≥0,得a ≤98. 综上,若集合A 中至少有一个元素,则实数a 的取值范围为(−∞,98].。
人教版高中数学必修一集合题型总结及解题方法
(每日一练)人教版高中数学必修一集合题型总结及解题方法单选题1、已知集合A={x|1<x<3},B={x|3<x<6}则A∩B=()A.(1,3)B.(1,6)C.(−1,3)D.∅答案:D解析:利用集合的交集运算求解.因为集合A={x|1<x<3},B={x|3<x<6},所以A∩B=∅故选:D2、已知集合A={x|x2+2x−15≤0},B={−3,−1,1,3,5},则A∩B=()A.{−3,−1,1,3}B.{−3,−1,1}C.{−1,1,3}D.{−3,−1,1,3,5}答案:A解析:求出集合A,直接进行集合的交集运算.因为A={x|x2+2x−15≤0}={x|−5≤x≤3},所以A∩B={−3,−1,1,3}.故选:A小提示:本题考查集合的交集,考查运算求解能力,属于基础题.3、已知集合A={x|1<x<3},B={x|3<x<6}则A∩B=()A.(1,3)B.(1,6)C.(−1,3)D.∅答案:D解析:利用集合的交集运算求解.因为集合A={x|1<x<3},B={x|3<x<6},所以A∩B=∅故选:D填空题4、已知集合A={y|y=x2−2x,x∈R},B={y|y=−x2+2x+6,x∈R},则A∩B=______. 答案:{y|−1≤y≤7}解析:先分别求集合A,B,注意各自是两个函数的值域,再求交集.∵y=x2−2x=(x−1)2−1≥−1,∴A={y|y≥−1},∵y=−x2+2x+6=−(x−1)2+7≤7,∴B={y|y≤7},∴A∩B={y|−1≤y≤7}.所以答案是:{y|−1≤y≤7}5、对班级40名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人,问对A、B都赞成的学生有________人.答案:18解析:x+1+27−x+x+24−x=40,解得答案.设对A、B都赞成的学生有x,根据韦恩图得到13=24,赞成B的人数为24+3=27,赞成A的人数为40×35x+1+27−x+x+24−x=40,解得x=18.设对A、B都赞成的学生有x,则13所以答案是:18.小提示:本题考查了根据韦恩图求解集合问题,意在考查学生的计算能力和应用能力,画出韦恩图是解题的关键.。
高中数学人教A版必修一第一章知识点总结及题型
高中数学人教A版必修一第一章知识点总结及题型高中数学必修一第一章知识点及题型一、第一章第一单元集合---知识点总结知识点一:集合的概念集合是研究对象的统称,用小写拉丁字母a,b,c等表示元素,一些元素的集合称为集合或集,用大写拉丁字母A,B,C等表示,不含任何元素的集合称为空集,记为∅。
知识点二:集合与元素的关系如果a是集合A的元素,就称a属于集合A,记作a∈A;如果a不是集合A中的元素,就称a不属于集合A,记作a∉A。
知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。
集合可分为有限集和无限集,有限集含有有限个元素,无限集含有无限个元素。
知识点四:集合的表示方法集合的表示方法有列举法和描述法。
列举法是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法;描述法是用集合所含元素的特征表示集合的方法。
知识点五:集合与集合的关系集合A中的所有元素都是集合B中的元素时,称集合A是集合B的子集,记作A⊆B;如果A是B的子集,但存在元素不属于B,则称A是B的真子集,记作A⊂B。
子集的性质包括空集是任意集合的子集、任何集合都是它本身的子集、如果A是B的子集,B是C的子集,则A是C的子集。
知识点六:集合的运算集合的运算包括交集和并集。
集合A与B的并集是由A 和B中所有元素组成的集合,记作A∪B;集合A与B的交集是A和B中共有的元素组成的集合,记作A∩B。
3.交集与并集的性质交集的运算性质:A∩B = B∩A (交换律)A∩A = A (恒等律)A∩∅ = ∅(零律)A⊆B ⇔ A∩B = A (吸收律)并集的运算性质:A∪B = B∪A (交换律)A∪A = A (恒等律)A∪∅ = A (零律)A⊆B ⇔ A∪B = B (吸收律)A∪B = B∪A = {x | x∈A或x∈B} (定义)符号语言、图形语言和自然语言都可以用来表示集合的交集和并集。
4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
通用版高中数学必修一集合知识点总结(超全)
