立体几何复习专题

合集下载

小学六年级总复习之立体几何

小学六年级总复习之立体几何

数学问题中的立体几何应用
计算几何图形面积和体积 判断几何图形的形状和大小 解决几何图形的最值问题 确定几何图形的位置关系
科学问题中的立体几何应用
天文学:行星、 恒星和星系的形 状和运动规律可 以用立体几何来
描述。
物理学:电磁场、 引力场等物理现 象可以用立体几
何来描述。
化学:分子结构 可以通过立体几 何来描述,如分 子的键角、键长
立体几何中的基本概念
点、线、面的定义
平面几何的性质
空间几何体的构造
空间几何体的表面积和体积
03
立体图形的性质和 分类
立体图形的性质
定义:立体图 形是三维空间 中占据一定空 间的图形,具 有长度、宽度
和高度。
分类:根据几 何形状,立体 图形可以分为 多面体、旋转 体和组合体等。
性质:立体图 形具有三维性、 封闭性、占有 空间等性质。
特征:立体图 形具有空间感、 立体感和三维
性等特征。
立体图形的分类
柱体:包括圆柱、棱柱等 锥体:包括圆锥、棱锥等 球体:包括实心球、空心球等 其他多面体:包括长方体、正方体、三棱锥等
常见立体图形介绍
立方体:具有六个面,每个面都是正方形 球体:只有一个曲面,没有平面 圆柱体:由两个平行圆形面和一个曲面组成 圆锥体:由一个圆形底面和一个曲面组成
定义:立体几何是研究三维空间中图形和物体性质的一门学科。 基础概念:点、线、面、体等基本元素,以及它们的性质和关系。 目的:培养空间想象能力和逻辑思维能力。 应用:在建筑、工程、科学等领域有广泛应用。
立体几何中的基本元素
点:表示空间中的一个位置 直线:表示空间中一条无限延伸的线 平面:表示空间中一个无限延展的面 空间:表示三维的立体空间

2023届高考数学总复习《立体几何》附答案解析

2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,

2023年高考数学总复习《立体几何》附答案解析

2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >

设所成锐二面角为θ,所以 sinθ

所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD

在 Rt△FCD 中,tan∠FDC 맨

故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

2023届高考数学总复习:立体几何复习题附答案

2023届高考数学总复习:立体几何复习题附答案

a,
在 Rt△FCM 中,tan∠FCM .

∴sin∠FCM ,
故直线 CF 与平面 ACDE 所成角的正弦值为 . 2.如图,在三棱柱 ABC﹣A1B1C1 中,BC⊥平面 AA1C1C,D 是 AA1 的中点,△ACD 是边长
为 1 的等边三角形. (1)证明:CD⊥B1D; (2)若 BC ,求二面角 B﹣C1D﹣B1 的大小.
,令
由(1)知,平面 B1C1D 的一个法向量为
,得
,, ,
, ,,
故 th< , >

所以二面角 B﹣C1D﹣B1 的大小为 30°.
第3页共3页
在直角梯形 AEFB 中,有 AF EF,BF

∴AF2+BF2=AB2,即 AF⊥BF.
∵BC∩BF=B,BC、BF⊂平面 BCF,
∴AF⊥平面 BCF.
EF,AB=2EF,
(2)解:∵AE⊥平面 ABC,AE⊂平面 ACDE,∴平面 ACDE⊥平面 ABC,
又平面 ABC∥平面 DEF,∴平面 ACDE⊥平面 DEF.
【解答】解:(1)证明:因为△ACD 是边长为 1 的等边三角形,所以∠ADC=60°,∠ DA1C1=120° 因为 D 是 AA1 的中点,所以 AD=A1D=A1C1=1,即△A1C1D 是等腰三角形, 则∠A1DC1=30°,故∠CDC1=90°,即 CD⊥C1D, 因为 BC⊥平面 AA1C1C,BC∥B1C1,所以 B1C1⊥平面 AA1C1C, 因为 CD⊂平面 AA1C1C,所以 B1C1⊥CD, 因为 B1C1∩C1D=C1,B1C1⊂平面 B1C1D,C1D⊂平面 B1C1D,所以 CD⊥平面 B1C1D, 因为 B1D⊂平面 B1C1D,所以 CD⊥B1D;

立体几何复习专题及答案-高中数学

立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

立体几何期末复习(含详细答案)

立体几何期末复习(含详细答案)

立体几何单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.3.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.4.已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为________cm.5.(2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。

(容器壁的厚度忽略不计,结果保留π)6.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.7.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.8.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________ m.9.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________.10.已知直三棱柱ABC -A 1 B 1 C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1 =12,则球O 的半径为( ) A.3172 B .210 C.132D .310 11.(2017·江苏高考)如图,在圆柱O1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.12.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为( )A.52B.3-1C.12D.2-113.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.14.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛16.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为_______.17.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.18.在三棱锥A -BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为22,32,62,则该三棱锥外接球的表面积为()A.2πB.6πC.46πD.24π19.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(1)求证:PC⊥AB;(2)求点C到平面APB的距离.20.如图所示,在正方体ABCD-A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.立体几何单元复习卷(二)21.到空间不共面的四点距离相等的平面的个数为()A.1 B.4C.7 D.822.如图,平面α∥平面β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.23.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.24.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n25.已知m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若m⊥α,n⊥β,m⊥n,则α⊥βB.若m∥α,n∥β,m⊥n,则α∥βC.若m⊥α,n∥β,m⊥n,则α∥βD.若m⊥α,n∥β,α∥β,则m∥n26.如图,在直三棱柱ABC-A′B′C′中,△ABC是边长为2的等边三角形,AA′=4,E,F,G,H,M分别是边AA′,AB,BB′,A′B′,BC的中点,动点P在四边形EFGH内部运动,并且始终有MP∥平面ACC′A′,则动点P的轨迹长度为()A.2 B.2πC.2 3 D.427.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若m⊂β,α⊥β,则m⊥αB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n28.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.29.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( )A.12B .1 C.32 D .230.如图,在Rt △ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P -ABC 中直角三角形的个数为( )A .4B .3C .2D .131.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF32.如图,PA ⊥⊙O 所在平面,AB 是⊙O 的直径,C 是⊙O 上一点,AE ⊥PC ,AF ⊥PB ,给出下列结论:①AE ⊥BC ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC ,其中真命题的序号是________.33.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .34.(2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.35.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.36.如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积.37.如图1,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图2所示的三棱锥A -BCF ,其中BC =22. (1)求证:DE ∥平面BCF ;(2)求证:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积.立体几何 单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A .圆柱B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体.2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD -A 1B 1C 1D 1中的三棱锥C 1-ABC ,四个面都是直角三角形.答案:②③④3.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图.从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64. 答案:644.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________cm.解析:S 表=πr2+πrl =πr2+πr ·2r =3πr2=12π,∴r2=4,∴r =2 cm.6. (2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。

