史上最全的开关电源设计经验资料
开关电源_详细讲解——第6讲 开关电源设计
第6章
开关电源设计
图6-7 输入滤波电路
第6章
开关电源设计
4. 测试 在输入电压为220 V的条件下,输入功率是脉冲序列, 周期为10 ms,即每半个工频周期电源输入端通过整流桥为 输入平滑滤波电容充一次电。在各种不同的负载状况下,当 输入电压从90 V变化到250 V时,相应的输出电压的测试结 果如表6-1所示。 实测各种负载状况下的效率如表6-2所示。 通过实际应用,电源满足了设计要求。
第6章
开关电源设计
2) 开关管、 整流二极管和续流二极管的选择 由于开关管断开时原边线圈N1两端的感应电动势限制到 eL≈300 V,交流输入电压经全波整流、 电容滤波后,直流 输入电压的最大值
U imax N2 240 339 V N1
(6-10)
所以整流二极管所承受的最高反向电压为
第6章
开关电源设计
图6-3 电压反馈电路
第6章
开关电源设计
4) 保护电路的设计 图6-4所示为变压器过热保护电路,NTC为测变压器温 度的一个负温度系数的热敏电阻。由NTC、 R2、 运放A1构 成滞环比较器。在正常工作时,变压器温度正常,NTC的阻 值较大,运放A1两输入端电压U+<U-,输出为零;当变压 器异常,温度上升到设定值时,运放A1输出高电平,并送 到PWM控制芯片使输出脉冲关断。 图6-5所示为输出过电压保护电路。稳压管VS的击穿电 压稍大于输出电压额定值,输出正常时,VS不导通,晶闸 管V的门极电压为零,不导通。当输出过压时,VS击穿,V 受触发导通,使光电耦合器输出三极管电流增大,通过 UC3842控制开关管关断。
第6章
开关电源设计
3) 反馈电路的设计 电流反馈电路采用电流互感器,通过检测开关管上的电 流作为采样电流,原理如图6-2 所示。电流互感器的输出分 为电流瞬时值反馈和电流平均值反馈两路,R2上的电压反映 电流瞬时值。开关管上的电流变化会使UR2变化,UR2接入 UC3842的保护输入端③脚,当UR2=1 V时,UC3842芯片的 输出脉冲将关断。通过调节R1、 R2的分压比可改变开关管 的限流值,实现电流瞬时值的逐周期比较,属于限流式保护。 输出脉冲关断,实现对电流平均值的保护,属于截流式保护。 两种过流保护互为补充,使电源更为安全可靠。采用电流互 感器采样,使控制电路与主电路隔离,同时与电阻采样相比 降低了功耗,有利于提高整个电源的效率。
(完整版)开关电源基本原理与设计方法
一.简介.电源组成(一)1.全波整流2.功率因数校正3.变压器4.降压型开关电路(二).各模块工能1.全波整流:用4个二极管组成桥式整流器,将其变为大小变化的直流电波形图正半周电流D1→R→D3负半周电流D2→R→D42.功率因子较正:稳定的能源设备除了能供应系统维持正常的功能外并影响整个系统的特性,再者当今能源短缺急需节约能源潮流的驱使下,设计产生高效率的能源设备,减少能源浪费是为众所追求的目标。
并且在电力品质与电力性能方面也必须有较严格的标准,例如:较大的额定功率,较小的杂讯干扰,较理想的能源使用率等,都是设计电路必须考虑的问题,采用升压型开关电源电路,使经整流后的.电压升至一固定电压,从而使后续电路设计简单,模块化.优点:利用率高,在工作过程中不会出现向电网回馈能量现象,使得电网比较干净.如果电网中存在回馈能量现象则会降低能量的利用率,严重时会使得输电线路损坏缺点:.增加了成本,设计不良时会降低电源寿命3.变压器:将输入的高电压变为低电压并输出,由麦克斯韦方程,交变电场产生交变磁场,交变磁场产生交的电场但在设计变压器时有一个需注意:泄磁环节4.输出:采用forwand结构电路,将大小时刻在改变的直流电压稳定在所需的范转内二.工作原理(一)PFC1.PFC定义(功率因子校正)功率因子:衡量对电网电能量利用率大小提出的一个指标,数学定义为(假设电流与电压为正弦量)Cosψ.电压相位与电流相位差值的余弦,它仅仅只从差值来定义,也就是说不论哪个相位在前,如电流相位落后电压相位60°(或领先60°)功率因子都是Cos60°=?.(说明,只有一半的电网能量被利用,另一半反回馈到了电网中)例:纯电容电路电网释放的功率结果说明:虽然有电流流经电容,但从整个过程来看电容并没有消耗能量,对电网能量利用率为0.例:电感与电阻由电阻电压计算1).计算电阻上得到的功率.2功率因子计算由).2.PFC电路1).工作过程:导通时:B点与地接通,输入电压Ui直接加在电感L两端,这时流经电感电流直线上升,。
开关电源设计(精通型)
开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。
它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。
在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。
2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。
(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。