(每日一练)通用版高中数学必修一集合知识点总结(超全)单选题1、已知集合U=R,集合A={x∈R|x≤1},B={x∈R||x−2|≤1},则(C U A)∩B=()A.(1,3)B.(1,3]C.[1,3]D.[1,3)答案:B解析:利用集合的补集和交集运算求解.因为集合U=R,且A={x∈R|x≤1},所以∁R A={x∈R|x>1},又B={x∈R||x−2|≤1}={x∈R|1≤x≤3},所以(C U A)∩B=(1,3],故选:B2、已知集合A={x|x2−2x−3<0},集合B={x|x−1≥0},则∁R(A∩B)=().A.(−∞,1)∪[3,+∞)B.(−∞,1]∪[3,+∞)C.(−∞,1)∪(3,+∞)D.(1,3)答案:A解析:算出集合A、B及A∩B,再求补集即可.由x2−2x−3<0,得−1<x<3,所以A={x|−1<x<3},又B={x|x≥1},所以A∩B={x|1≤x<3},故∁R(A∩B)={x|x<1或x≥3}.故选:A.小提示:本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.3、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C解析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.解答题4、在集合A={x|ax2−2x+1=0},B={x|x2−2x+a=0}中,已知A只有一个元素,求集合A与B.},B={0,2},或A={1},B={1}.答案:A={12解析:当a=0时,代入集合求解即可;当a≠0时,由题意可知方程ax2−2x+1=0必有两个相等的实根,有判别式求出a,即可求解},①当a=0时,A={x|ax2−2x+1=0}={x|−2x+1=0}={12此时B={x|x2−2x=0}={0,2},②当a≠0时,方程ax2−2x+1=0必有两个相等的实根,∴Δ=4−4a=0,∴a=1,从而A={1},此时B={x|x2−2x+1=0}={1},},B={0,2},或A={1},B={1}.综上所述,A={125、已知S={1,2,…,n},A⊆S,T={t1,t2}⊆S,记A i={x|x=a+t i,a∈A}(i=1,2),用|X|表示有限集合X 的元素个数.(I)若n=5,A={1,2,5},A1∩A2=∅,求T;(II)若n=7,|A|=4,则对于任意的A,是否都存在T,使得A1∩A2=∅?说明理由;(III)若|A|=5,对于任意的A,都存在T,使得A1∩A2=∅,求n的最小值.答案:(I)T={1,3},或T={2,4},或T={3,5};(II)不一定存在,见解析;(III)11.解析:(I)由已知得t1−t2≠a−b,其中a,b∈A,t1,t2相差2,由此可求得T;(II)当A={1,2,5,7}时,2−1=1,5−1=4,5−2=3,7−1=6,7−2=5,7−5=2,则t1,t2相差不可能1,2,3,4,5,6,可得结论.(III)因为C52=10,故集合A中的元素的差的绝对值至多有10种,可得n的最小值.(I)若A1∩A2=∅,则t1−t2≠a−b,其中a,b∈A,否则t1+a=t2+b,A1∩A2≠∅,又n=5,A={1,2,5},2−1=1,5−2=3,5−1=4,则t1,t2相差2,所以T={1,3},或T={2,4},或T={3,5};(II)不一定存在,当A={1,2,5,7}时,2−1=1,5−1=4,5−2=3,7−1=6,7−2=5,7−5=2,则t1,t2相差不可能1,2,3,4,5,6,这与T={t1,t2}⊂{1,2,3,4,5,6,7}矛盾,故不都存在T.(III)因为C52=10,故集合A中的元素的差的绝对值至多有10种,当n≥12时,结论都成立;当n=11时,不存在A⊂S,|A|=5,使得A中任意两个元素差不同,所以当n=11时,结论成立;当n=10时,若A={1,3,6,9,10},则不存在T,所以n的最小值为11.小提示:关键点睛:本题考查集合的新定义,解决此类问题的关键在于准确理解集合的新定义,紧扣定义解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
慧诚教育2017年秋季高中数学讲义必修一第一章复习知识点一集合的概念1.集合一般地,把一些能够________________对象瞧成一个整体,就说这个整体就是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集不含任何元素的集合叫做空集,记为∅、知识点二 集合与元素的关系 1.属于如果a 就是集合A 的元素,就说a ________集合A ,记作a ________A 、 2.不属于如果a 不就是集合A 中的元素,就说a ________集合A ,记作a ________A 、 知识点三 集合的特性及分类 1.集合元素的特性________、________、________、 2.集合的分类(1)有限集:含有________元素的集合. (2)无限集:含有________元素的集合. 3.常用数集及符号表示知识点四 1.列举法把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法. 2.