2010年高考试题上海高考理科数学(含答案解析版)

合集下载

2013年上海高考数学理科试卷(带详解)

2013年上海高考数学理科试卷(带详解)
【难易程度】容易
【试题解析】因为ABCD A1B1C1D1为长方体,AB C1D1
, AB C1D1,
故ABC1D1为平行四边形, 故BC1
AD1(步骤1),显然B
不在平面D1AC上,于是直线BC1
平行于平面D1AC(步骤2);直线BC1到平面D1AC的距离即为点
B到平面
D1AC的距离设
为h考虑三棱锥ABCD
.
【难易程度】容易
【参考答案】1
5
2
【试题解析】联立方程组得
(
1)
1
1
5(步骤1),
2
又⋯0,故所求为1 5.(步骤
2)
2
8.盒子中装有编号为
1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个
球的编号之积为偶数的概率是
___________(结果用最简分数表示).
【测量目标】古典概型,随机事件的的概率
不便宜,故选B.
17.在数列
{ an}中,an
2n
1,若一个
7

12
列的矩阵的第
i行第j
列的元素
ai, j
aiaj
aiaj
,(i
1,2,
,7; j
1,2,
,12
)则该矩阵元素能取到的不同数值的个数



A 18
B 28
C 48
D 63
【测量目标】指数函数模型.
【考查方式】给出了数列矩阵以及行列元素的关系,求出矩阵元素不同数值的个数
y)
2sin( x
y) cos( x y)
,sin 2x sin 2 y
,故
2
3

2012年高考真题——理科数学(上海卷)解析版(1)

2012年高考真题——理科数学(上海卷)解析版(1)

2012上海高考数学试题(理科)答案与解析一.填空题 1.计算:3-i=1+i(i 为虚数单位). 【答案】1-2i 【解析】3-i (3-i)(1-i)2-4i ===1-2i 1+i (1+i)(1-i)2. 【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A . 【答案】 ⎪⎭⎫⎝⎛-3,21 【解析】根据集合A 210x +>,解得12x >-,由12,,13x x --<<得到,所以⎪⎭⎫⎝⎛-=3,21B A .【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决. 3.函数1sin cos 2)(-= x x x f 的值域是 .【答案】⎥⎦⎤⎢⎣⎡--23,25 【解析】根据题目22sin 212cos sin )(--=--=x x x x f ,因为12sin 1≤≤-x ,所以23)(25-≤≤-x f . 【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质.4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).【答案】2arctan【解析】设直线的倾斜角为α,则2arctan ,2tan ==αα.【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小. 5.在6)2(xx -的二项展开式中,常数项等于 . 【答案】160-【解析】根据所给二项式的构成,构成的常数项只有一项,就是333462C ()160T x x=-=- .【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【答案】78【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21=-=+++∞→n n V V V . 【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合. 7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 . 【答案】(]1,∞-【解析】根据函数,(),x a x ax ae x af x ee x a---+⎧≥⎪==⎨<⎪⎩看出当a x ≥时函数增函数,而已知函数)(x f 在区间[)+∞,1上为增函数,所以a 的取值范围为:(]1,∞- .【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 . 【答案】33π 【解析】根据该圆锥的底面圆的半径为r ,母线长为l ,根据条件得到ππ2212=l ,解得母线长2=l ,1,22===r l r πππ所以该圆锥的体积为:ππ331231S 3122=-⨯==h V 圆锥.【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 【答案】1- 【解析】因为函数2)(x x f y +=为奇函数,所以,3)1(,1)1(,2)1()1(==+=g f f g 所以,又1232)1()1(,3)1(-=+-=+-=--=-f g f .(1)(1).f f -=-【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y =为奇函数,所以有)()(x f x f -=-这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .【答案】)6sin(1θπ-【解析】根据该直线过点)0,2(M ,可以直接写出代数形式的方程为:)2(21-=x y ,将此化成极坐标系下的参数方程即可 ,化简得)6sin(1)(θπθ-=f .【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 【答案】32 【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32. 【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD =AN AM ⋅的取值范围是 .【答案】[]5,2【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2==AD AB ,所以51(0,0),(2,0),(,1)(,1).22A B C D 设1515515151(,1)(), , - , - , (2,()sin ).22224284423N x x BM CN CN x BM x M x x π≤≤===+--则根据题意,有)83235,4821(),1,(xx AM x AN --==→→.【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 . 【答案】45 【解析】根据题意得到,110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩从而得到22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩所以围成的面积为45)1010(10121221=+-+=⎰⎰dx x x xdx S ,所以围成的图形的面积为45 . 【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 . 【答案】13222--c a c 【解析】据题a CD AC BD AB 2=+=+,也就是说,线段CD AC BD AB ++与线段的长度是定值,因为棱AD 与棱BC 互相垂直,当ABD BC 平面⊥时,此时有最大值,此时最大值为:13222--c a c . 【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.二、选择题(20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b 【答案】 B【解析】根据实系数方程的根的特点1也是该方程的另一个根,所以b i i -==-++22121,即2-=b ,c i i ==+-3)21)(21(,故答案选择B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( ) A .21ξξD D > B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【答案】 A【解析】 由随机变量21,ξξ的取值情况,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x x x x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,所以有1ξD >2ξD . 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100 【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.三、解答题(74分):19.(6+6=12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 【答案及解析】所以三角形PCD 的面积为3232221=⨯⨯................6分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题. 20.(6+8=14分)已知函数)1lg()(+=x x f . (1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.【答案及解析】,3132<<-x【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.21.(6+8=14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x . (1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【答案及解析】过点A 与渐近线x y 2=平行的直线方程为, 1.y x y =+=+即1=ON ,22=OM ,则O 到直线MN .设O 到直线MN 的距离为d .【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .23.(4+6+8=18分)对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P . (1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式.【答案及解析】必有形式),1(b -显然有2a 满足021=∙a a【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“X具有性质P”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.。

2014年上海市高考数学试卷(理科)(附参考答案+详细解析Word打印版)

2014年上海市高考数学试卷(理科)(附参考答案+详细解析Word打印版)

2014年上海市普通高等学校招生统一考试数学试卷(理科)一、填空题(共14题,满分56分)1.(4分)函数y=1﹣2cos2(2x)的最小正周期是.2.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.8.(4分)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1 B.2 C.3 D.417.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B 看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l 分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.2014年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)函数y=1﹣2cos2(2x)的最小正周期是.【分析】由二倍角的余弦公式化简,可得其周期.【解答】解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:【点评】本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.2.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.【分析】把复数代入表达式,利用复数代数形式的混合运算化简求解即可.【解答】解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6.故答案为:6【点评】本题考查复数代数形式的混合运算,基本知识的考查.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程x=﹣2.【分析】由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆右焦点重合,故=2得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣2【点评】本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2] .【分析】可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.【解答】解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为2.【分析】由已知可得y=,代入要求的式子,由基本不等式可得.【解答】解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2【点评】本题考查基本不等式,属基础题.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos (结果用反三角函数值表示).【分析】由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.【解答】解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos【点评】本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.【分析】由题意,θ=0,可得C与极轴的交点到极点的距离.【解答】解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.【点评】正确理解C与极轴的交点到极点的距离是解题的关键.}的公比为q,若a1=(a3+a4+…a n),则q=8.(4分)设无穷等比数列{a.【分析】由已知条件推导出a1=,由此能求出q的值.【解答】解:∵无穷等比数列{a n}的公比为q,a=(a3+a4+…a n)1=(﹣a﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍).故答案为:.【点评】本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).【分析】直接利用已知条件转化不等式求解即可.【解答】解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1).故答案为:(0,1).【点评】本题考查指数不等式的解法,指数函数的单调性的应用,考查计算能力.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).【分析】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.【解答】解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的3天恰好为连续3天的概率是,故答案为:.【点评】本题考查古典概型以及概率计算公式,属基础题.11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=﹣1.【分析】根据集合相等的条件,得到元素关系,即可得到结论.【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.【分析】先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.【解答】解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:【点评】本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为0.2.【分析】设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.【解答】解:设小白得5分的概率至少为x,则由题意知小白得1,2,3,4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E(ξ)=4.2,∴4(1﹣x)+5x=4.2,解得x=0.2.故答案为:0.2.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3] .【分析】通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.【解答】解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且x P∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3].故答案为:[2,3].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1 B.2 C.3 D.4【分析】建立空适当的间直角坐标系,利用坐标计算可得答案.【解答】解:=,则•=()=||2+,∵,∴•=||2=1,∴•(i=1,2,…,8)的不同值的个数为1,故选:A.【点评】本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解【分析】判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.【解答】解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,即(a1﹣a2)x=b2﹣b1.∴方程组有唯一解.故选:B.【点评】本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解和指数的应用.18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.【分析】利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.【解答】解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,V P﹣ABC==【点评】本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法.20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.【分析】(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.【解答】解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;当a>0且a≠1时,f(x)为非奇非偶函数综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.当a>0且a≠1时,f(x)为非奇非偶函数【点评】本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B 看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).【分析】(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论.(2)利用正弦定理,建立方程关系,即可得到结论.【解答】解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β>0,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.【点评】本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键.22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l 分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.【分析】(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.【解答】(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,∴点(1,2)、(﹣1,0)被直线x+y﹣1=0分隔.(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有1﹣4k2≤0,∴k≤﹣,或k≥.曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔.(3)证明:设点M(x,y),则•|x|=1,故曲线E的方程为[x2+(y ﹣2)2]x2=1 ①.y轴为x=0,显然与方程①联立无解.又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,故x=0是一条分隔线.若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx ﹣2)2]x2=1,令f(x)=[x2+(kx﹣2)2]x2﹣1,∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0没有实数解,k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0没有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线.∴通过原点的直线中,有且仅有一条直线是E的分隔线.【点评】本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题.23.(16分)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.【分析】(1)依题意:,又将已知代入求出x 的范围;(2)先求出通项:,由求出,对q分类讨论≤3S n,得到关于q的不等式组,解不等式组求求出S n分别代入不等式S n≤S n+1出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…a k的公差.【解答】解:(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,S n=n,S n≤S n+1≤3S n,即,成立.当1<q≤3时,,S n≤S n≤3S n,即,+1∴不等式∵q>1,故3q n+1﹣q n﹣2=q n(3q﹣1)﹣2>2q n﹣2>0对于不等式q n+1﹣3q n+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴q n+1﹣3q n+2=q n(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,≤3S n,即,,S n≤S n+1∴此不等式即,3q﹣1>0,q﹣3<0,3q n+1﹣q n﹣2=q n(3q﹣1)﹣2<2q n﹣2<0,q n+1﹣3q n+2=q n(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,上,q的取值范围为:.(3)设a1,a2,…a k的公差为d.由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…a k 的公差为﹣.【点评】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.第21页(共21页)。