二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。
(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。
(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。
2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。
(2)电压和电流等级:确保开关器件能承受最大电压和电流。
(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。
(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。
3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。
(2)精度:提高控制电路的采样精度,降低输出电压的波动。
(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。
三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。
3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。
4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。
5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。
开关电源设计手册(看2遍就懂).pdf
开关电源设计⼿册(看2遍就懂).pdf 反激式开关电源变压器设计计学习培训教材反激式开关电源变压器设计(2)⼀、变压器的设计步骤和计算公式:1.1 变压器的技术要求:输⼊电压范围;输出电压和电流值;输出电压精度;效率η;磁芯型号;⼯作频率f;最⼤导通占空⽐Dmax;最⼤⼯作磁通密度Bmax;其它要求。
1.2 估算输⼊功率,输出电压,输⼊电流和峰值电流:1)估算总的输出功率:P o=V01x I01+V02x I02……2)估算输⼊功率:P in= P o/η3)计算最⼩和最⼤输⼊电流电压V in(MIN)=AC MIN x1.414(DCV)V in(MAX)=AC MAX x1.414(DCV)技术部培训教材反激式开关电源变压器设计(2)4)计算最⼩和最⼤输⼊电流电流I in(MIN)=P INx VIN (MAX)Iin(MAX)=PINx VIN (MIN)5)估算峰值电流:K POUTI PK = VIN (MIN)其中:K=1.4(Buck 、推挽和全桥电路)K=2.8(半桥和正激电路) K=5.5(Boost ,Buck- Boost 和反激电路)技术部培训教材反激式开关电源变压器设计(2)1.3 确定磁芯尺⼨确定磁芯尺⼨有两种形式,第⼀种按制造⼚提供的图图表表,,按按各各种种磁磁芯芯可传递的能量来选择磁芯,例如下表:表⼀输出功率与⼤致的磁芯尺⼨的关系输出功率/W MPP环形E-E、E E--L L等等磁磁芯芯磁芯直径/(in/mm) (每边)/()/(in/mm)in/mm)<5 0.65(16) 0.5(11)5(11)<25 0.80(20) 1.1(30)1(30)<50 1.1(30) 1.4(35)4(35)<100 1.5(38) 1.8(47)8(47)<250 2.0(51) 2.4(60)4(60)技术部培训教材反激式开关电源变压器设计(2)第⼆种是计算⽅式,⾸先假定变压器是单绕组,每增加加⼀⼀个个绕绕组组并并考考虑安规要求,就需增加绕组⾯积和磁芯尺⼨,⽤“窗⼝利⽤⽤因因数数””来来修修整整。
开关电源设计从入门到精通
这些要求包括:输入电源,输入电压的类型-交流还是直流。交流电源的频率和电压变化范围, 整流滤波方式,是否有功率因数要求?如果是直流电源,是直流发电机,还是蓄电池、抑或其它直流 变换器?是电流源还是电压源?它们的变化范围和纹波大小。输出电压(电流)大小和调节范围,稳 压(或稳流)精度,输出有几路?输出电流(或输出功率),输出纹波电压要求,是否需要限流?瞬 态响应要求。负载特性:蓄电池,还是荧光灯,还是电机?这些电气性能之外,是军用还是民用? EMC 要求,环境温度。体积与重量要求。是否需要遥控,遥测或遥调?是否需要提供自检测,如此等 等。设计出的电源必须满足这些要求。 1.1 主电网电源 如果你购进国外电气设备,不管青红皂白就去插上电源,弄不好就可能烧坏设备电源。因此,要 安全使用国外设备,要知道国外电网电源的种类和相关标准。如果你设计的产品是提供出口,也必须 了解该地区的电网的标准。 首先世界上主电网的交流电源频率在美国是 60Hz,而在中国和欧洲是 50Hz。实际上,频率也有 一定的变化范围,电网负荷重的时候,50Hz 可能降低到 47Hz;如果负载很轻时,60Hz 可能上升到 63Hz。这是因为带动发电机的发动机转速不可能是没有调节公差的恒速运行。50Hz 供电的直流电源必 须使用比 60Hz 供电更大的滤波元件,供电变压器铁芯更大或线圈匝数更多。 