描述法用集合所含元素的________表示集合的方法称为描述法. 知识点五 集合与集合的关系 1.子集与真子集2(1)规定:空集就是____________的子集,也就就是说,对任意集合A ,都有________. (2)任何一个集合A 都就是它本身的子集,即________. (3)如果A ⊆B ,B ⊆C ,则________. (4)如果A ⊆B ,B ⊆C ,则________. 3.集合相等4如果A ⊆B ,B ⊆A ,则A =B ;反之,________________________、 知识点六 集合的运算 1.交集2.并集34、全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________.5.补集典例精讲题型一判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x2-2=0的实数解”中,能够构成集合的就是。
题型二验证元素就是否就是集合的元素1、已知集合{}Z n Z m n m x x A ∈∈-==,,22、 求证:(1)3∈A;(2)偶数4k-2(k ∈Z)不属于A 、2、集合A 就是由形如()Z n Z m n m ∈∈+,3的数构成的,判断321-就是不就是集合A 中的元素、题型三 求集合1.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集就是( )A 、⎩⎪⎨⎪⎧x =3y =-7 B.{x ,y |x =3且y =-7}C.{3,-7}D.{(x ,y )|x =3且y =-7}2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎨⎧2x +y =0x -y +3=0的解集的就是( )A.①②③④⑤⑥B.②③④⑤C.②⑤D.②⑤⑥3、数集A 满足条件:若a ∈A ,则1+a 1-a∈A (a ≠1).若13∈A ,求集合中的其她元素、4.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合就是M ,用列举法表示集合M 为 。
题型四 利用集合中元素的性质求参数1.已知集合S ={a ,b ,c }中的三个元素就是△ABC 的三边长,那么△ABC 一定不就是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2、设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫b a b ,则b -a =________、3、已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围就是________、4、已知集合A ={x |ax 2-3x +2=0}、(1)若A 就是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.5、已知集合A 就是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A.2B.3C.0或3D.0或2或36.(2016·浙江镇海检测)已知集合A 就是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________、题型五 判断集合间的关系1、设⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214,则M 与N 的关系正确的就是( ) A 、 M=N B 、N M ≠⊂ C 、N M ≠⊃ D 、以上都不对2.判断下列集合间的关系: (1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }.3.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系、题型六 求子集个数1.已知集合A ={x |ax 2+2x +a =0,a ∈R },若集合A 有且仅有2个子集,则a 的取值构成的集合为________.题型七 利用两个集合之间的关系求参数1、已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________、2.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能就是( )A.0B.1C.2D.33.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}、 (1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.