高考复习必做――立体几何大题30题

高考复习必做――立体几何大题30题
立体几何大题 1.如下图,一个等腰直角三角形的硬纸片 ABC 中,∠ACB=90°,AC=4cm,CD 是斜边 上的高沿 CD 把△ABC 折成直二面角.
C
C
D
A
B A
B
第 1 题图
第 1 题图
(1)如果你手中只有一把能度量长度的直尺,应该如何确定 A,B 的位置,使二面角 A-CD-B 是直二面角?证明你的结论.
∵AM 平面 PAD,∴CD⊥AM.
∵PC⊥平面 AMN,∴PC⊥AM. ∴AM⊥平面 PCD. ∴AM⊥PD
(II)解:∵AM⊥平面 PCD(已证). ∴AM⊥PM,AM⊥NM. ∴∠PMN 为二面角 P-AM-N 的平面角 ∵PN⊥平面 AMN,∴PN⊥NM.
在直角△PCD 中,CD=2,PD=2 2 ,∴PC=2 3 .
D1 A1
P
C1 B1
D
C
A
M
BN
第 6 题图
并求出展开图中 P、B 两点间的距离。 解:(I)连接 BD 交 MN 于 F,则 BF⊥MN, 连接 B1F ∵B1B⊥平面 ABCD ∴B1F⊥MN 2 分 则∠B1FB 为二面角 B1—MN—B 的平面角
在 Rt△B1FB 中,设 B1B=1,则 FB
(Ⅱ)求点 B 到平面 AMC1 的距离;
(Ⅲ)求二面角 M—AC1—B 的正切值.
A
答案:(I)证明:∵△AMC1 是以点 M 为直角
顶点的等腰直角三角形,
C1 B1
C BM 第 3 题图
∴AM⊥MC1 且 AM=MC1 ∵在正三棱柱 ABC—A1B1C1 中, 有 CC1⊥底面 ABC. ∴C1M 在底面内的射影为 CM, 由三垂线逆定理,得 AM⊥CM. ∵底面 ABC 是边长为 1 的正三角形, ∴点 M 为 BC 中点. (II)解法(一) 过点 B 作 BH⊥C1M 交其延长线于 H. 由(I)知 AM⊥C1M,AM⊥CB, ∴AM⊥平面 C1CBB1. ∴AM⊥BH. ∴BH⊥平面 AMC1. ∴BH 为点 B 到平面 AMC1 的距离. ∵△BHM∽△C1CM.

高中数学《立体几何》专题复习 (1)

高中数学《立体几何》专题复习 (1)

高中数学《立体几何》专题复习一1.(2018·安徽东至二中段测)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥答案 D解析把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.2.以下关于几何体的三视图的论述中,正确的是()A.正方体的三视图是三个全等的正方形B.球的三视图是三个全等的圆C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆答案 B解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.3.如图所示,几何体的正视图与侧视图都正确的是()答案 B解析侧视时,看到一个矩形且不能有实对角线,故A,D排除.而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应为B中所示,故选B.4.一个几何体的三视图如图,则组成该几何体的简单几何体为()A.圆柱和圆锥B.正方体和圆锥C.四棱柱和圆锥D.正方体和球答案 C5.(2018·沧州七校联考)三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB 的长为()A.16 3 B.38C.4 2 D.211答案 C解析由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形.在△ABC中,AC=4,AC边上的高为23,所以BC=4.在Rt△SBC中,由SC=4,可得SB=4 2. 6.(2017·衡水中学调研卷)已知一个四棱锥的高为3,其底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为()A.2 2 B.6 2C.1 D. 2答案 A解析因为底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,所以在直角坐标系中,底面是边长为1和3的平行四边形,且平行四边形的一条对角线垂直于平行四边形的短边,此对角线的长为22,所以该四棱锥的体积为V=13×22×1×3=2 2.7.(2018·四川泸州模拟)一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为()A. 2B. 3C.2 D.4答案 A解析由题意知,正视图是底边长为2,腰长为3的等腰三角形,其面积为12×2×(3)2-1= 2.8.(2018·湖南郴州模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.③④C.①③D.②④答案 D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.9.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案 D解析依题意,此几何体为组合体,若上、下两个几何体均为圆柱,则俯视图为A;若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若上边的几何体为底面为等腰直角三角形的直三棱柱,下边的几何体为正四棱柱时,俯视图为C;若俯视图为D,则正视图中还有一条虚线,故该几何体的俯视图不可能是D,故选D.10.(2018·江西上馓质检)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过平面AMN和平面DNC1的两个截面截去正方体的两个角后得到的几何体如图,则该几何体的正(主)视图,侧(左)视图、俯视图依次为()A.①②③B.②③④C.①③④D.②④③答案 B解析由直视图可知,该几何体的正(主)视图、侧(左)视图、俯视图依次为②③④,故选B. 11.(2018·四川宜宾期中)某几何体的三视图如图所示,则该几何体最长棱的长度为()A.4 B.3 2C.2 2 D.2 3答案 D解析由三视图可知,该几何体为如图所示的四棱锥P-ABCD,由图可知其中最长棱为PC,因为PB2=PA2+AB2=22+22=8,所以PC2=PB2+BC2=8+22=12,则PC=23,故选D.12.(2018·北京东城区期末)在空间直角坐标系O-xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz平面为投影面,则得到的正视图可以为()答案 A解析设S(2,2,2),A(2,2,0),B(0,2,0),C(0,0,2),则此四面体S-ABC如图①所示,在xOz平面的投影如图②所示.其中S′是S在xOz平面的投影,A′是A在xOz平面的投影,O是B在xOz平面的投影,SB 在xOz平面的投影是S′O,并且是实线,CA在xOz平面的投影是CA′,且是虚线,如图③. 13.(2018·江西宜春模拟)某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大为()A.2 2 B.4C.2 3 D.2 6答案 C解析由三视图知该几何体为棱锥S-ABD,其中SC⊥平面ABCD,将其放在正方体中,如图所示.四面体S-ABD的四个面中△SBD的面积最大,三角形SBD是边长为22的等边三角形,所以此四面体的四个面中面积最大为34×8=2 3.故选C.14.(2018·江苏张家港一模)若将一个圆锥侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的高为________cm.答案 3解析设圆锥的底面圆半径为r cm,则2πr=2π,解得r=1 cm,∴h=22-1= 3 cm. 15.(2018·成都二诊)已知正四面体的俯视图如图所示,其中四边形ABCD是边长为2的正方形,则这个四面体的正视图的面积为________.答案2 2解析由俯视图可得,原正四面体AMNC可视作是如图所示的正方体的一内接几何体,则该正方体的棱长为2,正四面体的正视图为三角形,其面积为12×2×22=2 2.16.(2018·上海长宁区、嘉定区质检)如图,已知正三棱柱的底面边长为2,高为5,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为________.答案13解析将正三棱柱ABC-A1B1C1沿侧棱AA1展开,再拼接一次,如图所示,在展开图中,最短距离是六个矩形形成的大矩形对角线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理得d=122+52=13.17.某几何体的正(主)视图和侧(左)视图如图1,它的俯视图的直观图是矩形O1A1B1C1如图2,其中O1A1=6,O1C1=2,则该几何体的侧面积为________.答案96解析由俯视图的直观图可得y轴与C1B1交于D1点,O1D1=22,故OD=42,俯视图是边长为6的菱形,则该几何体是直四棱柱,侧棱长为4,则侧面积为6×4×4=96. 1.(课本习题改编)如图为一个几何体的三视图,则该几何体是()A.四棱柱B.三棱柱C.长方体D.三棱锥答案 B解析由几何体的三视图可知,该几何体的直观图如图所示,即为一个平放的三棱柱.2.(2018·山东泰安模拟)某三棱锥的三视图如图所示,其侧视图为直角三角形,则该三棱锥最长的棱长等于()A.4 2 B.34C.41 D.5 2答案 C解析根据几何体的三视图,得该几何体是底面为直角三角形,有两个侧面垂直于底面,高为5的三棱锥,最长的棱长等于25+16=41,故选C.3.(2018·安徽毛坦厂中学月考)已知一个几何体的三视图如图所示,则这个几何体的直观图是()答案 C解析A项中的几何体,正视图不符,侧视图也不符,俯视图中没有虚线;B项中的几何体,俯视图中不出现虚线;C项中的几何体符合三个视图;D项中的几何体,正视图不符.故选C.4.(2017·山东德州质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()答案 C解析此几何体的侧视图是从左边往右边看,故其侧视图应选C.5.(2017·广东汕头中学摸底)如图是一正方体被过棱的中点M,N,顶点A及过N,顶点D,C1的两个截面截去两角后所得的几何体,该几何体的正视图是()答案 B6.(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③,故选B.7.(2014·课标全国Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案 B解析由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.8.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()答案 B解析D项为主视图或者侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.9.底面水平放置的正三棱柱的所有棱长均为2,当其正(主)视图有最大面积时,其侧(左)视图的面积为()A.2 3 B.3C. 3 D.4答案 A解析当正视图面积最大时,侧视图是一个矩形,一个边长为2,另一边长是三棱柱底面三角形的高为3,故侧视图面积为2 3.10.(2015·北京,文)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2C. 3 D.2答案 C解析将三视图还原成几何体的直观图,如图,由三视图可知,底面ABCD是边长为1的正方形,SB⊥底面ABCD,SB=AB=1,由勾股定理可得SA=SC=2,SD=SB2+DB2=1+2=3,故四棱锥中最长棱的棱长为 3.故选C. 11.(2017·南昌模拟)若一几何体的正视图与侧视图均为边长为1的正方形,则下列图形一定不是该几何体的俯视图的是()答案 D解析 若该几何体的俯视图为选项D ,则其正视图为长方形,不符合题意,故选D. 12.某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图可以是( )答案 D解析 通过分析正视图和侧视图,结合该几何体的体积为13,可知该几何体的底面积应为1,因为符合底面积为1的选项仅有D 选项,故该几何体为一个四棱锥,其俯视图为D. 13.(2018·兰州诊断考试)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中x 的值是( )A .2 B.92 C.32 D .3答案 D解析 由三视图知,该几何体是四棱锥,底面是一个直角梯形,底面积S =12×(1+2)×2=3,高h =x ,所以其体积V =13Sh =13×3x =3,解得x =3,故选D.14.某几何体的三视图如图所示,则该几何体中,最大侧面的面积为( )A.12B.22C.52D.62答案 C解析 由三视图知,该几何体的直观图如图所示.平面AED ⊥平面BCDE ,四棱锥A -BCDE 的高为1.四边形BCDE 是边长为1的正方形,则S △AED =12×1×1=12,S △ABC =S △ABE =12×1×2=22,S △ACD =12×1×5=52,故选C.15.(2017·山东师大附中月考)如图是各棱长均为2的正三棱柱ABC -A 1B 1C 1的直观图,则此三棱柱侧视图的面积为________. 答案 2 3解析 依题意,得此三棱柱的侧视图是边长分别为2,3的矩形BB 1D 1D ,故其面积是2 3.16.(2017·北京西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________. 答案 2 3解析 由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.17.用小立方块搭一个几何体,使它的正视图和俯视图如图所示,则它最多需要______个小立方块.答案14解析本题考查了三视图的有关知识.需要小立方块最多则:第一层最多6个,第二层最多5个,第三层最多3个,故最多用14个.18.(2017·湖南株洲质检)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()答案 C解析通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求.。