其次电源电压在不同地区也不同:在中国,家用电器和小功率电气设备由单相交流 220V 供电, 工业用电是三相 380V 。在美国民用电源为 110V (有时是 120V ),而家用电器,如洗衣机电源是 208V,而工业用电是 480V,但是照明却是 277V,当然也有用 120V 的;在欧洲为 230V,而在澳大利 亚却是 240V,如此等等。 以上的电网电压仅仅是其额定值,每一种电网都有允许偏差。例如电网随负荷变化时产生较大波 动。在上世纪末我国电网改造前,电网电压波动范围高达 30%以上。随着国民经济发展,大量电厂建 立,供电量充足,同时经过电网改造,合理输配电,目前在我国大多数地区供电质量明显提高,一般 变化在 10%以内,即在 198V~242V 之间。但在铁道系统和某些边远山区变化范围仍可能达到 30%。 因此,你设计的开关电源,必须迎合使用地区的供电情况,即使遇到意外情况,也能够安全运行而不 发生故障。有时电网也可能丢失几个周波,要求有些电源能够不间断(保持时间)地工作,这就要求 较大的输出电容或并联电池满足这一要求。 电网还存在过压情况。雷击和闪电在 2Ω阻抗上,引起线与线电压和共模干扰可高达 6000V 电压。 闪电有两种类型,一种是短脉冲,上升时间 1.2 μs,衰减时间 50μs,另一种很高能量,衰减时间 1ms。电网还有瞬态电压,峰值达 750V,持续半个电网周期,这主要是大的负载的接入或断开,或高 压线跌落引起电网的瞬变。 实际上工业电网面临的问题远不止这些,交流电网是一个肮脏的环境。你所设计的电源应当能够 在这个环境中工作,同时还要满足国际和各地区安全标准要求。 1.2 电池 在通信,电站,交通要求不间断供电的地方,电池作为不可缺少的储能后备能源。大量移动通讯 站和手机,以及电动汽车,助力电瓶车都依靠电池提供能量。风力发电和太阳能发电存储峰值能量作
开关电源设计(1)word资料8页
开关电源设计报告一、系统原理与理论分析计算本文以UC3842为核心控制部件,设计一款DC36V~60V输入,DC6.5V/4A 输出的单端反激式开关稳压电源。
开关电源控制电路是一个电压、电流双闭环控制系统。
变换器的幅频特性由双极点变成单极点,因此,增益带宽乘积得到了提高,稳定幅度大,具有良好的频率响应特性。
其电路原理图如图1所示。
1、简要介绍其工作原理:本电路有三部分组成:主电路,控制电路和保护电路。
其中主电路采用的是单端反激式电路,它是升降压变换器的推演并加隔离变压器而得。
此电路的优点是:电路简单,能高效提供直流输出,且它是所有电路拓扑中输入电压范围最宽的。
这对于输入环境恶劣发热负载时比较好的。
它的缺点是:输出纹波较大,但这可以通过在输出端增加一级LC滤波器来减小纹波。
这种电路通常适合应用在输出功率在250W以下,电压和负载的调整率在5%~8%左右的电路中。
反激式电路也有电流连续和电流断续两种工作模式,但值得注意的是反激式电路工作于电流连续模式下会显著降低磁芯的利用率,所以本文设计电路工作在电流断续模式下。
控制电路是开关电源的核心部分,控制的好坏直接影响电路的整体性能,在这个电路中采用的是以UC3842为核心的峰值电流型双闭环控制模式。
即在输出电压闭环的控制系统中增加直接或间接的电流反馈控制。
电流模式控制可以使系统的稳定性增强,稳定域扩大,改善系统的动态性能,消除了输出电压中由输入电压引入的低频纹波。
保护电路是开关电源中必不可少的补充,在这个电路中引入了输入过流保护、输出过流保护、输出过压保护、过热保护等。
其中输入过流保护是通过在原边引入取样电阻R14,接到UC3842的3脚,当R14上的电压超过1V,会关断PWM的输出从而起到保护作用,输出过压保护是通过输出电压分压后送到误差放大器的反相端,和电压基准比较从而来控制R9的电压,来控制UC3842的输出占空比,达到输出电压稳压的作用。
C6用来滤除芯片反馈网络调节误差比较器的输出端(1脚)的高频迭加信号。
(整理)开关电源的设计与制作
开关电源的设计与制作第一章开关电源概述一. 什幺是开关电源(Switching Power Supply)所谓开关电源是指以高频变压器取代工频变压器,采用脉冲调制技术的直流直流变换器型稳压电源.开关晶体管,开关二级管和开关变压器是组成开关电源的三个关键组件.二. 隔离式高频开关电源.图标说明:1)交流线路电压无论是来自电纲的,还是经过变压器降压的,首先要经过电纲滤波,以消除电磁干扰和射频干扰;2)经电纲滤波后的电流首先要经过整流,滤波电路变成含有一定脉动电压成分的直流电压,然后进入高频变换部分;3)高频变换器具有多种形式,主要分为半桥式,全桥式,推挽式,单端正激式,单端反激式等;高频变换部分的核心是一个高频功率开关组件,比如开关晶体管,场效应管(MDSFET)等组件,高频变换器产生高频(20KHZ以上)高压方波,所得到的高压方波送给高频隔离变压器的初级,在变压器的次级感应出的电压被整流,滤波后就产生了低压直流.4)脉冲宽度调制器(P WM)主要用于调节输出电压,使得在输入交流和输出直流负载发生变化时,输出电压能保持稳定,运作过程是P WM电路通过输出电压采样,并把采样的结果反馈给控制电路,控制电路把它与基准电压作比较,根据比较结果来控制高频功率开关组件的开关时间比例(占空比),达到调整输出电压的目的.