题型八 集合间的基本运算1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B 、其中正确的个数为( )A.1B.2C.3D.42.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( ) A.{x |x >-3} B.{x |-3<x ≤5} C.{x |3<x ≤5}D.{x |x ≤5}3.已知集合A={2,-3},集合B满足B∩A=B,那么符合条件的集合B的个数就是()A.1B.2C.3D.44.(2016·全国卷Ⅲ理,1)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)5.下列关系式中,正确的个数为()①(M∩N)⊆N;②(M∩N)⊆(M∪N);③(M∪N)⊆N;④若M⊆N,则M∩N=M、A.4B.3C.2D.16.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________、7.(2016·唐山一中月考试题)已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B)、8.设全集U={1,2,3,4,5},集合S与T都就是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有()A.3∈S,3∈TB.3∈S,3∈∁U TC.3∈∁U S,3∈TD.3∈∁U S,3∈∁U T题型九根据集合运算的结果求参数1.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________、2.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}、(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.3.设A={x|x2+8x=0},B={x|x2+2(a+2)x+a2-4=0},其中a∈R、如果A∩B=B,求实数a的取值范围、4.已知集合A={x|x2+ax+12b=0}与B={x|x2-ax+b=0},满足(∁U A)∩B={2},A∩(∁U B)={4},U=R,求实数a,b的值、5.U={1,2},A={x|x2+px+q=0},∁U A={1},则p+q=________、4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠∅,则()A.k<0B.k<2C.0<k<2D.-1<k<26.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},试探求a取何实数时,(A∩B) ∅与A∩C=∅同时成立、题型十交集、并集、补集思想的应用1.若三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数解,试求实数a的取值范围.题型十一集合中的新定义问题1.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”、(1)判断集合A={-1,1,2}就是否为可倒数集;(2)试写出一个含3个元素的可倒数集.2.集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的子集个数为()A.7B.12C.32D.643.当x∈A时,若x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,由A的所有孤立元素组成的集合称为A的“孤星集”,若集合M={0,1,3}的孤星集为M′,集合N={0,3,4}的孤星集为N′,则M′∪N′=()A.{0,1,3,4}B.{1,4}C.{1,3}D.{0,3}4.设U为全集,对集合X,Y定义运算“*”,X*Y=∁U(X∩Y),对于任意集合X,Y,Z,则(X*Y)*Z=()A.(X∪Y)∩∁U ZB.(X∩Y)∪∁U ZC.(∁U X∪∁U Y)∩ZD.(∁U X∩∁U Y)∪Z5.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都就是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值就是________、6.设A,B就是两个非空集合,定义A与B的差集A-B={x|x∈A,且x∉B}、(1)试举出两个数集,求它们的差集;(2)差集A-B与B-A就是否一定相等?说明理由;(3)已知A={x|x>4},B={x|-6<x<6},求A-(A-B)与B-(B-A).知识点一函数的有关概念知识点二两个函数相等的条件1.定义域________.2.________完全一致.