奥数题盈亏问题

合集下载

奥数专题:盈亏问题

奥数专题:盈亏问题

盈亏问题专题简析:盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4.不足适足:一次分配不够,一次分配正好。

一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。

解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。

例1.某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。

乒乓球队共有多少名学生?变式训练1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。

学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。

两堆货物一共有多少吨?3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。

这些优秀学生中男、女生各多少人?例2.幼儿园老师拿出苹果发给小朋友。

如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。

有多少个小朋友?共有多少个苹果?变式训练1.给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个。

有多少个小朋友?有多少个梨?2.老把一些铅笔奖给三好学生。

每人5支则多4支,每人7支则少4支。

老师有多少支铅笔?奖给多少个三好学生?3.有一个班的同学去划船,他们算了一下,如果增加一条船,正好每船坐6人;如果减少一条船,正好每条船上坐9人。

小学奥数 盈亏问题 非常完整

小学奥数 盈亏问题 非常完整

盈亏问题盈亏问题一、学习内容基本盈亏题目;典型盈亏题目;变形盈亏题目。

两个不变:给谁分(单位是什么)分什么(盈亏指什么)一、盈盈问题【例1】沫沫老师将一批树苗分给学生种。

若给每人分8棵树苗,最后还剩12棵树苗;若给每人分10棵树苗,则刚好分完。

沫沫老师一共给学生分了多少棵树苗?【巩固】学校给寄宿生分配宿舍。

如果每间宿舍安排5名学生,那么还有10名学生没有宿舍住;如果每间宿舍安排6名学生,那么刚好够住。

一共有多少间宿舍?有多少名学生?【例2】沫沫老师给学生发作业本,给每个人发了同样多的作业本后,还剩下36本。

后来,沫沫老师给新来的3个人也发了同样数目的作业本,此时还剩下24本。

沫沫老师给每个人发了多少本作业本?剩下的作业本还能再发给多少人?【巩固】老师将一些剪纸分给5名学生,每名学生分到的剪纸数量相同,还剩22张剪纸。

后来又来了2名学生,分给他们同样多的剪纸后,还剩6张剪纸。

老师一共拿来了多少张剪纸?【例3】体育老师给参赛选手分矿泉水。

如果给每名选手分4瓶矿泉水,那么还剩23瓶矿泉水;如果给每名选手分5瓶矿泉水,那么还剩13瓶矿泉水。

一共有多少名选手?一共有多少瓶矿泉水?【巩固】幼儿园老师将一筐苹果分给小朋友,要求给每个小朋友分的苹果数量相同。

如果分给9个小朋友,那么这筐苹果还剩21个;如果分给12个小朋友,那么这筐苹果还剩12个。

这筐苹果一共有多少个?二、亏亏问题:【例1】饲养员将一筐桃分给猴子吃。

如果给每只猴子分5个桃,那么还少9个桃;如果给每只猴子分4个桃,一筐桃刚好分完。

这筐桃有多少个?【例2】开学时,老师想给学生发铅笔。

如果给每名学生发同样多的铅笔,那么还差12支铅笔。

后来有2名学生转走了,这样还差4支铅笔。

老师想给每名学生发多少支铅笔?【例3】运动会上,学校给四年级的运动员分矿泉水。

如果给每名运动员分4瓶矿泉水,那么还差3瓶;如果给每名运动员分6瓶矿泉水,那么就会差19瓶。

四年级有多少名运动员?一共有多少瓶矿泉水?【巩固】1、某仓库来了一队货车,工人们都去卸货。

小学奥数盈亏问题

小学奥数盈亏问题

小学奥数--盈亏问题(适合三四年级同学学习)解题规律:总差额÷每人差额=人数。

一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数,再求总数量。

每次分的数量*份数+盈=总数量或。

每次分的数量*份数-亏=总数量。

1、两盈:两次分配都有多余2、两不足:两次分配都不够3、盈适足:一次分配有余,另一次分配刚好分完。

4、不足适足:一次分配不足,另一次分幼儿园小朋友分苹果,如果每人分3个就多了11个,如果每人分5个还缺5个,问有多少个小朋友?苹果有多少个?这是个典型的盈不足问题,根据数量关系:(盈+亏)÷两种分配标准的数量之差=固定对象数量先求出小朋友的个数为:(11+5)÷(5-3)=8(个)。

再根据题中任意一个条件,求出苹果的个数:3×8+11=35(个)或5×8-5=35(个)。

【华从家去学校,如果每分钟走80米,能在上课前6分钟到校;如果每分钟走50米,就要迟到3分钟,那么小华家到学校的路程有多远?题中隐藏着两个固定的数量:小华从家到学校归定的时间和固定的家校距离。