(注:控制电路还有调频方式的)5)为了使整个电路安全可靠地工作,必须设置过压,过流保护电路等辅助电路.三.开关电源常用术语.1.效率(dfficiency):电源的输出功率与输入功率的百分比(测量条件为满负载,输入交流电压为标准值)2.ESR: 等效串联电阻,它表示电解电容呈现的电阻值的总和. ESR值越低的电容,性能越好.3.输出电压保持时间: 在开关电源的输入电压撤离后,依然保持其额定输出电压的时间;4.激活浪涌电流限制电路: 属保护电路,它对电源激活时产生的尖峰电流起限制作用.5.隔离电压: 电源电路中的任何一部分与电源基板地之间的最大电压.或者能够加在开关电源的输入端与输出端之间的最大直流电压.6.线性调整率: 输出电压随输入线性电压在指定范转内变化的百分率,条件是线电压和环境温度保持不变.7.负载调整率: 输出电压随负载在指定范围内变化的百分率,条件是线电压和环境温度保持不变.8.噪音和纹波: 附加在直流输出信号上的交流电压和高频兴峰信号的峰值.通常是以mV度量.9.隔离式开关电源: 一般指高频开关电源,它从输入的交流电源直接进行整流和滤波,不使用低频隔离变压器.10.输出瞬态响应时间: 从输出负载电流产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间.11.过载或过流保护: 防因负载过重,使电流超过原设计的额定值而造成电源损坏的电路.12.远程检测: 为了补赏电源输出的电压降,直接从负载上检测输出电压的方法.13.软激活: 在系流激活时,一种延长开关波形的工作周期的方法,工作周期是从零到它的正常工作点所用的时间.14.电磁干扰无线频率干扰(EMI一RFI):那些由开关电源的开关组件引起的,不希望传输和发射的高频能量频谱.15.快速短路保护电路:一种用于电源输出端的保护电路,当出现过压现象时,保护电路激活,将电源输出端电压快速短路.16.占空比:在高频开关电源中,开关组件的导通时间和变换器的工作周期之比.即:δ=Ton /Τ(T= Ton+Toff)开关电源的设计与制作第二章输入电路一.电压倍压整流技术世界范围内的交流输入电压,通常是交流90~130V和180~260V的范围,为了适应不同电源输入环境的需要,实现两种输入电源的转换,要利用倍压整流技术.如下图2一1所示.2一15可用于110V和220V交流的开关电源输入电路电路工作过程为:1)当开关S1闭合时,电路在115V交流输入电压下工作,在交流电的正半周,通过二极管VD1和电容器C1被充电到交流电压的峰值,即115×1.4=160V,在交流电的负半周,电容器C2通过二极管VD4也被冲电到160V, 这样,电路输出的直流电压应该是电容器C1和C2上充电电压之和(160+160V=320V) 注意:不同的用电环境电压选择开关位置一定要选择正确.否则,会导致直流变换器中的开关功率管损坏,或因为输入电压太低而使开关电源进入欠压输入自动保护状态.二.抗电磁干扰和射频干扰电路考虑输入滤波电路(电纲滤波)1.开关电源的设计,生产,一定要将其辐射和传导干扰降低到可接受的程度.在美国,权威的指导性文件是F CCD ocket20780,在国际上,德国的Verband Deutscher Elektronotechniker(VDE)安全标准则得到了广泛的采用.2.开关电源中的RFI产生源:开关噪声的主要来源是开关晶体管,主回路整流器,输出二极管,晶体三极管的保护二极管以及控制单元本身.反激式变换器,由于设计的原因,其输入电流波形呈现三角形,较之输入波形为矩形的变换器,如正激式,桥式变换器等将产生较少的传导RFI噪声.(付里叶分析表明,一个三角形电流波形的高频谐波幅度是以40dB每倍频程进行跌落的,而对一个差不多的矩形电流波形,则只呈现20dB每倍频程的跌落)3.交流输入线路噪声滤波器对RFI的抑制.通常在开关电源中采用的噪声抑制方法是在主交流输入回路接入一个LC组成的滤波器,用于差模一共模方式的RFI抑制,通常是交流线路上串入一对电感L1, , 其两端并联二只电容器(X电容器),并在交流线二端对大地各接一只电容器(Y电容器),如图2一2(低通滤波纲络)2一2开关电源输入线路滤波器结构1)上图中电容电感的值可以采用下列的数值:C (X): 0.1~2UF;C(Y): 2200PF~ 0.033uF;L: 在25A时, 为1.8mH; 0.3A时, 为47mH注意:在选择滤波器的组件时,重要的是要使输入滤波器的谐振频率远低于电源的工作频率;另一方面,滤波器使得电源的工作频率增加时,会使噪声的传导变得更容易.2)上图中并联在交流输入线的电阻R是X电容的放电电阻,这是由VDE一0806和IEC一380两个标准中的有关安全的规范条款推荐应用的.IEC一380的8.8节阐明:若线路滤波器的X电容器的值大于0.1UF,则放电电阻的数值应由下式确定:R=t /2.21c (2一1)式中,t=ls, c为l电容器的总和值3)为进一步减少对称和不对称的干扰电压的措施是在交流线路中另外再接入一对电感L2,从而使得电容C4(X)的充电电流得到限制,于是降低了干扰,如图2一32一3改进的线路滤波器上图中L1与C3.C4组成常模抗干扰回路,L1与C1.C2组成共模,抗干扰回路,L2用于C4的充电电流的限制,因此,整个组合对各种高频干扰信号的抑制作用较好.