知识点三区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2、特殊区间的表示知识点四 函数的三种表示法:解析法、图象法、列表法. 知识点五 分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的________,那么称这样的函数为分段函数.分段函数就是一个函数,分段函数的定义域就是各段定义域的________,值域就是各段值域的________. 知识点六 映射的概念设A ,B 就是两个________________,如果按某一个确定的对应关系f ,使对于集合A 中的________________,在集合B 中都有________确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 知识点七 函数的单调性1.增函数、减函数:设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上就是增函数;当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上就是减函数.2.函数的单调性:若函数f (x )在区间D 上就是增(减)函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.3.单调性的常见结论:若函数f (x ),g (x )均为增(减)函数,则f (x )+g (x )仍为增(减)函数;若函数f (x )为增(减)函数,则-f (x )为减(增)函数;若函数f (x )为增(减)函数,且f (x )>0,则1f (x )为减(增)函数. 知识点八 函数的最大值、最小值性质:知识点九 函数的奇偶性 1.函数奇偶性的概念2、性质(1)偶函数的图象关于y轴对称,奇函数的图象关于原点对称.(2)奇函数在对称的区间上单调性相同,偶函数在对称的区间上单调性相反.(3)在定义域的公共部分内,两个奇函数之积与商(分母不零)为偶函数;两个奇函数之与为奇函数;两个偶函数的与、积与商为偶函数;一奇一偶函数之积与商(分母不为零)为奇函数.例1(2016年10月学考)函数f(x)=ln(x-3)的定义域为()A.{x|x>-3}B.{x|x>0}C.{x|x>3}D.{x|x≥3}例2(2016年4月学考)下列图象中,不可能成为函数y=f(x)图象的就是()例3 已知函数f (x )=⎩⎪⎨⎪⎧log 13x x >1-x 2-2x +4x ≤1则f (f (3))=________,f (x )的单调递减区间就是________.例4 (2015年10月学考)已知函数f (x )=x +a +|x -a |2,g (x )=ax +1,其中a >0,若f (x )与g (x )的图象有两个不同的交点,则a 的取值范围就是________.例5 已知函数f (x )=⎩⎨⎧a x(x <0)(a -3)x +4a (x ≥0)满足对任意的x 1<x 2都有f (x 1)>f (x 2),求a 的取值范围.例6 (2016年4月学考改编)已知函数f (x )=1x -1-1x -3、(1)设g (x )=f (x +2),判断函数g (x )的奇偶性,并说明理由; (2)求证:函数f (x )在2,3)上就是增函数.例7 (2015年10月学考)已知函数f (x )=ax +1x +1+1x -1,a ∈R 、(1)判断函数f (x )的奇偶性,并说明理由; (2)当a <2时,证明:函数f (x )在(0,1)上单调递减.例8 (2016年10月学考)设函数f (x )=1(|x -1|-a )2的定义域为D ,其中a <1、(1)当a =-3时,写出函数f (x )的单调区间(不要求证明);(2)若对于任意的x ∈0,2]∩D ,均有f (x )≥kx 2成立,求实数k 的取值范围.一、选择题1.函数f(x)=1-2x+1x+3的定义域为()A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]2.下列四组函数中,表示同一个函数的就是()A.y=-2x3与y=x-2xB.y=(x)2与y=|x|C.y=x+1·x-1与y=(x+1)(x-1)D.f(x)=x2-2x-1与g(t)=t2-2t-13.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能就是()4.已知f (x )就是一次函数,且ff (x )]=x +2,则f (x )等于( ) A.x +1 B.2x -1 C.-x +1D.x +1或-x -15.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不就是映射的就是( ) A.f :x →y =12xB.f :x →y =13xC.f :x →y =14xD.f :x →y =16x6.