2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(4分)(2012•上海)计算:=1﹣2i(i为虚数单位).考点:复数代数形式的乘除运算.专题:计算题.分析:由题意,可对复数代数式分子与分母都乘以1﹣i,再由进行计算即可得到答案解答:解:故答案为1﹣2i点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握2.(4分)(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=(﹣,3).考点:交集及其运算.专题:计算题.分析:由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案解答:解:由题意A={x|2x+1>0}={x|x>﹣},B={x||x﹣1|<2}={x|﹣1<x<3},所以A∩B=(﹣,3)故答案为(﹣,3)点评:本题考查交集的运算,解题的关键是熟练掌握交集的定义及运算规则,正确化简两个集合对解题也很重要,要准确化简3.(4分)(2012•上海)函数f(x)=的值域是.考点:二阶矩阵;三角函数中的恒等变换应用.专题:计算题.分析:先根据二阶行列式的运算法则求出函数的解析式,然后化简整理,根据正弦函数的有界性可求出该函数的值域.解答:解:f(x)==﹣2﹣sinxcosx=﹣2﹣sin2x∵﹣1≤sin2x≤1∴﹣≤﹣sin2x≤则﹣≤﹣2﹣sin2x≤﹣∴函数f(x)=的值域是故答案为:点评:本题主要考查了二阶行列式的求解,以及三角函数的化简和值域的求解,同时考查了计算能力,属于基础题.4.(4分)(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为arctan2(结果用反三角函数值表示).考点:平面向量坐标表示的应用.专题:计算题.分析:根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据k=tanα可求出倾斜角.解答:解:∵=(﹣2,1)是直线l的一个法向量∴可知直线l的一个方向向量为(1,2),直线l的倾斜角为α得,tanα=2∴α=arctan2故答案为:arctan2点评:本题主要考查了方向向量与斜率的关系,以及反三角的应用,同时运算求解的能力,属于基础题.5.(4分)(2012•上海)在的二项展开式中,常数项等于﹣160.考点:二项式定理的应用.专题:计算题.分析:研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.解答:解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣160点评:本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.6.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═.考点:数列的极限;棱柱、棱锥、棱台的体积.专题:计算题.分析:由题意可得,正方体的体积=是以1为首项,以为公比的等比数,由等不数列的求和公式可求解答:解:由题意可得,正方体的棱长满足的通项记为a n则∴=是以1为首项,以为公比的等比数列则(V1+V2+…+v n)==故答案为:点评:本题主要考查了等比数列的求和公式及数列极限的求解,属于基础试题7.(4分)(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1].考点:指数函数单调性的应用.专题:综合题.分析:由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x﹣a|在区间[1,+∞)上是增函数,又绝对值函数t=|x﹣a|在区间[a,+∞)上是增函数,可得出[1,+∞)⊆[a,+∞),比较区间端点即可得出a的取值范围解答:解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数所以[1,+∞)⊆[a,+∞),故有a≤1故答案为(﹣∞,1]点评:本题考查指数函数单调性的运用及复合函数单调性的判断,集合包含关系的判断,解题的关键是根据指数函数的单调性将问题转化为集合之间的包含关系,本题考查了转化的思想及推理判断的能力,属于指数函数中综合性较强的题型.8.(4分)(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.解答:解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.点评:本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.9.(4分)(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)=﹣1.考点:函数奇偶性的性质;函数的值.专题:计算题.分析:由题意,可先由函数是奇函数求出f(﹣1)=﹣3,再将其代入g(﹣1)求值即可得到答案解答:解:由题意,y=f(x)+x2是奇函数,且f(1)=1,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(﹣1)=﹣3所以g(﹣1)=f(﹣1)+2=﹣3+2=﹣1故答案为:﹣1.点评:本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.10.(4分)(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.考点:简单曲线的极坐标方程.专题:计算题.分析:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ,在三角形POM中,利用正弦定理建立等式关系,从而求出所求.解答:解:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ在三角形POM中,利用正弦定理可知:解得ρ=f(θ)=故答案为:点评:本题主要考查了简单曲线的极坐标方程,以及正弦定理的应用,同时考查了分析问题的能力和转化的思想,属于基础题.11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.解答:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:点评:本题主要考查了古典概型及其概率计算公式,解题的关键求出有且仅有两人选择的项目完全相同的个数,属于基础题.12.(4分)(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5].考点:平面向量的综合题.专题:计算题.分析:画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.解答:解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].点评:本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力.13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.考点:函数的图象.专题:计算题;综合题;压轴题.分析:根据题意求得f(x)=,从而y=xf(x)=,利用定积分可求得函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积.解答:解:由题意可得,f(x)=,∴y=xf(x)=,设函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S,则S=10x2dx+(﹣10x2+10x)dx=10×+(﹣10)×+10×=﹣+5﹣==.故答案为:.点评:本题考查函数的图象,着重考查分段函数的解析式的求法与定积分的应用,考查分析运算能力,属于难题.14.(4分)(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:作BE⊥AD于E,连接CE,说明B与C都是在以AD为焦距的椭球上,且BE、CE 都垂直于焦距AD,BE=CE.取BC中点F,推出四面体ABCD的体积的最大值,当△ABD是等腰直角三角形时几何体的体积最大,求解即可.解答:解:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭圆上,且BE、CE都垂直于焦距AD,AB+BD=AC+CD=2a,显然△ABD≌△ACD,所以BE=CE.取BC中点F,∴EF⊥BC,EF⊥AD,要求四面体ABCD的体积的最大值,因为AD 是定值,只需三角形EBC的面积最大,因为BC是定值,所以只需EF最大即可,当△ABD是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a,∴AB=a,所以EB=,EF=,所以几何体的体积为:×=.故答案为:.点评:本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,逻辑推理能力以及计算能力.二、选择题(20分):15.(5分)(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣1考点:复数相等的充要条件.专题:计算题;转化思想.分析:由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项解答:解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B点评:本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题16.(5分)(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定考点:余弦定理的应用;三角形的形状判断.专题:解三角形.分析:由sin2A+sin2B<sin2C,结合正弦定理可得,a2+b2<c2,由余弦定理可得CosC=可判断C的取值范围解答:解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cosC=∴∴△ABC是钝角三角形故选C点评:本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础试题17.(5分)(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题;压轴题.分析:根据随机变量ξ1、ξ2的取值情况,计算它们的平均数,根据随机变量ξ1、ξ2的取值的概率都为0.2,即可求得结论.解答:解:由随机变量ξ1、ξ2的取值情况,它们的平均数分别为:=(x1+x2+x3+x4+x5),=(++++)=且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2,故选择A.点评:本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.18.(5分)(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100考点:数列的求和;三角函数的周期性及其求法.专题:计算题;压轴题.分析:由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断解答:解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.三、解答题(共5小题,满分74分)19.(12分)(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.考点:直线与平面垂直的性质;异面直线及其所成的角.专题:证明题;综合题;空间位置关系与距离;空间角.分析:(1)可以利用线面垂直的判定与性质,证明出三角形PCD是以D为直角顶点的直角三角形,然后在Rt△PAD中,利用勾股定理得到PD=2,最后得到三角形PCD的面积S;(2)[解法一]建立如图空间直角坐标系,可得B、C、E各点的坐标,从而=(1,,1),=(0,2,0),利用空间向量数量积的公式,得到与夹角θ满足:cosθ=,由此可得异面直线BC与AE所成的角的大小为;[解法二]取PB的中点F,连接AF、EF,△PBC中,利用中位线定理,得到EF∥BC,从而∠AEF或其补角就是异面直线BC与AE所成的角,然后可以通过计算证明出:△AEF是以F为直角顶点的等腰直角三角形,所以∠AEF=,可得异面直线BC与AE所成的角的大小为.解答:解:(1)∵PA⊥底面ABCD,CD⊂底面ABCD,∴CD⊥PA.∵矩形ABCD中,CD⊥AD,PA、AD是平面PDC内的相交直线.∴CD⊥平面PDA,∵PD⊂平面PDA,∴CD⊥PD,三角形PCD是以D为直角顶点的直角三角形.∵Rt△PAD中,AD=2,PA=2,∴PD==2.∴三角形PCD的面积S=×PD×DC=2.(2)[解法一]如图所示,建立空间直角坐标系,可得B(2,0,0),C(2,2,0),E(1,,1).∴=(1,,1),=(0,2,0),设与夹角为θ,则cosθ===,∴θ=,由此可得异面直线BC与AE所成的角的大小为.[解法二]取PB的中点F,连接AF、EF、AC,∵△PBC中,E、F分别是PC、PB的中点,∴EF∥BC,∠AEF或其补角就是异面直线BC与AE所成的角.∵Rt△PAC中,PC==4.∴AE=PC=2,∵在△AEF中,EF=BC=,AF=PB=∴AF2+EF2=AE2,△AEF是以F为直角顶点的等腰直角三角形,∴∠AEF=,可得异面直线BC与AE所成的角的大小为.点评:本题根据一个特殊的四棱锥,求异面直线所成的角和证明线面垂直,着重考查了异面直线及其所成的角和直线与平面垂直的性质等知识,属于中档题.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.考点:函数的周期性;反函数;对数函数图象与性质的综合应用.专题:计算题.分析:(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.解答:解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则由解得:﹣1<x<1.由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,∵x+1>0,∴x+1<2﹣2x<10x+10,∴.由,得:.(2)当x∈[1,2]时,2﹣x∈[0,1],∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),由单调性可知y∈[0,lg2],又∵x=3﹣10y,∴所求反函数是y=3﹣10x,x∈[0,lg2].点评:本题考查对数的运算以及反函数与原函数的定义域和值域相反等知识,属于易错题.21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?考点:圆锥曲线的综合.专题:应用题.分析:(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P的纵坐标,利用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.解答:解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan 弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分点评:本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.考点:直线与圆锥曲线的综合问题;圆锥曲线的综合.专题:计算题;压轴题;转化思想.分析:(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ的方程为y=kx+b,通过直线PQ与已知圆相切,得到b2=2,通过求解=0.证明PO⊥OQ.(3)当直线ON垂直x轴时,直接求出O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),推出直线OM的方程为y=,利用,求出,,设O到直线MN的距离为d,通过(|OM|2+|ON|2)d2=|OM|2|ON|2,求出d=.推出O到直线MN的距离是定值.解答:解:(1)双曲线C1:左顶点A(﹣),渐近线方程为:y=±x.过A与渐近线y=x平行的直线方程为y=(x+),即y=,所以,解得.所以所求三角形的面积为S=.(2)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=2,由,得x2﹣2bx﹣b2﹣1=0,设P(x1,y1),Q(x2,y2),则,又y1y2=(x1+b)(x2+b).所以=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(﹣1﹣b2)+2b2+b2=b2﹣2=0.故PO⊥OQ.(3)当直线ON垂直x轴时,|ON|=1,|OM|=,则O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),则直线OM的方程为y=,由得,所以.同理,设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以==3,即d=.综上,O到直线MN的距离是定值.点评:本题考查直线与圆锥曲线的综合问题,圆锥曲线的综合,向量的数量积的应用,设而不求的解题方法,点到直线的距离的应用,考查分析问题解决问题的能力,考查计算能力.23.(18分)(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.考点:数列与向量的综合;元素与集合关系的判断;平面向量的综合题.专题:计算题;证明题;综合题;压轴题.分析:(1)在Y中取=(x,2),根据数量积的坐标公式,可得Y中与垂直的元素必有形式(﹣1,b),所以x=2b,结合x>2,可得x的值.(2)取=(x1,x1),=(s,t)根据,化简可得s+t=0,所以s、t异号.而﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n>1时,x1=1.(3)[解法一]先猜想结论:x i=q i﹣1,i=1,2,3,…,n.记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n,通过反证法证明出引理:若A k+1具有性质P,则A k也具有性质P.最后用数学归纳法,可证明出x i=q i﹣1,i=1,2,3,…,n;[解法二]设=(s1,t1),=(s2,t2),则等价于,得到一正一负的特征,再记B={|s∈X,t∈X且|s|>|t|},则可得结论:数集X具有性质P,当且仅当数集B关于原点对称.又注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数,所以B∩(0.+∞)也有n﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得==…=,最终得到数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.解答:解:(1)选取=(x,2),则Y中与垂直的元素必有形式(﹣1,b),所以x=2b,又∵x>2,∴只有b=2,从而x=4.(2)取=(x1,x1)∈Y,设=(s,t)∈Y,满足,可得(s+t)x1=0,s+t=0,所以s、t异号.因为﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,所以1∈X,假设x k=1,其中1<k<n,则0<x1<1<x n.再取=(x1,x n)∈Y,设=(s,t)∈Y,满足,可得sx1+tx n=0,所以s、t异号,其中一个为﹣1①若s=﹣1,则x1=tx n>t≥x1,矛盾;②若t=﹣1,则x n=sx1<s≤x n,矛盾;说明假设不成立,由此可得当x n>1时,x1=1.(3)[解法一]猜想:x i=q i﹣1,i=1,2,3,…,n记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n先证明若A k+1具有性质P,则A k也具有性质P.任取=(s,t),s、t∈A k,当s、t中出现﹣1时,显然有满足当s、t中都不是﹣1时,满足s≥1且t≥1.因为A k+1具有性质P,所以有=(s1,t1),s1、t1∈A k+1,使得,从而s1、t1其中有一个为﹣1不妨设s1=﹣1,假设t1∈A k+1,且t1∉A k,则t1=x k+1.由(s,t)(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k矛盾.所以t1∈A k,从而A k也具有性质P.再用数学归纳法,证明x i=q i﹣1,i=1,2,3,…,n当n=2时,结论显然成立;假设当n=k时,A k═{﹣1,x1,x2,…,x k}具有性质P,则x i=q i﹣1,i=1,2,…,k 当n=k+1时,若A k+1═{﹣1,x1,x2,…,x k+1}具有性质P,则A k═{﹣1,x1,x2,…,x k}具有性质P,所以A k+1═{﹣1,q,q2,…,q k﹣1,x k+1}.取=(x k+1,q),并设=(s,t)∈Y,满足,由此可得s=﹣1或t=﹣1若t=﹣1,则x k+1=,不可能所以s=﹣1,x k+1=qt=q j≤q k且x k+1>q k﹣1,因此x k+1=q k综上所述,x i=q i﹣1,i=1,2,3,…,n[解法二]设=(s1,t1),=(s2,t2),则等价于记B={|s∈X,t∈X且|s|>|t|},则数集X具有性质P,当且仅当数集B关于原点对称注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数.所以B∩(0,+∞)也有n﹣1个数.由于<<<…<,已经有n﹣1个数对以下三角形数阵:<<<…<,<<<…<…注意到>>>…>,所以==…=从而数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.点评:本题以向量的数量积的坐标运算为载体,着重考查了数列的通项公式的探索、集合元素的性质和数列与向量的综合等知识点,属于难题.本题是一道综合题,请同学们注意解题过程中的转化化归思想、分类讨论的方法和反证法的运用.。

2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版

2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版

2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 【答案】B(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3【解析】因为函数22)(3-+=x x f x的导数为032ln 2)('2≥+=x x f x,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B. 【答案】B(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40【解析】二项展开式的通项为k k k k k k kk x C xx C T )1(2)1()2(310555251-=-=---+,令1310=-k ,解得3,93==k k ,所以x x C T 40)1(232354-=-=,所以x 的系数为40-,选D.【答案】D(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【解析】因为B C 2=,所以B B B C cos sin 2)2sin(sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821sin 2sin cos =⨯==B C B 。

最新最全!10年上海高考数学真题全汇总

最新最全!10年上海高考数学真题全汇总
2. 已知函数 f (x) = ax2 + 2x 是奇函数,则实数 a = __________。
3. 计算: 2i = __________( i 为虚数单位)。 1+ i
4.
已知集合 A =
x| x 2

B
=
x
|
1 x +1
0
,则
A
B
=
__________。
5.
若椭圆
x2 25
+
y2 16
10. 各棱长为1的正四棱锥的体积V = __________。
开始
否 是
12 4 11. 方程 1 x x2 = 0 的解为 __________。
1 −3 9
12. 根据所示的程序框图(其中 x表示不大于 x 的最大整数),
输出 r = __________。 13. 在右图所示的斜截圆柱中,已知圆柱底面的直径为 40cm ,
已知首项为
x1 的数列xn 满足
xn+1
=
axn xn +1
(a
为常数)。
1) 若对于任意的 x1 −1,有 xn+2 = xn 对于任意的 n N * 都成立,求 a 的值;
4
上海高考真题-2010 春
2) 当 a = 1时,若 x1 0 ,数列xn 是递增数列还是递减数列?请说明理由; 3) 当 a 确定后,数列 xn 由其首项 x1 确定。当 a = 2 时,通过对数列 xn 的探究,写出
24. 不等式 2 − x 0 的解集是 __________。 x+4
25. 若复数 z = 1− 2i ( i 为虚数单位),则 z z + z = __________。

十年(2010-2019年)高考数学真题分类汇编:专题17 复数 (含答案解析)

十年(2010-2019年)高考数学真题分类汇编:专题17 复数 (含答案解析)