三.输入整流器及整流后滤波电路.一)输入整流器如图2一1中,此整流电路由VD1~VD4组成(桥式或倍压整流)在选择组合组件或分立组件的整流器时,必须要查对下面的一些重要参数:1.最大正向整流电流,这个参数主要根据开关电源设计的输出功率决定.所选择的整流二极管的稳态电流容量至少应是计算值的2倍.2.峰值反向截止电压(PIV).由于整流器工作在高电压的环境,所以它们必须有较高的PIV值,一般应为600V以上.3.要有能承受高的浪涌电流的能力.二.输入滤波电容.由于滤波电容的选择将会影响到:电源输出端的低频交流波及电压和输出电压保护时间.一般情况下,高质量的电解电容所具有的滤除交流波纹电压的能力越强,它的ESR值越低.其工作电压的额定值至少应达到200V.在图2一1中,C1,C2 为滤波电容,电阻R4,R5与之并联以便在电源关闭时,给电容提拱一个放电通路.计算滤波电容的公式为:C=It /ΔV (2一2)式中C: 电容量, F;I: 负载电流 At: 电容提供电流的时间, s;ΔV: 所允许的峰一峰值纹波电压v .例:计算50w开关电源的输入滤波电容器的值.设输入交流电压为115V,60HZ,允许30V峰一峰值的纹波电压,且电容可维持电压电平的时间为半周期.解:1)计算直流负载电流假定一个最坏的情况,电源的效率为70%,那幺,输出功率为50W的电源其输入功率应该是:Pin=Pout/η=50 / 0.7=71.5(w)利用电压倍压技术(图2一1),在输入交流为115V时,直流输出电压将是2×(115×1∙4)=320(V),则负载直流电流应为I=P/E=7105/320=0.22(A)2)因半周期的线性频率或者说对于60HZ的交流电压大约是8ms,即t=1/2×1/60=8.33ms,故根据式2一2有.C=0.22(8×10 –3) /30=58×10 _6 =58(uF)选择标称值为50 uF的电容器.3)因为在倍压结构中,C4C5为串联,故有1/C=1/C1+1/C2,有C1=C2=100uF,即50W的开关电源,其滤波电容C4,C5为100uF.四.输入保护电路一).浪涌电流1.浪涌,一般情况下,只是电容的ESR值,如果不采取任何保护措施,浪涌电流可接近几百安培.2.控制电流主要是由滤波电容充电引起的,在开关管开始导通的瞬间,电容对交流电呈现出很低的阻抗浪涌电流的方法:广泛采用的措施有两种,一种是利用电阻 双向可控硅并联纲络;另一种是采用负温度系数(NTC)的热敏电阻,用以增加对交流线路的阻抗.1) 如图2一1,R 1,VS 组成此电路,R 1与VS 并联,当输入滤波电容充满电后,由于双向可控硅和电阻是并联的,可以把电阻短路,对其进行分流.这种电路结构需要一个触发电路,当某些预定的条件满足后,触发电路把双向可控硅触发导通,如图2一4 所示.1 T 2可控硅VS 的工作过程为:当电源接通后,C 6两端的电压逐渐升高,电流相应稳定.在C 6两端的电压稳定之前,浪涌电流被与之串联的电阻R 1(6.8Ω)所抑制,当输入交流为115V 时,C6两端的电压V C =115×1∙4=160(V).当电容器C 6充电时,电压加到高频变压器T 1的绕组LB 上,则在绕组LP 4端上产生感应电压,当感应电压达到1.5V 时,电流I G 开启可控硅.即当IG 流过可控硅的控制极G 时,触发T 1与T 2短接,可控硅导通,电阻R 1被VS 短路,使其温度下降,于是实现了R 1抑制浪涌电流的目的 .注:设计时要认真地选择双向可控硅的参数,并加上足够的散热片,因为在它导通时,要流过全部的输入电流.2)热敏电阻技术:这种方法是把负温度系数(NTC)的热敏电阻串联在交流输入或者串联在经过桥式整流后的直流线上,如2一1图中的RT 1和RT 2,其工作原理为:当开关电源接通后,热敏电阻的阻值基本上是电阻的标称值,这样,由于阻值较大,它就限制了浪涌电流,当电容开始充电时,充电电流流过热敏电阻开始对其加热.由于其具有负温度系数,随着电阻的加热,其电阻值开始下降,如果热敏电阻选择得合适,在负载电流达到稳定状态时,其阻值应该是最小,这样,就不会影响整个开关电源的效率..二) 输入瞬间电压保护一般情况下,交流电纲上的电压比较稳定,但由于电纲附近电感性开关,暴风雨天气雷电等现象的存在,都会产生高压的尖峰(如受严重的雷电影响,电纲上的高压尖峰可达5KV;而电感性开关产生的电压尖峰的能量公式W=1/2L.I2.式中L是电感器的漏感:I是通过线圈的电流)可是,虽然电压尖峰持续的时间很短,但是它有足够的能量使开关电源的输入滤波器,开关晶体管等造成致命的损坏,故必须采取措施加以干扰.最通用的抑制干扰器件是金属氧化物物压敏电阻(MOV)瞬态电压抑制器.如图2一1中的RV 把压敏电阻RV连在交流电压的输入端,起到一个可变阻抗的作用.即,当高压尖峰瞬间出现在压敏电阻两端时,它的阻抗急剧减小到一个低消值,消除了尖峰电压使输入电压达到安全值.其瞬能量消耗在压敏电阻上,选择压敏电阻时应按下述步骤进行.(1)选择压敏电阻的电压额定值,应比最大的电路电压稳定值大10%~20%;(2)计算或估计出电路所要承受的最大瞬间能量的焦耳数.