先对题中的条件作一个转化:①“如果每分钟走80米,能在上课前6分钟到校”,即每分钟走80米,在规定时间内,所走的路程比家校距离多了:80×6=480(米)。

②“如果每分钟走50米,就要迟到3分钟”,即每分钟走50米,在规定时间内,所走的路程就比家校距离短:50×3=150(米)。

所以,小华从家到学校规定的时间为:(480+150)÷(80-50)=21(分)。

小华家到学校的路程为:50×(21+3)=1200(米)或80×(21-6)=1200(米)。

某厂生产一批零件,如果每天生产1000个,将比原计划多用1天;如果每天多生产500个,将比原计划提前1天完成。

奥数题库-盈亏问题

奥数题库-盈亏问题

例题:总份数=总差÷个差(1)一盈一亏:总差=盈+亏(2)两盈:总差=大盈-小盈(3)两亏:总差=大亏-小亏(4)一盈一正好:总差=盈(5)一亏一正好:总差=亏环保小组的同学上山植树,如果每人种3棵,则还剩3棵;如果每人种4棵,则还差2棵。

环保小组有多少人?一共植树多少棵?分析与解:这是一道典型的盈亏应用题。

盈,就是多余;亏,就是不足、少的意思。

比较两种植树方式,第一种多了3棵,第二种少了2棵,一多一少共相差3+2=5(棵)。

显然,相差5棵的原因是第二种植树方式每人种的棵数比第一种多了4-3=1(棵)。

根据“相差的总数÷相差的每份数=份数”得出,环保小组的人数是5÷1=5(人),一共植树3×5+3=18(棵),或4×5-2=18(棵)。

从中得出:解盈亏问题,要先比较“盈”与“亏”两种情况,求出两种情况下总数之间的差,像上题是一盈一亏,差=盈+亏;再找出出现这个差的原因是每份数不同,求出两个每份数之间的差;最后根据“差——差”对应求出份数以及总数。

盈亏问题还有另外两种情况:两盈与两不足。

有些题还要通过转化,先找出“盈亏”数。

例1.工程队修一条路,如果每天修150米,则可以提前2天完成任务;如果每天修180米,则可以提前5天完成任务。

这条路全长多少米?分析与解:这道题没有直接给出“盈亏”数,但由题意可知,第一种情况如果再修2天,还可以修150×2=300(米);第二种情况如果再修5天,还可以修180×5=900(米)。

这300米与900米就是两个“盈”数。

因此,可以把条件转化为:如果每天修150米,可以多修300米;如果每天修180米,可以多修900米。

显然,这道题是“两盈”类盈亏问题,相差的总数是(900-300)米,相差的每份数是(180-150)米,所以计划修的天数是()(900-300)÷(180-150)=20(天),这条路全长150×(20-2)=2700(米),或180×(20-5)=2700(米)。

小学奥数盈亏问题解题思路详解(附盈亏问题公式)

小学奥数盈亏问题解题思路详解(附盈亏问题公式)

盈亏问题解题思路详解(附盈亏问题公式)解题思路:盈亏问题的解法要点是先求两次分配中分配者每份所得物品数量的差,再求两次分配中的总差额,用前一个差去除后一个差,就得到分配者的人数,进而再求得物品数。

解题规律:总差额÷每人差额=人数。

一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数,再求总数量。

每次分的数量*份数+盈=总数量或。

每次分的数量*份数-亏=总数量。

物品数可由其中一种分法的份数和盈亏数求出。

其它(高级):盈亏临界点——交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。

盈亏临界点计算的基本模型设以P代表利润,V代表销量,SP代表单价、VC代表单位变动成本,FC代表固定成本,BE代表盈亏临界点,根据利润计算公式可求得盈亏临界点的基本模型为:盈亏临界点的计算,可以采用实物和金额两种计算形式:1.按实物单位计算:其中,单位产设某产品单位售价为10元,单位变动成本为6元,相关固定成本为8000元,则盈亏临界点的销售量(实物单位)=8000÷(10-6)=2000(件)。

品贡献毛益=单位产品销售收入-单位变动成本2.按金额综合计算:盈亏临界点的销售量(用金额表现)=固定成本÷贡献毛益率其中,贡献毛益率=贡献毛益/销售收入附盈亏问题公式:(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差/大分-小分)=人数。

(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差/大分-小分)=人数。

(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差/大分-小分)=人数。

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差/大分-小分)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差/大分-小分)=人数。

奥数题盈亏问题

奥数题盈亏问题

奥数题盈亏问题在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。

盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。

解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树。

如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。

这个植树小组有多少人?一共有多少棵树?由题意可知,植树的人数和树的棵数是不变的。

比较两种分*案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。

这是因为两种分*案每人植树的棵数相差7-5=2棵。

所以植树小组有18÷2=9人,一共有5×9+14=59棵树。

练习一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。

幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。

问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

问:这个班共有多少学生?例2:学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人?铅笔有多少支?分析与解答:这是两亏的问题。