十年(2010-2019年)高考数学真题分类汇编专题17复数1.(2019·全国1·文T1)设z=3-i1+2i ,则|z|= ( ) A.2 B.√3 C.√2 D.1【答案】C 【解析】∵z=3-i1+2i , ∴z=(3-i )(1-2i )(1+2i )(1-2i )=15−75i,∴|z|=√(15)2+(-75)2=√2.故选C.2.(2019·全国3·理T2文T2)若z(1+i)=2i,则z=( ) A.-1-i B.-1+i C.1-i D.1+i【答案】D 【解析】z=2i 1+i=2i (1-i )(1+i )(1-i )=2+2i2=1+i.故选D.3.(2019·北京·理T1文T2)已知复数z=2+i,则z ·z =( ) A.√3 B.√5 C.3 D.5【答案】D【解析】∵z=2+i,∴z =2-i. ∴z ·z =(2+i)(2-i)=5. 故选D.4.(2019·全国2·文T2)设z=i(2+i),则z =( ) A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】D【解析】z=2i+i 2=-1+2i,则z =-1-2i.故选D.5.(2019·全国1·理T2)设复数z 满足|z-i|=1,z 在复平面内对应的点为(x,y),则( ) A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=1 【答案】C【解析】设z=x+yi(x,y ∈R). 因为z-i=x+(y-1)i, 所以|z-i|=√x 2+(y -1)2=1, 则x2+(y-1)2=1.故选C.6.(2019·全国2·理T2)设z=-3+2i,则在复平面内 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解析】由z=-3+2i,得z =-3-2i,则在复平面内z 对应的点(-3,-2)位于第三象限,故选C. 7.(2018·全国1·理T1文T2)设z=1-i1+i +2i,则|z|=( ) A.0 B.12C.1D.√2【答案】C 【解析】因为z=(1-i )2(1+i )(1-i )+2i=-2i2+2i=i,所以|z|=1.8.(2018·全国2·理T1)1+2i1-2i =( ) A.-45−35i B.-45+35iC.-35−45i D.-35+45i【答案】D 【解析】1+2i 1-2i=(1+2i )(1+2i )(1-2i )(1+2i )=1-4+4i 5=-35+45i. 9.(2018·全国2·文T1)i(2+3i)=( ) A.3-2i B.3+2iC.-3-2iD.-3+2i【答案】D【解析】i(2+3i)=2i+3i2=-3+2i.10.(2018·全国3·理T2文T2)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i【答案】D【解析】(1+i)(2-i)=2+i-i2=3+i.11.(2018·北京·理T2文T2)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限C.第三象限D.第四象限【答案】D【解析】∵11-i =1+i(1-i)(1+i)=1+i2=12+12i,∴12+12i的共轭复数为12−12i,而12−12i对应的点的坐标为(12,-12),点(12,-12)位于第四象限,故选D.12.(2018·浙江·4)复数21-i(i为虚数单位)的共轭复数是( ) A.1+i B.1-iC.-1+iD.-1-i【答案】B【解析】∵21-i =2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∴复数21-i的共轭复数为1-i.13.(2017·全国1·理T3)设有下面四个命题p1:若复数z满足1z∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 【答案】B【解析】p1:设z=a+bi(a,b∈R),则1z =1a+bi=a-bia2+b2∈R,所以b=0,所以z∈R.故p1正确;p2:因为i2=-1∈R,而z=i∉R,故p2不正确;p3:若z1=1,z2=2,则z1z2=2,满足z1z2∈R,而它们实部不相等,不是共轭复数,故p3不正确;p4:实数的虚部为0,它的共轭复数是它本身,也属于实数,故p4正确.14.(2017·全国2·理T1)3+i1+i=( )A.1+2iB.1-2iC.2+iD.2-i【答案】D【解析】3+i1+i =(3+i)(1-i)(1+i)(1-i)=4-2i2=2-i,故选D.15.(2017·全国2·文T2)(1+i)(2+i)= ( )A.1-iB.1+3iC.3+iD.3+3i【答案】B【解析】(1+i)(2+i)=2+3i+i2=1+3i,故选B.16.(2017·山东·文T2)已知i是虚数单位,若复数z满足zi=1+i,则z2=( )A.-2iB.2iC.-2D.2【答案】A【解析】(方法一)∵z=1+ii =1+1i=1-i,∴z2=(1-i)2=1-2i+i2=-2i.(方法二)由zi=1+i,得(zi)2=(1+i)2,即-z2=2i.所以z2=-2i.17.(2017·全国3·理T2)设复数z满足(1+i)z=2i,则|z|=( )A.12B.√22C.√2D.2【答案】C【解析】由题意,得z=2i=1+i,故|z|=√12+12=√2.18.(2017·全国1·文T3)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)【答案】C【解析】∵i(1+i)2=2i2=-2,i2(1-i)=-1+i,(1+i)2=2i,i(1+i)=-1+i,∴(1+i)2=2i为纯虚数,故选C.19.(2017·山东·理T2)已知a∈R,i是虚数单位.若z=a+√3i,z·z=4,则a=()A.1或-1B.√7或-√7C.-√3D.√3 【答案】A【解析】由z=a+√3i,得z ·z =|z|2=a 2+3=4,所以a 2=1,a=±1,选A. 20.(2017·全国3·文T2)复平面内表示复数z=i(-2+i)的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解析】由题意可得z=-1-2i,在复平面内对应点(-1,-2),则该点位于第三象限.故选C.21.(2017·北京·理T2)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞) 【答案】B【解析】设z=(1-i)(a+i)=(a+1)+(1-a)i,因为复数z 在复平面内对应的点 (a+1,1-a)在第二象限,所以{a +1<0,1-a >0,解得a<-1.故选B.22.(2016·全国2·理T1)已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3) 【答案】A【解析】要使复数z 在复平面内对应的点在第四象限,应满足{m +3>0,m -1<0,解得-3<m<1,故选A.23.(2016·全国3·理T2)若z=1+2i,则zz -1=( ) A.1 B.-1C.iD.-I【答案】C【解析】由题意知z=1-2i,则zz-1=4i(1+2i)(1-2i)-1=4i5-1=i,故选C.24.(2016·北京·文T2)复数1+2i2-i=() A.i B.1+iC.-iD.1-I【答案】A【解析】1+2i2-i =(1+2i)(2+i)(2-i)(2+i)=2+i+4i-25=i,故选A.25.(2016·全国1·理T2)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=( )A.1B.√2C.√3D.2【答案】B【解析】(定义、性质)因为(1+i)x=1+yi,x,y∈R,所以x=1,y=x=1.所以|x+yi|=|1+i|=√2,故选B.26.(2016·全国1·文T2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( )A.-3B.-2C.2D.3【答案】A【解析】由已知(1+2i)(a+i)=a-2+(2a+1)i.∵(1+2i)(a+i)的实部与虚部相等,∴a-2=2a+1,解得a=-3,故选A.27.(2016·全国2·文T2)设复数z满足z+i=3-i,则z=( )A.-1+2iB.1-2iC.3+2iD.3-2i【答案】C【解析】由z+i=3-i,得z=3-2i,所以z=3+2i,故选C.28.(2016·全国3·文T2)若z=4+3i,则z|z|= ()A.1B.-1C.45+35i D.45−35i【答案】D【解析】因为z=4+3i,所以它的模为|z|=|4+3i|=√42+32=5,共轭复数为z =4-3i.故z |z |=4−3i,选D.29.(2016·山东·理T1)若复数z 满足2z+z =3-2i,其中i 为虚数单位,则z=( ) A.1+2i B.1-2i C.-1+2i D.-1-2i【答案】B【解析】设z=a+bi(a,b ∈R),则2z+z =3a+bi=3-2i,故a=1,b=-2,则z=1-2i,选B. 30.(2015·全国2·理T2)若a 为实数,且(2+ai)·(a-2i)=-4i,则a=( ) A.-1 B.0 C.1 D.2【答案】B【解析】∵(2+ai)(a-2i)=4a+(a 2-4)i=-4i, ∴{4a =0,a 2-4=-4,解之,得a=0. 31.(2015·全国·文T3)已知复数z 满足(z-1)i=1+i,则z=( ) A.-2-i B.-2+i C.2-i D.2+i【答案】C【解析】∵(z-1)i=1+i, ∴z=1+ii +1=(1+i )(-i )-i 2+1=1-i+1=2-i.32.(2015·全国2·文T2)若a 为实数,且2+ai1+i=3+i,则a=( )A.-4B.-3C.3D.4【答案】D【解析】由题意,得2+ai=(3+i)(1+i)=2+4i,则a=4.33.(2015·安徽·文T1)设i 是虚数单位,则复数(1-i)(1+2i)=( ) A.3+3i B.-1+3i C.3+i D.-1+i【答案】C【解析】由复数的乘法运算法则,得(1-i)(1+2i)=1-i+2i-2i2=1+i+2=3+i,因此选C. 34.(2015·湖南·文T1)已知(1-i )2z=1+i(i 为虚数单位),则复数z=( )A.1+iB.1-iC.-1+iD.-1-i【答案】D【解析】由已知得z=(1-i )21+i=-2i 1+i =-2i (1-i )(1+i )(1-i )=-2-2i2=-1-i. 35.(2015·全国1·理T1)设复数z 满足1+z1-z =i,则|z|=( ) A.1 B.√2 C.√3 D.2【答案】A 【解析】∵1+z =i,∴z=i -1=(i -1)(-i+1)(i+1)(-i+1)=i,∴|z|=1.36.(2015·湖北·理T1)i 为虚数单位,i 607的共轭复数....为( ) A.i B.-i C.1 D.-1【答案】A【解析】∵i607=i151×4+3=i3=-i,∴i607的共轭复数为i.37.(2015·安徽·理T1)设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 【答案】B【解析】由复数除法的运算法则可得,2i1-i =2i (1+i )(1-i )(1+i )=2i -22=-1+i,对应点为(-1,1)在第二象限.故选B. 38.(2014·全国2·理T2)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( ) A.-5 B.5 C.-4+i D.-4-i【答案】A【解析】由题意知:z2=-2+i.又z1=2+i,所以z1z2=(2+i)(-2+i)=i2-4=-5.故选A.39.(2014·重庆·理T1)复平面内表示复数i(1-2i)的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 【答案】A【解析】因为i(1-2i)=i+2,其在复平面内对应的点为(2,1),位于第一象限.故选A. 40.(2014·全国1·理T2)(1+i )3(1-i )2=()A.1+iB.1-iC.-1+iD.-1-I【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=2i (1+i )-2i=-1-i.故选D.41.(2014·全国2·文T2)1+3i1-i =( ) A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】B 【解析】1+3i1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i2=-1+2i,故选B.42.(2014·全国1·文T3)设z=11+i +i,则|z|=( ) A.12B.√22C.√32D.2【答案】B 【解析】因为z=11+i +i=1-i (1+i )(1-i )+i=1-i 2+i=12+12i,所以|z|=|12+12i|=√(12)2+(12)2=√22,故选B.43.(2013·全国1·理T2)若复数z 满足(3-4i)z=|4+3i|,则z 的虚部为( ) A.-4 B.-45C.4D.45【答案】D【解析】∵(3-4i)z=|4+3i|, ∴z=53-4i =5(3+4i )(3-4i )(3+4i )=35+45i. 故z 的虚部为45,选D.44.(2013·全国2·文T2)|21+i |=( )A.2√2B.2C.√2D.1【答案】C 【解析】∵21+i =1-i,∴|21+i|=|1-i|=√2. 45.(2013·全国2·理T2)设复数z 满足(1-i)z=2i,则z=( ) A.-1+i B.-1-i C.1+i D.1-i【答案】A【解析】z=2i 1-i =2i (1+i )(1-i )(1+i )=-2+2i2=-1+i. 46.(2013·全国1·文T2)1+2i(1-i )2=()A.-1-12i B.-1+12i C.1+12i D.1-12i【答案】B 【解析】1+2i (1-i )2=1+2i-2i =(1+2i )i 2=-2+i 2=-1+12i.47.(2012·全国·理T3)下面是关于复数z=2-1+i 的四个命题: p1:|z|=2, p2:z2=2i, p3:z 的共轭复数为1+i, p4:z 的虚部为-1, 其中的真命题为( ) A.p2,p3 B.p1,p2C.p2,p4 D.p3,p4【答案】C 【解析】z=2(-1-i )(-1+i )(-1-i )=-1-i,故|z|=√2,p 1错误;z 2=(-1-i)2=(1+i)2=2i,p 2正确;z 的共轭复数为-1+i,p 3错误;p 4正确.48.(2012·全国·文T2)复数z=-3+i2+i的共轭复数是( )A.2+iB.2-iC.-1+iD.-1-i【答案】D【解析】z=-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i5=-1+i,故z 的共轭复数为-1-i.49.(2011·全国·文T2)复数5i1-2i =( )A.2-iB.1-2iC.-2+iD.-1+2i【答案】C【解析】5i 1-2i =5i (1+2i )(1-2i )(1+2i )=-10+5i5=-2+i.50.(2010·全国·理T2)已知复数z=√3+i(1-√3i )2,z 是z 的共轭复数,则z ·z =() A.1 B.1C.1D.2【答案】A【解析】∵z=√3+i (1-√3i )2=√3+i1-2√3i+3i 2 =√3+i -2-23i =√3+i √3i (-2-23i )(-2+23i )=-√34+i 4, ∴z =-√34−i 4.∴z ·z =(-√34-i 4)(-√34+i 4)=316+116=14.51.(2010·全国·文T3)已知复数z=√3+i(1-√3i )2,则|z|等于( ) A.14 B.12 C.1 D.2【答案】B【解析】z=√3+i 1+3i 2-23i =-√3+i 2+2√3i =-12×2√3-2i 4=i -√34,|z|=14×2=12.52.(2018·天津·理T9文T9)i 是虚数单位,复数6+7i1+2i = .【答案】4-i【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i+7i+145=20-5i5=4-i.53.(2019·天津·理T9文T9)i 是虚数单位,则|5-i 1+i |的值为___________.【答案】√13【解析】5-i 1+i =(5-i )(1-i )2=4-6i2=2-3i.|5-i 1+i |=√4+9=√13.54.(2019·江苏·T 2)已知复数(a+2i)(1+i)的实部为0,其中i 为虚数单位,则实数a 的值是____ .【答案】2【解析】∵(a+2i)(1+i)=a+ai+2i+2i2=a-2+(a+2)i,∴a-2=0,∴a=2.55.(2018·上海·5)已知复数z 满足(1+i)z=1-7i(i 是虚数单位),则|z|= .【答案】5【解析】因为(1+i)z=1-7i,所以|1+i||z|=|1-7i|,即√2|z|=5√2,解得|z|=5.56.(2017·浙江·12)已知a,b ∈R,(a+bi)2=3+4i(i 是虚数单位),则a2+b2=_____,ab=________.【答案】5 2【解析】由题意可得a2-b2+2abi=3+4i,则{a 2-b 2=3,ab =2,解得{a 2=4,b 2=1,则a 2+b 2=5,ab=2. 57.(2017·江苏·T 2)已知复数z=(1+i)(1+2i),其中i 是虚数单位,则z 的模是 .【答案】√10【解析】由已知得z=(1+i)(1+2i)=-1+3i,故|z|=√(-1)2+32=√10,答案为√10.58.(2017·天津·理T9文T9)已知a ∈R,i 为虚数单位,若a -i 为实数,则a 的值为 .【答案】-2【解析】∵a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15−a+25i 为实数,∴-a+25=0,即a=-2. 59.(2016·江苏·T 2)复数z=(1+2i)(3-i),其中i 为虚数单位,则z 的实部是 .【答案】5【解析】因为z=(1+2i)(3-i)=5+5i,所以z 的实部是5.60.(2016·天津·理T9)已知a,b ∈R,i 是虚数单位,若(1+i)(1-bi)=a,则ab 的值为 .【答案】2【解析】(1+i)(1-bi)=1+b+(1-b)i=a,则{1+b =a ,1-b =0,所以{a =2,b =1,即a b =2.故答案为2. 61.(2016·北京·理T9)设a ∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= .【答案】-1【解析】∵(1+i)(a+i)=a-1+(a+1)i∈R,∴a+1=0,即a=-1.62.(2015·天津·理T9)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为. 【答案】-2【解析】(1-2i)(a+i)=a+2+(1-2a)i.∵(1-2i)(a+i)是纯虚数,∴a+2=0,且1-2a≠0,∴a=-2.63.(2015·江苏·T 3)设复数z满足z2=3+4i(i是虚数单位),则z的模为.【答案】√5【解析】因为z2=3+4i,所以|z2|=√32+42=5,所以|z|=√5.64.(2015·重庆·理T11)设复数a+bi(a,b∈R)的模为√3 ,则(a+bi)(a-bi)= .【答案】3【解析】因为复数a+bi的模为√3,所以2+b2=√3,即a2+b2=3.于是(a+bi)(a-bi)=a2-(bi)2=a2+b2=3.。

2010年上海高考试题及答案

2010年上海高考试题及答案

2010年普通高等学校招生全国统一考试(上海卷)数学(理科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.不等式204xx ->+的解集是 (-4,2) 。

解析:考查分式不等式的解法204xx ->+等价于(x-2)(x+4)<0,所以-4<x<2 2.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 6-2i 。

解析:考查复数基本运算z z z ⋅+=i i i i 2621)21)(21(-=-++-3. 动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为28y x =。

解析:考查抛物线定义及标准方程定义知P 的轨迹是以(2,0)F 为焦点的抛物线,p=2所以其方程为y 2=8x4.行列式cossin 36sincos36ππππ的值是 0 。

解析:考查行列式运算法则cossin 36sincos36ππππ=02cos 6πsin 3πsin 6πcos 3πcos==-π5. 圆22:2440C x y x y +--+=的圆心到直线l:3440x y ++=的距离d =3 。

解析:考查点到直线距离公式圆心(1,2)到直线3440x y ++=距离为3542413=+⨯+⨯6. 随机变量ξ的概率分布率由下图给出:则随机变量ξ的均值是 8.2解析:考查期望定义式E ξ=7×0.3+8×0.35+9×0.2+10×0.15=8.27. 2010年上海世博会园区每天9:00开园,20:00停止入园。

在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入 S ←S+a 。

8.对任意不等于1的正数a ,函数f(x)=log (3)a x +的反函数的图像都经过点P ,则点P 的坐标是 (0,-2)解析:f(x)=log (3)a x +的图像过定点(-2,0),所以其反函数的图像过定点(0,-2) 9.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ⋃B )==726(结果用最简分数表示) 解析:考查互斥事件概率公式 P (A ⋃B )=2675213521=+ 10.在n 行n 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中, 记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。

2011年上海高考数学理科试卷(带详解)

2011年上海高考数学理科试卷(带详解)