立体几何复习(知识点+经典习题)

立体几何复习(知识点+经典习题)

立体几何复习(知识点+经典习题)1.给出以下命题:1) 若平面α内的两条相交直线分别平行于平面β内的两条直线,则平面α平行于平面β;2) 若平面α外一条直线l与平面α内的一条直线平行,则直线l和平面α平行;3) 设平面α和平面β相交于直线l,若平面α内有一条直线垂直于l,则平面α和平面β垂直;4) 直线l与平面α垂直的充分必要条件是直线l与平面α内的两条直线垂直。

写出所有真命题的序号。

2.在空间中,以下命题正确的是:A) 平行直线的平行投影重合;B) 平行于同一直线的两个平面平行;C) 垂直于同一平面的两个平面平行;D) 垂直于同一平面的两条直线平行。

考点为二三视图与直观图及面积与体积。

基础训练】1.如图,E和F分别为正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的投影可能是什么形状。

2.如果一个水平放置的图形的斜二测直观图是一个底角为45度,腰和上底均为1的等腰梯形,则原图形的面积是多少?3.在三角形ABC中,AB=2,BC=1.5,∠ABC=120度。

若使其绕直线BC旋转一周,则它形成的几何体的体积是多少?4.已知一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的对角线长是多少?若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积是多少?5.正方体的内切球和外接球的半径之比为多少?6.一个正方体的顶点都在球面上,它的棱长为2,则球的表面积是多少?7.若三个球的表面积之比是1:2:3,则它们的体积之比是多少?8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是多少?9.半径为R的半圆卷成一个圆锥,则它的体积为多少?高考链接】1.一个棱锥的三视图如图,则该棱锥的全面积为多少?2.设某几何体的三视图如下,则该几何体的体积为多少?1.在三棱锥ABCDE中,AB=AC=AD=2,BC=3,CD=4,BE=5,CE=6,DE=7,求∠AED的大小。

2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)

2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)