由题意可知:三好学生人数和铅笔支数是不变的。

比较两种分*案,结果相差45-7=38支。

这是因为两种分*案每人得到的铅笔相差9-7=2支。

所以,三好学生有38÷2=19人,铅笔有9×19-45=126支。

练习二1,将月季花*入一些花瓶中。

如果每瓶*8朵,则缺少15朵;如果每瓶改为*6朵,则缺少1朵。

奥数题库盈亏问题

奥数题库盈亏问题

盈亏问题(1)分配中的比较1.老师给学生发巧克力,每人发了同样多的巧克力后,还剩下10块.后来又来了2个同学,老师也发给他们同样多的巧克力后,巧克力刚好分完.那么每个同学分到__________块巧克力.2.老师给学生发巧克力,每人发了同样多的巧克力后,还剩下18块.后来又来了3个同学,老师也发给他们同样多的巧克力后,巧克力刚好分完.那么每个同学分到__________块巧克力.3.老师给学生发巧克力,每人发了同样多的巧克力后,还剩下16块.后来又来了4个同学,老师也发给他们同样多的巧克力后,巧克力刚好分完.那么每个同学分到__________块巧克力.4.旦旦把一捆捆的草分给羊,每只羊分到的一样多,剩下了16捆草.后来又来了羊小黑和羊小白,分给它们同样的草后,只剩下了10捆草.那么每只羊分到__________捆草.5.旦旦把一捆捆的草分给羊,每只羊分到的一样多,剩下了18捆草.后来又来了3只羊,分给它们同样的草后,只剩下了6捆草.那么每只羊分到__________捆草.6.旦旦把一捆捆的草分给羊,每只羊分到的一样多,剩下了20捆草.后来又来了5只羊,分给它们同样的草后,只剩下了10捆草.那么每只羊分到__________捆草.7.雁雁把一些胡萝卜分给6只兔子,每只兔子分到的一样多,剩下了15根胡萝卜.后来又来了2只兔子,如果分给它们同样多的胡萝卜,就会少7根胡萝卜.那么雁雁开始共带了__________根胡萝卜.8.雁雁带了一些胡萝卜分给10只兔子,每只兔子分到的一样多,剩下了6根胡萝卜.后来又来了4只兔子,如果分给它们同样多的胡萝卜,就会少10根胡萝卜.那么雁雁开始共带了__________根胡萝卜.9.雁雁带了一些胡萝卜分给8只兔子,每只兔子分到的一样多,剩下了5根胡萝卜.后来又来了5只兔子,如果分给它们同样多的胡萝卜,就会少10根胡萝卜.那么雁雁开始共带了__________根胡萝卜.10.旦旦准备了一些面包分给同学,每袋面包有12片.开始旦旦给8个同学每人分了同样多片面包,还剩下1袋.后来又来了4个同学,旦旦发现还要再买1袋面包,才能正好给新来的同学每人分同样多的面包,那么旦旦开始准备了__________袋面包.11.雁雁准备了一些棒棒糖分给同学,每盒棒棒糖有10根.开始雁雁给25个同学每人分了同样多根棒棒糖,还剩下半盒.后来又来了5个同学,雁雁发现还要再买1盒棒棒糖,才能正好给新来的同学每人分同样多的棒棒糖,那么雁雁开始准备了__________盒棒棒糖.12.雁雁准备了一些棒棒糖分给同学,每盒棒棒糖有10根.开始雁雁给6个同学每人分了同样多根棒棒糖,还剩下1盒.后来又来了6个同学,雁雁发现还要再买2盒棒棒糖,才能正好给新来的同学每人分同样多的棒棒糖,那么雁雁开始准备了__________盒棒棒糖.基本盈盈问题1.老师给班里同学发棒棒糖,如果给每个同学多发3个,老师剩下的棒棒糖就变少30个,那么班里共有__________个同学.2.老师给班里同学发棒棒糖,如果给每个同学多发4个,老师剩下的棒棒糖就变少60个,那么班里共有__________个同学.3.老师给班里同学发棒棒糖,如果给每个同学多发5个,老师剩下的棒棒糖就变少45个,那么班里共有__________个同学.4.旦旦给兔子分青菜.如果每只兔子分4颗青菜,还会剩下8颗青菜;如果每只兔子分6颗青菜,刚好分完所有青菜.那么,共有__________只兔子.5.旦旦给兔子分一些青菜.如果每只兔子分3颗青菜,还会剩下20颗青菜;如果每只兔子分7颗青菜,刚好分完所有青菜.那么,共有__________只兔子.6.旦旦给兔子分一些青菜.如果每只兔子分2颗青菜,还会剩下18颗青菜;如果每只兔子分5颗青菜,刚好分完所有青菜.那么,共有__________只兔子.7.雁雁把一些香蕉分给猴子们.如果每只猴子分5根香蕉,还剩下30根香蕉;如果每只猴子分8根香蕉,还剩下3根香蕉.那么共有__________只猴子.8.雁雁把一些香蕉分给猴子们.如果每只猴子分3根香蕉,还剩下20根香蕉;如果每只猴子分5根香蕉,还剩下4根香蕉.那么共有__________只猴子.9.雁雁把一些香蕉分给猴子们.如果每只猴子分2根香蕉,还剩下50根香蕉;如果每只猴子分6根香蕉,还剩下10根香蕉.那么共有__________只猴子.10.运动会上,班长给每个参赛选手发矿泉水.如果每名选手分3瓶矿泉水,还剩下15瓶矿泉水;如果每名选手分5瓶矿泉水,还剩下3瓶矿泉水.那么班长共准备了__________瓶矿泉水.11.运动会上,班长给每个参赛选手发矿泉水.如果每名选手分2瓶矿泉水,还剩下20瓶矿泉水;如果每名选手分5瓶矿泉水,还剩下5瓶矿泉水.那么班长共准备了__________瓶矿泉水.12.运动会上,班长给每个参赛选手发矿泉水.如果每名选手分4瓶矿泉水,还剩下25瓶矿泉水;如果每名选手分7瓶矿泉水,还剩下7瓶矿泉水.那么班长共准备了__________瓶矿泉水.基本盈亏问题1.老师拿来一些树苗,分给同学们去种.如果每人分8棵树苗,刚好分完所有树苗;如果每人分10棵树苗,就少了18棵树苗.那么共有__________个同学.2.老师拿来一些树苗,分给同学们去种.如果每人分5棵树苗,刚好分完所有树苗;如果每人分8棵树苗,就少了18棵树苗.那么共有__________个同学.3.老师拿来一些树苗,分给同学们去种.如果每人分4棵树苗,刚好分完所有树苗;如果每人分8棵树苗,就少了28棵树苗.那么共有__________个同学.4.队长给战士们发子弹.如果发给每名战士6颗子弹,还剩下30颗子弹;如果发给每名战士10颗子弹,就会缺10颗子弹.那么一共有__________名战士.5.队长给战士们发子弹.如果发给每名战士5颗子弹,还剩下40颗子弹;如果发给每名战士10颗子弹,就会缺15颗子弹.那么一共有__________名战士.6.队长给战士们发子弹.如果发给每名战士4颗子弹,还剩下30颗子弹;如果发给每名战士10颗子弹,就会缺24颗子弹.那么一共有__________名战士.7.旦旦给兔子分一些青草.如果每只兔子4捆青草,还剩下8捆青草;如果每只兔子6捆青草,还少10捆青草.那么,旦旦原来共有__________捆青草.8.旦旦给兔子分一些青草.如果每只兔子3捆青草,还剩下10捆青草;如果每只兔子7捆青草,还少10捆青草.那么,旦旦原来共有__________捆青草.9.旦旦给兔子分一些青草.如果每只兔子6捆青草,还剩下11捆青草;如果每只兔子9捆青草,还少10捆青草.那么,旦旦原来共有__________捆青草.10.小高准备了一些棒棒糖分给班里的同学,每盒12根,如果给每个同学9根棒棒糖,那么最后少1盒;如果给每个同学6根棒棒糖,那么最后还剩下1盒.那么小高一共准备了__________盒棒棒糖.11.小高准备了一些棒棒糖分给班里的同学,每盒10根,如果给每个同学10根棒棒糖,那么最后少1盒;如果给每个同学7根棒棒糖,那么最后还能剩下半盒.那么小高一共准备了__________盒棒棒糖.12.小高准备了一些棒棒糖分给班里的同学,每盒16根,如果给每个同学8根棒棒糖,那么最后少1盒;如果给每个同学5根棒棒糖,那么最后还能剩下半盒.那么小高一共准备了__________盒棒棒糖.1.马路的一侧种树,且一端种树.若每隔6米种一棵树,共种9棵树,则马路长__________米。