2011年上海市高考数学试题(理科)一.填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= . 【测量目标】反函数.【考查方式】直接利用函数的表达式,解出用y 表示x 的式子,即可得到答案. 【难易程度】容易 【参考答案】12x+ 【试题解析】设12y x =-,可得21xy y -=, (步骤1) ∴12xy y =+,可得12y x y+=,将x 、y 互换得112()x f x x -+=. (步骤2)∵原函数的值域为{}|0y y y ∈≠,∴112()(0)xfx x x-+=≠. (步骤3) 2.若全集U =R ,集合{}{}=|1|0A x x x x 厔,则U A =ð .【测量目标】集合的基本运算(补集).【考查方式】集合的表示法(描述法)求集合的补集. 【难易程度】容易【参考答案】{|01}x x <<【试题解析】∵集合{}{}{}=|1|0|10A x x x xx x x = 或厔厔∴U A =ð{|01}x x <<. 3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = . 【测量目标】双曲线的简单几何性质.【考查方式】利用双曲线标准方程中的分母与焦点(非零坐标)的关系,列出关于m 的方程,通过解方程求出m 的值. 【难易程度】容易 【参考答案】16【试题解析】由于点(0,5)F 是双曲线2219y x m -=的一个焦点, 故该双曲线的焦点在y 轴上,从而0m >. 从而得出m +9=25,解得m =16. 4.不等式13x x+…的解为 . 【测量目标】解一元二次不等式.【考查方式】通过移项解一元二次不等式.【难易程度】容易【参考答案】0x <或12x …【试题解析】原不等式同解于130x x +-…,同解于(12)00x x x -⎧⎨≠⎩…,即2200x x x ⎧-⎨≠⎩…,解得 0x <或12x ….5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 . 【测量目标】简单曲线的极坐标方程.【考查方式】先转换得到直角坐标系,再利用直线的直角坐标方程求出它们的夹角即可. 【难易程度】容易 【参考答案】1arctan2【试题解析】∵(2cos sin )2ρθθ+=,cos 1ρθ=, ∴转化到直角坐标系得到:220x y +-=与x =1. (步骤1) ∴220x y +-=与x =1夹角的正切值为12, (步骤2) 直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为1arctan2.(步骤3) 6.在相距2千米的A 、B 两点处测量目标C ,若75,60CAB CBA ∠=∠= ,则A 、C 两点之间的距离是 千米.【测量目标】解三角形的实际应用.【考查方式】用三角形内角和求得ACB ∠,进而表示出AD ,进而在Rt ABD △中,表示出AB 和AD 的关系求得.【难易程度】容易【试题解析】由A 点向BC 作垂线,垂足为D ,设AC x =, (步骤1) ∵75,60CAB CBA ∠=∠= ,∴180756045ACB ∠=--=∴AD x =. (步骤2) ∴在Rt ABD △中,sin 602AB x ==(步骤3)x =. (步骤4)第6题图7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 .【测量目标】柱、锥、台、球的体积.【考查方式】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥体积. 【难易程度】容易【试题解析】根据题意,圆锥的底面面积为π,则其底面半径是1,底面周长为2π.(步骤1)又π2πrl =,∴圆锥的母线为2(步骤2)所以圆锥的体积1π3= (步骤3) 8.函数ππsin()cos()26y x x =+-的最大值为 【测量目标】三角函数的最值.【考查方式】利用诱导公式和积化和差公式对解析式化简,进而根据正弦函数的值域求得函数的最大值. 【难易程度】容易【参考答案】24+ 【试题解析】ππsin()cos()26y x x =+-=πcos cos()6x x -=1ππcos cos(2)266x ⎡⎤+-⎢⎥⎣⎦=1πcos(2)26x -. 9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E ε= .【测量目标】离散型随机变量的期望与方差.【考查方式】(1)(3)(2)1P P P εεε=+=+==,然后根据期望求法即可求得结果. 【难易程度】容易 【参考答案】2【试题解析】设(1)(3),(2),P P a P b εεε====== 则21,232(2)2a b E a b a a b ε+==++=+=.10.行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 【测量目标】矩阵与行列式.【考查方式】按照行列式的运算法则,化简得ad bc -,再根据条件进行分析计算,比较可得其最大值. 【难易程度】容易 【参考答案】6 【试题解析】a bad bc c d=-, ∵,,,{1,1,2}a b c d ∈-∴ad 的最大值是:2⨯2=4,bc 的最小值是:122-⨯=-, ∴ad bc -的最大值是6.11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD =.【测量目标】平面向量在平面几何中的应用.【考查方式】把AD 用,AB BC表示出来,利用向量的数量积的运算法则即可求得AB AD 的值.【难易程度】容易【参考答案】152【试题解析】∵3AB =,1BD =,∴D 是BC 上的三等分点, (步骤1) ∴13AD AB BD AB BC =+=+, (步骤2)∴2111115()9933322AB AD AB AD AB AB BC AB AB BC ==+=+=-⨯⨯=. (步骤3) 12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).【测量目标】古典概型.【考查方式】先求事件发生总数,再求出所求事件的对立事件总数,继而得到结果. 【难易程度】容易 【参考答案】0.985【试题解析】事件发生总数为912,至少有2位同学在同一个月出生的对立事件是没有人生日在同一个月,共有912P 种结果,∴要求的事件的概率是9129P 3850110.98512248832-=-=.13.设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 . 【测量目标】函数的周期性;函数的值域.【考查方式】根据题意条件,研究函数()()f x x g x =+的性质,得()()11f x f x +-=,由此关系求出函数值域.【难易程度】容易 【参考答案】[15,11]-【试题解析】由题意()()f x x g x -=在R 上成立, 故()()()111f x x g x +-+=+ 所以()()11f x f x +-=,由此知自变量增大1,函数值也增大1 故()f x 在[10,10]-上的值域为[15,11]-14.已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ……,则0lim ||n n Q P →∞= . 【测量目标】数列的极限与运算.【考查方式】由题意推导下去,则1122;Q R Q R 、、中必有一点在的左侧,一点在右侧,然后退出12n ,P P P ,的极限,继而求出结果. 【难易程度】中等【试题解析】由题意11(||2)(||2)0OQ OR --<,所以第一次只能取10PR 一条,22(||2)(||2)0OQ OR --<.依次下去,则1122;Q R Q R 、、…中必有一点在的左侧,一点在右侧,由于12n ,,,,P P P ,……是中点,根据题意推出12n ,P P P ,…,,…,的极限为:),所以001lim n n Q P Q P →∞==二、选择题(20分)15.若,a b ∈R ,且0ab >,则下列不等式中,恒成立的是 ( )A.222a b ab +> B.a b +… C.11a b +>D.2b a a b +… 【测量目标】基本不等式.【考查方式】根据基本不等式使用条件和定义逐个排除得到结果. 【难易程度】容易 【参考答案】D【试题解析】对于A ,222a b ab +…所以A 错;对于B ,C ,虽然0ab >,只能说明a ,b 同号,若a ,b 都小于0时,所以B ,C 错 ∵0ab >∴2b aa b+…,故选D. 16.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 ( ) A.1ln||y x = B.3y x = C.||2x y = D.cos y x = 【测量目标】函数单调性的判断;函数奇偶性的判断.【考查方式】再结合偶函数的定义判断出为偶函数;求出导函数判断出导函数的符号,判断出函数的单调性.【难易程度】容易 【参考答案】A 【试题解析】对于1ln||y x =,函数的定义域为x ∈R 且0x ≠,(步骤1) 将x 用x -代替,解析式不变,所以是偶函数. (步骤2) 当(0,)x ∈+∞时,11lnln ||y x x==,10y x '=-<∴1ln||y x =在区间(0,)+∞上单调递减的函数,故选A . (步骤3) 17.设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=成立的点M 的个数为 ( )A.0B.1C.5D.10 【测量目标】向量的线性运算.【考查方式】把M 的坐标用其他5个点的坐标表示出来,进而判断M 的坐标x 、y 的解的组数,进而转化可得答案【难易程度】容易 【参考答案】B【试题解析】根据题意,设M 的坐标为()x y ,,x 、y 解得组数即符合条件的点M 的个数, 再设12345,,,,A A A A A 的坐标依次为11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y ;若123450MA MA MA MA MA ++++= 成立,则123455x x x x x x ++++=,123455y y y y y y ++++=; 只有一组解,即符合条件的点M 有且只有一个;故选B .18.设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形面积(1,2,i = ),则{}n A 为等比数列的充要条件为 ( ) A . {}n a 是等比数列.B . 1321,,,,n a a a -……或242,,,,n a a a ……是等比数列.C . 1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列.D . 1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相同. 【测量目标】充分、必要条件;等比数列的性质.【考查方式】结合等比数列的性质,先判断必要性,再判断充分性得到结果. 【难易程度】容易 【参考答案】D【试题解析】依题意可知1i i i A a a += ,∴12i i i A a a ++= , (步骤1) 若{}n A 为等比数列则12i i i iA a q A a ++==(q 为常数),则1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比均为q ; (步骤2) 反之要想{}n A 为等比数列则12i i i iA a A a ++=需为常数,即需要1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相等;(步骤3)故{}n A 为等比数列的充要条件是1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相同. 故选D. (步骤4) 三、解答题(74分)19.(12分)已知复数1z 满足1(2)(1i)1i z -+=-(i 为虚数单位),复数2z 的虚部为2,12z z 是实数,求2z .【测量目标】复数代数形式的运算.【考查方式】利用复数的除法运算法则求出1z ,设出复数2z ;利用复数的乘法运算法则求出12z z ;利用当虚部为0时复数为实数,求出2z . 【难易程度】中等【试题解析】1(2)(1i)1i z -+=-⇒12i z =- (步骤1)设22i,z a a =+∈R ,则12(2i)(2i)(22)(4)i z z a a a =-+=++-,(步骤2) ∵ 12z z ∈R ,a =4∴ 242i z =+ (步骤3)20.(12分)已知函数()23x x f x a b =+ ,其中常数,a b 满足0ab ≠. ⑴ 若0ab >,判断函数()f x 的单调性; ⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围. 【测量目标】函数单调性的判断.【考查方式】先把0ab >分为0,0a b >>与0,0a b <<两种情况,然后根据指数函数的单调性即可作出判断;把0ab <分为0,0a b ><与0,0a b <>两种情况;然后由(1)()f x f x +>化简得223x xa b +,最后由指数函数的单调性求出x 的取值范围. 【难易程度】中等【试题解析】⑴ 当0,0a b >>时,任意1212,,x x x x ∈<R , 则121212()()(22)(33)x x x xf x f x a b -=-+-. (步骤1)∵ 121222,0(22)0xxxxa a <>⇒-<,121233,0(33)0xxxxb b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数. (步骤2) 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (步骤3) ⑵ (1)()223x x f x f x a b +-=+> (步骤4) 当0,0a b <>时,32()2xb a <-,则322log ()bx a >-; (步骤5) 当0,0a b ><时,32()2xb a >-,则322log ()bx a <-. (步骤6) 21.(14分)已知1111ABCD A BC D -是底面边长为1的正四棱柱,1O 是11AC 和11B D 的交点. ⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β.求证:tan βα=; ⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A BC D -的高.第21题图【测量目标】空间直角坐标系;点、线、面间的距离公式. 【考查方式】利用线面角及二面角的定义求出α,β;借助面面垂直找到点C 在平面11AB D 的位置,利用三角形的相似解出. 【难易程度】中等【试题解析】(1)设正四棱柱的高为h .连1AO ,1AA ⊥底面1111A B C D 于1A , ∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠=∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111AO B D ⊥, ∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===.第21题(1)图⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=设平面11AB D 的一个法向量为(,,)n x y z =,∵ 111100n AB n AB n AD n AD ⎧⎧⊥=⎪⎪⇔⎨⎨⊥=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D的距离为||43||n AC d n === ,则2h =.第21题(2)图22.(18分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n ∈N ),将集合**{|,}{|,}n n x x a n x x b n =∈=∈N N 中的元素从小到大依次排列,构成数列123,,,,,n c c c c .⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ……; ⑶ 求数列{}n c 的通项公式.【测量目标】等差数列的通项公式;数列的概念及其表示.【考查方式】利用两个数列的通项公式求出前3项,按从小到大挑出4项;对于数列{}n a ,对n 进行分类讨论,判断是否能写成27n +的形式;对{}n a 中的n 进行分类讨论,对{}n b 中的n 从被3除的情况分类讨论,判断项的大小,求出数列的通项. 【难易程度】较难【试题解析】⑴ 13169a =⨯+=,12179b =⨯+=,232612a =⨯+=,222711b =⨯+=,333612a =⨯+=,323713b =⨯+=,12349,11,12,13c c c c ====;⑵ ① 任意*n ∈N ,设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即2132n n a b --=② 假设26627n k a n b k =+==+⇔*132k n =-∈N (矛盾),∴ 2{}n n a b ∉ ∴ 在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ……. ⑶ 32212(32)763k k b k k a --=-+=+=,3165k b k -=+,266k a k =+,367k b k =+∵ 63656667k k k k +<+<+<+ ∴ 当1k =时,依次有111222334,,,b a c b c a c b c =====,…∴ *63(43)65(42),66(41)67(4)n k n k k n k c k k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩N .23.(18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30l x y --=(35x 剟)的距离(,)d P l ;⑵ 设l 是长为2的线段,求点集{|(,)D P d P l =…}1所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,l AB l CD ==, ,,,A B C D 是下列三组点中的一组.对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分.①(1,3),(1,0),(1,3),(1,0)A B C D --.②(1,3),(1,0),(1,3),(1,2)A B C D ---.③(0,1),(0,0),(0,0),(2,0)A B C D .【测量目标】点到直线的距离公式;空间中点、线、面的位置关系.【考查方式】用两点之间的距离公式求解;集合{|(,)D P d P l =}1…表示一个半圆,据此求出面积;写出两条直线的方程,从直线方程中看出这两条直线之间的平行关系,得到结果.【难易程度】较难【试题解析】⑴ 设(,3)Q x x -是线段:30l x y --=(35x 剟)上一点,则||PQ ==35x 剟),当3x =时,min (,)||d P l PQ =⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系,则(1,0),(1,0)A B -,点集D 由如下曲线围成12:1(1),:1(1)l y x l y x==-剟,221:(1)1C x y ++=,(1)x -…,222:(1)1C x y -+=,(1)x …其面积为4πS =+.第23题(2)图⑶ ① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω==第23题(3)图② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---. {}{}{}2(,)|0,0(,)|4,20(,)|10,1x y x y x y y x y x y x y x Ω===-<++=> 厔第23题(3)图③ 选择(0,1),(0,0),(0,0),(2,0)A B C D .{}{}(,)|0,0(,)|,01x y x y x y y x x Ω==< 剟?{}{}2(,)|21,12(,)|4230,2x y x y x x y x y x =-<--=> …第23题(3)图。

2008年上海市高考数学试卷(理科)答案与解析

2008年上海市高考数学试卷(理科)答案与解析

2008年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共11小题,每小题4分,满分44分)1.(4分)(2008•上海)不等式|x﹣1|<1的解集是(0,2).【考点】绝对值不等式的解法.【专题】计算题.【分析】先去掉绝对值然后再根据绝对值不等式的解法进行求解.【解答】解:∵|x﹣1|<1,∴﹣1<x﹣1<1⇒0<x<2.故答案为:(0,2).【点评】此题考查绝对值不等式的解法,解题的关键是去掉绝对值,此类题目是高考常见的题型,此题是一道基础题.2.(4分)(2008•上海)若集合A={x|x≤2}、B={x|x≥a}满足A∩B={2},则实数a=2.【考点】交集及其运算;集合的包含关系判断及应用.【专题】计算题.【分析】由题意A∩B={2},得集合B中必定含有元素2,且A,B只有一个公共元素2,可求得a即可.【解答】解:由A∩B={2},则A,B只有一个公共元素2;可得a=2.故填2.【点评】本题考查了集合的确定性、交集运算,属于基础题.3.(4分)(2008•上海)若复数z满足z=i(2﹣z)(i是虚数单位),则z=1+i.【考点】复数代数形式的混合运算.【分析】直接化简出z,然后化简表达式为a+bi(a、b∈R)即可.【解答】解:由.故答案为:1+i.【点评】本题考查复数代数形式的混合运算,是基础题.4.(4分)(2008•上海)若函数f(x)的反函数为f﹣1(x)=x2(x>0),则f(4)=2.【考点】反函数.【专题】计算题.【分析】令f(4)=t⇒f﹣1(t)=4⇒t2=4(t>0)⇒t=2.【解答】解:令f(4)=t∴f﹣1(t)=4,∴t2=4(t>0)∴t=2.答案:2.【点评】本题考查反函数的性质和应用,解题时要注意公式的灵活运用.5.(4分)(2008•上海)若向量,满足且与的夹角为,则=.【考点】平面向量数量积的运算.【分析】根据可得答案.【解答】解:∵且与的夹角为∴=7∴则=故答案为:【点评】本题主要考查向量的数量积运算,属基础题.6.(4分)(2008•上海)函数的最大值是2.【考点】三角函数的最值;运用诱导公式化简求值.【专题】计算题.【分析】先根据两角和与差的正弦公式进行化简,再由正弦函数的性质即可得到其最大值.【解答】解:由.故答案为:2【点评】本题主要考查两角和与差的正弦公式和正弦函数的性质﹣﹣最值.考查考生对正弦函数的性质的掌握和应用.三角函数式高考的一个必考点,重点在对于基础知识的考查.7.(4分)(2008•上海)在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是(结果用分数表示).【考点】等可能事件的概率.【分析】本题是一个古典概型.由题目中所给的坐标知A、C、E、F共线;B、C、D共线;六个无共线的点生成三角形总数为C63;可构成三角形的个数为C63﹣C43﹣C33【解答】解:本题是一个古典概型由题目中所给的坐标知A、C、E、F共线;B、C、D共线;∵六个无共线的点生成三角形总数为:C63;可构成三角形的个数为:C63﹣C43﹣C33=15,∴所求概率为:;故答案为:.【点评】本题考查的是概率,实际上是考查排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.8.(4分)(2008•上海)设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是(﹣1,0)∪(1,+∞).【考点】奇函数.【专题】压轴题.【分析】首先画出x∈(0,+∞)时,f(x)=lg x的图象,然后由奇函数的图象关于原点对称画出x∈(﹣∞,0)时的图象,最后观察图象即可求解.【解答】解:由题意可画出f(x)的草图观察图象可得f(x)>0的解集是(﹣1,0)∪(1,+∞)故答案为(﹣1,0)∪(1,+∞)【点评】本题考查奇函数及对数函数f(x)=lg x的图象特征,同时考查数形结合的思想方法.9.(4分)(2008•上海)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13。

历年高考试题荟萃之排列组合+高考数学排列组合常见题型及解题策略+排列组合高考题及解析

历年高考试题荟萃之排列组合+高考数学排列组合常见题型及解题策略+排列组合高考题及解析

排列与组合 第一部 六年高考荟萃2010年高考题一、选择题 1.(2010年高考山东卷理科8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有 (A )36种 (B )42种 (C)48种 (D )54种 【答案】B【解析】分两类:第一类:甲排在第一位,共有44A =24种排法;第二类:甲排在第二位,共有1333A A =18⋅种排法,所以共有编排方案241842+=种,故选B 。

【命题意图】本题考查排列组合的基础知识,考查分类与分步计数原理。

2.( 2010年高考全国卷I 理科6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种2.A【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.3.(2010年高考天津卷理科10)如图,用四种不同颜色给图中的A 、B 、C 、D 、E 、F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色。

则不同的涂色方法共有 (A ) 288种 (B )264种 (C ) 240种 (D )168种 【答案】B【解析】分三类:(1)B 、D 、E 、F 用四种颜色,则有441124A ⨯⨯=种方法; (2)B 、D 、E 、F 用三种颜色,则有3422A ⨯⨯+34212192A ⨯⨯⨯=种方法; (3)B 、D 、E 、F 用二种颜色,则有242248A ⨯⨯=,所以共有不同的涂色方法24+192+48=264种。

2010上海高考数学 专题复习 代数推理题的经典类型与解法沪教版

2010上海高考数学 专题复习 代数推理题的经典类型与解法沪教版

2010某某专题:代数推理题的经典类型与解法一.移项,数形结合例1设函数134)(,4)(2+=--+=x x g x x a x f ,已知]0,4[-∈x ,时恒有)()(x g x f ≤,求a 的取值X 围.二.构造函数,恒成立的问题, 函数最值解法例2 已知不等式32)1(log 121212111+-≥+++++a n n n a 对于大于1的正整数n 恒成立,试确定a 的取值X 围.三.分类讨论例3 已知函数)0(49433)(22>++--=b b x x x f 在区间[-b ,1-b]上的最大值为25,求b 的值.四.逆向分析法例4已知).1(1)(-≠+=x x xx f)()1(x f 求的单调区间;(2)若.43)()(:,)(1,0>+-=>>c f a f b b a c b a 求证五.数学猜想能力。

证明.对称可采用解几中的坐标证法例5 已知函数f(x)=a a a xx+(a>0,a≠1).(1) 证明函数f(x)的图象关于点P(21,21)对称.(2) 令an =)1()(n f n f a -,对一切自然数n ,先猜想使an >n2成立的最小自然数a,并证明之.(3) 求证:n n n n )(!(lg 3lg )1(41>+∈N).六.采用反证法例6对于函数)(x f ,若存在000)(,x x f R x =∈使成立,则称)(0x f x 为的不动点。

