DC-DC升压开关电源设计

合集下载

DC-DC输出可调开关电源设计说明书

DC-DC输出可调开关电源设计说明书

DC-DC输出可调开关电源摘要本系统为DC-DC升降压变换器,由CPU最小系统模块、供电模块、升压模块、降压模块、液晶显示模块和辅助电路六部分组成。

选用SMT32F103作为主控制器,采用降压芯片LM2596-ADJ作为实现降压,将AD采集的输出电压和电流与预设值比较,然后通过DA调节输出电压电流,对于降压模式的下恒流或恒压工作状态也可通过按键进行切换,同时调节按键可实现输出电压或电流大小的变换;升压模块采用了LM2577-ADJ,手动滑动变阻器的阻值可调节输出电压;加入液晶显示系统工作模式和输出电压、电流;对于升降压的切换也可通过按键切换;供电电源提供了3.3V和12V,分别为CPU、液晶和运放偏置供电;辅助电路方便开发者的调试。

最终系统能够在手动切换工作模式的情况下输出预设的电压和电流,并显示出来。

关键词:DC-DC 升降压可调abstractThe system for the DC-DC buck converter, the minimum system CPU module, power supply module, boost module, step-down module, LCD display module and the auxiliary circuit six parts. SMT32F103 chosen as the main controller, buck chip LM2596-ADJ as enabling buck, the AD acquisition of output voltage and current compared with the preset value, then adjust the output voltage and current through the DA, the constant current mode buck or constant work status can also be switched through the button while adjusting key enables the size of the output voltage or current transformation; step-up module uses the LM2577-ADJ, manual sliding rheostat resistance adjustable output voltage; added liquid crystal display system working mode and the output voltage and current; the buck switch can also be switched by key; providing a 3.3V power supply and 12V, respectively, CPU, LCD bias supply and the op amp; facilitate the development of the secondary circuit debugging. Final system can output a preset voltage and current in the case of manual operating mode switch, and displayed.Key words:DC-DC Boosted、Reduce voltage Adjustable目录第一章绪论 (1)1.1 开关电源概述 (1)1.2 开关电源与线性电源比较 (1)1.3 开关电源发展趋势与应用 (1)第二章系统功能介绍 (2)第三章系统方案选取与框图 (3)3.1 系统整体框图 (3)3.2 系统方案选取 (3)第四章硬件电路设计 (6)4.1 主控制器 (6)4.2 供电模块 (7)4.3 降压模块电路设计 (8)4.4 升压模块电路设计 (10)4.5 液晶显示电路 (13)五硬件开发环境 (14)5.1 Altium Designer 09 (14)5.2 电源设计软件SwitchPro (14)5.3 电路板雕刻机LPKF ProtoMat E33 (15)675.4 电镀机LPKF MiniLPS (17)5.5 SMD精密无铅回焊炉ZB-2518H (17)第六章软件设计框图 (20)第七章系统调试 (21)参考文献 (22)总结致谢 (23)附录 (24)第一章绪论1.1 开关电源概述我们身边使用的任何一款电子设备都离不开它可靠的电源,计算机电源全面实现开关电源化于80年代,并率先完成计算机的电源更新换代,进入90年代,开关电源开始进入各种电子、电气设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已大面积使用了开关电源,更加促进了开关电源技术的迅猛发展。

开关直流升压电源(BOOST)设计

开关直流升压电源(BOOST)设计

摘要BOOST 电路,是一种DC-DC直流斩波电路,又称为升压型电路。

它可以是输出电压比输入电压高。

可以分为充电过程和放电过程。

本次采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。

关键词:斩波电路、BOOST电路、导通、充电、放电BOOST circuit is a DC-DC DC chopper circuit, also known as the boost circuit. It can be the output voltage is higher than the input voltage. Can be divided into a process of charging and discharging processes. The matlab simulation analysis methods can be intuitive and detailed description of the the BOOST circuit from the start to reach a steady-state process of working, and various phenomena in depth analysis for us to really grasp the operating characteristics of the BOOST circuit.Keywords: chopper circuit, BOOST circuit is turned on, the charging and discharging目录前言 (1)1.系统方案设计 (2)2.电路的工作原理 (2)3.参数的计算 (3)3.1给定参数 (3)3.2计算L、C (3)3.3 二极管选型 (4)4.电路的分析 (4)5.matlab仿真分析 (6)6. 各模块功能及元器件选型 (7)6.1 TL494工作原理 (7)6.2 开关频率的计算 (9)7.系统总设计原理图 (10)7 设计结果与分析 (11)7.1 比较基准波形图 (11)7.2 TL494输出波形 (12)7.3输出纹波波形 (12)7.4 电感输出波形 (13)8实验小结 (14)参考文献 (14)前言在非隔离型DC-DC电路即各种直流斩波电路,根据电路的形式不同,可以分为降压型电路、降压型电路、丘克电路、Sepic型电路和Zeta型电路。