奥数题之盈亏问题专题培训课件

奥数题之盈亏问题专题培训课件
推理问题中的条件繁杂交错,解题时必须根据事 情的逻辑关系进行合情推理,仔细分析,寻找突 破口,并且可以借助于图表,步步深入,这样才 能使问题得到较快的解决。
例题1 : 有8个球编号是(1)——(8), 其中有6个球一样重,另外两个球都轻1克。 为了找出这两个轻球,用天平称了3次,结 果如下:
第一次:(1)+(2)比(3)+(4)重;
分析:
因为小英获得了语文第一名,所以, 小明获得的第一名只能是英语或数 学,而小明已获得了数学第二名, 不可能再获得数学第一名,因此, 获得英语第一名的一定是小明。
例题4: 小明看一本书,如果看过的 页数每天比前一天增加一倍,7天正好 看完。已知这本书一共96页,他第几 天看到了12页?
分析:
第二次:(5)+(6)比(7)+(8)轻;
第三次:(1)+(3)+(5)与(2)+(4) +(8)一样重。
那么,两个轻球分别是几号?
分析:
从第一次看,(3)、(4)两球中有 一个轻;从第二次看,(5)、(6)两球 中有一个轻;从第三次看,(1)、(3)、 (5)中有一个轻,(2)、(4)、(8) 中也有一个轻。
(1)许兵说:桌凳不是我修的。
(2)李平说:桌凳是张明修的。
(3)刘成说:桌凳是李平修的。
(4)张明说:我没有修过桌凳。
后经了解,四人中只有一个人说的是真话。 请问:桌凳是谁修的?
例题6:虹桥小学举行科技知识竞赛, 同学们对一贯刻苦学习、爱好读书的 四名学生的成绩作了如下估计:
(1)丙得第一,乙得第二。
例题8:六年级有四个班,每个班都有 正、副班长各一人。平时召开年级班 长会议时,各班都只有一人参加。参 加第一次回师的是小马、小张、小刘、 小林;参加第二次会议的是小刘、小 朱、小马、小宋;参加第三次会议的 是小宋、小陈、小马、小张,小徐因 有病,三次都没有参加。你知道他们 哪两个是同班的吗?