如果函数),()(2N c b c bx a x x f ∈-+=有且只有两个不动点0,2,且,21)2(-<-f(1)求函数)(x f 的解析式;(2)已知各项不为零的数列1)1(4}{=⋅nn n a f S a 满足,求数列通项n a ;(3)如果数列}{n a 满足)(,411n n a f a a ==+,求证:当2≥n 时,恒有3<n a 成立.七.赋值法例7.已知函数f(t)满足对任意实数x 、y 都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2. (1)求f(1)的值;(2)证明:对一切大于1的正整数t ,恒有f(t)>t ; (3)试求满足f(t)=t 的整数t 的个数,并说明理由.例8已知函数f (x )在(-1,1)上有定义,1)21(-=f 且满足x 、y ∈(-1,1) 有 )1()()(xy y x f y f x f ++=+.(1)证明:f (x )在(-1,1)上为奇函数;(2)对数列,12,21211nn n x x x x +==+求)(n x f ;(3)求证.252)(1)(1)(121++->+++n n x f x f x f n八.解析几何中的推理证明例9.一动圆经过点A (2,0),且在y 轴上截得的弦长为4. (1)求动圆圆心P 的轨迹方程;(2)设AO 的中点为B (其中O 为坐标原点),如果过点B 的直线l 与动圆圆心P 的轨迹相交于不同的两点C 、D ,证明:以CD 为直径的圆与一定直线相切.例10.如图,直角坐标系xOy 中,一直角三角形ABC ,∠C =90°,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,BD =3DC ,∆ABC 的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.(1)求双曲线E 的方程;(2)若一过点P (m ,0)(m 为非零常数)的直线l 与双曲线E 相交于不同于双曲线顶点的两点M 、N ,且→MP =λ→PN ,问在x 轴上是否存在定点G ,使→BC ⊥(→GM -λ→GN )?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.例11.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点A (0,2)为圆心,1为半径为圆相切,又知C 的一个焦点与A关于直线y =x 对称. (1)求双曲线C 的方程;(2)若Q 是双曲线C 上的任一点,F1、F2为双曲线C 的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N ,试求点N 的轨迹方程;(3)设直线y =mx +1与双曲线C 的左支交于A 、B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值X 围.例12.设函数f (x )的定义域为R ,当x <0时,0<f (x )<1,且对任意的实数x 、y ∈R ,有f (x +y )=f (x )f (y ). (1)求f (0);(2)试判断函数f (x )在(-∞,0]上是否存在最大值,若存在,求出该最大值,若不存在说明理由;(3)设数列{an }各项都是正数,且满足a1=f (0),f (an +12-an2)=1f (an +1-3an -2),(n ∈N*)又设bn =(12)an ,Sn =b1+b2+…+bn ,Tn =1a1a2+1a2a3+…+1anan +1,试比较Sn 与Tn 的大小.13.已知等比数列{xn }的各项为不等于1的正数,数列{yn }满足ynlogaxn =2(a >0,且a≠1),设y3=18,y6=12.(1)数列{yn }的前多少项和最大,最大值为多少?(2)试判断是否存在自然数M ,使得当n >M 时,xn >1恒成立,若存在,求出相应的M ;若不存在,请说明理由;(3)令an =logxnxn +1(n >13,n ∈N ),试比较an 与an +1的大小.例14.设对于任意实数x 、y ,函数f (x )、g (x )满足f (x +1)=13f (x ),且f (0)=3,g (x +y )=g (x )+2y ,g (5)=13,n ∈N*. (1)求数列{f (n )}、{g (n )}的通项公式; (2)设=g [n2f (n )],求数列{}的前n 项和Sn ;(3)设F (n )=Sn -3n ,是否存在整数m 和M ,使得对任意正整数n 不等式m <F (n )<M 恒成立?若存在,分别求出m 和M 的集合,并求出M -m 的最小值;若不存在,请说明理由.例15.已知F1、F2分别是椭圆x2a2+y2b2=1(a >b >0)的左、右焦点,P 是此椭圆的一动点,并且→PF1⋅→PF2的取值X 围是[-43,43].(1)求此椭圆的方程;(2)点A 是椭圆的右顶点,直线y =x 与椭圆交于B 、C 两点(C 在第一象限内),又P 、Q 是椭圆上两点,并且满足(→CP |→CP |+→CQ |→CQ |)⋅→F1F2=0,求证:向量→PQ 与→AB 共线.例16.设f (n ,p )=C p2n (n ,p ∈N ,p ≤2n ).数列{a (n ,p )}满足a (1,p )+a (2,p )+…+a (n ,p )=f (n ,p ). (1)求证:{a (n ,p )}是等差数列;(2)求证:f (n ,1)+f (n ,2)+…+f (n ,n )=22n -1+12C n2n-1;(3)设函数H (x )=f (n ,1)x +f (n ,2)x2+…+f (n ,2n )x2n ,试比较H (x )-H (a )与2n (1+a )2n -1(x -a )的大小.例17.已知系统M 是由6条网线并联而成,且这6条网线能通过的信息量个数分别为1,1,2,2,3,3。

2009年上海市高考数学试卷(理科)及答案

2009年上海市高考数学试卷(理科)及答案

2009年上海市高考数学试卷(理科)一、填空题(共14小题,每小题4分,满分56分)1.(4分)若复数z满足z(1+i)=1﹣i(I是虚数单位),则其共轭复数=.2.(4分)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是.3.(4分)若行列式中,元素4的代数余子式大于0,则x满足的条件是.4.(4分)某算法的程序框如下图所示,则输出量y与输入量x满足的关系式是.5.(4分)如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是(结果用反三角函数值表示).6.(4分)函数y=2cos2x+sin2x的最小值是.7.(4分)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ(结果用最简分数表示).8.(4分)已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S1,S2,S3,满足的等量关系是.9.(4分)已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C 上一点,且.若△PF1F2的面积为9,则b=.10.(4分)在极坐标系中,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积等于.11.(4分)当时,不等式sinπx≥kx恒成立.则实数k的取值范围是.12.(4分)已知函数f(x)=sinx+tanx,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,则当k=时,f(a k)=0.13.(4分)某地街道呈现东﹣西、南﹣北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(﹣2,2),(3,1),(3,4),(﹣2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)为发行站,使6个零售点沿街道到发行站之间路程的和最短.14.(4分)将函数(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则α的最大值为.二、选择题(共4小题,每小题4分,满分16分)15.(4分)“﹣2≤a≤2”是“实系数一元二次方程x2+ax+1=0有虚根”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件16.(4分)若事件E与F相互独立,且P(E)=P(F)=,则P(E∩F)的值等于()A.0 B.C.D.17.(4分)有专业机构认为甲型N1H1流感在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过15人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为318.(4分)过圆C:(x﹣1)2+(y﹣1)2=1的圆心,作直线分别交x、y正半轴+S IV=S||+S|||于点A、B,△AOB被圆分成四部分(如图),若这四部分图形面积满足S|则直线AB有()A.0条 B.1条 C.2条 D.3条三、解答题(共5小题,满分78分)19.(14分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1﹣A1C﹣C1的大小.20.(16分)有时可用函数f(x)=,描述学习某学科知识的掌握程度.其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.21.(16分)已知双曲线,设直线l过点,(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.22.(16分)已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f﹣1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f﹣1(ax)互为反函数,则称y=f(x)满足“a积性质”.(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;(2)求所有满足“2和性质”的一次函数;(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.23.(16分)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?说明理由;(2)找出所有数列{a n}和{b n},使对一切n∈N*,,并说明理由;(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明.2009年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题4分,满分56分)1.(4分)(2009•上海)若复数z满足z(1+i)=1﹣i(I是虚数单位),则其共轭复数=i.【分析】本题考查的知识点是共轭复数的定义,由复数z满足z(1+i)=1﹣i,我们可能使用待定系数法,设出z,构造方程,求出z值后,再根据共轭复数的定义,计算【解答】解:设z=a+bi,则∵(a+bi)(1+i)=1﹣i,即a﹣b+(a+b)i=1﹣i,由,解得a=0,b=﹣1,所以z=﹣i,=i,故答案为i.2.(4分)(2009•上海)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是a≤1.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图,故当a≤1时,命题成立.故答案为:a≤1.3.(4分)(2009•上海)若行列式中,元素4的代数余子式大于0,则x 满足的条件是x>且x≠4.【分析】根据3阶行列式D的元素a ij的余子式M ij附以符号(﹣1)i+j后,叫做元素a ij的代数余子式,所以4的余子式加上(﹣1)1+1即为元素4的代数余子式,让其大于0列出关于x的不等式,求出不等式的解集即可得到x的范围.【解答】解:依题意得,(﹣1)2>0,即9x﹣24>0,解得x>,且x≠4,故答案为:x>且x≠44.(4分)(2009•上海)某算法的程序框如下图所示,则输出量y与输入量x满足的关系式是.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是根据输入x值的不同,根据不同的式子计算函数值.即求分段函数的函数值.【解答】解:根据流程图所示的顺序,程序的作用是分段函数的函数值.其中输出量y与输入量x满足的关系式是故答案为:5.(4分)(2009•上海)如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是arctan(结果用反三角函数值表示).【分析】先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在直角三角形中求出正切值,再用反三角函数值表示出这个角即可.【解答】解:先画出图形将AD平移到BC,则∠D1BC为异面直线BD1与AD所成角,BC=2,D1C=,tan∠D1BC=,∴∠D1BC=arctan,故答案为arctan.6.(4分)(2009•上海)函数y=2cos2x+sin2x的最小值是.【分析】先利用三角函数的二倍角公式化简函数,再利用公式化简三角函数,利用三角函数的有界性求出最小值.【解答】解:y=2cos2x+sin2x=1+cos2x+sin2x=1+=1+当=2k,有最小值1﹣故答案为1﹣7.(4分)(2009•上海)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ(结果用最简分数表示).【分析】用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,结合变量对应的事件写出分布列当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,求出期望.【解答】解:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,∴Eξ=0×=.故答案为:8.(4分)(2009•上海)已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S 1,S2,S3,满足的等量关系是.【分析】表示出三个球的表面积,求出三个半径,利用R1+2R2=3R3,推出结果.【解答】解:因为S 1=4πR12,所以,同理:,即R1=,R2=,R3=,由R 1+2R2=3R3,得故答案为:9.(4分)(2009•上海)已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=3.【分析】由已知得|PF1|+|PF2|=2a,=4c2,,由此能得到b的值.【解答】解:∵F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C 上一点,且.∴|PF1|+|PF2|=2a,=4c2,,∴(|PF1|+|PF2|)2=4c2+2|PF1||PF2|=4a2,∴36=4(a2﹣c2)=4b2,∴b=3.故答案为3.10.(4分)(2009•上海)在极坐标系中,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积等于.【分析】三条直线化为直角坐标方程,求出三角形的边长,然后求出图形的面积.【解答】解:三条直线θ=0,,ρcosθ+ρsinθ=1的直角坐标方程分别为:y=0,y=x,x+y=1,所以它们的交点坐标分别为O(0,0),A(1,0),B(,),OB==,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积S==.故答案为:.11.(4分)(2009•上海)当时,不等式sinπx≥kx恒成立.则实数k的取值范围是k≤2.【分析】要使不等式sinπx≥kx恒成立,设m=sinπx,n=kx,利用图象得到k的范围即可.【解答】解:设m=sinπx,n=kx,x∈[0,].根据题意画图得:m≥n恒成立即要m的图象要在n图象的上面,当x=时即πx=时相等,所以此时k==2,所以k≤2故答案为k≤212.(4分)(2009•上海)已知函数f(x)=sinx+tanx,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,则当k=14时,f(a k)=0.【分析】本题考查的知识点是函数的奇偶性及对称性,由函数f(x)=sin x+tan x,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f (a2)+…f(a27)=0,我们易得a1,a2,…,a27前后相应项关于原点对称,则f (a14)=0,易得k值.【解答】解:因为函数f(x)=sinx+tanx是奇函数,所以图象关于原点对称,图象过原点.而等差数列{a n}有27项,a n∈().若f(a1)+f(a2)+f(a3)+…+f(a27)=0,则必有f(a14)=0,所以k=14.故答案为:1413.(4分)(2009•上海)某地街道呈现东﹣西、南﹣北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(﹣2,2),(3,1),(3,4),(﹣2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)(3,3)为发行站,使6个零售点沿街道到发行站之间路程的和最短.【分析】设发行站的位置为(x,y),则可利用两点间的距离公式表示出零售点到发行站的距离,进而求得在(3,3)处z取得最小值.【解答】解:设发行站的位置为(x,y),6个零售点到发行站的距离为Z,则z=|x+2|+|y﹣2|+|x﹣3|+|y﹣1|+|x﹣3|+|y﹣4|+|x+1|+|y﹣3|+|x﹣4|+|y﹣5|+|x﹣6|+|y﹣6|=|x+2|+|x﹣3|+|x﹣3|+|x+1|+|x﹣4|+|x﹣6|+|y﹣2|+|y﹣1|+|y﹣4|+|y﹣3|+|y﹣5|+|y﹣6|x=3,3≤y<4时,取最小值,∴在(3,3)处z取得最小值.故答案为(3,3).14.(4分)(2009•上海)将函数(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则α的最大值为arctan.【分析】先画出函数(x∈[0,6])的图象,然后根据由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象,求出此角即可.【解答】解:先画出函数(x∈[0,6])的图象这是一个圆弧,圆心为M(3,﹣2)由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象∴∠MAB=arctan故答案为:arctan二、选择题(共4小题,每小题4分,满分16分)15.(4分)(2009•上海)“﹣2≤a≤2”是“实系数一元二次方程x2+ax+1=0有虚根”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件【分析】实系数一元二次方程x2+ax+1=0有虚根⇒△=a2﹣4<0⇒﹣2<a<2,由此入手能够作出正确选择.【解答】解:∵实系数一元二次方程x2+ax+1=0有虚根,∴△=a2﹣4<0,解得﹣2<a<2,∴“﹣2≤a≤2”是“﹣2<a<2”的必要不充分条件,故选A.16.(4分)(2009•上海)若事件E与F相互独立,且P(E)=P(F)=,则P (E∩F)的值等于()A.0 B.C.D.【分析】本题考查的知识点是相互独立事件的概率乘法公式,由相互独立事件的概率计算公式,我们易得P(E∩F)=P(E)•P(F),将P(E)=P(F)=代入即可得到答案.【解答】解:P(E∩F)=P(E)•P(F)=×=.故选B.17.(4分)(2009•上海)有专业机构认为甲型N1H1流感在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过15人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3【分析】平均数和方差都是重要的数字特征,是对总体的一种简单的描述,平均数描述集中趋势,方差描述波动大小.【解答】解:假设连续10天,每天新增疑似病例的人数分别为x1,x2,x3,…x10.并设有一天超过15人,不妨设第一天为16人,根据计算方差公式有s2=[(16﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x10﹣5)2]>12,说明乙地连续10天,每天新增疑似病例的人数都不超过15人.故选:B.18.(4分)(2009•上海)过圆C:(x﹣1)2+(y﹣1)2=1的圆心,作直线分别交x、y正半轴于点A、B,△AOB被圆分成四部分(如图),若这四部分图形面积满足S|+S IV=S||+S|||则直线AB有()A.0条 B.1条 C.2条 D.3条【分析】由圆的方程得到圆心坐标和半径,根据四部分图形面积满足S|+S IV=S||+S|||,得到S IV﹣S II=SⅢ﹣S I,第II,IV部分的面积是定值,所以三角形FCB 减去三角形ACE的面积为定值即SⅢ﹣S I为定值,所以得到满足此条件的直线有且仅有一条,得到正确答案.【解答】解:由已知,得:S IV﹣S II=SⅢ﹣S I,由图形可知第II,IV部分的面积分别为S正方形OECF ﹣S扇形ECF=1﹣和S扇形ECF=,所以,S IV﹣S II为定值,即SⅢ﹣S I为定值,当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条.故选B.三、解答题(共5小题,满分78分)19.(14分)(2009•上海)如图,在直三棱柱ABC﹣A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1﹣A1C﹣C1的大小.【分析】建立空间直角坐标系,求出2个平面的法向量的坐标,设二面角的大小为θ,显然θ为锐角,设2个法向量的夹角φ,利用2个向量的数量积可求cosφ,则由cosθ=|cosφ|求出二面角的大小θ.【解答】解:如图,建立空间直角坐标系.则A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),设AC的中点为M,∵BM⊥AC,BM⊥CC1.∴BM⊥平面A1C1C,即=(1,1,0)是平面A1C1C的一个法向量.设平面A1B1C的一个法向量是n=(x,y,z).=(﹣2,2,﹣2),=(﹣2,0,0),∴令z=1,解得x=0,y=1.∴n=(0,1,1),设法向量n与的夹角为φ,二面角B1﹣A1C﹣C1的大小为θ,显然θ为锐角.∵cosθ=|cosφ|==,解得:θ=.∴二面角B1﹣A1C﹣C1的大小为.20.(16分)(2009•上海)有时可用函数f(x)=,描述学习某学科知识的掌握程度.其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.【分析】(1)x≥7时,作差求出增长量f(x+1)﹣f(x),研究其单调性知,差是一个减函数,故掌握程度的增长量总是下降、(2)学习某学科知识6次时,掌握程度是85%,故得方程由此方程解出a的值即可确定相应的学科.【解答】证明:(1)当x≥7时,而当x≥7时,函数y=(x﹣3)(x﹣4)单调递增,且(x﹣3)(x﹣4)>0故函数f(x+1)﹣f(x)单调递减当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降(2)由题意可知整理得解得(13分)由此可知,该学科是乙学科..(14分)21.(16分)(2009•上海)已知双曲线,设直线l过点,(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.【分析】(1)先求出双曲线的渐近线方程,进而可得到直线l的斜率,然后根据直线l过点求出直线l的方程,再由平行线间的距离公式可求直线l的方程及l与m的距离.(2)设过原点且平行于l的直线方程利用直线与直线的距离求得l与b的距离,当k>时,可推断出,利用双曲线的渐近线方程可知双曲线C的右支在直线b的右下方,进而推断出双曲线C的右支上的任意点到直线l的距离大于,进而可知故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.【解答】解:(1)双曲线C的渐近线,即∴直线l的方程∴直线l与m的距离.(2)设过原点且平行于l的直线b:kx﹣y=0,则直线l与b的距离d=,当时,.又双曲线C的渐近线为,∴双曲线C的右支在直线b的右下方,∴双曲线C的右支上的任意点到直线l的距离大于.故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.22.(16分)(2009•上海)已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f﹣1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f﹣1(ax)互为反函数,则称y=f(x)满足“a积性质”.(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;(2)求所有满足“2和性质”的一次函数;(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.【分析】(1)先求出g﹣1(x)的解析式,换元可得g﹣1(x+1)的解析式,将此解析式与g(x+1)的作对比,看是否满足互为反函数.(2)先求出f﹣1(x)的解析式,再求出f﹣1(x+2)的解析式,再由f(x+2)的解析式,求出f﹣1(x+2)的解析式,用两种方法得到的f﹣1(x+2)的解析式应该相同,解方程求得满足条件的一次函数f(x)的解析式.(3)设点(x0,y0)在y=f(ax)图象上,则(y0,x0)在函数y=f﹣1(ax)图象上,可得ay0=f(x0)=af(ax0),,即,即满足条件.【解答】解(1)函数g(x)=x2+1(x>0)的反函数是,∴,而g(x+1)=(x+1)2+1(x>﹣1),其反函数为,故函数g(x)=x2+1(x>0)不满足“1和性质”.(2)设函数f(x)=kx+b(x∈R)满足“2和性质”,k≠0.∴,∴,而f(x+2)=k(x+2)+b(x∈R),得反函数,由“2和性质”定义可知,对(x∈R)恒成立.∴k=﹣1,b∈R,即所求一次函数f(x)=﹣x+b(b∈R).(3)设a>0,x0>0,且点(x0,y0)在y=f(ax)图象上,则(y0,x0)在函数y=f﹣1(ax)图象上,故,可得ay0=f(x0)=af(ax0),令ax0=x,则,∴,即.综上所述,,此时,其反函数是,而,故y=f(ax)与y=f﹣1(ax)互为反函数.23.(16分)(2009•上海)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?说明理由;(2)找出所有数列{a n}和{b n},使对一切n∈N*,,并说明理由;(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明.【分析】(1)由a m+a m+1=a k,得6m+5=3k+1,,由m、k∈N*,知k﹣2m 为整数,所以不存在m、k∈N*,使等式成立.(2)设a n=nd+c,若,对n∈N×都成立,且{b n}为等比数列,则,对n∈N×都成立,由此入手能够导出有a n=c≠0,b n=1,使对一切n∈N×,.(3)a n=4n+1,b n=3n,n∈N*,设a m+1+a m+2++a m+p=b k=3k,p、k∈N*,m∈N.4m+2p+3+,由p、k∈N*,知p=3s,s∈N.由此入手能导出当且仅当p=3s,s ∈N,命题成立.【解答】解:(1)由a m+a m+1=a k,得6m+5=3k+1,整理后,可得,∵m、k∈N*,∴k﹣2m为整数,∴不存在m、k∈N*,使等式成立.(2)设a n=nd+c,若,对n∈N×都成立,且{b n}为等比数列,则,对n∈N×都成立,即a n a n+2=qa n+12,∴(dn+c)(dn+2d+c)=q(dn+d+c)2,对n∈N×都成立,∴d2=qd2(i)若d=0,则a n=c≠0,∴b n=1,n∈N*.(ii)若d≠0,则q=1,∴b n=m(常数),即=m,则d=0,矛盾.综上所述,有a n=c≠0,b n=1,使对一切n∈N×,.(3)a n=4n+1,b n=3n,n∈N*,+a m+2++a m+p=b k=3k,p、k∈N*,m∈N.设a m+1,∴,∵p、k∈N*,∴p=3s,s∈N取k=3s+2,4m=32s+2﹣2×3s﹣3=(4﹣1)2s+2﹣2×(4﹣1)s﹣3≥0,由二项展开式可得整数M1、M2,使得(4﹣1)2s+2=4M1+1,2×(4﹣1)s=8M2+(﹣1)S2∴4m=4(M1﹣2M2)﹣((﹣1)S+1)2,∴存在整数m满足要求.故当且仅当p=3s,s∈N,命题成立.。