新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。

立体几何专题复习

立体几何专题复习

专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD.(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1 (1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD.题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC.求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE.微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD.微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A 1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12PD,求证:平面PQC⊥平面DCQ.思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD.(2)(2019·济南质检)如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.①证明:AP⊥BC;②若点M是线段AP上一点,且AM=3,试证明平面AMC⊥平面BMC.题型三探究性问题在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB.若存在,确定G点的位置;若不存在,试说明理由.思考题3 (2019·山西长治二模)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=2,E为PD上一点,PE=2ED.(1)求证:PA⊥平面ABCD;(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC若存在,指出F点的位置,并证明;若不存在,说明理由.专题二求解异面直线所成角和线面角问题题型一异面直线所成的角(1)在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E,F分别是CC1,AD的中点,则异面直线OE和FD1所成的角的余弦值等于________.(2)(2019·安徽知名示范高中联合质检)若在三棱柱ABC-A1B1C1中,∠A1AC=∠BAC=60°,平面A1ACC1⊥平面ABC,AA1=AC=AB,则异面直线AC1与A1B所成角的余弦值为思考题1 (2019·湖南雅礼中学期末)如图1,在矩形ABCD中,AB=2,BC=1,E是DC 的中点;如图2,将△DAE沿AE折起,使折后平面DAE⊥平面ABCE,则异面直线AE和BD所成角的余弦值为________.题型二定义法求线面角(1)(2019·山东荷泽期末)在斜三棱柱ABC-A1B1C1中,侧棱AA1⊥平面AB1C1,且△AB1C1为等边三角形,B1C1=2AA1=2,则直线AB与平面B1C1CB所成角的正切值为( )(2)如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是( )A.[33,1] B.[63,1] C.[63,223] D.[223,1]思考题2 (1)(2019·河北石家庄一模)如图所示,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角的大小为________.(2)把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为( )A.90° B.60° C.45° D.30°题型三向量法求线面角(1)(2019·河南郑州月考)如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PA=PD=5,平面ABCD⊥平面PAD,M是PC的中点,O是AD的中点,则直线BM与平面PCO 所成角的正弦值是________.(2)如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.若直线FO与平面BED所成的角为45°,则AE=________.思考题3 (1)正四棱锥S-ABCD中,O为顶点S在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是________.(2)(2019·河南百校联盟联考)已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则直线BD1与平面ABCD所成的角的正切值为( )(1)(2019·太原模拟一)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA⊥BD.①求证:PB=PD;②若E,F分别为PC,AB的中点,EF⊥平面PCD,求直线PB与平面PCD所成角的大小.(2)(2019·湖南长郡中学选拔考试)如图,在直三棱柱ABC-A1B1C1中,BA=BC=5,AC=8,D为线段AC的中点.①求证:BD⊥A1D;②若直线A1D与平面BC1D所成角的正弦值为45,求AA1的长.思考题4 (2019·石家庄质检二)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为∠CBB1=60°的菱形,AB=AC1.(1)证明:平面AB1C⊥平面BB1C1C;(2)若AB⊥B1C,直线AB与平面BB1C1C所成的角为30°,求直线AB1与平面A1B1C所成角的正弦值.专题三求解二面角问题题型一定义法求二面角(1)(2019·台州一模)在边长为a的等边三角形ABC中,AD⊥BC于点D,沿AD折成二面角B-AD-C,若此时BC=12a,则二面角B-AD-C的大小为________.(2)如图,二面角α-l-β的大小是60°,线段AB?α,B∈l,AB与l所成的角为30°,则AB与平面β所成的角的正弦值是(3)已知三棱锥P-ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径.当三棱锥P-ABC的体积最大时,设二面角P-AB-C的大小为θ,则sinθ=( )思考题1 (1)如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D重合于F,此时二面角E-BC-F的余弦值为( )(2)如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,若PA=AB=2,AC=BC,则二面角P-AC-B的正切值是________.题型二向量法求二面角(1)已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的锐二面角的正切值为________.(2)(2019·河南安阳)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为( ) A.150°B.45° C.60° D.120°思考题2 (1)设平面α的一个法向量为n1=(1,2,-2),平面β的一个法向量为n2=(-2,-4,k),若α和β所成的锐二面角的余弦值为23,则k=________.(2)(2019·辽宁丹东模拟)如图,正方形A1BCD折成直二面角A-BD-C,则二面角A-CD -B的余弦值是________.(3)(2019·广东中山模拟)在矩形ABCD中,已知AB=2,AD=22,M,N分别为AD和BC 的中点,沿MN把平面ABNM折起,若折起后|AC|=6,则二面角A-MN-C的大小为( ) A.30° B.45° C.60° D.90°(2019·惠州二次调研)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC =60°,PA⊥PB,PC=2.(1)求证:平面PAB⊥平面ABCD;(2)若PA=PB,求二面角A-PC-D的余弦值.思考题3 (2019·河北五一名校联考)在斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,底面△ABC是边长为2的正三角形,A1A=A1C,A1A⊥A1C.(1)求证:A1C1⊥B1C;(2)求二面角B1-A1C-C1的正弦值.题型三空间角的综合问题(2019·唐山五校联考)如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求直线PA与平面EAC所成角的正弦值.思考题4 (2019·江南十校素质检测)如图,在以A,B,C,D,E,F为顶点的五面体中,平面CDEF⊥平面ABCD,FC=FB,四边形ABCD为平行四边形,且∠BCD=45°.(1)求证:CD⊥BF;(2)若AB=2EF=2,BC=2,直线BF与平面ABCD所成角为45°,求平面ADE与平面BCF 所成锐二面角的余弦值.专题四综合问题题型一空间的距离(1)(2019·江西九江期末)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为正方形,E为CD的中点,F为PA的中点,且PA=AB=2.则点P到平面BEF的距离为( )(2)已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F分别是AB,AD的中点,求点B到平面GEF的距离.思考题1 (1)(2019·黑龙江哈尔滨期末)三棱柱ABC-A1B1C1底面为正三角形,侧棱与底面垂直,若AB=2,AA1=1,则点A到平面A1BC的距离为( )2.(2017·课标全国Ⅰ,理)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.(2)(2019·湖南长沙一模)正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,求点F到平面A1D1E的距离.题型二探究性问题(2019·湖南重点校联考)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M-AC-D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.思考题 2 (2019·西安八校联考)已知几何体ABCC1B1N的直观图如图所示,CB⊥底面ABB1N,且ABB1N为直角梯形,侧面BB1C1C为矩形,AN=AB=BC=4,BB1=8,∠NAB=∠ABB1=90°.(1)连接B1C,若M为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1若存在,求出BP的长;若不存在,请说明理由.(2)求二面角C-NB1-C1的余弦值.题型三翻折问题(2019·安徽合肥调研性检测)平面四边形ABCD中,∠DAB=π2,AD=AB,△BCD为等边三角形.现将△ABD沿BD翻折得到四面体P-BCD,点E,F,G,H分别为PB,PD,CD,CB的中点.(1)求证:四边形EFGH为矩形;(2)当平面PBD⊥平面CBD时,求直线BG与平面PBC所成角的正弦值.思考题3 如图,在直角梯形ABCP中,∠A=∠B=90°,AB=BC=3,AP=6,CD⊥AP于D,现将△PCD沿线段CD折成60°的二面角P-CD-A,设E,F,G分别是PD,PC,BC的中点.(1)求证:PA∥平面EFG;(2)若M为线段CD上的动点,求直线MF与平面EFG所成角的最大角,并确定成最大角时点M在什么位置高考题呈现1.(2014·全国Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P-ABD的体积V=34,求A到平面PBC的距离.2.(2016·北京)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD若存在,求AMAP的值;若不存在,说明理由.3.(2018·浙江)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.4.(2016·课标全国Ⅲ)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC =3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.5.(2018·课标全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.6.(2016·课标全国Ⅰ,理)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.7.(2017·课标全国Ⅰ,理)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠C DP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.8.(2018·课标全国Ⅱ,理)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值.9.(2018·北京,理)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;的余弦值;(2)求二面角B-CD-C1(3)证明:直线FG与平面BCD相交.10.(2017·北京,理)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.。

高三《立体几何》专题复习

高三《立体几何》专题复习

高三《立体几何》专题复习一、常用知识点回顾1、三视图。

正侧一样高,正俯一样长,侧府一样宽,看不到的线画虚线。

2、常用公式与结论。

(1)圆柱、圆锥、圆台的侧面展开图及侧面积公式;(2)空间几何体的表面积与体积公式;(3)全品高考复习方案(听课手册)105页的常用结论3、两条异面直线所成的角;直线与平面所成的角。

4、证明两条直线平行的常用方法;直线与平面平行的判定与性质;面面平行的判定与性质。

5、证明两条直线垂直的常用方法;直线与平面垂直的判定与性质;两个平面垂直的判定与性质。

二、题型训练题型一:三视图的运用,求几何体的体积、表面积例1、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90(D)81【练习1】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()C.3D.2【练习2】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【练习3】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π(B )24π(C )28π(D )32π例2、在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )(A )4π (B )9π2 (C )6π (D )32π3变式1:在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=5,则V的最大值是变式2:在封闭的长方体ABCD-A1B1C1D1内有一个体积为V的球.若AB=BC=6,AA1=3,则V的最大值是变式3:(1)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为(2)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为变式4:【练习1】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. B.12π C. D.10π【练习3】已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若SAB的面积为8,则该圆锥的体积为_______题型二:平行问题例1、如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB; (II)求四面体N-BCM的体积.【练习1】如图,四棱锥P-ABCD中,侧面PADAD,为等边三角形且垂直于底面ABCD,AB=BC=12∠BAD=∠ABC=90°。

高中数学 立体几何专题复习

高中数学  立体几何专题复习

图2侧视图俯视图正视图4x33x4DCBA侧视图正视图立体几何专题(一)一、三视图考点透视:①能想象空间几何体的三视图,并判断(选择题) ②通过三视图计算空间几何体的体积或表面积③解答题中也可能以三视图为载体考查证明题和计算题④旋转体(圆柱、圆锥、圆台或其组合体)的三视图有两个视图一样。

⑤基本几何体的画法,如:三棱柱(侧视图)、挡住的注意画虚线。

1. 一空间几何体的三视图如图2所示, 该几何体的 体积为85123π+,则正视图中x 的值为 A. 5 B . 4 C. 3 D . 22. 一个正方体截去两个角后所得几何体的正视图(又称主视图)、 侧视图(又称左视图)如右图所示,则其俯视图为c3.如图4,已知一个锥体的正视图(也称主视图),左视图(也称侧视图)和俯视图均为直角三角形, 且面积分别为3,4,6,则该锥体的体积是 4 .4. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为A .63B .93C .123D .1835、已知某几何体的直观图(图1)与它的三视图(图2), 其中俯视图为正三角形,其它两个视图是矩形.已知D 是正视图 左视图俯视图图4_3 _3 这个几何体的棱11C A 上的中点。

(Ⅰ)求出该几何体的体积;(Ⅱ)求证:直线11//BC AB D 平面; (Ⅲ)求证:直线11B D AA D ⊥平面.二、直观图掌握直观图的斜二测画法:①平行于两坐标轴的平行关系保持不变;②平行于y 轴的长度为原来的一半,x 轴不变;③新坐标轴夹角为45°。