奥数盈亏问题详解

奥数盈亏问题详解

盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换板块一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729÷=(人).共+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919有砖:49743⨯+=(块).【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【解析】“多8元”与“多4元”两者相差844-=(元),每个人要多出871-=(元),因此就知道,共有414⨯-=(元).÷=(人),蛋糕价钱是84824【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【解析】老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是927-=(个),两次分配之差是11101-=(个),由盈亏问题公式得,有小猴子:717⨯+=÷=(只),老猴子有710979(个)桃子.【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【解析】由题意知:第一种方案:每人发5本多出70本;第二种方案:每人发7本多出10本;两种方案分配结果相差:701060-=(本),-=(本),这是因为两次分配中每人所发的本数相差:752相差60本的学生有:60230⨯+=).÷=(人).练习本有:30570220⨯+=(本)(或30710220【例 2】(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下201010-=个,所以大猴比小猴多10只.【巩固】 学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?【解析】 “差9本”和“差2本”两者相差927-=(本),每个人要多发1091-=(本),因此就知道,共有老师717÷=(人),书有710961⨯-=(本).【巩固】 幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【解析】 由题意知:两次的分配结果相差:241212-=(块),这是因为第一次与第二次分配中每人相差:963-=(块),多少人相差12块呢?1234÷=(人),糖果数是:641212⨯-=(块)(或942412⨯-=).【巩固】 王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【解析】 本题购物的两个方案,第一个方案:买7把差110元,第二个方案:买5把还多30元,从买7把变成买5把,少买了752-=(把),而钱的差额为:11030140+=(元),即140元可以买2把小提琴,可见小提琴的单价是每把70元,王老师一共带了707110380⨯-=(元).【巩固】 工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【解析】 本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差10020120+=(元),即损1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250个花瓶都完好,这样可得运费202505000⨯=(元).这样比实际多得50004400600-=(元).就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了202504400100205⨯-÷+=()()(个).【例 3】 某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【解析】 由已知条件每间5人 少14个床位每间7人 多4个床位比较两次分配的方案,可以看出,由于第二种方案比第一种每间多住(75)2-=人,一共要多出(144)18+=个床位,根据两种方案每间住的人数的差和床位差,可以求出宿舍间数,然后根据已知条件可求出住宿生人数.解:(414)(75)=9+÷-(间)591459⨯+=(人),或79459⨯-=(人)【巩固】 学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【解析】 如果30间都是小宿舍,那么只能住430120⨯=(人),而实际上住了168人.大宿舍比小宿舍每间多住642-=(人),所以大宿舍有168120224-÷=()(间).(这是一个鸡兔同笼,放在这里做对比)【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或 4×28+48=160(个).板块二、条件关系转换型盈亏问题【例 4】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是⨯+=(条)鱼.÷=(只),猫妈妈有810888 -=(条),由盈亏问题公式得,有小猫:81811101【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:÷=(人),有小玩具9327⨯=(个).-=(个),由盈亏问题公式得,参与分玩具的同学有:919431【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422-=(个),由盈亏问题公式得,朝阳小学有:66233⨯=(个).÷=(个)班,买来足球33266【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541-=(粒),由盈亏问题公式得,参与分糖的同学有:919⨯=(粒).÷=(人),有糖果9545【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信【例 6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

小学奥数题盈亏问题例

小学奥数题盈亏问题例

1幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有多少个小朋友?答:2体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?1王老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可以比上课时间提前2分钟到校.王老师家到学校的路程是多少米?答:2、答:答:答:5、1、解答:典型的盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑”统一一下。

即:应该统一成每人挖6个树坑,形成统一的标准。

那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。

这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。

解答:盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。

2、解答:迟到3分钟转化成米数:500×3=1500(米),提前两分钟到校转化成米数:600×2=1200(米)王老师家到学校需要(1500+1200)÷(60-50)=270(分钟),王老师家到学校的路程:500×(270+3)=136500(米)岁),乙现在的岁数是:15+5=20(岁),甲现在的岁数是:20+15=35(岁)3、解答:如果把香蕉全部分给第一个笼子,那么每只猩猩4个,有剩余;每只猩猩5个,香蕉不够.说明第一个笼子猩猩数少于48÷4=12(只)猩猩,多于48÷5=9……3,即多于9只猩猩;如果把香蕉全分给第二组,那么每只猩猩3个,有剩余;每只猩猩4个,香蕉不够.说明第二组只猩猩数少于48÷3=16(只)猩猩,多于48÷4=12(只)猩猩;因为已知第二组比第一组多5只猩猩,所以,第一组只能是10只猩猩,第二组15只猩猩.4解答:因为“每千克牛肉比猪肉贵3元”,所以同样买10千克猪肉的话,就剩了3×10-6=24(元),这样化成普通的盈亏问题,猪肉的价钱是:(24-4)÷(12-10)=10(元),所以小明妈妈带的钱数是:12×10+4=124(元).5、解答:考虑人数增加3倍后,相当于按原人数每人给2×3=6(个),每人给5个与给6个,总数相差10+8=18 (个),所以原有人数18÷(6-5)=18(人),乒乓球总数是5×18+10=100(个).。