(3)查明器件所需要承受的最大尖峰电流开 关 电 源 的 设 计第三章 高频电源变换器的基本类型一. 高频电源变换器的基本类型高频电源变换器的基本类型有五种:单端反激式,单端正激式,推挽式.半桥式和全桥式变换器,而半桥式和全桥式变换器电路实际上是推挽式变换器电路的改进型,所以,有人把这三种电路形式统称为推挽式变换器.高频电源变换器从激励方式上可分为单端(单极性)激励和双极性激励变换器,双极性变换器包括推挽式,半桥式,桥式等,其工作原理的实质是两个单端正激式变换器电路,从其耦合方式可分为直接耦合和变压器隔离两种,其中直接耦合形式为其基本形式.近年来出现的新型的变换器为C U K 变换器.1.单端反激式变换器的模型图: (3一1)(a) (b) 3 一1单端反激式变换器模型图单端反激式变换器的工作原理为:1) 当开关s 闭合时,电流I 流过电感L,在L 中储存能量,由于电压的作用,使二极VD 处于反向偏置,因此,在负载电阻R L 上无电压;2) 当开关S 打开时(上b 图),电感上的感应电压极性相反,则二极管VD 处于正向偏置,并产生电流Iv,这样,在负载电阻R L 上就出现一个与输入电压极性相反的电压.由于开关S 不断地开关动作,电路中的电流就以及脉的形式出现,因此,在单端反激式变换器中,当开关闭合时,能量存储在电感L 中,在开关打开时,能量被传递到负载RL 上.3. 单端正激式变换器的电路模式图(3一2)单端正激式变换器的工作原理为:Vin Ic------------- 1) 当开关S 闭合时,电流I 流过电感L,系,二极管VD 处于反向偏置; 2) 当开关S 打开时,电感L 中的磁场极性发生变化,,b2单端正激式变换器模型图,无脉动现象,恰恰与其相反,输入电流则是不连续的,. 3.(3一3)推挽式变换器的工作原理为:1)当S 1闭合S 2打开时,电源电流流过方向为 a Lp 1 b s1 d V in,那幺此时,在变压器次级绕组中咸应出电压并形成感应电流Is 1.2)当S 2闭 合S 1打工时,电源电流方向为 a f e d vin,那幺此时在变压器次级绕组LS 2中感应出电压形成感应电流IS 2二. 隔离式单端反激式变换器电路.概述 :一般情况下,隔离式开关电源都是用高频变压器作为主要隔离器件.在单端反激式隔离L-------------电路中,高频变压器是以变压器的形成出现的,但实际上它起的作用是扼流圈,所以应称之为变压器 扼流圈.如图3一4中,由于隔离变压器T 除了具有初次级间安全隔离的作用外,它还有变压器和扼流圈的作用,所以在反激式变换器的输出部分一般不需要加电感,但在实际应用中,往往在整流器和滤波电容之间加一个小的电感线圈,用以降低高频开关噪声的峰值.单端隔离激式变换器的工作过程为:1) 当晶体管VT1导通时,它在变压器初 级电感线圈中储存能量,与变压器次 级相连的二极管VD 处于反偏压状 态而截止,故在变压器次级回路无电 流流过,即没有能量传给负截. 2) 当晶体管VT 1截止时,变压器次级电 感感线圈中的电压极性反转过来,使得二极管VD 导通,给输出电容C 充电,同时在负载L 年也有了电流I L 3 一4隔离单端反激式变换器电路注:图3一4中C 为输出滤波电容.1.单端反激式变换器电路中的开关晶体管在单端反激式变换器电路中,所使用的开关晶体管必须具备两个条件:1)在晶体管截止时,要能承受集电极尖峰电压; 2)在晶体管导通时,要能承受集电极的尖峰电流.1) 晶体管截止时尖峰电压的计算公式:V CE max =Vin / 1一δmax式中Vin 是输入电路整流滤波后的直流电压, δmax 是晶体管最大工作占空比(注意:为了限制限晶体管的集电板安全电压,工作占空比应保持在相对地低一些,一般要低于50%,δmax<0.5,在实际设计时, δmax 一般取0.4左右,这样就限制集电极峰值电压: V CE max ≦2.2Vin,因此,在单端反激式变换器电路设计中,晶体管的工作电压一般在800V 通常接900V 计算可安全可靠地工作.)2) 晶体管导通时的集电极电流计算式:I C = I L / n式中,I L 是变压器初级绕组的峰值电流,而n 是变压器初级与次级间的匝数比.注: 为了导出用变压器输出功率和输入电压表达集电极峰值工作电流的公式.变压器绕组传递的能量Pout =可用下式表示:Pout = L . I L 2 / 2T ·η (3 一 3 )式中,η是变换器的效率.则有: Ic= 2Pout / η·Vin ·δmax ( 3 一 4 )假定变器的效率η是0.8,最大占空比δmax=0.4(即40%),那幺Ic = 6. 2Pout / Vin ( 3 一 5 )2. 单端反激式变换电路中的变压器绕组.在单端反激式变换器电路中,在设计时要汪意不要使磁芯饱和,所选的磁芯一定要有足够大+ RL 一的有效体积,通常应用空气隙来扩大其有效体积:V=Uo ·Ue · I L max ·L / B 2max ( 3一6 )中,Ilmax: 最大负载电流;L :变压器次级绕组的电感量; Uo : 空气的导磁率,其值为1;Ue: 所选磁芯的磁性材料的相对导磁率Bmax:磁芯的最大磁通密度;(具体见第五章)3一53.基本的单端反激式变换器的变形.1)如图3一5中,由于考虑到单只晶体管有时承受不了过高的输入电压,(一般商甲晶体管达不到指针),故利用两只晶体管工作.