6、如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=2,C 1D 1=3,A 1D 1=1,则梯形ABCD 的面积是( ) A .10 B .5 C .5 2D .102三、表面积和体积不要求记忆,但要会使用公式。

高三立体几何专题复习

高三立体几何专题复习

高考立体几何专题复习一.考试要求:〔1〕掌握平面的根本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

〔2〕了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念〔对于异面直线的距离,只要求会计算已给出公垂线时的距离〕。

〔3〕了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。

〔4〕了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

〔5〕会用反证法证明简单的问题。

〔6〕了解多面体的概念,了解凸多面体的概念。

〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

〔9〕了解正多面体的概念,了解多面体的欧拉公式。

〔10〕了解球的概念,掌握球的性质,掌握球的外表积、体积公式。

二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的根底上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的根底上,掌握它们的求法(其根本方法是分别作出这些角,并将它们置于*个三角形通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步稳固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握根本的立体几何解题方法和常用解题技巧,开掘不同问题之间的在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和"说话要有根据〞的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:〔Ⅰ〕根底知识详析高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考察的知识点在20个以. 选择填空题考核立几中的计算型问题, 而解答题着重考察立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着"多一点思考,少一点计算〞的开展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的容,因此在主体几何的总复习中,首先应从解决"平行与垂直〞的有关问题着手,通过较为根本问题,熟悉公理、定理的容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:〔1〕根据定义——证明两平面没有公共点;〔2〕判定定理——证明一个平面的两条相交直线都平行于另一个平面;〔3〕证明两平面同垂直于一条直线。

2023届高三数学一轮复习专题 立体几何垂直系统 讲义 (解析版)

2023届高三数学一轮复习专题  立体几何垂直系统  讲义 (解析版)

高三数学第一轮复习专题 垂直系统专题第一部分 直线与平面垂直的判定及性质一。

线面垂直的定义:l l αα若直线与平面内的任意一条直线都垂直,则称直线与平面垂直.记作:l α⊥。

l 直线叫做α平面的垂线,α平面叫做l 直线的垂面。

(★★★)线面垂直的定义可以作为线面垂直的性质定理使用: 若l 直线与α平面垂直,则l 直线与α平面内任意一条直线都垂直。

,l a l a αα⊥⊂⇒⊥ ⇒线面垂直线线垂直二。

线面垂直的判定定理:1。

判定定理1:若一条直线和一个平面内的两条相交直线都垂直,则该直线与这个平面垂直。

(★★★)⇒线线垂直线面垂直,,,,a b a b P l a l b l ααα⊂⊂⋂=⊥⊥⇒⊥两个核心条件:,l a l b ⊥⊥2。

判定定理2:若两平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面。

(★★)a ∥b ,a α⊥b α⇒⊥三。

线面垂直的性质定理:1。

性质定理1:垂直于同一平面的两直线平行。

a α⊥,b α⊥a ⇒∥bα2。

性质定理2:垂直于同一直线的两平面平行。

l α⊥,l β⊥⇒α∥β题型一:线线垂直与线面垂直的互相证明 ★★★★★判定定义线线垂直线面垂直这两个定理(定义)构成了一个很重要的小循环:⇒⇒⇒⇒⋅⋅⋅⋅⋅⋅线线垂直线面垂直线线垂直线面垂直例1。

P 为ABC 所在平面外一点,PA ABC ⊥平面,090ABC ∠=,AE PB E ⊥于,AF PC F ⊥于。

求证:PC AEF ⊥平面。

(★★)规律:常用线面垂直来证明两直线“异面垂直”。

已知的是相交垂直,要证的是异面垂直。

分析:从后往前分析。

要证()PC AF PC AEF PC AE AE PBC ⎧⊥⎪⊥⇐⎨⊥⇐⊥⎪⎩已知平面平面 α()090AE PB BC AB ABC AE BC BC PAB BC PA PA ABC ⎧⊥⎪⎪⇐⎨⎧⊥⇐∠=⎪⊥⇐⊥⇐⎨⎪⊥⇐⊥⎩⎩已知平面平面 但写证明过程时要从前往后写。

2025届新高考一轮复习特训---立体几何初步(含解析)

2025届新高考一轮复习特训---立体几何初步(含解析)