用图片详细讲小学奥数题-盈亏问题

用图片详细讲小学奥数题-盈亏问题

总结:“两个都盈”相对简单,重点理解:把第一次多出来的,再分一次,还是没有分完。
“两个都赢”解法公式: (大盈-小盈) ÷ 两次分得之差 = 人数或单位数
4
一般盈亏问题(三)
“两个都亏”的解法
例题: 学校新买了一些书,要将他们分给四年级的几位老师,如果每位老师发10本,还差9本;如果每
人发9本,还差2本。问:四年级有多少老师?一共买了多少本书?
每人4粒多9粒,把多余的9粒再给每个 人分1粒时,又不够,少了6粒。 可以计算出人数为:9+6 = 15(人) 所以,糖数为 15 × 4 + 9 = 69(粒)
总结:“一盈一亏”的问题初接触小孩子比较难理解的点在于不易理解9+6,即“盈”+“亏”,要多讲几遍。
“一盈一亏”解法公式: (盈+亏) ÷ 两次分得之差 = 人数或单位数
有时侯是正好分完的(不盈不亏)。凡是研究“盈”和“亏”这类算法的应用题,我们称为”盈亏问题”。
2
一般盈亏问题(一)
“一盈一亏”的解法
例题:
粒糖?
老师给班上分糖果,如果每人分4粒就多9粒;如果人分5粒则少6粒。问:有多少个同学分多少
每人4粒
多9粒
每人多分1粒
把多出的9粒再给 每个人多分1粒
每人5粒
每条件转化为一般的盈亏问题
题目解析:本题关键是转化盈亏条件。
把绳子3段来量,井外余2米 = > 折成3段,多出3 × 2 = 6(米) (盈) 。
把绳子4段来量,距井口还有1米 => 折成4段,少4 × 1 = 4(米)(亏) 。
注:上述条件求出的是井深。
第2步:根据公式,“一盈一亏”解法公式: (盈+亏) ÷ 两次分得之差 = 人数或单位数,

三年级奥数题目及答案:盈亏问题

三年级奥数题目及答案:盈亏问题

三年级奥数题目及答案:盈亏问题盈亏问题是三年级奥数的专题之一,这类型的题目多做做练才能熟悉。

下面小编跟大家推荐盈亏问题的专项练习,快来看看吧!第一篇:锯树木练习题:8分钟把树锯成3段,问要锯成8段要多长时间?答案与解析:关键是要知道什么花时间,是锯的时候花时间,要锯成3段就要锯2刀,所以8分钟就是2刀的时间,这样就可以求出8/2=4,一刀用4分钟。

要锯成8段要锯8-1=7刀(植树问题:两端都不种树问题)所以共用4×7=28分钟(孩子最容易错的是最后锯8段要用7刀,做到最后总是会忘-1) 解:8/2=4(分钟)8-1=7(刀)4×7=28(分钟)答:需要28分钟。

第二篇:修公路练习题:20人修一条公路,计划15天完成,动工3三后抽出5人植树,留下的人继续修路,如果每人的工作效率不变,那么修完这段公路实际用多少天?答案与解析:遇到这样的题,心里要自己假设一人一天干一份那么总数就是1×20×15=300——20人15天共300份若要求实际用多少天,其实实际多少天=3+剩下的天数所以要先求剩下的天数,剩下的天数=剩下的份数/人数剩下天的活是20-5=15人干的,剩下的份数=总份数300-已经干了的份数已经干了3天,这3天是每天20人干,所以已经干了1×3×20=60份还剩300-60=240份剩下的天数=240/15=16天实际天数=16+3=19天【过程】假设一人一干一份1×20×15=300份——总数1×3×20=60份——已经干了60份300-60=240份——剩下的份数240/(20-5)=16天——剩下的天数16+3=19天——实际天数第三篇:运动器材练习题:学校买来一些足球和篮球.已知买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花了355元.现在要买5个足球、4个篮球共花多少元?答案与解析:要求5个足球和4个篮球共花多少元,关键在于先求出每个足球和每个篮球各多少元.根据已知条件分析出第一次和第二次买的足球个数相等,而篮球相差7-5=2(个),总价差355-281=74(元).74元正好是两个篮球的价钱,从而可以求出一个篮球的价钱,一个足球的价钱也可以随之求出,使问题得解。

盈亏问题(奥数)

盈亏问题(奥数)

盈亏问题知识札记:1. 盈亏问题又称为“盈不足问题”,是把一定数量的物品分给若干对象,在两次分配方案中,一次分配有余,即盈;一次分配中不足,即亏;求被分配的物品和分配对象的数量关系的问题。