DCDC升压开关电源设计

DCDC升压开关电源设计

DCDC升压开关电源设计DC-DC升压开关电源是一种能够将低电压升高至高电压的电源装置,被广泛应用于各个领域中。

本文将介绍DC-DC升压开关电源的设计原理、关键技术以及一些注意事项。

DC-DC升压开关电源的设计原理是基于开关电路的工作原理。

开关电路是通过控制开关管的开关时间比例来调整输出电压的。

当开关管导通时,输入电源经过电感储能,从而增加电能;当开关管关断时,通过电容放电,将储存的能量释放出来,实现输出电压升高。

在设计DC-DC升压开关电路时,需要考虑以下几个关键技术:1.拓扑结构选择:常见的DC-DC升压开关电路拓扑结构有Boost、Flyback等。

不同的拓扑结构适用于不同的应用场景,选取合适的拓扑结构对于提高电路的效率和可靠性非常重要。

2.开关管的选择:开关管是DC-DC升压开关电路中重要的组成部分。

选择合适的开关管需要考虑其导通电阻、关断速度等参数,以及温度、功率和容量等要求。

3.控制电路设计:控制电路负责控制开关管的开关时间比例,从而调整输出电压。

常见的控制方法有脉宽调制(PWM)、频率调制(FM)等。

此外,控制电路还需要考虑保护电路的设计,以提高电路的可靠性。

4.滤波电路设计:DC-DC升压开关电路输出的电压含有大量的高频脉冲噪声。

通过适当设计滤波电路,可以减小输出电压的脉冲噪声,保证输出电压的稳定性和准确性。

此外,在进行DC-DC升压开关电源设计时1.功率匹配:输入电源和输出负载之间的功率匹配非常重要。

如果输入功率过大,开关管可能会因为过载而烧毁;如果输出负载功率过大,可能导致输出电压不稳定。

2.散热设计:开关管在工作过程中会产生大量的热量,需要通过散热器等散热装置将热量散发出去。

合理的散热设计可以保证电路的正常工作和寿命。

3.EMI问题:DC-DC升压开关电源会产生一定的电磁干扰(EMI),可能对周围的电子设备产生干扰。

在设计时要注意EMI的控制,采取一些抑制措施,如屏蔽、滤波等。

一款DC_DC升压开关电源的设计

一款DC_DC升压开关电源的设计

| 123一款DC-DC升压开关电源的设计梁启文(湛江师范学院 信息学院,广东 湛江 524048)摘 要:介绍了一种单端反激式DC—DC变换电路。

以固定频率脉宽调制控制集成TL494为核心,设计制作了一款升压型开关稳压电源,并对该电源进行了实验测试,其测试结果表明:该开关稳压电源具有输入电压范围宽、高负载稳定度、效率高、工作可靠等优点。

关健词:开关电源;DC—DC升压;TL494;光电耦合中图分类号:TM564.9 文献标识码:B 文章编号:1003-7241(2008)04-0123-03A DC-DC Boost Switching Power SupplyLIANG Qi-wen(School of Information Science and Technology ,Zhanjiang Normal College , Zhanjiang 524048 China)Abstract: This paper introduces a single-end fly-back DC-DC inverter circuit. The boost switching power supply is based on TL494 with the characteristic of PWM of constant frequency. The design of the power supply is verified by testing. Keywords: switching power supply; DC-DC step-up; TL494; photo coupling收稿日期:2007-01-141 引言开关稳压电源是一门涉及众多学科的复杂技术,它已广泛用于工业、交通、电力、通信、家用电器等领域,现已成为十分热门的技术[1]。

本文就是利用开关电源中的脉冲宽度调制器(PWM)技术,采用TL494集成器件设计一种DC—DC升压型开关稳压电源,输入交流电压范围为15~21V,直流输出电压为30-36V可调、输出电流为1A,本方案使用的元件少,具有成本低、系统可靠、性能高等优点。

DC-DC开关电源的设计

DC-DC开关电源的设计

高效DC-DC开关稳压电源一、任务设计并制作如图1所示的开关稳压电源。

图1电源框图二、要求在电阻负载条件下,使电源满足下述要求:1.基本要求(1)输出电压V O:3.3V;(2)额定输出电流I ON:10A;(3)V in从DC41V变到DC57V时,电压调整率S U≤2%(I O=10A);(4)I O从0变到10A时,负载调整率S I≤5%(V in=48V);(5)输出噪声纹波电压峰-峰值V OPP≤100mV(Vin=48V,V O=3.3V,I O=10A);(6)D C-DC变换器的效率η≥60%(Vin=48V,Vo=3.3V,I O=10A);(7)具有过流保护功能,动作电流I O(th)=11±0.2A;2.发挥部分(1)进一步提高电压调整率,使S U≤0.5%(I O=10A);(2)进一步提高负载调整率,使S I≤1%(Vin=48V);(3)进一步提高效率,使η≥85%(Vin=48V,U O=3.3V,I O=10A);(4)排除过流故障后,电源能自动恢复为正常状态;(5)具有输出电压、电流的测量和数字显示功能。