图中VD 1和VD 2同时导通或截止,二管起箝位作用,它们把晶体管的最大集电板电压限制在Vin,这样耐压低的晶体管就可以使用了.2单端反激式变换器电路的优点是:电路结构简单,可以实现多路电压输出.如图3一6,在电路中隔离变压器对各路输出电压起到公共扼流圈的作用变压器的次级可以有多个绕组,故可以实现多路输出 .每个次级绕组只需一个整流二极管和一个滤波电容,就可以得到一组直流输出电压.3一6有多路输出的单端反激式变换器电路+ R L 一1 1 out 1 out2 + V out3 一 L L3一7隔离单端正激式变换器电路图三.隔离单端正激式变换器电路1.概述:如图3一7所示1)在单端正激式变换器电路中,隔离组件是一个纯粹的变压器,为了有效地传递能量,,在输出电路中, 必须有储能组件电感线圈Lo同时,初次级绕组的极性是相同的.其电路工作过程为:当VT1导通时,在变压器的初级产生了电流,并储存了能量,由于变压器的次级极性与初级同相,这个能量也传到了变压器的次级并处在偏正的二极管VD2把能量储存到了电感L中.此时,二极管VD3是处在反向偏压状态,为截止状态,当三极管VT1截止时,二极管VD2是反向偏压,变压器绕组中的电压反向,续流二级管VD3处于正向偏压,在输出回路中,储存在电感中的能量通过电感L 继续传负载R L .2)变压器的第三绕组称为箝位绕组(或回授绕组)LP2,它与二极管VD1串联,其作用是用来限制晶体管C一E结上的电压尖峰,在晶体管截止时,还能使高频变压器的磁通复位, 这是因为:A.在VT1导通时,变压器初级绕组LP 1中会储存能理,当VT1截止时,变压器次级侧二极管VD2截止,那幺储存在LP1中的能量再不能传递到次级绕组了,此时必须要通过一种途径释放出来,否则,必然在线圈两端产生过高的电压,解决的办法是增加箝位绕组和二极管VD1,并使箝位绕组的匝数与初级绕组的匝数相同,二者紧密耦合,这样,当箝位绕组上的感应电超过电源电压时,二极管VD1导通,将磁能送回电源中,就可以把初级绕组的电压限制在电源电压上,所以,开关晶体管VT1的C一E极间的最高电压就被限制在二倍电源电压上.B.为满足磁芯复位的条件,使磁通建立和复位的时间相等,所以这种把电路的占空比不能超过50%.3)磁化电流Imag的计算公司为:Ima= Tδmax·Vin∕N ( 3一7)式中, T·δmax是VT时向,L是输出电感Ho4))单端正激式变换器是在晶体管导通时通过变压向负载传输能量,故运用的输出功率范转较大,一般情况下可达50~200W,其高频变压器要起变压器隔离和传输能量的作用,又起电感线圈储存能量的作用.2单端正激式变换器电路中的开关晶体管1)晶体管截止峰值电压:在单端正激式变换器电路中,由于有第三绕组和续流二极管VD1的作用,所以其截止时降在VT1上的最大电压VCEmax应为2Vin,且只要二极管VD1处于导通状态,即在Tδmax这个时间内,降在VT铁C 一E间的2Vin的峰值电压就维持不变.2)晶体管导通时集电极电流的峰值:为正激式变换器的电流值加上磁化电流Imag.Ic= Ic / n + Tδmax Vin / L =6.2Pout / Uin式中.n: 变压器初次级匝数比;IL : 输出电感电流. A;Tδmax: 晶体管导通时间L: 输出电感, H.3.单端正激式变换器电路的传输变压器在设计正激式变换器的传输变压器时,应十分注意选择适当的磁芯有效体积,并选择空气隙,以避免磁芯的饱和,其有效体积V为:V= UoUe I2mag L / B2max注意:A.这种电源的最大工作占空比应保持低于50%,以便通过第三绕组将变压器的电压进行箝位,将总电限制在2倍输入电压之内.这样,当VT1导通时,为箝位电平:当VT停止时,使该总电压接近于0值.如果最大工作占空比大于50%,即δmax > 0.5,将打破这种2倍于电源电压的平衡,导致变压器发生饱和,反过来会产生很高的集电峰位电流,这可能会损坏开关晶体管.B.尽管有第三绕组以及箝位二极管可将开关晶体管的峰值集电极电压限制在2倍直流输入电压之内,但在制作变压器时,还要严格注意初级绕组和第三绕组间的紧密耦合,以消除由于漏感引起的致命的电压尖峰.4.单端正激式变换器电路的变形.1)如同单端反激式变换器电路一样,也可用两个晶体管代替一个晶体管工作,它们同时导通或同时截止,但每个晶体管所承受的电压不会高于Vin.2)此电路也可以产生多路的出电压,但是需增加二极管和扼流圈应指出的是,续流二极管的容量至少要与主回路中的整流二极管相同,因为在晶体管VT1截止时,它要提供输出电路中的全部电流.四. 推挽式变换器电路概述:如图3一8所示,推挽式变换器电路实际上是由两个正激式变换器电路组成,只是它们工作时相位相反,在每个周期里,,两个晶体管交替导通和截止,在各自导通的半个周期内,分别把能量传递给负载,所以称之为”推挽”电路.故在推挽式变换器电路中,两组开关三极管和输出整流二极管因流过每一组组件的平均电流比同等的单端正激式变换器电路减少35%以上,其设计计算可接单端正激式变换器.还应看到,在只开关晶体管导通间隙,二极管VD1和VD2同时导通,它们把高频变压器的次级给短路了,与此同时,把能量传递到了输出回路,实质上,它们起到了续流二极管的作用.