2. 盈亏问题的机构特点:①已知两种分配方案;②按一种分配方案进行分配,分配后有余,而按另一种分配方案进行分配,分配后有不足;③求参加分配的数量及被分配的总量。

3. 解题方法:抓住不变量,比较两种方案的差别。

具体来说:①根据方案求出参与分配者每次分得物品数量之差(每人差额);②根据结果求出两次分配的物品剩余(盈或亏不足)之差(总差额);③总差额÷每人差额=人数典型例题:1.把一包糖分给小朋友,如果每人分5块,则余7块,如果每人分7块,则少9块,那么小朋友有多少个?这包糖有多少块?分析:这是一道典型的“一盈一亏”题,糖果的总数与小朋友的个数没有发生变化。

两种分配的方案结果相差了______块,第二种分配方案比第一种分配方案每人多分_____块。

那么需要分的人数为_____人,糖果总数为_____块。

列式:练一练①一个学习小组分发作业本,每人分3本还缺2本,每人分2本又多出4本。

这个小组共有几人?一共要分多少本作业本?②某小学买了一批跳绳准备分给各班。

如果每班分4根多10根,每班分5根还多4根,这个学校有多少个班?买了多少根跳绳?③学校买来若干盆花,若每班放6盆,就多出9盆;若每班放8盆,就少15盆,学校买来多少盆花?④王老师从家到单位,如果用每分钟60米的速度行走,就要迟到8分钟,如果改用每分钟80米的速度行走,就可早到3分钟,王老师家离单位多远?⑤小刘装订一批书,如果每小时装订60本,就可以提前2小时未完成;如果每小时装订50本,就比原计划晚3小时完成。

这批书有多少本?2.丁丁把自己的故事书借给同学们。

若每人借5本,则差17本;若每人借3本,则差3本。

问:丁丁的同学有几人?他一共有多少本故事书?分析:这是一道“两亏”问题。

小学奥数盈亏问题带详细答案

小学奥数盈亏问题带详细答案

小学奥数盈亏问题1.普通盈亏问题(★★★)(1)知识点速记:盈亏问题特征:把一定数量的物品平均分给一定数量的人或者事物,由于物品和人数都未定。

已知在两次分配中一次是盈(有余),一次是亏(不足);或者两次都是有余或者不足,求总人数和物品数。

解题有以下公式:(盈+亏)÷每人两次所得差=人数;两盈相减÷每人两次所得差=人数;两亏相减÷每人两次所得差=人数;每人所得数×人数+盈=物数;每人所得数×人数-亏=物数。

(2)例一:一批苹果,如果15个装一筐,则多出20个,如果20个装一筐,则少15个,求一共有多少筐,一共有多少个苹果?(盈亏)例二:五年级出去旅游,如果50个人坐一车,则多出30人没有位置,如果55人坐一车,则多出10人没有位置。

求一共有多少辆车,一共有多少人?(3)课堂练习:①五一班发练习本,如果每人发8本,则多出15本,如果每人发9本,则少8本,求五一班一共有多少学生,练习本一共有多少本?②旅行团住宿,如果4个人住一个房间,则有8人没有床位,如果5人住一个房间,则有2人没有床位。

求有多少房间,多少人?③水果店进来一批水果,如果每箱放10千克,则缺少2千克装满,如果每箱放12千克,则缺少8千克装满。

求有几个箱子,多少千克水果?2.盈亏问题转化(★★★★)(1)知识点速记:盈亏问题应用题若有部分条件改变,没有出现标准的盈亏形式,此时可以将其转化成标准盈亏问题,然后再使用盈亏问题公式求解。

熟悉方程的同学也可以使用方程求解。

(2)例三:.学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?例四:国庆节快到了,学而思学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?(3)课堂练习:①妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?②小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱?③小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校。

奥数盈亏问题完整版

奥数盈亏问题完整版

奥数盈亏问题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】奥数盈亏问题把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。

已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。

盈亏问题的基本解法是:份数=(盈+亏)÷两次分配数的差,物品数可由其中一种分法的份和盈亏数求出。

解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。

例题1 小明的妈妈买回一篮梨,分给全家。

如果每人分5个,就多出10个;如果每人分6个,就少2个。

小明全家有多少人这篮梨有多少个思路导航:根据题目中的条件,我们可知:第一种分法:每人分5个,多10个;第二种分法:每人分6个,少2个。

这说明全家人数为:10+2=12人,也就是说:不足的个数+多余的个数=全家的人数这篮梨的个数是:5×12+10=70个;练习一1,幼儿园阿姨把一袋糖分给小朋友们,如果每人分10粒糖,则多了8粒糖;如果每人分11粒糖,则少了16粒糖。