(6)其他。

三、说明(1)D C-DC变换器不允许使用成品模块,但可使用开关电源控制芯片。

(2)V in可由可调直流稳压电源得到,DC-DC变换器(含控制电路)只能由V N端口供电,不得另加辅助电源。

(3)本题中的输出噪声纹波电压是指输出电压中的所有非直流成分,要求用带宽不小于20MHz模拟示波器(AC耦合、扫描速度20ms/div)测量V OPP。

(4)本题中电压调整率S U指Vin在指定范围内变化时,输出电压V O的变化率;负载调整率S I指I O在指定范围内变化时,输出电压V O的变化率;DC-DC变换器效率 =P O/ P IN,其中P O=V O I O,P IN=V IN I IN。

(5)电源在最大输出功率下应能连续安全工作足够长的时间(测试期间,不能出现过热等故障)。

基于UC3843的高效DC-DC升压电路设计

基于UC3843的高效DC-DC升压电路设计

基于UC3843的高效DC-DC升压电路的设计***摘要:这是基于UC3843芯片的DC-DC转换器。

系统实质是一个振荡电路,在输入电压为8-13V的情况下,将输入电压通过整流滤波电路,将输出电压与基准电压的比较信号,输入UC3843芯片进行处理,控制NMOS的开断,从而实现直流升压并保证输出电压的稳定,经过稳压后,该电源可输出16V和19V两档的电压,经过实际测试,符合可编程序控制器专用电源的标准。

这种转换电能的方式,不仅应用在电源电路,广泛应用于现代电子产品。

开关电源从小、薄、轻的角度,优越于传统电源,特别是在如液晶显示器的背光电路、日光灯的驱动电路等。

0 引言现代电子器件课程设计题目是要我们做一个DC-DC升压电路,其实也就是做一个稳压电源,综合我国的现状来看,有比较古老的线性电源和相对来说比较新颖的开关电源。

其中开关电源具有工频变压器所不具备的优点,新型、高效、节能的开关电源代表着稳压电源的发展方向,因为开关电源内部工作于高频率状态,本身的功耗很低,电源效率就可做得较高,一般均可做到80%,甚至接近90%。

这样高的效率不是普通工频变压器稳压电源所能比拟的。

开关电源常用的单端或双端输出脉宽调制(PWM),省去了笨重的工频变压器,可制成几瓦至几千瓦的电源。

用于脉宽调制的集成电路很多,我们选择的是UC3843这个芯片。

1 系统原理框图设计根据课程设计的要求,系统输入采用8V-13V直流供电,输出为16V,19V两档可调设计。

电压输入系统后,经过滤波和升压模块达到要求的电压,再经过滤波和调挡模块输出要求的电压。

其原理框图如图1所示。

图1 系统原理框图2UC3843介绍2.1 UC3843的主要特性图2 UC3842-UC3845的外形图。

UC3843是近年来问世的新型脉宽调制集成电路,它具有功能全,工作频率高,引脚少外围元件简单等特点,它的电压调整率可达0.01%V,非常接近线性稳压电源的调整率。