已知f (x )就是奇函数,g (x )就是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( ) A.4B.3C.2D.17.若函数y =ax +1在1,2]上的最大值与最小值的差为2,则实数a 的值为( ) A.2B.-2C.2或-2D.08.偶函数f (x )(x ∈R )满足:f (4)=f (1)=0,且在区间0,3]与3,+∞)上分别递减与递增,则不等式x ·f (x )<0的解集为( )A.(-∞,-4)∪(4,+∞)B.(-∞,-4)∪(-1,0)C.(-4,-1)∪(1,4)D.(-∞,-4)∪(-1,0)∪(1,4) 二、填空题9.已知函数f (x )=⎩⎪⎨⎪⎧1-12x x ≥01x x <0若f (a )=a ,则实数a =________、10.设f (x )=ax 2+bx +2就是定义在1+a,1]上的偶函数,则f (x )>0的解集为________. 11.若关于x 的不等式x 2-4x -a ≥0在1,3]上恒成立,则实数a 的取值范围为________. 三、解答题12.已知函数f (x )=1+ax 2x +b 的图象经过点(1,3),并且g (x )=xf (x )就是偶函数.(1)求函数中a 、b 的值;(2)判断函数g (x )在区间(1,+∞)上的单调性,并用单调性定义证明.13.已知二次函数f (x )=ax 2-2ax +2+b 在区间2,3]上有最大值5,最小值2、 (1)求f (x )的解析式;(2)若b >1,g (x )=f (x )+mx 在2,4]上为单调函数,求实数m 的取值范围.答案精析知识条目排查 知识点一1.确定的不同的 全体2.每个对象 知识点二 1.属于 ∈ 2.不属于 ∉ 知识点三1.确定性 互异性 无序性2.(1)有限个 (2)无限个3.正整数集 有理数集 知识点四 1.一一列举出来 2.共同特征 知识点五1.任意一个 A ⊆B B ⊇A x ∈B x ∉A AB BA2.(1)任何集合 ∅⊆A (2)A ⊆A (3)A ⊆C (4)AC3.集合B 就是集合A 的子集(B ⊆A )4.如果A =B, 则A ⊆B ,且B ⊆A知识点六1.属于集合A且属于集合B的所有元素{x|x∈A,且x∈B}2.所有属于集合A或属于集合B的元素{x|x∈A,或x∈B}3.B∩A B∪A A A∅A A B4.所有元素U5.不属于集合A∁U A{x|x∈U,且x∉A}题型分类示例例1 D例2A∵A=B,∴2∈B,则a=2、]例3{4}解析∵全集U={2,3,4},集合A={2,3},∴∁U A={4}.例4A∵A∩B=A,∴A⊆B、∵A={1,2},B={1,m,3},∴m=2,故选A、]例5B由B中不等式变形得(x-2)(x+4)>0,解得x<-4或x>2,即B=(-∞,-4)∪(2,+∞).∵A=-2,3],∴A∪B=(-∞,-4)∪-2,+∞).故选B、]例6C图中的阴影部分就是M∩P的子集,不属于集合S,属于集合S的补集,即就是∁I S的子集,则阴影部分所表示的集合就是(M∩P)∩∁I S,故选C、] 例7A A={x|1≤3x≤81}={x|0≤x≤4},B={x|log2(x2-x)>1}={x|x2-x>2}={x|x<-1或x>2},∴A∩B={x|2<x≤4}=(2,4].]考点专项训练1.B∵集合A={x|1≤x≤5},Z为整数集,则集合A∩Z={1,2,3,4,5}.∴集合A∩Z中元素的个数就是5,故选B、]2.C由x2-5x+6≥0,解得x≥3或x≤2、又集合A ={x |-1≤x ≤1},∴A ⊆B , 故选C 、] 3.D 4、C5.A ∁U B ={2,4,5,7},A ∩(∁U B )={3,4,5}∩{2,4,5,7}={4,5},故选A 、]6.A 因为全集U ={-1,1,3}, 集合A ={a +2,a 2+2},且∁U A ={-1}, 所以1,3就是集合A 中的元素,所以⎩⎨⎧a +2=1a 2+2=3或⎩⎪⎨⎪⎧a +2=3a 2+2=1由⎩⎪⎨⎪⎧ a +2=1a 2+2=3得a =-1、由⎩⎪⎨⎪⎧a +2=3a 2+2=1得a 无解,所以a =-1,故选A 、]7.D A ={x |x 2-8x +15=0}={3,5}, ∵B ⊆A ,∴B =∅或{3}或{5}, 若B =∅时,a =0; 若B ={3},则a =13;若B ={5},则a =15、故a =13或15或0,故选D 、]8.D ∵集合A ={x |x 2≥16}={x |x ≤-4或x ≥4}, B ={m },且A ∪B =A ,∴B ⊆A , ∴m ≤-4或m ≥4, ∴实数m 的取值范围就是 (-∞,-4]∪4,+∞),故选D 、] 9.