一共有多少个小朋友这袋糖有多少粒2,有一根绳子绕树4圈,余2米;如果绕树5圈,则差6米。

树周长是多少米绳子长多少米3,一些同学去划船,如果每条船坐5人,则多出3个位置;如果每条船坐4人,则有3个人没有位置。

一共有多少条船一共有多少个同学例题2 幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具。

幼儿园有几个班这批玩具有多少个思路导航:根据题目中的条件,我们可知:第一种分法:每班分8个,多2个;第二种分法:每班分10个,少12个。

从上面的条件中,我们可看出:第二种分法比第一种分法每班多分10-8=2个,所以,所需的玩具总个数从多2个变成了少12个,也就是说在多2个的基础上再加12个,才能保证每班分10个;第二种分法所需的玩具个数比第一种多12+2=14个,那是因为每班多分了2个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数题盈亏问题
奥数题盈亏问题
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的数量关系是:
(1)(盈+亏)÷两次分配差=份数
(大盈-小盈)÷两次分配差=份数
(大亏-小亏)÷两次分配差=份数
(2)每次分得的数量×份数+盈=总数量
每次分得的数量×份数-亏=总数量
例1:一个植树小组植树。

如果每人栽5棵,还剩14棵;如果
每人栽7棵,就缺4棵。

这个植树小组有多少人?一共有多少棵树?
由题意可知,植树的人数和树的棵数是不变的。

比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。

这是因为两种分配方案每人植树的棵数相差7-5=2棵。

所以植树小
组有18÷2=9人,一共有5×9+14=59棵树。

练习一
1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。

幼儿园有多少个小朋友?一共有
多少个积木?
2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间
8人,则多出10个床位。

问宿舍多少间?学生多少人?
例2:学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人?铅笔有多少支?
分析与解答:这是两亏的问题。

由题意可知:三好学生人数和铅笔支数是不变的。

比较两种分配方案,结果相差45-7=38支。

这是
因为两种分配方案每人得到的铅笔相差9-7=2支。

所以,三好学生
有38÷2=19人,铅笔有9×19-45=126支。

练习二
1,将月季花插入一些花瓶中。

如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。

求花瓶的只数和月季花的朵数。

2,王老师给美术兴趣小组的同学分发图画纸。

如果每人发5张,则少32张;如果每人发3张,则少2张。

美术兴趣小组有多少名同学?王老师一共有多少张图画纸?
3,老师将一些练习本发给班上的学生。

如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完。

有多少个学生?
多少本练习本?
例3:有一些少先队员到山上去种一批树。

如果每人种16棵,
还有24棵没种;如果每人种19棵,还有6棵没有种。

问有多少名
少先队员?有多少棵树?
分析与解答:这是两盈的问题。

由题意可知:少先队员的人数和树的棵数是不变的。

比较两种分配方案,结果相差24-6=18棵,这
是因为两种分配方案每人种的树相差19-16=3棵。

所以,少先队员
有18÷3=6名,树有16×6+24=120棵。

练习三
1,小虎在敌人窗外听里边在分子弹:一人说每人背45发还多
260发;另一人说每人背50发还多200发。

有多少敌人?多少发子弹?
2,杨老师将一叠练习本分给第一小组的同学。

如果每人分7本,还多7本;如果每人分8本则正好分完。

请算一算,第一小组有几
个学生?这叠练习本一共有多少本?
3,崔老师给美术兴趣小组的同学分若干支彩色笔。

如果每人分
5支则多12支;如果每人分8支还多3支。

请问每人分多少支刚好
把彩色笔分完?
例4:学校给一批新入学的学生分配宿舍。

如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。

求学生宿舍有多少间?住宿学生有多少人?
分析与解答:把“每间住14人,则空出4个房间”转化为“每
间住14人,则少14×4=56人”。

比较两种分配方案,结果相差34
+56=90人,而每个房间相差14-12=2人。

所房间数为90÷2=45
间,学生人数为12×45+34=574人。

练习四
1,某校有若干个学生寄宿宿舍,若每一间宿舍住6人,则多出
34人;若每间宿舍住7人,则多出4间宿舍。

问宿舍有多少间?寄
宿学生有多少人?
3,学校分配学生宿舍。

如果每个房间住6人,则少2间宿舍;
如果每个房间住9人,则空出2个房间。

问学生宿舍有多少间?住
宿学生有多少人?
例5:少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完
所有树坑。

少先队员一共挖多少树坑?
分析与解答:如果每人都挖6个树坑,那么少(6-4)×2=4个
树坑,两次相差4+3=7个树坑。

这是因为两种分配方案每人挖的相
差6-5=1个树坑。

所以,少先队员一共有7÷1=7人,一共挖5×7
+3=38个树坑。

练习五
1,老师给幼儿园的小朋友分苹果。

如果每个小朋友分2个,还
多30个;如果其中的12个小朋友每人分3个,剩下的每人分4个,则正好分完。

一共有多少个苹果?
2,在一次大扫除中,老师分配若干人擦玻璃。

如果其中2人各
擦4块,其余每人擦5块,则余22块;如果每人擦7块,则正好擦完。

求擦玻璃的人数和玻璃的块数。

3,小红家买来一篮橘子分给全家人。

如果其中二人每人分4只,其余每人分2只,则多出4只;如果其中一人分6只,其余每人分
4只,则又缺12只。

小红家买来多少只橘子?小红家一共有多少人?。

相关文档
最新文档