DCDC升压开关电源设计

DCDC升压开关电源设计

DCDC升压开关电源设计DC-DC升压开关电源是一种常见的电源设计,它可以将输入电压升压到指定的输出电压。

本文将介绍DC-DC升压开关电源的基本原理、设计步骤以及注意事项。

一、DC-DC升压开关电源的基本原理DC-DC升压开关电源通过开关器件实现输入电压的升压。

其基本原理是电感储能和开关器件的周期开关。

当电源输入电压施加给开关器件时,开关器件导通,电感器件开始储能;当开关器件断开时,电感器件将储存的能量输出,并经过整流滤波后得到稳定的输出电压。

二、DC-DC升压开关电源的设计步骤1.确定输入输出电压:首先确定所需的输入和输出电压。

输入电压一般来自电池、交流电源或其他直流电源,而输出电压则是升压后的电压。

2.选择开关器件:根据所需的转换功率和输出电压,选择合适的开关器件。

常用的开关器件有MOSFET和IGBT,选择开关器件时要考虑其导通电阻、开关速度和功耗等因素。

3.选择电感器件:电感器件用于储存能量,可以选择磁性材料制成的线圈或铁氧体等。

选择合适的电感器件要考虑其电感值、饱和电流和损耗等因素。

4.计算元件参数:根据输入输出电压和所选的开关器件和电感器件,计算所需的元件参数。

包括电容器的容值、电感器件的电感值以及开关器件的参数,例如导通电阻和开关频率等。

5.设计控制电路:根据所选的开关器件类型,设计适配的控制电路。

常用的控制电路包括PWM控制电路、反馈电路和过压保护电路等。

6.进行仿真和优化:使用电路仿真软件进行仿真,验证设计的可行性,并根据仿真结果进行优化。

7.PCB布局设计:根据设计的电路图,进行PCB布局设计,保证电路的稳定性和可靠性。

8.制作原型并测试:将设计的电路制作成原型,进行测试以验证其性能和可靠性。

三、DC-DC升压开关电源设计的注意事项1.开关器件选型要合适,能够承受所需的转换功率和工作频率,同时保持较低的导通电阻和开关损耗。

2.电感器件的选用要符合电路的工作频率和最大电流需求,避免电感器件的饱和和损耗过大。

DC—DC升压开关变换器设计

DC—DC升压开关变换器设计

DC—DC升压开关变换器设计本设计设计了相应的硬件电路,研制了一款小功率开关电源。

整个系统包括主电路、控制电路、驱动电路、保护电路和反馈电路几部分内容。

系统主电路由Boost升压斩波电路和相应的滤波保护电路组成。

控制电路包括主电路开关管控制脉冲的产生和保护电路。

论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计过程,包括元器件的选取以及参数计算。

本设计中采用的芯片主要是PWM控制芯片SG3525、光电耦合芯片PC817和半桥驱动芯片IR2110。

设计过程中充分利用了SG3525的控制性能,具有较宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。

标签:SG3525,开关稳压电源,PWM,升压斩波1绪论近年来,随着电力电子学的高速发展,电力供给系统也得到了很大的发展。

同时,人们对电源的要求也越来越高。

在高效率、大容量、小体积之后,对电源系统的输入功率因数和软开关技术也提出了更高的要求。

电源是给电子设备提供所需要的能量的设备,这就决定了电源在电子设备中的重要性。

电子设备要获得好的工作可靠性必须有高质量的电源,所以电子设备对电源的要求日趋增高。

相对于线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求。

但是,由于开关电源轻、小、薄的关键技术是高频化,开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率,近年来国内外的专家学者提出了众多的电路拓扑,使得软开关技术成为电力电子技术研究的热点。

因此对于现代的开关电源功率交换技术的发展趋势,可以概括为:高频化、高效率、无污染和模块化。

2开关电源概况2.1开关电源基本拓扑结构开关变换器是电能变换的核心装置。

按转换电能的种类,可把变换器分为四类:①直流变换器(DC-DC),将一种直流电能转换为另一种或多种直流电能的变换器,是直流开关电源的主要部件;②逆变器(DC-AC),将直流电能变为交流电能的电能变换器,是交流开关电源和不间断电源UPS的主要部件;③整流器(AC-DC),将交流电转为直流电的电能变换器;④交交变频器(AC-AC),将一种频率的交流电转换成另一种频率可变的交流电,或者将一种频率可变的交流电转变为恒定频率的交流电的电能变换器。

DC-DC升压开关电源设计

DC-DC升压开关电源设计

DC-DC升压开关电源设计简介DC-DC转换器是一种电源电路,可将输入的直流电压升压或降压。

其中,升压DC-DC转换器是一种常见的电源电路,其应用广泛,如电子设备、通信系统、汽车电子系统等。

在升压DC-DC转换器中,开关电源是常用的设计方法。

它利用开关元件控制输入电压和输出电压之间的转换,从而达到升压的目的。

本文将介绍DC-DC升压开关电源的设计,包括电路原理、元器件的选择、电路参数计算等方面的内容。

电路原理DC-DC升压开关电源的基本原理是利用电感和开关管进行电能转换,从而实现升压功能。

电路结构包括开关管、电感、滤波电容等元件。

其中,开关管可以是MOSFET、BJT等器件,电感则是用来存储电能的元件,滤波电容则用于平滑输出电压。

开关管的开关控制交替地将电能转移到电感和输出负载之间。

当开关管导通时,输入电压经过电感产生电磁场,从而存储电能;当开关管关断时,电感的储能能量转移到滤波电容和负载上,达到升压的目的。

元器件的选择在进行DC-DC升压开关电源设计时,要选择合适的元器件。

下面将介绍各种元器件的选型原则。

开关管开关管的选型主要考虑以下几个因素:•最大电流•最大耗散功率•开关速度•导通电阻•开关特性选用开关管时,需要根据设计要求选择合适的器件。

比如,对于大规模输出电流的场合,应选用最大电流比较大的开关管。

电感电感选用的主要考虑因素有:•电感值•电流饱和值•功率等级电感值的选择应根据计算结果进行,电流饱和值则应大于最大输出电流,功率等级应不低于预期输出功率。

滤波电容滤波电容的选择应确保在输出电流变化时能够提供足够的电容值。

通常,滤波电容的容值与输出电流成正比。

电路参数计算在进行DC-DC升压开关电源的设计时,需要进行一定的电路参数计算。

主要包括以下方面:电感的计算电感值的计算公式为:L = (Vin-Vout)D/(fΔI)其中,Vin是输入电压,Vout是输出电压,D是占空比,f是开关器件的工作频率,ΔI是输出电流的起伏值。

论文:高效DC-DC升压电路设计.

论文:高效DC-DC升压电路设计.