2025届新高考一轮复习特训 立体几何初步一、选择题1.平行六面体1111ABCD A B C D -中,底面ABCD 为正方形,11A AD A AB ∠=∠=11AA AB ==,E 为11C D 的中点,则异面直线BE 和DC 所成角的余弦值为( )2.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是AB ,1BB ,11B C 的中点,则过这三点的截面面积是( )A.3.已知平面α,β,γ,l αβ= ,则“l γ⊥”是“αγ⊥且βγ⊥”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且AP BP =,O 为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )5.已知长方体的一条棱长为2,体积为16,则其外接球表面积的最小值为( )A.5πB.12πC.20πD.80π6.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,F 为线段1BB 的中点.直线1FC 到平面1AB E 的距离为( ).7.在三棱柱111ABC A B C -中,AB BC AC ==,侧棱1AA ⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( )A.8.设A ,B ,C ,D 是同一个半径为4的球的球面上的四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A. C.二、多项选择题9.在ABC △中,AC BC ==2AB =,ABD △是有一个角是30°的直角三角形,若二面角D AB C --是直二面角,则DC 的长可以是( )10.如图,P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,则下列结论成立的是( )A.//OM 平面PCDB.//OM 平面PDAC.//OM 平面PBAD.平面PBC11.如图,正方体1111ABCD A B C D -的棱长为1,动点P 在对角线1BD 上,过P 作垂直于1BD 的平面α,记平面α与正方体1111ABCD A B C D -的截面多边形(含三角形)的周长为L,面积为S ,BP x =,(x ∈,下面关于函数()L x 和()S x 的描述正确的是( )A.(S x B.()L x 在x=C.()L x 在⎛⎝上单调递增,在上单调递减;D.()S x 在⎛⎝上单调递增,在上单调递减三、填空题12.如图一个正六棱柱的茶叶盒,底面边长为10cm ,高为20cm ,则这个茶叶盒的表面积为______2cm .13.已知正三棱柱111ABC A B C-的各棱长都等于2,点E 是11A B 的中点,则异面直线AE 与1BC 所成角的余弦值为________.14.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,//OM高为3的正四棱锥,所得棱台的体积为____________.四、解答题15.如图,在三棱锥A BCD -中,BCD △是边长为2的等边三角形,AB AC =,O 是BC 的中点,OA CD ⊥.(1)证明:平面ABC ⊥平面BCD .(2)若点E 是棱AC 上的一点,则从①2CE EA =,②二面角E BD C --的大小为60︒,③三棱锥A BCD -成立.16.如图,垂直于梯形ABCD 所在平面,,F 为线段PA 上一点,112ABAD CD ===,四边形为矩形.(1)若F 是PA 的中点,求证:平面DEF ;(2)求直线与平面BCP 所成角的正弦值;(3)若点F 到平面的长.17.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,AC 为底面直径,ABD △为底面四O 的内接正三角形,且△PC 上,且AE =1CE =.PD 90ADC BAD ∠∠==︒PD =PDCE //AC AE(1)求证:BD AE ⊥,并求三棱锥P BDE -的体积;(2)若点M 为线段PO 上的动点,当直线DM 与平面ABE 所成角的正弦值最大时,求此时点M 到平面ABE 的距离.18.如图,在多面体ABCDEF 中,已知四边形ABCD 是菱形,AF ⊥平面ABCD .(1)证明:平面BDE ⊥平面ACF ;(2)若4AD =,6AF =,3DE =,//DE AF ,AE 与平面BDE 三棱锥F CDE -的体积.19.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点.求证:(1)//AM 平面BDE ;(2)AM ⊥平面BDF .参考答案1.答案:A解析:由题意,11π11cos 3AA AB AA AD ⋅=⋅=⨯⨯= 0AB AD ⋅= ,又DC AB = ,1111112BE AE AB AA A D D E AB AA AD AB =-=++-=+-,所以111100222BE DC AA AD AB AB ⎛⎫⋅=+-⋅=+-= ⎪⎝⎭,即有BE DC ⊥ ,故选:A.2.答案:D解析:如图所示,分别取11C D ,1DD ,AD 的中点H ,M ,N ,连接GH ,HM ,MN ,NE ,在正方体1111ABCD A B C D -中,可得//GH NE ,//HM EF ,//MN FG ,所以经过点E,F ,G 的截面为正六边形EFGHMN ,又因为正方体1111ABCDA B C D -的棱长为2,在直角BEF△中,可得EF==所以截面正六边形的面积为26=故选:D.3.答案:C解析:由于l αβ= ,所以l α⊂,l β⊂,若l γ⊥,则αγ⊥,βγ⊥,故充分性成立,若αγ⊥,βγ⊥,设m αγ= ,n βγ= ,则存在直线,a γ⊂使得a m ⊥,所以a α⊥,由于l ⊂α,故a l ⊥,同理存在直线,b γ⊂使得b n ⊥,所以b β⊥,由于l β⊂,故b l ⊥,由于a ,b 不平行,所以a ,b 是平面γ内两条相交直线,所以l γ⊥,故必要性成立,故选:C.4.答案:A解析:设O '为下底面圆的圆心,连接OO ',CO '和CO ,因为AP BP =,所以AB OP ⊥,又因为AB OO ⊥',OP OO O '= ,OP ,OO '⊂平面OO P ',所以AB ⊥平面OO P ',因为PC 是该圆台的一条母线,所以O ,O ',C ,P 四点共面,且//O C OP ',又AB ⊂平面ABC ,所以平面ABC ⊥平面POC ,又因为平面ABC 平面POC OC =,所以点P 在平面ABC 的射影在直线OC 上,则OP 与平面ABC 所成的角即为POC OCO ∠=∠',过点C 作CD OP ⊥于点D ,因为4cm OP =,2cm O C '=,所以tan tan 2OO POC OCO O C∠=''∠=='.故选:A.5.答案:C解析:设长方体的长、宽、高分别为a ,b ,2,所以长方体的体积为216V ab ==,解得:8ab =,设长方体的外接球的半径为R ,所以2R =22242420R a b ab =++≥+=,即R ≥b ==所以min R =所以其外接球表面积的最小值为24π20πS R ==.故选:C.6.答案:D解析:1//AE FC ,1FC ⊂/平面1AB E ,AE ⊂平面1AB E ,1//FC ∴平面1AB E ,因此直线1FC 到平面1AB E 的距离等于点1C 到平面1AB E 的距离,如图,以D 点为坐标原点,DA 所在的直线为x 轴,DC 所在的直线为y 轴,1DD 所在的直线为轴,建立直角坐标系.则(1,0,0)A ,1(1,1,1)B ,1(0,1,1)C ,10,0,2E ⎛⎫ ⎪⎝⎭,11,1,2F ⎛⎫ ⎪⎝⎭,,,,,设平面的法向量为,则,令,则设点到平面1AB E 的距离为d ,则1113n C B d n⋅==故直线1FC 到平面1ABE 故选:D.7.答案:B解析:如图:设三棱柱上,下底面中心分别为1O ,2O ,则12OO 的中点为O ,111,0,2FC ⎛⎫=- ⎪⎝⎭ 11,0,2AE ⎛⎫=- ⎪⎝⎭ 1(0,1,1)AB =11(1,0,0)C B = 1AB E (,,)n x y z =11020n AE x z n AB y z ⎧⋅=-+=⎪⎨⎪⋅=+=⎩2z =(1,2,2)n =- 1C设球O 的半径为R ,则OA R =,设AB BC AC a ===,1AA h =,则212OO h =,223O A AB ==,则在2Rt OO A △中,222222*********R OA OO O A h a h ==+=+≥⨯=,当且仅当h =时,等号成立,所以24π4πS R =≥球4πah =,所以ah =所以该三棱柱的侧面积为3ah =故选:B.8.答案:B解析:如图,设点O 为球心,点M 为三角形ABC 的中心,E 为AC 的中点,连接OB ,DM ,且DM 过球心O ,连接BE ,且BE 过点M ,当DM ⊥平面ABC 时,三棱锥D ABC -的体积最大.2ABC S AB == △6AB =.又 点M 为三角形ABC 的中心,23BM BE ∴==,在Rt OMB △中,2OM ==,426DM OD OM ∴=+=+=,∴三棱锥D ABC -体积的最大6=9.答案:ACD 解析:如图①,当60ADB ∠=︒且90DBA ∠=︒时,二面角D AB C --是直二面角,故平面ABD ⊥平面ABC ,且平面ABD 平面ABC AB =,DB ⊂平面ABD ,故DB ⊥平面ABC ,所以DB BC ⊥,因为tan AB DB ADB ==∠==同理可得,当30ADB ∠=︒且90DBA ∠=︒时,DB ⊥平面ABC ,所以DB BC ⊥,因为tan ABDB ADB==∠==当90ADB ∠=︒且30DAB ∠=︒时,如图②,过点D 作DE AB ⊥,垂足为E ,连接CE ,因为平面ABD ⊥平面ABC ,且平面ABD 平面ABC AB =,DE ⊂平面ABD ,故DE ⊥平面ABC ,所以DE CE ⊥,此时cos DA AB DAB =∠=,sin DE DA DAB =∠=cos AE AD DAB =∠===所以DC ==当90ADB ∠=︒且60DAB ∠=︒时,同理可得,sinDE DA DAB=∠====故选:ACD.10.答案:AB解析:矩形ABCD 的对角线AC 与BD 交于点O ,所以点O 为BD 的中点,在△PBD 中,因为点M 是PB 的中点,所以OM 是的中位线,,平面PCD ,平面PCD ,平面PCD ,故A 正确;PD ⊂平面PDA ,平面PDA ,平面PDA ,故B 正确;因为M ∈PB ,O ∉平面PBC ,O ∉平面PAB ,所以OM 与平面PAB ,平面PBC 相交,故CD 错误;故选:AB.11.答案:AD解析:当x ⎛∈⎝时,截面为等边三角形,如图:因为BP x =,所以EF =,所以:()L x =,()2S x x =,x ⎛∈ ⎝.