2024年上海高考真题数学(含解析)

2024年上海高考真题数学(含解析)

2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。

2010年上海高考数学试卷

2010年上海高考数学试卷

2010年上海高考数学试卷2010年高考数学:理科:上海试题一、填空题(本大题满分56分,每小题4分)2,x1(不等式的解集是_______________( ,0x,42(若复数z,1,2i(i为虚数单位),则,_______________( zzz,,3(动点P到点F(2,0)的距离与它到直线x,2,0的距离相等,则点P的轨迹方程为_________(,,cossin364(行列式的值是_______________( ,,sincos3622开始 5(圆C:x,y,2x,4y,4,0的圆心到直线3x,4y,4,0的距离d,_______________(T?9,S?0 6(随机变量的概率分布由下表给出: ,x 7 8 9 10输出T,S =x) P(,0.2 0.35 0.15 0.3否则该随机变量的均值是_______________( ,T?19 7(2010年上海世博会园区每天9:00开园,20:00停止入园(在右边是的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框T?T,1内应填入_______________(8(对于不等于1的正数a,函数f(x),log(x,3)的反函数的图像都经a输入a 过点P,则点P的坐标为_______________(9(从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率______________(结果用最简分数表示)( PAB(),结束 12321nnn,,,,,,23411nn,,,,,10(在n行n列矩阵中,记位于34512n,,,,,,nnnn12321,,,,,第i行第j列的数为a(i,j,1,2,???,n)(当n,9时,a,a,a,???,a,_______________( ij1122339911(将直线l:nx,y,n,0、l:x,ny,n,0(n,N*)、x 轴、y轴围成12D C 的封闭区域的面积记为S, n则,_______________( limSn,,nO 12(如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去,AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A(B)、C、D、O为顶点的四面体的体积B A是_______________(2x2y ,,,:1y13(如图所示,直线x,2与双曲线的渐近线交于4E1 OEe,OEe,,、两点,记,,任取双曲线上的EE221112x O OPaebeabR,,,(,)点P,若, 12E2 则a、b满足的一个等式是_______________(14(从集合的子集中选出4个不同的子集, Uabcd,{,,,}需同时满足以下两个条件:(1) 都要选出;(2)对选出的任意两个子集A和B,必有或( ,,UAB,AB,那么,共有___________种不同的选择(二、选择题(本大题满分20分,每小题5分),(k,Z)”是“tanx,1”成立的15(“xk,,2,4( )A(充分不必要条件 B(必要不充分条件 C(充要条件 D(既不充分也不必要条件xt,,12,()t,R16(直线l的参数方程是,则l的方向向量可以是 d,yt,,2, ( )A((1,2) B((2,1) C((,2,1) D((1,,2)x11,,3,x17(若x是方程的解,则x属于区间 ( ) 00,,2,,212111,,,,,,,,A( B( C( D( ,,1,0,,,,,,,,,323323,,,,,,,,11118(某人要作一个三角形,要求它的三条高的长度分别是、、,则此人将51311( )A(不能作出满足要求的三角形 B(作出一个锐角三角形 C(作出一个直角三角形D(作出一个钝角三角形三、解答题(本大题满分74分)19((本题满分12分)x,,20,,xlg(costan12sin)lg[2cos()]lg(1sin2)xxxx,,,,,,,已知,化简:( 22420((本题满分13分)第1小题满分5分,第2小题满分8分(已知数列{a}的前n项和为S,且S,n,5a,85,n,N*( nnnn(1) 证明:{a,1}是等比数列; n(2) 求数列{S}的通项公式,并指出n为何值时,S取得最小值,并说明理由( nn20((本题满分14分)第1小题满分5分,第2小题满分8分(如图所示,为了制作一个圆柱形灯笼,先要制作4个全BB7 8 等的矩形骨架,总计耗用9.6米铁丝(骨架将圆柱底面8等B6 B1 分(再用S平方米塑料片制成圆柱的侧面和下底面(不安装B上底面)( 5 B2 BB(1) 当圆柱底面半径r取何值时,S取得最大值,并求出3 4 该最大值(结果精确到0.01平方米);(2) 在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯(当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯AB、AB所在异面直线所成角的大小(结果用反三角函数值1335AA8 7 A6 表示)( A1A5 A2 AA4 322((本题满分18分)第1小题满分3分,第2小题满分5分,第3小题满分10分(若实数x、y、m满足|x,m|,|y,m|,则称x比y远离m(2(1) 若x,1比1远离0,求x的取值范围;3322(2) 对任意两个不相等的正数a、b,证明:a,b比ab,ab远离; 2ababk,,(3) 已知函数f(x)的定义域Dxxkx,,,,,{|,,}ZR(任取x,D,f(x)等于sinx和24cosx中远离0的那个值(写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明)23((本题满分18分)第1小题满分3分,第2小题满分6分,第3小题满分9分(22xy,,,,1(0)ab,已知椭圆的方程为,点P的坐标为(,a,b)( 22ab1A(0,,b)、B(a,0)满足,求点M的坐标; (1) 若直角坐标平面上的点M、PMPAPB,,()22bkk,,,(2) 设直线l:y,kx,p交椭圆Γ于C、D两点,交直线l:y,kx于点E(若, 1122122a证明:E为CD的中点;(3) 对于椭圆Γ上的点Q(acos, ,bsin, )(0<, <,),如果椭圆Γ上存在不同的两点P、P12PPPPPQ,,使,写出求作点P、P的步骤,并求出使P、P存在的, 的取值范围( 121212答案\一、填空题21((,4,2); 2(6,2i; 3(y,8x; 4(0; 5(3; 6(8.2; 7(S?S,a;7828((0,,2); 9(; 10(45; 11(1; 12(; 13(4ab,1; 14(36( 263二、选择题15(A; 16(C; 17(C; 18(D( 三、解答题219(原式,lg(sinx,cosx),lg(cosx,sinx),lg(sinx,cosx),0(5aa,,,20((1) 当n,1时,a,,14;当n?2时,a,S,S,,5a,5a,1,所以,1(1)1nnn,1nn,1nn,16又a,1,,15?0,所以数列{a,1}是等比数列; 1nn,1n,1n,1555,,,,,,a,,,,115a,,,115Sn,,,,7590(2) 由(1)知:,得,从而(n,N*); nn,,,,n,,666,,,,,,n,1522,,解不等式S<S,得,,,当n?15时,数列{S}单调递增;n,,,log114.9nn,1n,,56525,,6同理可得,当n?15时,数列{S}单调递减;故当n,15时,S取得最小值( nn 221((1) 设圆柱形灯笼的母线长为l,则l,1.2,2r(0<r<0.6),S,,3,(r,0.4),0.48,,所以当r,0.4时,S取得最大值约为1.51平方米;AB,,(0.3,0.3,0.6)AB,,,(0.3,0.3,0.6)(2) 当r,0.3时,l,0.6,建立空间直角坐标系,可得,, 1335,ABAB21335,ABAB设向量与的夹角为,,则cos,,, 13353||||ABAB,13352所以AB所在异面直线所成角的大小为( B、Aarccos13353x,,,,,,(,2)(2.)22((1) ;3322(2) 对任意两个不相等的正数a、b,有,,ababab,,2abababab,,233222|2||2|()()0ababababababababab,,,,,,,,,因为, 33223322|2||2|ababababababab,,,,,所以,即a,b比ab,ab远离;2abab,,3,sin,(,)xxkk,,,,,,,44(3) , fx(),,,,,cos,(,)xxkk,,,,,,,44,T性质:1:f(x)是偶函数,图像关于y轴对称,2:f(x)是周期函数,最小正周期,, 2kk,,,kk,,,3:函数f(x)在区间(,],单调递增,在区间[,),单调递减,k,Z,24222424:函数f(x)的值域为( (,1]2ab23((1) M(,),; 22ykxp,,,1,2222222222()2()0akbxakpxapb,,,,,(2) 由方程组,消y得方程, ,xy11,,1,22ab,D,lykxp:,,因为直线交椭圆于、两点, C112222akbp,,,0所以,>0,即, 1设C(x,y)、D(x,y),CD中点坐标为(x,y), 1122002,xxakp,121x,,,,02222akb,,1则, ,2bp,ykxp,,,010222,akb,,1ykxp,,,1由方程组,消y得方程(k,k)x,p, 21,ykx,2,2,akpp1xx,,,,,02222kkakb,,b,211又因为,所以,k,,,222akbp,1ykxy,,,20222,akb,1,故E为CD的中点;ab(1cos)(1sin),,,,(3) 求作点P、P的步骤:1:求出PQ的中点, E(,),1222 b(1sin),,2:求出直线OE的斜率, k,,2a(1cos),,2bb(1cos),,PPPPPQ,,3:由知E为CD的中点,根据(2)可得CD的斜率,k,,,1212aka(1sin),,2bba(1sin)(1cos)(1cos),,,,,,4:从而得直线CD的方程:, yx,,,()2(1sin)2a,,5:将直线CD与椭圆Γ的方程联立,方程组的解即为点P、P的坐标( 12欲使P、P存在,必须点E在椭圆内, 1222(1cos)(1sin),,,,1,2,,1所以,化简得,,,,,, sincos,,sin(),44244 ,,,3,,2又0<, <,,即,,,,,所以, ,,,,,arcsin,444444,2故, 的取值范围是( ,(0,arcsin)44。