毕业设计(论文)任务书摘要随着开关稳压电源市场的迅猛发展,以及开关电源在计算机、通信、仪器仪表等方面的广泛应用,与之相适应,对电源的效率、体积、重量及可靠性等方面提出了更高的要求。

开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、体积大的线性电源。

同时随着电子系统的渐趋小型化,供电系统渐渐由分散的DC-DC电源模块所代替。

本文设计了一种高效DC-DC升压电源模块,能够满足供电系统对供电电源高效率、小体积、非线性失真度低、输出电压和电流稳定等的需求。

设计系统由主电路、驱动电路、采样电路、供电电路组成。

采用STM32F103为主控芯片,以BOOST斩波电路为主电路,用芯片IR2104输出两路PWM驱动MOS管,采用同步整流技术取代原来的二极管,从而达到更高效率。

采样电路由电阻分压,经过电压跟随器将分压值送入单片机。

电流采样电路由INA282采康铜丝电压,根据电压电阻之比计算电流。

供电模块由两片TPS5430芯片及其外围电路构成,产生15V与5V的稳定供电电压。

通过理论分析研究以及实验调试结果,本文设计的系统可以满足高效DC-DC升压电路的各项性能指标要求。

关键词:开关稳压电源,BOOST斩波电路,高效率,STM32F103ABSTRACTWith the rapid development of switching power supply market, as well as the wide application of switching power supply in the computer, communication, instrumentation, and in conformity with which put forward higher requirements for efficiency, volume, weight and reliability of power supply. Switching power supply with its high efficiency, small size, light weight and other advantages in many areas gradually replaced the linear power supply,for its low efficiency and large volume. At the same time, along with the electronic system is miniaturization, power supply system by DC-DC power module dispersed gradually replaced.In this dissertation describes the design of a high efficiency DC-DC boost power supply module, which can satisfy the power supply system for supply power efficiency, small volume, low nonlinear distortion, the output voltage and current stability requirements. The design of the system consists of the main circuit, drive circuit, sampling circuit, power supply circuit. Using STM32F103 as the main control chip, with boost chopper circuit of main circuit, with the chip IR2104 output two PWM drive the MOS, to replace the original diode using synchronous rectification technology, so as to achieve higher efficiency. The sampling circuit comprises a resistor divider, through a voltage follower will pressure value into the one chip computer. The current sampling circuit composed of INA282 mining constantan wire voltage according to the voltage, resistance ratio calculation of current. The power supply module is composed of two pieces of TPS5430 chip and its peripheral circuit, stable power supply voltage 15V and 5V.Through theoretical analysis and experimental results, this system can meet the requirements of various performance indicators for efficient DC-DC boost circuit.KEY WORDS: switching power supply, BOOST chopper circuit, high efficiency, STM32F103目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1开关电源的定义与分类 (1)1.2开关电源的基本工作原理与应用 (1)1.2.1 开关电源的基本工作原理 (1)1.2.2 开关电源的应用 (3)1.3 开关稳压电源发展趋势及优点 (5)1.4 研究意义内容及技术要求 (6)1.5 本章小结 (7)第2章DC-DC升压拓扑选择及原理分析 (8)2.1 升压斩波电路的基本原理 (8)2.2带隔离的直流—直流变流电路 (9)2.3 同步整流技术 (10)2.4 本章小结 (11)第3章硬件电路设计及分析计算 (12)3.1 高效DC-DC升压电路主回路分析 (12)3.2 MOS管驱动电路 (14)3.3电压电流采样电路 (14)3.4过压过流报警电路 (15)3.5 供电模块设计 (15)3.6 设计电路saber仿真图形 (16)3.7 开关电源PCB排版要点及本设计PCB布局 (17)3.7.1 电容并联高频特性 (17)3.7.2 电感特性 (18)3.7.3 焊盘和旁路电容的放置 (19)3.7.4 功率器件组成的电流回路设计 (19)3.8 本章小结 (21)第4章软件设计以及调试记录 (22)4.1 程序流程简介 (22)4.2程序具体清单 (23)4.3实验验证与测试结果 (23)4.3.1 输出电压测试结果 (23)4.2.2电压调整率测试结果 (23)4.2.3负载调整率测试结果 (23)4.2.4 噪声及纹波测试 (24)4.2.5 效率测试 (24)4.4 本章小结 (24)第5章总结与展望 (25)5.1 毕业设计总结 (25)5.2 未来展望 (25)致谢............................................................................................ 错误!未定义书签。

DC-DC升压开关电源设计

DC-DC升压开关电源设计

一、设计要求本课程要求设计一个DC-DC升压开关电源,输入低压直流信号,输出为高压直流信号。

设计要求:1、输入5V直流,输出12V、100mA直流2、在额定负载情况下,纹波的峰-峰值<=30mV3、输出尖峰电压峰-峰值<=200mV4、100mA电压下降<=30mV二、设计方案1、理论基础The boost converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。