{1,2} 10.0 1解析 A ={1,a },∵x (x -a )(x -b )=0, 解得x =0或a 或b , 若A =B ,则a =0,b =1、 11.4解析 全集U ={x ∈Z |-2≤x ≤4}={-2,-1,0,1,2,3,4},A ={-1,0,1,2,3},∁U A ={-2,4}, ∵B ⊆∁U A ,则集合B =∅,{-2},{4},{-2,4}, 因此满足条件的集合B 的个数就是4、 12.1,+∞)解析 由x 2-x <0,解得0<x <1, ∴A =(0,1).∵B =(0,a )(a >0),A ⊆B , ∴a ≥1、 13.3,+∞)解析 由|x -2|<a ,可得2-a <x <2+a (a >0), ∴A =(2-a,2+a )(a >0). 由x 2-2x -3<0,解得-1<x <3、 B =(-1,3).∵B ⊆A ,则⎩⎨⎧2-a ≤-12+a ≥3解得a ≥3、答案精析知识条目排查 知识点一非空数集 唯一确定 从集合A 到集合B {f (x )|x ∈A } 知识点二 1.相同 2.对应关系 知识点三1.a ,b ] (a ,b ) a ,b ) (a ,b ] 知识点五对应关系 并集 并集 知识点六非空的集合 任意一个元素x 唯一 知识点八f (x )≤M f (x 0)=M f (x )≥M f (x 0)=M 题型分类示例 例1 C例2 A 当x =0时,有两个y 值对应,故A 不可能就是函数y =f (x )的图象.] 例3 5 -1,+∞) 解析 f (3)=log 133=-1,∴f (f (3))=f (-1)=-1+2+4=5, 当x ≤1时,f (x )=-x 2-2x +4 =-(x +1)2+5, 对称轴x =-1,f (x )在-1,1]上递减,当x >1时,f (x )递减, ∴f (x )在-1,+∞)上递减. 例4 (0,1)解析 由题意得f (x )=⎩⎪⎨⎪⎧xx >aax ≤a在平面直角坐标系内分别画出0<a <1,a =1,a >1时,函数f (x ),g (x )的图象,由图易得当f (x ),g (x )的图象有两个交点时,有⎩⎨⎧0<a <1g (a )>a 解得0<a <1, a 的取值范围为0<a <1、例5 解 由题意知,f (x )为减函数,∴0<a <1且a -3<0且a 0≥(a -3)×0+4a ,∴0<a ≤14、例6 (1)解 ∵f (x )=1x -1-1x -3,∴g (x )=f (x +2)=1x +1-1x -1,∵g (-x )=1-x +1-1-x -1=1x +1-1x -1=g (x ),又∵g (x )的定义域为{x |x ≠-1且x ≠1},∴y =g (x )就是偶函数.(2)证明 设x 1,x 2∈2,3)且x 1<x 2,f (x 1)-f (x 2)=(1x 1-1-1x 1-3)-(1x 2-1-1x 2-3)=2(x 1-x 2)(x 1+x 2-4)(x 1-1)(x 1-3)(x 2-1)(x 2-3),∵x 1,x 2∈2,3)且x 1<x 2,∴x 1-x 2<0,x 1+x 2-4>0,(x 1-1)(x 1-3)(x 2-1)(x 2-3)>0,综上得f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在2,3)上就是增函数.例7 (1)解 因为f (-x )=-ax +1-x +1+1-x -1 =-(ax +1x -1+1x +1) =-f (x ),又因为f (x )的定义域为{x ∈R |x ≠-1且x ≠1},所以函数f (x )为奇函数.(2)证明 任取x 1,x 2∈(0,1),设x 1<x 2,则f (x 1)-f (x 2)=a (x 1-x 2)+x 2-x 1(x 1-1)(x 2-1)+x 2-x 1(x 1+1)(x 2+1) =(x 1-x 2)a -1(x 1-1)(x 2-1)-1(x 1+1)(x 2+1)] =(x 1-x 2)a -2(x 1x 2+1)(x 21-1)(x 22-1)]. 因为0<x 1<x 2<1,所以2(x 1x 2+1)>2,0<(x 21-1)(x 22-1)<1,所以2(x 1x 2+1)(x 21-1)(x 22-1)>2>a , 所以a -2(x 1x 2+1)(x 21-1)(x 22-1)<0、 又因为x 1-x 2<0,所以f (x 1)>f (x 2),所以函数f (x )在(0,1)上单调递减.例8 解 (1)单调递增区间就是(-∞,1],单调递减区间就是1,+∞).(2)当x =0时,不等式f (x )≥kx 2成立;当x ≠0时,f (x )≥kx 2等价于k ≤1[x (|x -1|-a )]2、 设h (x )=x (|x -1|-a )=⎩⎪⎨⎪⎧ -x [x -(1-a )]0<x ≤1x [x -(1+a )]1<x ≤2、①当a ≤-1时,h (x )在(0,2]上单调递增,所以0<h (x )≤h (2),即0<h (x )≤2(1-a ).故k ≤14(1-a )2、②当-1<a <0时,h (x )在(0,1-a 2]上单调递增,在1-a 2,1]上单调递减,在1,2]上单调递增, 因为h (2)=2-2a ≥(1-a )24=h (1-a 2). 