此时()L x ,()S x 在上单调递增,且当时截面为六边形,如图:PBD △//OM PD PD ⊂OM ⊄//OM ∴OM⊄//OM ∴⎛ ⎝()L x ≤()x ≤x ∈设AE t =,则11AE AF CG CH B N B M t======所以六边形EFGHMN 的周长为:)1t +-=为定值;做1NN ⊥平面ABCD 于1N ,1MM ⊥平面ABCD 于1M .设平面EFGHMN 与平面ABCD 所成的角为α,则易求cos α=所以11cos EFDHMN FAN M CG S S α⋅=,所以()22111122EFDHMN S t t ⎡⎤=---⎢⎥⎣⎦212t t ⎫=+-⎪⎭,在10,2t ⎛⎤∈ ⎥⎝⎦上递增,在1,12t ⎡⎫∈⎪⎢⎣⎭上递减,111224⎫+-=⎪⎭=x =所以()S x 在上递增,在上递减.x =()x当x ∈时,易得:())L x x =,())2S x x=-此时()L x ,()S x 在上单调递减,()L x <()x <综上可知:AD 是正确的,BC 错误.故选:AD12.答案:300(4解析:由题设,一个底面的面积为21161010sin 602S =⨯⨯⨯⨯︒=,一个侧面矩形面积为22102020c 0m S =⨯=,所以茶叶盒的表面积为22126300(4c mS S +=+.故答案为:300(4解析:连结1A B ,交AE 于点M ,作1//MN BC ,交11A C 于点N ,连结EN ,异面直线AE 与1BC 所成的角为EMN ∠或其补角,因为1//A E AB ,且,所以1::1:2EM MA A M MB ==,所以113BC ==,EN ==中,222cos 2ME MN EN EMN ME MN +-∠==⋅14.答案:28=(44)6⨯⨯=(22)34⨯⨯=,所以棱台的体积为32428-=.112A E AB =13ME AE ==123A N =EMN △3(16428⨯++=.故答案为28.15.答案:(1)证明见解析(2)见解析解析:(1)证明:因为AB AC =,O 是BC 的中点,所以OA BC ⊥.又因为OA CD ⊥,BC CD C = ,,BC CD ⊂平面BCD ,所以OA ⊥平面BCD .因为OA ⊂平面ABC ,所以平面ABC ⊥平面BCD .(2)如图,连接OD .因为BCD △是边长为2的等边三角形,所以DO BC ⊥.由(1)知,OA ⊥平面BCD ,所以AO ,BC ,DO 两两互相垂直.以O 为坐标原点,分别以OB ,OD ,OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.设||(0)OA m m =>,则(0,0,0)O ,(0,0,)A m ,(1,0,0)B ,(1,0,0)C -,D .若选①②作为条件,证明③成立.因为2CE EA =,所以2CE EA = ,所以12,0,33m E ⎛⎫- ⎪⎝⎭.易知平面BCD 的一个法向量为(0,0,1)=n ,42,0,33m BE ⎛⎫=- ⎪⎝⎭,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩m m 所以420,330.m x z x ⎧-+=⎪⎨⎪-=⎩令1x =,则y =z =2m ⎛⎫= ⎪ ⎪⎝⎭.由二面角EBD C --的大小为60||60||||⋅︒===m n m n 3m =.所以三棱锥A -1232⨯=若选①③作为条件,证明②成立.因为三棱锥A -122m ⨯=3=,即(0,0,3)A .又因为2CE EA =,所以1,0,23E ⎛⎫- ⎪⎝⎭.易知平面BCD 的一个法向量为(0,0,1)=n ,4,0,23BE ⎛⎫=- ⎪⎝⎭,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩ m m 即420,30.x z x ⎧-+=⎪⎨⎪-=⎩令1x =,则y =z =23⎛⎫= ⎪ ⎪⎝⎭.设二面角E BD C --的大小为θ,则|||cos |||||θ⋅===m n m n BD C --的大小为60︒.若选②③作为条件,证明①成立.又(1,0,0)C -,所以(1,0,3)AC =--.设(,,)E x y z .不妨设(01)AE AC λλ=≤≤,则(,,3)(1,0,3)x y z λ-=--,所以(,0,33)E λλ--+.易知平面BCD 的一个法向量为(0,0,1)=n ,(1,0,33)BE λλ=---+ ,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩ m m 即(1)(33)0,0.x z x λλ--+-=⎧⎪⎨-+=⎪⎩当1λ=时,二面角E BD C --的大小为0︒,不合题意,所以01λ≤<.令1x =,则y=z =133λλ⎛⎫+= ⎪ ⎪-⎝⎭.设二面角E BD C --的大小为θ,则|||cos |||||θ⋅===m n m n 解得3λ=(舍去)或λ=所以2CE EA =.16.答案:(1)证明见解析;;解析:(1)设CP DE G = ,连接, 四边形为矩形,∴G 为中点,又F 为PA 中点,,又FG ⊂平面,AC ⊄平面,//AC ∴平面.(2)以D 为坐标原点,DA ,,DP正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,FG PDCE PC //AC FG ∴DEF DEF DEF DC则,()1,1,0B ,,(P ,()1,1,0BC ∴=-,,(1,AE =-设平面BCP 的法向量,20BC n x y CP n y ⎧⋅=-+=⎪∴⎨⋅=-+=⎪⎩,令,解得:1x=,(n = ;设直线与平面BCP 所成角为,sin cos ,AE n AE n AE n θ⋅∴===⋅则直线与平面(3)(1,0,PA =,设,[]0,1λ∈由平面的法向量(n =,点F 到平面的距离2PF n d nλ⋅===解得,13PA = 解析:(1)设AC BD F = ,连接EF ,ABD △为底面圆O 的内接正三角形,2AC ∴==,F 为BD 中点,又AF ==322CF ∴=-=312AO AF ==;()1,0,0A ()0,2,0C (0,E (0,CP =- (),,n x y z =1y =z =AE θAE (),0,PF PA λλ==BCP BCP 13λ=AE = 1=,222AE CE AC ∴+=,AE EC ∴⊥,AF AE =AEF ACE ∽△△,AFE AEC ∠∠∴=,EF AC ∴⊥,;PO ⊥ 平面ABD ,PO ⊂平面PAC ,∴平面PAC ⊥平面ABD ,平面PAC 平面ABD AC =,EF ⊂平面PAC ,EF ∴⊥平面ABD ,又BD ⊆面ABD ,EF BD ⊥,又BD AC ⊥,EF AC F = ,BD ⊥面AEC ,又AE ⊂面AEC ,所以BD AE⊥又PO ⊥平面ABD ,//EF PO ∴,PO ⊄ 平面BDE ,EF ⊂平面BDE ,//PO ∴平面BDE ;F 为BD 中点,AF BD ∴⊥,即OF BD ⊥,又EF ⊥平面ABD ,平面,,OF BD ⊂平面ABD ,EF OF ∴⊥,EF BD ⊥,EF BD F = ,,EF BD ⊂平面BDE ,OF ∴⊥平面BDE ,EF === BD ⊥,1122BDE S BD EF ∴=⋅==△又12OF AF ==//平面BDE ,11313342P BDE O BDE BDE V V S OF --∴==⋅=⨯⨯=△(2)OF CF ==F 为OC 中点,又//PO EF ,∴E 为PC 中点,2PO EF =,PO ∴=2=,以F 为坐标原点,FB ,FC ,FE正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则30,,02A ⎛⎫-⎪⎝⎭,B ⎫⎪⎪⎭,E ⎛⎝,D ⎛⎫ ⎪ ⎪⎝⎭,10,,02O ⎛⎫- ⎪⎝⎭,10,2P ⎛-⎝,3,02AB ⎫∴=⎪⎪⎭ ,30,2AE ⎛=⎝ ,(OP =,1,02DO ⎫=-⎪⎪⎭ ,3,02DA ⎫=-⎪⎪⎭ ,设()()01OMOP λλ==≤≤,12DM DO OM ⎫∴=+=-⎪⎪⎭ ;设平面ABE 的法向量(),,n x y z =,则302ABn x y ⋅=+= 则302AE n y z ⋅=+=令1y =-,解得:x =z =n =-,设直线DM 与平面ABE 所成角为θ,sin DM n DM n θ⋅∴===⋅令32t λ=+,则[]2,5t ∈,λ∴=2222222(2)1314717431(32)33t t t t t t t λλ-++-+⎛⎫∴===-+ ⎪+⎝⎭,111,52t⎡⎤∈⎢⎥⎣⎦,∴=即λ=22min 3131449(32)4λλ+⎤+==⎥+⎦max (sin )1θ∴==,此时12DM =- ,0,1,MA DA DM ⎛∴=-=- ⎝,∴点M 到平面ABE的距离MA n d n ⋅=== 18.答案:(1)证明见解析;(2)解析:(1)如图,设AC 与BD 交于点O .因为四边形ABCD 是菱形,所以AC BD ⊥.因为AF ⊥平面ABCD ,BD ⊂平面ABCD ,所以AF BD ⊥.因为AF AC A = ,AF AC ⊂、平面ACF ,所以BD ⊥平面ACF.又因为BD ⊂平面BDE ,所以平面BDE ⊥平面ACF .(2)因为AF ⊥平面ABCD ,//DE AF ,所以DE ⊥平面ABCD ,因为AC ⊂平面ABCD ,所以DE AC ⊥.又因为AC BD ⊥,DE BD D = ,,DE BD ⊂平面BDE ,所以AC ⊥平面BDE .连接OE ,AEO ∠即为AE 与平面BDE 所成的角,所以sin AO AEO AE ∠==因为4AD =,3DE =,所以5AE =,所以2AO =,所以24AC AO ==,所以ACD △是等边三角形.因为//DE AF ,DE ⊂平面BDE ,AF ⊄平面BDE ,所以//AF 平面BDE,所以111443332F CDE A CDE E ACD ACD V V V S DE ---===⋅=⨯⨯⨯=△19.答案:(1)见解析;(2)见解析解析:(1)建立如图所示的空间直角坐标系,设AC BD N = ,连结NE .则N ⎫⎪⎪⎭,()0,0,1E ,)A,M ⎫⎪⎪⎭.∴NE ⎛⎫ ⎪ ⎪⎝=⎭,AM ⎛⎫ =⎪ ⎪⎝⎭ .∴//AM NE 且NE 与AM 不共线.∴//NE AM . NE ⊂平面BDE ,AM ⊄平面BDE ,∴//AM 平面BDE .(2)由(1)知AM ⎛⎫ =⎪⎪⎝⎭ ,)D,)F ,∴()DF = ,∴0DF AM ⋅= ,∴AM DF ⊥.同理.又,平面.AM BF ⊥DF BF F = ∴AM ⊥BDF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:空间角一、基础梳理1.两条异面直线所成的角(1)异面直线所成的角的范围:(0,]2π。