在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。

升压完毕。

说起来升压过程就是一个电感的能量传递过程。

充电时,电感吸收能量,放电时电感放出能量。

如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

2、实际方案本课题采用驱动式开关升压方式,主要利用电容和电感的储能特性实现。

具体可以分为以下几个部分。

第一个是振源,因为是开关电路,所以需要利用高频的方波信号实现三极管的导通与截止。

然后的主放大电路用来给负载端升压,需要一个三极管和一个电感,利用电感的储能实现直流信号的输出。

由于在开关闭合的瞬间,电感上会产生巨大的瞬时电压,而且电感的充电与放电是交替进行的,所以输出不可能是一个单纯的直流信号,那么就需要一个滤波电路把交流信号滤除。

之后为了稳定输出电压,就需要一个负反馈调节电路来控制主放大电路的开关。

三、方框图四、框内电路设计1、振荡电路此部分电路是由一个555定时器构成的多谐振荡器,它的工作原理如下:555的阈值输入THR和触发输入TRI相连,由电容的端电压Uc控制。

DCDC升压式开关电源原理

DCDC升压式开关电源原理

在硬件系统设计中,电源的设计是最基础但是又是最容易忽视的一个方面了吧!好的电源设计可以提高负载的稳定性。

下面就分享一下,我在设计GPRS模块电源过程中的一些经验.GS1660升压电路分析一、电路如下:二、电路分析:2.1、DC-DC升压原理介绍:DC-DC升压一般要经过以下几个步骤:斩波、升压、稳压。

斩波经常采用PWM 方式控制开关MOS管实现;升压方式有很多,在这里我们只介绍电感升压原理;稳压可以简单的使用电容来去除纹波即可。

2.2、GS1660斩波的实现:GS1660内置了300KHz的振荡器,可以由振荡信号产生一个PWM信号控制Q1实现斩波。

2.3、电感升压原理:电感的升压原理可以用上图理解,S1受一个PWM信号控制,周期性开关,在S1闭合的半个周期内,线圈L2充电,在S1断开的半个周期,由于线圈电流不能突变,电流会沿着肖特基整流二极管给C5充电,同时给负载供电,在S1重新闭合的半个周期,由于肖特基整流二极管的单向导通性输出端电流并不回流,所以输出端便可以在S1断开的时候持续从输入端获取电流,电容电压便会升高,输出电压的幅值取决于PWM信号的占空比,所以只要控制PWM信号的占空比,便可以控制输出电压的大小,在GS1660的电路中,我们是通过改变负反馈电压的办法来改变PWM信号的占空比的,具体内部工作原理就不做介绍。

理解到这里相信对于电路中参数的选取和电路的布局设计就有了参考作用了!最后,附图一个锂电池升压驱动SIM900模块的电源电路图,DCDC升压芯片采用LTC3426,LTC3426集成了开关MOS管,所以外围电路更加简单,使用也更加方便,希望可以对有需要的网友起到帮助作用。

注:1、输出电压VDD_GPRS的值取决于反馈电阻R1和R3的比例,依上图所选的阻值,此时输出电压VDD_GPRS为4.2V左右。

2、电路接通后可能出现输出端只有2.3V左右的情况,此时很有可能是SHDN(————)引脚无效引起的。

DCDC升压电源模块的设计_毕业设计

DCDC升压电源模块的设计_毕业设计

本科毕业设计题目DC/DC升压电源模块的设计系电子工程专业班级学号学生姓名指导教师完成日期诚信承诺我谨在此承诺:本人所写的毕业论文《DC/DC升压电源模块的设计》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。

承诺人(签名):年月日摘要DC/DC变换器是将一种直流电压变换为另一种所需的直流电压(固定或可调)。

这种技术被广泛应用于计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业中,变换器还需要符合上述领域的安全标准。

本文重点讲述了DC-DC升压型变换器的工作原理,描述了DC-DC变换器的控制方法,同时,详细阐述了脉宽调制中电压控制模式和电流控制模式的基本原理,分析比较了它们各自的优缺点。

本文设计了一款采用峰值电流控制型脉宽调制芯片UC3842设计的Boost升压型DC-DC变换电路,外接元器件少,控制灵活方便,输出电压稳定可调。

在系统的硬件部分设计中,有三个部分组成,主要涉及到Boost拓扑结构电路、脉宽调制控制驱动电路、反馈闭环电路。

在设计、制作、调试完整机之后,本系统基本能够达到预期的要求:1.在输入电压15V-20V范围内输出电压在32-55V;2.最大输出电流达到1A;3.DC/DC变换器的效率>70%。