即0<h (x )≤2(1-a ).故k ≤14(1-a )2、 ③当0≤a <1时,h (x )在(0,1-a 2]上单调递增, 在1-a 2,1-a )上单调递减,在(1-a,1]上单调递减, 在1,1+a )上单调递增,在(1+a,2]上单调递增,所以h (1)≤h (x )≤max{h (2),h (1-a 2)}且h (x )≠0、 因为h (2)=2-2a >(1-a )24=h (1-a 2), 所以-a ≤h (x )≤2-2a 且h (x )≠0、当0≤a <23时,因为|2-2a |>|-a |, 所以k ≤14(1-a )2; 当23≤a <1时,因为|2-2a |≤|-a |, 所以k ≤1a 2, 综上所述,当a <23时,k ≤14(1-a )2; 当23≤a <1时,k ≤1a 2、 考点专项训练1.A 要使函数有意义,则⎩⎪⎨⎪⎧ 1-2x ≥0x +3>0即⎩⎨⎧x ≤0x >-3、 故-3<x ≤0、即函数的定义域为(-3,0],故选A 、]2.D 在A 选项中,前者的y 属于非负数,后者的y ≤0,两个函数的值域不同; 在B 选项中,前者的定义域x ≥0,后者的x ∈R ,定义域不同;在C 选项中,前者定义域为x >1,后者为x >1或x <-1,定义域不同;在D 选项中,两个函数就是同一个函数,故选D 、]3.B4.A f (x )就是一次函数,设f (x )=kx +b ,ff (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,k 2=1,kb +b =2,解得k =1,b =1、则f (x )=x +1,故选A 、]5.A 6、B 7、C8.D 求x ·f (x )<0即等价于求函数在第二、四象限图象x 的取值范围.∵偶函数f (x )(x ∈R )满足f (4)=f (1)=0,∴f (4)=f (-1)=f (-4)=f (1)=0,且f (x )在区间0,3]与3,+∞)上分别递减与递增,如图可知:即x ∈(1,4)时,函数图象位于第四象限,x ∈(-∞,-4)∪(-1,0)时,函数图象位于第二象限,综上所述,x ·f (x )<0的解集为(-∞,-4)∪(-1,0)∪(1,4),故选D 、]9.-1或23解析 当a ≥0时,f (a )=1-12a =a , 得a =23; 当a <0时,1a=a ,解得a =-1或1(舍去).∴a =-1或23、 10.(-1,1)解析 ∵f (x )为定义在1+a,1]上的偶函数,∴1+a =-1,∴a =-2,又f (-x )=f (x ),即ax 2-bx +2=ax 2+bx +2,∴2bx =0,∴b =0,∴f (x )=-2x 2+2、∴由f (x )>0得,-2x 2+2>0,解得-1<x <1,∴f (x )>0的解集为(-1,1).11.(-∞,-4]解析 若关于x 的不等式x 2-4x -a ≥0在1,3]上恒成立, 则a ≤x 2-4x 在1,3]上恒成立,令f (x )=x 2-4x =(x -2)2-4,x ∈1,3],对称轴x =2,开口向上,f (x )在1,2)递减,在(2,3]递增,∴f (x )min =f (2)=-4,∴a ≤-4、12.解 (1)∵函数g (x )=xf (x )=x +ax 3x +b就是偶函数, 则g (-x )=g (x ).∴-x -ax 3-x +b =x +ax 3x +b恒成立, 即x -b =x +b 恒成立,∴b =0、又函数f (x )的图象经过点(1,3),∴f (1)=3,即1+a =3,∴a =2、(2)由(1)知g (x )=xf (x )=2x 2+1,g (x )在(1,+∞)上单调递增,设x 2>x 1>1,则g (x 2)-g (x 1)=2x 22+1-2x 21-1=2(x 2-x 1)(x 2+x 1).∵x 2>x 1>1,∴(x 2-x 1)(x 2+x 1)>0,∴g (x 2)>g (x 1),∴函数g (x )在区间(1,+∞)上就是增函数.13.解 (1)f (x )=a (x -1)2+2+b -a 、①当a >0时,f (x )在2,3]上单调递增,故⎩⎪⎨⎪⎧ f (2)=2f (3)=5即⎩⎪⎨⎪⎧ 2+b =23a +2+b =5所以⎩⎨⎧ a =1b =0、②当a <0时,f (x )在2,3]上单调递减,故⎩⎪⎨⎪⎧ f (2)=5f (3)=2即⎩⎪⎨⎪⎧ 2+b =53a +2+b =2所以⎩⎨⎧ a =-1b =3、所以f (x )=x 2-2x +2或f (x )=-x 2+2x +5、(2)因为b >1,所以f (x )=-x 2+2x +5,所以g (x )=-x 2+(m +2)x +5在2,4]上为单调函数, 故m +22≤2或m +22≥4,所以m ≤2或m ≥6、。