2013年上海市高考数学试卷(理科)答案与解析

2013年上海市高考数学试卷(理科)答案与解析

2013年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2013•上海)计算:=.考点:数列的极限.专题:计算题.分析:由数列极限的意义即可求解.解答:解:==,故答案为:.点评:本题考查数列极限的求法,属基础题.2.(4分)(2013•上海)设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.考点:复数的基本概念.专题:计算题.分析:根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.解答:解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.点评:本题主要考查复数的基本概念,得到m2+m﹣2=0,m2﹣1≠0,是解题的关键,属于基础题.3.(4分)(2013•上海)若=,x+y=0.考点:二阶行列式的定义.专题:常规题型.分析:利用行列式的定义,可得等式,配方即可得到结论.解答:解:∵=,∴x2+y2=﹣2xy∴(x+y)2=0∴x+y=0故答案为0点评:本题考查二阶行列式的定义,考查学生的计算能力,属于基础题.4.(4分)(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2﹣3c2=0,则角C的大小是.考点:余弦定理.专题:解三角形.分析:把式子3a2+2ab+3b2﹣3c2=0变形为,再利用余弦定理即可得出.解答:解:∵3a2+2ab+3b2﹣3c2=0,∴,∴==.∴C=.故答案为.点评:熟练掌握余弦定理及反三角函数是解题的关键.5.(4分)(2013•上海)设常数a∈R,若的二项展开式中x7项的系数为﹣10,则a=﹣2.考点:二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.解答:解:的展开式的通项为T r+1=C5r x10﹣2r()r=C5r x10﹣3r a r令10﹣3r=7得r=1,∴x7的系数是aC51∵x7的系数是﹣10,∴aC51=﹣10,解得a=﹣2.故答案为:﹣2.点评:本题主要考查了二项式系数的性质.二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(4分)(2013•上海)方程+=3x﹣1的实数解为log34.考点:函数的零点.专题:函数的性质及应用.分析:化简方程+=3x﹣1为=3x﹣1,即(3x﹣4)(3x+2)=0,解得3x=4,可得x的值.解答:解:方程+=3x﹣1,即=3x﹣1,即8+3x=3x﹣1(3x+1﹣3),化简可得32x﹣2•3x﹣8=0,即(3x﹣4)(3x+2)=0.解得3x=4,或3x=﹣2(舍去),∴x=log34,故答案为log34.点评:本题主要考查指数方程的解法,指数函数的值域,一元二次方程的解法,属于基础题.7.(4分)(2013•上海)在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为.考点:点的极坐标和直角坐标的互化;两点间的距离公式.专题:计算题.分析:联立ρ=cosθ+1与ρcosθ=1消掉θ即可求得ρ,即为答案.解答:解:由ρ=cosθ+1得,cosθ=ρ﹣1,代入ρcosθ=1得ρ(ρ﹣1)=1,解得ρ=或ρ=(舍),所以曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为,故答案为:.点评:本题考查两点间距离公式、极坐标与直角坐标的互化,属基础题.8.(4分)(2013•上海)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:利用组合知识求出从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数,再求出从5个奇数中任意取出2个奇数的取法种数,求出取出的两个球的编号之积为奇数的概率,利用对立事件的概率求出取出两个球的编号之积为偶数的概率.解答:解:从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数为种.取出的两个球的编号之积为奇数的方法种数为种.则取出的两个球的编号之积为奇数的概率为.所以取出两个球的编号之积为偶数的概率是.故答案为点评:本题考查了古典概型及其概率计算公式,考查了简单的排列组合知识,考查了对立事件的概率,解答的关键是明确取到的两数均为奇数时其乘积为奇数,是基础题.9.(4分)(2013•上海)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.考点:椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.解答:解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(﹣1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.点评:本题考查椭圆的定义、解三角形,以及椭圆的简单性质的应用.10.(4分)(2013•上海)设非零常数d是等差数列x1,x2,…,x19的公差,随机变量ξ等可能地取值x1,x2,…,x19,则方差Dξ=30d2.考点:极差、方差与标准差.专题:概率与统计.分析:利用等差数列的前n项和公式可得x1+x2+…+x19=和数学期望的计算公式即可得出Eξ,再利用方差的计算公式即可得出Dξ=即可得出.解答:解:由题意可得Eξ===x1+9d.∴x n﹣Eξ=x1+(n﹣1)d﹣(x1+9d)=(n﹣10)d,∴Dξ=+…+(﹣d)2+0+d2+(2d)2+…+(9d)2]===30d2.故答案为:30d2.点评:熟练掌握等差数列的前n项和公式、数学期望和方差的计算公式是解题的关键.11.(4分)(2013•上海)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)=.考点:三角函数的和差化积公式;两角和与差的余弦函数.专题:三角函数的求值.分析:利用两角差的余弦公式及cosxcosy+sinxsiny=,可得cos(x﹣y)=,再利用和差化积公式sin2x+sin2y=,得到2sin(x+y)cos(x﹣y)=,即可得出sin(x+y).解答:解:∵cosxcosy+sinxsiny=,∴cos(x﹣y)=.∵sin2x+sin2y=,∴sin[(x+y)+(x﹣y)]+sin[(x+y)﹣(x﹣y)]=,∴2sin(x+y)cos(x﹣y)=,∴,∴sin(x+y)=.故答案为.点评:熟练掌握两角和差的正弦余弦公式及和差化积公式是解题的关键.12.(4分)(2013•上海)设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f (x)=9x++7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为..考点:函数奇偶性的性质;基本不等式.专题:函数的性质及应用.分析:先利用y=f(x)是定义在R上的奇函数求出x≥0时函数的解析式,将f(x)≥a+1对一切x≥0成立转化为函数的最小值≥a+1,利用基本不等式求出f(x)的最小值,解不等式求出a的范围.解答:解:因为y=f(x)是定义在R上的奇函数,所以当x=0时,f(x)=0;当x>0时,则﹣x<0,所以f(﹣x)=﹣9x﹣+7因为y=f(x)是定义在R上的奇函数,所以f(x)=9x+﹣7;因为f(x)≥a+1对一切x≥0成立,所以当x=0时,0≥a+1成立,所以a≤﹣1;当x>0时,9x+﹣7≥a+1成立,只需要9x+﹣7的最小值≥a+1,因为9x+﹣7≥2=6|a|﹣7,所以6|a|﹣7≥a+1,解得,所以.故答案为:.点评:本题考查函数解析式的求法;考查解决不等式恒成立转化成求函数的最值;利用基本不等式求函数的最值.13.(4分)(2013•上海)在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y 轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为2π2+16π.考点:进行简单的合情推理.专题:计算题;压轴题;阅读型.分析:由题目给出的Ω的水平截面的面积,可猜想水平放置的圆柱和长方体的量,然后直接求出圆柱的体积与长方体的体积作和即可.解答:解:因为几何体为Ω的水平截面的截面积为4+8π,该截面的截面积由两部分组成,一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于4,看作是把一个半径为1,高为2π的圆柱平放得到的,如图所示,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即Ω的体积为π•12•2π+2•8π=2π2+16π.故答案为2π2+16π.点评:本题考查了简单的合情推理,解答的关键是由几何体Ω的水平截面面积想到水平放置的圆柱和长方体的有关量,是中档题.14.(4分)(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0=2.考点:反函数;函数的零点.专题:压轴题;函数的性质及应用.分析:根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f (x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.解答:解:因为g(I)={y|y=g(x),x∈I},f﹣1([0,1))=[1,2),f﹣1(2,4])=[0,1),所以对于函数f(x),当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)﹣x=0即f(x)=x无解;当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)﹣x=0即f(x)=x无解;所以当x∈[0,2)时方程f(x)﹣x=0即f(x)=x无解,又因为方程f(x)﹣x=0有解x0,且定义域为[0,3],故当x∈[2,3]时,f(x)的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),故若f(x0)=x0,只有x0=2,故答案为:2.点评:本题考查函数的零点及反函数,考查学生分析解决问题的能力,属中档题.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)考点:集合关系中的参数取值问题;并集及其运算;一元二次不等式的解法.专题:不等式的解法及应用;集合.分析:当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a 的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.解答:解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选B.点评:此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.16.(5分)(2013•上海)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.分析:因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.解答:解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B点评:本题考查互为逆否命题的真假一致;考查据命题的真假判定条件关系,属于基础题.17.(5分)(2013•上海)在数列(a n)中,a n=2n﹣1,若一个7行12列的矩阵的第i行第j 列的元素c ij=a i•a j+a i+a j(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为()A.18 B.28 C.48 D.63考点:数列的函数特性.专题:压轴题.分析:由于该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j ﹣1(i=1,2,…,7;j=1,2,…,12),要使a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12).则满足2i+j﹣1=2m+n﹣1,得到i+j=m+n,由指数函数的单调性可得:当i+j≠m+n时,a ij≠a mn,因此该矩阵元素能取到的不同数值为i+j的所有不同和,即可得出.解答:解:该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j ﹣1(i=1,2,…,7;j=1,2,…,12),当且仅当:i+j=m+n时,a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12),因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3,…,19,共18个不同数值.故选A.点评:由题意得出:当且仅当i+j=m+n时,a ij=a mn(i,m=1,2,...,7;j,n=1,2, (12)是解题的关键.18.(5分)(2013•上海)在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.专题:压轴题;平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为(++)•(++)的最小值、最大值,∴m<0,M<0故选D.点评:本题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2013•上海)如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.考点:点、线、面间的距离计算;直线与平面平行的判定.专题:空间位置关系与距离.分析:解法一:证明ABC′D′为平行四边形,可得BC′∥AD′,再利用直线和平面平行的判定定理证得直线BC′平行于平面D′AC.所求的距离即点B到平面D′AC的距离,设为h,再利用等体积法求得h的值.解法二:建立空间直角坐标系,求出平面D′AC的一个法向量为=(2,1,﹣2),再根据=﹣0,可得⊥,可得直线BC′平行于平面D′AC.求出点B到平面D′AC的距离d=的值,即为直线BC′到平面D′AC的距离.解答:解:解法一:因为ABCD﹣A′B′C′D′为长方体,故AB∥C′D′,AB=C′D′,故ABC′D′为平行四边形,故BC′∥AD′,显然BC′不在平面D′AC内,于是直线BC′平行于平面D′AC.直线BC′到平面D′AC的距离即为点B到平面D′AC的距离,设为h,考虑三棱锥D′﹣ABC的体积,以ABC为底面,可得三棱锥D′﹣ABC的体积为V==,而△AD′C中,AC=D′C=,AD′=,故△CAD′的底边AD′上的高为,故△CAD′的面积S△CAD′=••=,所以,V==⇒h=,即直线BC′到平面D′AC的距离为.解法二:以D′A′所在的直线为x轴,以D′C′所在的直线为y轴,以D′D所在的直线为z轴,建立空间直角坐标系.则由题意可得,点A(1,0,1 )、B(1,2,1)、C(0,2,1)、C′(0,2,0)、D′(0,0,0).设平面D′AC的一个法向量为=(u,v,w),则由⊥,⊥,可得,.∵=(1,0,1),=(0,2,1),∴,解得.令v=1,可得u=2,w=﹣2,可得=(2,1,﹣2).由于=(﹣1,0,﹣1),∴=﹣0,故有⊥.再由BC′不在平面D′AC内,可得直线BC′平行于平面D′AC.由于=(1,0,0),可得点B到平面D′AC的距离d===,故直线BC′到平面D′AC的距离为.点评:本题主要考查直线和平面平行的判定定理的应用,利用向量法证明直线和平面平行,求直线到平面的距离的方法,体现了转化的数学思想,属于中档题.20.(14分)(2013•上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.考点:函数模型的选择与应用.专题:应用题.分析:(1)求出生产该产品2小时获得的利润,建立不等式,即可求x的取值范围;(2)确定生产900千克该产品获得的利润函数,利用配方法,可求最大利润.解答:解:(1)生产该产品2小时获得的利润为100(5x+1﹣)×2=200(5x+1﹣)根据题意,200(5x+1﹣)≥3000,即5x2﹣14x﹣3≥0∴x≥3或x≤﹣∵1≤x≤10,∴3≤x≤10;(2)设利润为y元,则生产900千克该产品获得的利润为y=100(5x+1﹣)×=90000()=9×104[+]∵1≤x≤10,∴x=6时,取得最大利润为=457500元故甲厂应以6千克/小时的速度生产,可获得最大利润为457500元.点评:本题考查函数模型的建立,考查解不等式,考查函数的最值,确定函数的模型是关键.21.(14分)(2013•上海)已知函数f(x)=2sin(ωx),其中常数ω>0(1)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R,且a<b)满足:y=g(x)在[a,b]上至少含有30个零点.在所有满足上述条件的[a,b]中,求b﹣a的最小值.考点:正弦函数的单调性;根的存在性及根的个数判断;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)已知函数y=f(x)在上单调递增,且ω>0,利用正弦函数的单调性可得,且,解出即可;(2)利用变换法则“左加右减,上加下减”即可得到g(x)=2.令g(x)=0,即可解出零点的坐标,可得相邻两个零点之间的距离.若b﹣a最小,则a 和b都是零点,此时在区间[a,mπ+a](m∈N*)恰有2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,即可得到a,b满足的条件.进一步即可得出b﹣a的最小值.解答:解:(1)∵函数y=f(x)在上单调递增,且ω>0,∴,且,解得.(2)f(x)=2sin2x,∴把y=f(x)的图象向左平移个单位,再向上平移1个单位,得到,∴函数y=g(x)=,令g(x)=0,得,或x=(k∈Z).∴相邻两个零点之间的距离为或.若b﹣a最小,则a和b都是零点,此时在区间[a,π+a],[a,2π+a],…,[a,mπ+a](m∈N*)分别恰有3,5,…,2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,∴.另一方面,在区间恰有30个零点,因此b﹣a的最小值为.点评:本题综合考查了三角函数的单调性、周期性、函数的零点等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.22.(16分)(2013•上海)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点”(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”考点:直线与圆锥曲线的关系;点到直线的距离公式;双曲线的简单性质.专题:压轴题;新定义;圆锥曲线的定义、性质与方程.分析:(1)由双曲线方程可知,双曲线的左焦点为(),当过左焦点的直线的斜率不存在时满足左焦点是“C1﹣C2型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与(0,1)连线的斜率;(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过远点的直线不可能同时与C1和C2有公共点;(3)由给出的圆的方程得到圆的图形夹在直线y=x±1与y=﹣x±1之间,进而说明当|k|≤1时过圆内的点且斜率为k的直线与C2无公共点,当|k|>1时,过圆内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,结果与|k|>1矛盾.从而证明了结论.解答:(1)解:C1的左焦点为(),写出的直线方程可以是以下形式:或,其中.(2)证明:因为直线y=kx与C2有公共点,所以方程组有实数解,因此|kx|=|x|+1,得.若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).显然直线x=0与C1无公共点.如果直线为y=kx(|k|>1),则由方程组,得,矛盾.所以直线y=kx(|k|>1)与C1也无公共点.因此原点不是“C1﹣C2型点”.(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,故可设l:y=kx+b.若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.因为l与C1由公共点,所以方程组有实数解,得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.因为|k|>1,所以1﹣2k2≠0,因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,即b2≥2k2﹣1.因为圆O的圆心(0,0)到直线l的距离,所以,从而,得k2<1,与|k|>1矛盾.因此,圆内的点不是“C1﹣C2型点”.点评:本题考查了双曲线的简单几何性质,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.23.(18分)(2013•上海)给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足a n+1=f(a n),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,a n+1﹣a n≥c;(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.考点:数列的函数特性;等差关系的确定;数列与函数的综合.专题:压轴题;等差数列与等比数列.分析:(1)对于分别取n=1,2,a n+1=f(a n),n∈N*.去掉绝对值符合即可得出;(2)由已知可得f(x)=,分三种情况讨论即可证明;(3)由(2)及c>0,得a n+1≥a n,即{a n}为无穷递增数列.分以下三种情况讨论:当a1<﹣c﹣4时,当﹣c﹣4≤a1<﹣c时,当a1≥﹣c时.即可得出a1的取值范围.解答:解:(1)a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,a3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=10+c.(2)由已知可得f(x)=当a n≥﹣c时,a n+1﹣a n=c+8>c;当﹣c﹣4≤a n<﹣c时,a n+1﹣a n=2a n+3c+8≥2(﹣c﹣4)+3c+8=c;当a n<﹣c﹣4时,a n+1﹣a n=﹣2a n﹣c﹣8>﹣2(﹣c﹣4)﹣c﹣8=c.∴对任意n∈N*,a n+1﹣a n≥c;(3)假设存在a1,使得a1,a2,…,a n,…成等差数列.由(2)及c>0,得a n+1≥a n,即{a n}为无穷递增数列.又{a n}为等差数列,所以存在正数M,当n>M时,a n≥﹣c,从而a n+1=f(a n)=a n+c+8,由于{a n}为等差数列,因此公差d=c+8.①当a1<﹣c﹣4时,则a2=f(a1)=﹣a1﹣c﹣8,又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,从而a2=0,当n≥2时,由于{a n}为递增数列,故a n≥a2=0>﹣c,∴a n+1=f(a n)=a n+c+8,而a2=a1+c+8,故当a1=﹣c﹣8时,{a n}为无穷等差数列,符合要求;②若﹣c﹣4≤a1<﹣c,则a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,应舍去;③若a1≥﹣c,则由a n≥a1得到a n+1=f(a n)=a n+c+8,从而{a n}为无穷等差数列,符合要求.综上可知:a1的取值范围为{﹣c﹣8}∪[﹣c,+∞).点评:本题综合考查了分类讨论的思方法、如何绝对值符号、递增数列、等差数列等基础知识与方法,考查了推理能力和计算能力.。

2011年上海市高考数学试卷(理科)答案与解析

2011年上海市高考数学试卷(理科)答案与解析
∴∠ACB=180°﹣ 75°﹣ 60°=45°
∴AD= x
∴在 Rt△ABD 中,AB•sin60°= x
x= (千米) 答:A、C 两点之间的距离为
故答案为: 下由正弦定理求解: ∵∠CAB=75°,∠CBA=60°, ∴∠ACB=180°﹣ 75°﹣ 60°=45° 又相距 2 千米的 A、B 两点
【解答】解:由于点 F(0,5)是双曲线
的一个焦点,
故该双曲线的焦点在 y 轴上,从而 m>0.
1
从而得出 m+9=25,解得 m=16. 故答案为:16. 【点评】本题考查双曲线标准方程中的分母几何意义的认识,考查双曲线焦点位置与方程 的关系、考查学生对双曲线中 a,b,c 关系式的理解和掌握程度,考查学生的方程思想和 运算能力,属于基本题型.
5.(4 分)(2011•上海)在极坐标系中,直线 ρ(2cosθ+sinθ)=2 与直线 ρcosθ=1 的夹角 大小为 arctan .(结果用反三角函数值表示)
【考点】简单曲线的极坐标方程;两直线的夹角与到角问题. 【专题】计算题. 【分析】利用直角坐标与极坐标间的关系,即利用 ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代 换即得直角坐标系,再利用直线的直角坐标方程求出它们的夹角即可. 【解答】解:∵ρ(2cosθ+sinθ)=2,ρcosθ=1 ∴2x+y﹣ 2=0 与 x=1 ∴2x+y﹣ 2=0 与 x=1 夹角的正切值为
3
【解答】解:根据题意,圆锥的底面面积为 π,则其底面半径是 1,底面周长为 2π,