(2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。

两条异面直线,a b 垂直,记作a b ⊥。

(3)求异面直线所成的角的方法:(1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。

平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。

1:三棱柱111B A O OAB -,平面11O OBB ⊥平面OAB ,90,601=∠=∠AOB OB O ,且12,OB OO == 3OA =,求异面直线B A 1与1AO 所成角的余弦。

2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。

一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0角。

直线和平面所成角范围:0,2π。

(2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。

(3)公式:已知平面的斜线a 与内一直线b 相交成θ角, 且a 与相交成1角,a 在上的射影c 与b 相交成2角, 则有θϕϕcos cos cos 21= 。

由(3)中的公式同样可以得到:平面的斜线和它在平面 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。

AB O 1A1B1O考点二:直线和平面所成的角例2. 如图,在三棱柱ABC A B C '''-中,四 边形A ABB ''是菱形,四边形BCC B ''是矩形,C B AB ''⊥,02,4,60C B AB ABB '''==∠=, 求AC '与平面BCC B ''所成角的正切。

3:(1)在0120的二面角P a Q --的两个面P 与Q 内分别有两点A B 、,已知点A 和点B 到棱的距离分别为2,4cm cm ,且线段10AB cm =。

求:①直线AB 和棱a 所成角的正弦值;②直线AB 和平面Q 所成角的正弦值。

(2)(08全国Ⅰ11)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( ) A .13B.3C.3D .23(3)如图,在矩形ABCD中,3AB BC ==,沿对角线BD 将BCD ∆折起,使点C 移到C '点,且C '点在平面ABD 上的射影O 恰在AB 上。

求直线AB 与平面BC D '所成角的大小。

A BCA 'B 'C '⇒A B()C C 'DO(4)①AB 为平面β的斜线,则平面β内过A 点的直线l 与AB 所成的最小角为_____________, 最大角为__________________。

平面内过A 点的 直线l 与AB 所成角θ的范围为_______________。

②AB 与平面β内不过A 点的直线所成的角的范围 为_______________________。

③直线1l 与平面α所成的角为030,直线2l 与1l 所成角为060,则2l 与平面α所成角的取值范围是______________________。

④设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有 ( )(A)1条 (B)2条 (C)3条 (D)4条⑤过正方体的顶点A 作截面,使正方体的12条棱所在直线与截面所成的角皆相等。

试写出满足条件的一个截面________________________(注:只须任意写出一个),并证明。

3.二面角(1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。

若棱为l ,两个面分别为,αβ的二面角记为l αβ--。

(2)二面角的平面角:过二面角的棱上的一点O 分别在两个半平面内...... 作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角。

说明:①二面角的平面角范围是[]0,π,因此二面角有锐二面角、直二面角与钝二面角之分。

②二面角的平面角为直角时,则称为直二面角, 组成直二面角的两个平面互相垂直。

(3)二面角的求法:(4)(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法) (二)间接法:面积射影定理的方法。

(4)面积射影定理:面积射影定理:已知ABC ∆的边BC 在平面α内,顶点A α∉。

设ABC ∆的面积为S ,它在平面α内的射影面积为1S ,且平面α与ABC ∆所在平面所成的二面角为0(090)θθ<<,则1cos S Sθ=。

注:①面积射影定理反映了斜面面积、射影面积 和这两个平面所成二面角的平面角间的关系; ABC ∆可以推广到任意的多边形。

②在二面角的平面角不易作时,经常采用 “面积射影定理法”。

例3.如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点。

(1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小。

如图所示,在直三棱柱111ABC A B C -中,090,1,ACB CB ∠==1CA AA ==M 为侧棱1CC 上一点, 1AM BA ⊥。

(1)求证:1AM A BC ⊥平面; (2)求二面角B AM C --的大小; (3)求点C 到平面ABM 的距离。

A BMC1A1B1CA B CD1A θS1S α四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =。

①证明:AD CE ⊥;②设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小。

S 为直角梯形ABCD 所在平面外一点0,90,ABC SA ∠=⊥面,ABCD SA AB BC ===1,12AD =,求平面SCD 与平面SAB 所成二面角的大小。

等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 。

例4.如图所示,已知平行六面体 1111ABCD A B C D -的底面ABCDCDEAB 1A1B1C1DSABCD是矩形,且侧面11ABB A ⊥底面ABCD ,11,3,AB BB AN NB == M 、E 分别是1B C 、AB 的中点,F 是EC 的中点,4,2AB MN ==,侧棱与底面ABCD 成045的角。

(1)求证:MF ⊥底面ABCD ; (2)求二面角M AB C --的大小;(3)求MN 与平面1B CE 所成角的大小。

1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1B 与AC 1所成的角为( ) (A )450(B )600(C )900(D )1200(2)(08全国Ⅱ10)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13 B .23 C .33 D .23(3)Rt ABC ∆的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则BA C '∠的范围是________________。

(4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α⊂,这时PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( )A.x y >B.x y =C.x y <D.,x y 的大小关系不确定(5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的射影所成的角是( )A .30°B .45°C .60°D .90°(6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线段与平面所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面所成的角是 。

(7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( )A .21B .22 C .36D .33(8)如图,在正方体1111D C B A ABCD -中,,M N 分别是1,A A AB 上的点,若0190NMC ∠=, 那么1NMB ∠的大小是( )A.大于090B.小于090 C. 090 D.不能确定(9)已知SO ABC ⊥∆所在平面于O 点,且S 到,,A B C 三点等距离,若ABC ∆中,有cos cos sin sin A B A B >,则O 点( )A.必在ABC ∆的某一边上B.必在ABC ∆外部(不含边界)C.必在ABC ∆内部(不含边界)D.以上都不对(10)如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为 21θθ和,则( )A .1sin sin 2212≥+θθB .1sin sin 2212≤+θθC .1sin sin 2212>+θθD .1sin sin 2212<+θθ (11)如图,l A B αβαβαβ⊥=∈∈,,,,A B ,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别 是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,(12)与正方形各面成相等的角且过正方体三个顶点的截面的个数是________。

2.已知直三棱柱111,,ABC A B C AB AC F -=为1BB 上一点,12,BF BC a FB a ===。

(1)若D 为BC 的中点,E 为AD 上不同于A D 、的任意一点,证明:1EF FC ⊥; (2)若113A B a =,求1FC 与平面11AA B B 所成角的正弦值。

相关文档
最新文档