关键词:升压型DC/DC变换器;电流控制;电压控制;脉宽调制ABSTRACTDC-DC converter is one DC voltage is transformed into another DC voltage required (fixed or adjustable). This technology is widely used in computers, office automation equipment, industrial instrumentation, military, aerospace and other fields related to national economy sectors, the converter also need to meet safety standards in these areas.This paper focuses on the working principle of step-up DC-DC converter. Describes the DC-DC converter control method.At the same time, expounds the pulse width modulation of voltage control mode and the basic principle of current control model, and analyses their advantages and disadvantages.This paper designs a using current peak control mode pulse width modulation UC3842 chip design Boost booster type DC-DC transform circuit,less External components, control is flexible and convenient, the output voltage stability can be adjusted.There are three parts of hardware in the system design, mainly related to the Boost topology circuit, PWM control circuit, feedback loop circuit.In the design, production and testing after the system achieves the desired requirements: 1.The input voltage range of 15V-20V Output voltage 32-55V; 2.The maximum output current of 1A; 3.DC-DC Converter efficiency> 70%.Keywords: Step-up DC/DC converter; current control; voltage control; Pulse width modulation目录1 绪论............................................. 错误!未定义书签。

基于UC3843的升压型DC-DC设计

基于UC3843的升压型DC-DC设计

电子技术课程设计报告设计课题:基于UC3843的升压型DC-DC设计专业班级:学生姓名:指导教师:设计时间:目录一设计任务与要求 (3)二集成稳压电源和开关电源的区别 (3)2.1 集成稳压器的组成 (3)2.2 开关电源的组成 (5)三开关电源的分类 (5)四常见开关电源的介绍 (6)4.1基本电路 (6)4.2 单端反激式开关电源 (7)4.3单端正激式开关电源 (8)4.4自激式开关稳压电源 (9)4.5 推挽式开关电源 (9)4.6 降压式开关电源 (10)4.7 升压式开关电源 (11)4.8 反转式开关电源 (11)五升压开关电源设计并计算参数 (11)5.1 Boost变换器 (12)5.2 uc3843的介绍 (13)5.3 电路参数设计 (14)六原理图和PCB图清单 (15)6.1原理图 (15)6.2元件清单 (16)6.3pcb图 (16)七性能测试结果分析 (18)八.结论与心得 (19)九.参考文献 (19)基于UC3843的升压型DC-DC设计一、设计任务与要求1.掌握PCB制板技术、焊接技术、电路检测以及集成电路的使用方法。

2.掌握UC3843的非隔离开关电源的设计、组装与调试方法。

3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。

具体要求如下:①分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出自己的见解。

②掌握开关电源的工作原理。

③设计硬件系统并进行仿真,掌握系统调试方法,使系统达到设计要求。

主要技术指标设计要求:直流输入电压:9~12V;输出电压:30V;输出电流:0.8A;效率:≥66%。

二,集成稳压电源和开关电源的区别(1)、集成稳压器的组成图1 集成稳压器的组成电路内部包括了串联型直流稳压电路的各个组成部分,另外加上保护电路和启动电路。

1调整管在W7800系列三端集成稳压电路中,调整管为由两个三极管组成的复合管。

这种结构要求放大电路用较小的电流即可驱动调整管发射极回路中较大的输出电流,而且提高了调整管的输入电阻。

DC-DC升降压电路设计

DC-DC升降压电路设计

升降压开关电源设计题目(三)
电源的基本要求
(1)基本电路包括DC/DC,电流保护等基本模块,并具有相应的测试点(2’)
(2)输出Uo可调范围:10V~15V(10’)
(3)最大输出电流Imax:1.0A(10’)
(4)稳压输入DC/DC电压变化从8V变化到10V的调整率小于10%(10’)
(5)输出电流Io从0变1.0 A,负载调整率小于10%(DC/DC 的输入电压为10V)(10’)
(6)DC/DC变换器的效率大于85%(15’)
(7)输出纹波电压峰峰值小于1V(Uo=15V,,Io=500mA)(10’)
(8)具有过流保护功能,动作电流Io=1.5 A(10%容量)(10’)
(9)报告针对上面设计要求逐项给出设计原理与仿真分析(20’)
发挥部分::
(10)最大输出电流Imax:2.0 A (10’)
(11)稳压输入DC/DC电压变化从5 V变化到10 V的调整率小于5% (10’)
(12)输出电流Io从0变2A,负载调整率小于5%(DC/DC 的输入电压为10 V)(10’)
(13)DC/DC变换器的效率大于90% (20’)
(14)输出纹波电压峰峰值小于0.5 V(Uo=15V,,Io=1.0 A)(10’)。