∴圆锥的母线为 2,则圆锥的高 ,
所以圆锥的体积 × ×π=

故答案为

(完整版)2013年上海高考理科数学试题及答案

(完整版)2013年上海高考理科数学试题及答案

绝密★启用前2013年普通高等学校招生全国统一考试理科数学(上海卷)一、填空题1.计算:20lim______313n n n →∞+=+2.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m =3.若2211x x x y y y =--,则______x y += 4.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)5.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =.6.方程1313313x x -+=-的实数解为________7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________.8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示) 9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,2BC =,则Γ的两个焦点之间的距离为________10.设非零常数d 是等差数列12319,,,,x x x x L 的公差,随机变量ξ等可能地取值12319,,,,x x x x L ,则方差_______D ξ=11.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=.12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________13.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________14.对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =二、选择题15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞(D)[2,)+∞16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()(A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件17.在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==L L )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28 (C)48 (D)6318.在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a u r u u r u u r u u r u u r ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d u u r u u r u u r u u r u u r.若,m M 分别为()()i j k r s t a a a d d d ++⋅++u r u u r u u r u u r u u r u u r的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( ). (A) 0,0m M => (B) 0,0m M <> (C) 0,0m M <= (D) 0,0m M <<三、解答题19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.20.(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润. 21.(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.C 11A22.(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”. 23.(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a L 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a L L 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.2013年 上海 高考理科数学(参考答案)一. 填空题1.13 2. -2 3. 0 4. 1arccos 3π- 5. -2 6. 3log 4 7. 15+ 8.13189.463 10. 30d ² 11.23 12. 87a ≤- 13. 2216ππ+ 14. 2题号15 16 17 18代号B B A D三. 解答题19. 【解答】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C ;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=。

2013年上海市高考数学试卷(理科)答案与解析

2013年上海市高考数学试卷(理科)答案与解析

2013年上海市高考数学试卷(理科)答案与解析2013年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.(4分)计算:$\lim\limits_{n\rightarrow\infty}\frac{1}{n^2}\sum\limits_{k=1} ^{n}k\sqrt{n^2+k^2}$考点:数列的极限。

专题:计算题。

分析:根据数列极限的定义即可求解。

解答:$\lim\limits_{n\rightarrow\infty}\frac{1}{n^2}\sum\limits_{k=1}^{n}k\sqrt{n^2+k^2}=\lim\limits_{n\rightarrow\infty}\frac{1}{n}\sum\limits_{k=1}^{n}\frac{k}{n}\sqrt{1+\frac{k^2}{n^2}}$int_{0}^{1}x\sqrt{1+x^2}dx=\frac{2}{3}(1+\sqrt{2})$故答案为:$\frac{2}{3}(1+\sqrt{2})$。

点评:本题考查数列极限的求法,属基础题。

2.(4分)设$m\in R$,$m^2+m^{-2}+(m^2-1)i$是纯虚数,其中$i$是虚数单位,则$m=-2$。

考点:复数的基本概念。

专题:计算题。

分析:根据纯虚数的定义可得$m^2-1=0$,$m^2-1\neq0$,由此解得实数$m$的值。

解答:$\because$复数$z=(m^2+m^{-2})+(m-1)i$为纯虚数。

therefore m^2+m^{-2}=0$,$m^2-1\neq0$,解得$m=-2$。

故答案为:$-2$。

点评:本题主要考查复数的基本概念,得到$m^2+m^{-2}=0$,$m^2-1\neq0$,是解题的关键,属于基础题。

2013年上海市高考数学试卷(理科)-含答案详解

2013年上海市高考数学试卷(理科)-含答案详解

绝密★启用前2013年普通高等学校招生全国统一考试(上海卷)数学(理科)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设常数a ∈R ,集合A ={x|(x −1)( x − a)≥0},B ={x| x ≥ a −1}.若A ∪B =R ,则a 的取值范围为( )A. (−∞,2)B. (−∞,2]C. (2,+∞)D.E. 2,+∞)2. 钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( ) A. 充分条件 B. 必要条件C. 充分必要条件D. 既非充分又非必要条件3. 在数列{a n }中,a n =2 n −1.若一个7行12列的矩阵的第i 行第j 列的元素c ij =a i · a j + a i + a j (i =1,2,…,7;j =1,2,…,12),则该矩阵元素能取到的不同数值的个数为( )A. 18B. 28C. 48D. 634. 在边长为1的正六边形ABCDEF 中,记为A 为起点,其余顶点为终点的向量分别为a 1、a 2、a 3、a 4、a 5;以D 为起点,其余顶点为终点的向量分别为d 1、d 2、d 3、……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………d 4、d 5.若m 、M 份别为(a i + a j + a k )·( d r + d s + d t )的最小值、最大值,其中{i ,j ,k}{1,2,3,4,5},{r ,s ,t}{1,2,3,4,5},则m 、M 满足( )A. m =0,M >0B. m <0,M >0C. m <0,M =0D. m <0,M <0第II 卷(非选择题)二、填空题(本大题共14小题,共57.0分)5. 计算:=______.6. 设m ∈R ,m 2+m −2+( m 2−1)i 是纯虚数,其中i 是虚数单位,则m = . 7. 若=,则x + y =______.8. 已知△ ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若3 a 2+2 ab +3 b 2−3c 2=0,则角C 的大小是______(结果用反三角函数值表示).9. 设常数a ∈R.若的二项展开式中x 7项的系数为−10,则a =______.10. 方程=3 x −1的实数解为______.11. 在极坐标系中,曲线ρ=cos θ+1与ρcos θ=1的公共点到极点的距离为______.12. 盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示).13. 设AB 是椭圆Γ的长轴,在C 在Γ上,且∠ CBA =.若AB =4,BC =,则Γ的两个焦点之间的距离为______.14. 设非零常数d 是等差数列x 1,x 2,…,x 19的公差,随机变量ξ等可能地取值x 1,x 2,…,x 19,则方程Dξ=______.15. 若cos x cos y +sin x sin y =,sin2 x +sin2 y =,则sin (x +y)=______.16. 设a 为实常数,y = f(x)是定义在R 上的奇函数,当x <0时,f(x)=9 x ++7.若f(x)≥ a +1对一切x ≥0成立,则a 的取值范围为______.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………17. 在xOy 平面上,将两个半圆弧(x −1)2+ y 2=1(x ≥1)和(x −3)2+ y 2=1(x ≥3)、两条直线y =1和y =−1围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω.过(0,y)(| y|≤1)作Ω的水平截面,所得截面面积为+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为______.18. 对区间I 上有定义的函数g(x),记g(I)={y| y = g(x),x ∈ I}.已知定义域为[0,3]的函数y = f(x)有反函数y = f −1(x),且f −1( [0,1) )=[1,2),f −1( (2,4] )=[0,1).若方程f(x)− x =0有解x 0,则x 0=______.三、解答题(本大题共5小题,共74.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试(上海卷)数学(理科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.不等式204xx ->+的解集是 (-4,2) 。

解析:考查分式不等式的解法204xx ->+等价于(x-2)(x+4)<0,所以-4<x<22.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 6-2i 。

解析:考查复数基本运算z z z ⋅+=i i i i 2621)21)(21(-=-++-3. 动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为28y x =。

解析:考查抛物线定义及标准方程定义知P 的轨迹是以(2,0)F 为焦点的抛物线,p=2所以其方程为y 2=8x4.行列式cossin 36sincos36ππππ的值是 0 。

解析:考查行列式运算法则cossin 36sincos36ππππ=02cos 6πsin 3πsin 6πcos3πcos ==-π5. 圆22:2440C x y x y +--+=的圆心到直线l:3440x y ++=的距离d = 3 。

解析:考查点到直线距离公式圆心(1,2)到直线3440x y ++=距离为3542413=+⨯+⨯6. 随机变量ξ的概率分布率由下图给出:则随机变量ξ的均值是 8.2解析:考查期望定义式E ξ=7×0.3+8×0.35+9×0.2+10×0.15=8.27. 2010年上海世博会园区每天9:00开园,20:00停止入园。

在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入 S ←S+a 。

8.对任意不等于1的正数a ,函数f(x)=log (3)a x +的反函数的图像都经过点P ,则点P 的坐标是 (0,-2)解析:f(x)=log (3)a x +的图像过定点(-2,0),所以其反函数的图像过定点(0,-2) 9.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ⋃B )==726(结果用最简分数表示) 解析:考查互斥事件概率公式 P (A ⋃B )=2675213521=+ 10.在n 行n 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。

当9n =时,11223399a a a a +++⋅⋅⋅+=45 。

解析:11223399a a a a +++⋅⋅⋅+=1+3+5+7+9+2+4+6+8=4511. 将直线2:0l nx y n +-=、3:0l x ny n +-=(*n N ∈,2n ≥)x 轴、y 轴围成的封闭图形的面积记为n S ,则lim n n S →∞= 1 。

解析:B )1,1(++n n n n 所以B O ⊥AC , n S =121221+=+⨯⨯n n n n 所以lim n n S →∞=1212.如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去AOB V ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O 82解析:翻折后的几何体为底面边长为4,侧棱长为22的正三棱锥,高为362所以该四面体的体积为32836223162131=⨯⨯⨯⨯13。

如图所示,直线x=2与双曲线22:14y λΓ-=的渐近线交于1E ,2E 两点,记1122,OE e OE e ==u u u u r u u u u r u v u u v ,任取双曲线Γ上的点P ,若12,()OP ae be a b R =+∈u u u r u u u v u u u v、,则a 、b 满足的一个等式是 4ab=1 解析:)1,2(),1,2(21-E E12OP ae be =+u u u r u u r u u u r=),22(b a b a -+,点P 在双曲线上1)(4)22(22=--+∴b a b a ,化简得4ab =114.以集合U={}a b c d ,,,的子集中选出2个不同的子集,需同时满足以下两个条件: (1)a 、b 都要选出;(2)对选出的任意两个子集A 和B ,必有A B B A ⊆⊆或,那么共有 36 种不同的选法。

解析:列举法 共有36种二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案。

考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。

15.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 [答]( A )(A )充分不必要条件. (B )必要不充分条件.(C )充分条件. (D )既不充分也不必要条件. 解析:14tan)42tan(==+πππk ,所以充分;但反之不成立,如145tan=π,所以不必要 16.直线l 的参数方程是x=1+2t()y=2-tt R ⎧∈⎨⎩,则l 的方向向量是d可以是 【答】(C )(A)(1,2) (B)(2,1) (C)(-2,1) (D)(1,-2) 解析:直线l 的一般方程是052=-+y x ,21-=k ,所以C 正确 17.若0x 是方程131()2xx =的解,则0x 属于区间 【答】(C )(A)(23,1) (B)(12,23) (C)(13,12) (D)(0,13) 解析:结合图形312131312121,3121⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛>⎪⎭⎫⎝⎛Θ,∴0x 属于区间(13,12) 18. 某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人能 【答】(D )(A )不能作出这样的三角形 (B )作出一个锐角三角形 (C )作出一个直角三角形 (D )作出一个钝角三角形 解析:设三边分别为a,b,c ,利用面积相等可知5:11:13::,51111131=∴==c b a c b a 由余弦定理得0115213115cos 222<⨯⨯-+=A ,所以角A 为钝角 三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤。

19.(本题满分12分) 已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.=020. (本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。

已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出n 为何值时,n S 取得最小值,并说明理由。

(2)n S =1575()906n n -+- n=15取得最小值解析:(1) 当n =1时,a 1=-14;当n ≥2时,a n =S n -S n -1=-5a n +5a n -1+1,所以151(1)6n n a a --=-,又a 1-1=-15≠0,所以数列{a n -1}是等比数列; (2) 由(1)知:151156n n a -⎛⎫-=-⋅ ⎪⎝⎭,得151156n n a -⎛⎫=-⋅ ⎪⎝⎭,从而1575906n n S n -⎛⎫=⋅+- ⎪⎝⎭(n ∈N *);解不等式S n <S n +1,得15265n -⎛⎫<⎪⎝⎭,562log 114.925n >+≈,当n ≥15时,数列{S n }单调递增;同理可得,当n ≤15时,数列{S n }单调递减;故当n =15时,S n 取得最小值. 21、(本大题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该 最大值(结果精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线13A B 与35A B 所在异面直线所成角的大小(结果用反三角函数表示)解析:(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,所以当r =0.4时,S 取得最大值约为1.51平方米;(2) 当r =0.3时,l =0.6,建立空间直角坐标系,可得13(0.3,0.3,0.6)A B =-u u u u r,35(0.3,0.3,0.6)A B =--u u u u u r,设向量13A B u u u u r 与35A B u u u u u r 的夹角为θ,则133513352cos 3||||A B A B A B A B θ⋅==⋅u u u u r u u u u u ru u uu r u u u u u r , 所以A 1B 3、A 3B 5所在异面直线所成角的大小为2arccos 3.22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。

若实数x 、y 、m 满足x m y m -->,则称x 比y 远离m . (1)若21x -比1远离0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:33a b +比22a b ab +远离2; (3)已知函数()f x 的定义域k D=x|x +k Z x R 24ππ{≠,∈,∈}.任取x D ∈,()f x 等于sin x 和cos x 中远离0的那个值.写出函数()f x 的解析式,并指出它的基本性质(结论不要求证明).解析:(1) (,)x ∈-∞+∞U ;(2) 对任意两个不相等的正数a 、b,有332a b +>222a b ab +>因为33222|2|2()()0a b a b ab a b a b +--+-=+->,所以3322|2|2a b a b ab +->+-,即a 3+b 3比a 2b +ab 2远离2;(3) 3sin ,(,)44()cos ,(,)44x x k k f x x x k k ππππππππ⎧∈++⎪⎪=⎨⎪∈-+⎪⎩,性质:1︒f (x )是偶函数,图像关于y 轴对称,2︒f (x )是周期函数,最小正周期2T π=,3︒函数f (x )在区间(,]242k k πππ-单调递增,在区间[,)224k k πππ+单调递减,k ∈Z , 4︒函数f (x )的值域为(2. 23(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知椭圆Γ的方程为22221(0)x y a b a b+=>>,点P 的坐标为(-a ,b ).(1)若直角坐标平面上的点M 、A(0,-b),B(a ,0)满足1PM =(PA +PB)2→→→,求点M 的坐标;(2)设直线11:l y k x p =+交椭圆Γ于C 、D 两点,交直线22:l y k x =于点E .若2122b k k a⋅=-,证明:E 为CD 的中点;(3)对于椭圆Γ上的点Q (a cos θ,b sin θ)(0<θ<π),如果椭圆Γ上存在不同的两个交点1P 、2P 满足12PP +PP =PQ →→→,写出求作点1P 、2P 的步骤,并求出使1P 、2P 存在的θ的取值范围. 解析:(1) (,)22a b M -;(2) 由方程组122221y k x p x y ab =+⎧⎪⎨+=⎪⎩,消y 得方程2222222211()2()0a k b x a k px a p b +++-=,因为直线11:l y k x p =+交椭圆Γ于C 、D 两点, 所以∆>0,即222210a k b p +->,设C (x 1,y 1)、D (x 2,y 2),CD 中点坐标为(x 0,y 0), 则212102221201022212x x a k p x a k b b p y k x p a k b ⎧+==-⎪+⎪⎨⎪=+=⎪+⎩, 由方程组12y k x py k x =+⎧⎨=⎩,消y 得方程(k 2-k 1)x =p ,又因为2221b k a k =-,所以2102222112202221a k p px x k k a k b b p y k x y a k b ⎧==-=⎪-+⎪⎨⎪===⎪+⎩, 故E 为CD 的中点;(3) 求作点P 1、P 2的步骤:1︒求出PQ 的中点(1cos )(1sin )(,)22a b E θθ-+-, 2︒求出直线OE 的斜率2(1sin )(1cos )b k a θθ+=--,3︒由12PP PP PQ +=u u u r u u u r u u u r知E 为CD 的中点,根据(2)可得CD 的斜率2122(1cos) (1sin)b b ka k aθθ-=-=+,4︒从而得直线CD的方程:(1sin)(1cos)(1cos)() 2(1sin)2b b ay xaθθθθ+---=++,5︒将直线CD与椭圆Γ的方程联立,方程组的解即为点P1、P2的坐标.欲使P1、P2存在,必须点E在椭圆内,所以22(1cos)(1sin)144θθ-++<,化简得1sin cos2θθ-<,2sin()4πθ-<,又0<θ <π,即3444πππθ-<-<,所以2arcsin44ππθ-<-<,故θ的取值范围是2 (0,arcsin)44π+.。

相关文档
最新文档