dcdc升压降压电路设计

dcdc升压降压电路设计

dcdc升压降压电路设计一、电路拓扑选择DCDC升压降压电路的拓扑选择是电路设计的关键环节。

根据不同的应用场景和需求,可以选择不同的拓扑结构,如Boost、Buck、Boost-Buck等。

每种拓扑结构都有其特点和使用范围,需要根据实际情况进行选择。

二、功率器件选择功率器件是DCDC升压降压电路的核心元件,其选择直接影响到电路的性能和可靠性。

需要根据实际需求选择合适的功率器件,如MOSFET、IGBT等。

同时,需要考虑功率器件的耐压、电流、开关速度等参数,以确保电路的稳定性和效率。

三、驱动电路设计驱动电路是控制功率器件开关动作的关键部分,其设计直接影响到电路的性能和可靠性。

需要根据实际需求设计合适的驱动电路,以保证功率器件的可靠动作和控制精度。

四、保护电路设计保护电路是DCDC升压降压电路的重要组成部分,可以有效地保护电路和负载免受损坏。

需要根据实际需求设计合适的保护电路,如过流保护、过压保护、欠压保护等。

五、控制算法设计控制算法是DCDC升压降压电路的核心部分,可以实现对输出电压的精确控制。

需要根据实际需求设计合适的控制算法,如PID控制、模糊控制等。

同时,需要考虑控制算法的稳定性和实时性。

六、散热设计散热设计是DCDC升压降压电路的重要环节,可以有效地降低电路的温度和热损耗。

需要根据实际需求设计合适的散热方案,如散热片、风扇等。

同时,需要考虑散热方案的可靠性和效率。

七、电源管理芯片选择电源管理芯片是DCDC升压降压电路的重要组件,可以实现电源的高效管理和控制。

需要根据实际需求选择合适的电源管理芯片,如PWM控制器、电压采样器等。

同时,需要考虑电源管理芯片的稳定性和可靠性。

八、调试与优化在完成DCDC升压降压电路的设计后,需要进行调试和优化工作。

通过调试可以发现并解决电路中存在的问题和缺陷,提高电路的性能和可靠性。

优化工作则可以进一步提高电路的效率和经济性,降低能耗和成本。

综上所述,DCDC升压降压电路设计是一个复杂而重要的工作,需要综合考虑多个方面进行设计和优化。

DC-DC升压型开关电源的低压启动方案

DC-DC升压型开关电源的低压启动方案

DC-DC升压型开关电源的低压启动方案中心议题:DC-DC 升压型开关电源的低压启动电路设计解决方案:DC-DC 升压型开关电源的主振荡器的设计DC-DC 升压型开关电源的辅助振荡器的设计各种便携式电子产品,如照相机、摄像机、手机、笔记本电脑、多媒体播放器等都需要DC-DC 变换器等电源管理芯片。

这类便携式设备一般使用电池供电,总能量有限,因此,电源芯片需要最大限度地降低工作电压,延长电池的使用寿命。

传统DC-DC 的工作电压一般都在1.0 V 以上,本文设计了一种DC-DC 升压型开关电源的低压启动电路,启动电压降低至0. 8 V,该电路采用两个在不同电源电压范围内工作频率较稳定的振荡器电路,利用电压检测模块进行合理的切换,解决了低输入电压下电路无法正常工作的问题,并在0. 5&mu;m CMOS 工艺库( VthN = 0. 72 V, VthP = -0. 97 V)下仿真。

仿真结果表明,在0. 8 V 低输入电压时,通过此升压型开关电源,可以将VDD升高至3. 3 V。

1 电路整体示意图DC-DC 升压型开关电源在低输入电压下工作,利用控制电路导通和关断功率管,在功率管导通时,电感储存能量;当功率管关断时,电感释放能量,对输出电容充电,输出电压升高。

当输入电源低至1. 0 V 以下,如果DC-DC 芯片的驱动电压取自输入电源,芯片内部电路就不能正常工作, DC-DC 便无法启动;如果DC-DC 芯片的驱动电压取自输出电压,同样,芯片根本无法启动及进行任何升压动作。

本文针对输入电源电压变化范围较大,在考虑商业成本的情况下,设计了 2 个振荡器电路:主振荡器和辅助振荡器。

辅助振荡器靠输入电压供电,0. 8 V 即能起振,在V DD升至1. 9 V 以前控制功率管的导通与关断,使V DD逐步抬升。

主振荡器靠输出电压即VDD供电,在VDD升至1. 9 V 以后以一个较稳定的频率工作,抬升并维持输出电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、设计要求
本课程要求设计一个DC-DC升压开关电源。

二、设计方案
1、理论基础
The boost converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。

在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。

升压完毕。

说起来升压过程就是一个电感的能量传递过程。

充电时,电感吸收能量,放电时电感放出能量。

如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

三、总电路图
三、系统概述
DC/DC升压开关电源的原理如下所述:
首先由555定时器产生一个固定频率为1K~5KHz的方波信号,这个信号用来控制主电路三极管的导通与截止。

当三极管导通时,输入的电流流入电感充电,而当三极管截止时,电感上产生巨大的瞬时电压并开始放电,这两股能量叠加后导致输出电压升高。

由于输出的电压不仅仅是直流信号,所以通过一个二极管整去负信号,用LC滤波电路滤除交流信号。

为了达到要求的输出电压,我们用一个滑动变阻器来调节,最后要稳定电压在一个恒定值,所以将滑动变阻器的输出接到电压比较器的输入,当输入电压低于门限电压时,电压比较器输出低电平,反馈端的三极管截止,输出电压持续增高;当输入电压高于门限电压时,电压比较器输出高电平,反馈端的三极管导通,输出电压降低,最终保持在一个稳定值
四、器件表。

相关文档
最新文档