推挽式变换器电路的输出电压可用下式计算:V out= 2δmax·Vin / n (3一10)注意:为了避免两只开关晶体管同时导通而引起损坏,公式中δmax的值必须得持在0.5以下.假定δmax=0.4则有:Vout = 0.8Vin / n (3一11 )式中n是高频变压器的初级对次级的匝数比.1)每只开关管的峰值集电极电流Ic=Ic / n (3一12)Ic = Pout / η. (3一13)设η=0.8 δmax=0.8则Ic= 1.6Pout / Vin (3一14)2)每只管所承受的峰值电压限制在2Vin以内.3.推挽式变换器电路中的高频变压器在推挽式变换器电路中,两只晶体管导通时间相等(或者说强制两管导通时间相等),高频变压器的。
开关电源的设计
开关电源的设计开关电源的设计是一种将交流电转换为直流电的电源设计方法。
它具有高效率、稳定性好、体积小等优点,广泛应用于各种电子设备和通信设备中。
本文将从开关电源的原理、设计流程和关键技术等方面进行详细介绍。
第一部分:开关电源的原理开关电源是通过不同的开关电子元件进行电流的开关控制,实现对输入电流的调节。
其基本原理是将交流电通过整流、滤波电路转换为直流电,然后利用开关管对直流电进行高频开关控制,通过变压器进行电压变换,最后通过滤波电路和稳压电路得到稳定的输出电压。
第二部分:开关电源的设计流程开关电源的设计包括需求分析、电路设计、元器件选型和PCB设计等环节。
需求分析阶段主要确定输出电压、电流、输入电压范围等参数,并结合所需的保护功能进行设计要求的确定。
电路设计阶段主要根据需求确定各级电路的拓扑结构、开关元件、滤波电路和稳压电路等设计方案。
元器件选型阶段则根据设计方案选择适合的开关元件、变压器、电感、电容等元器件,并考虑其性能、成本和可获得性等因素。
最后,通过PCB设计将电路方案落实到具体的电路板上。
第三部分:开关电源设计中的关键技术在开关电源设计中,有一些关键技术需要特别注意。
首先是开关频率的选择,开关频率过高会增加功率损耗,开关频率过低则会导致变压器体积增大。
其次是开关管的选型,选择合适的开关管可以提高转换效率和稳定性。
另外,设计有效的磁偶合电路可以减小变压器的体积和重量。
同时,设计合理的电感和电容滤波电路可以提高输出稳定性。
最后,合理选择保护电路,如过压保护、过流保护和短路保护等,提高电源的可靠性和安全性。
第四部分:开关电源设计中的常见问题和解决方法在开关电源的设计中,常常会遇到一些问题,如电磁干扰、温升过高和功率因数低等。
为了解决这些问题,可以采用屏蔽技术、降低开关频率和增加散热设计等方法。
另外,合理选择功率因数校正电路可以提高功率因数。
结论:开关电源的设计涉及到电路设计、元器件选型、PCB设计和关键技术等多个方面。
开关电源设计报告
1开关电源主电路设计1.1主电路拓扑结构选择由于本设计的要求为输入电压176-264V交流电,输出为24V直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。
前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck电路构成。
总体要求是先将AC176-264V整流滤波,然后再经过BUCK电路稳压到24V。
考虑到变换器最大负输出功率为1000W,因此需采用功率级较高的Buck电路类型,且必须保证工作在CCM工作状态下,因此综合考虑,本文采用全桥隔离型Buck变换器。
其主电路拓扑结构如下图所示:下面将对全桥隔离型BUCK变换器进行稳态分析,主要是推导前级输出电压V与后级输g 出电压V之间的关系,为主电路参数的设计提供参考。
将前级输出电压V代替前级电路,作g 为后级电路的输入,且后级BUCK变换器工作在CCM模式,BUCK电路中的变压器可以用等效电路代替。
由于全桥隔离型BUCK变换器中变压器二次侧存在两个引出端,使得后级BUCK电路的工作频率等同于前级二倍的工作频率,如图1-1所示。
在2T的工作时间内,总共可分为四种S 开关阶段,其具体分析过程如下:1)当0<t<DT时,此时Q、Q和D导通,其等效电路图如图1-2所示。
S145/?1-1) 1-2) 1-3)3) du.•川L i (t )m 严+仃(t )c 二二v (t )R图1-3在DT<t<T 时等效电路SSv=0sv=-v Li=i -v /R C当TS <t<a+D )TS 时,此时Q2、1-4) 1-5)1-6)Q 和D 导通,其等效电路图如图1-2所示。
36图1-2在0<t<DT 时等效电路Sv=nvs gv=nv -vL gi=i -v /RC2)当DT<t<T 时,此时Q ~Q 全部关断,D 和D 导通,其等效电路图如图1-3SS 1465所示。
开关电源原理和设计-经典(免费)
开关电源原理与设计世纪电源网-论坛第一章开关电源的基本工作原理1-1.几种基本类型的开关电源1-2.串联式开关电源1-2-1.串联式开关电源的工作原理1-2-2.串联式开关电源输出电压滤波电路1-2-3.串联式开关电源储能滤波电感的计算1-2-4.串联式开关电源储能滤波电容的计算1-3.反转式串联开关电源1-3-1.反转式串联开关电源的工作原理1-3-2.反转式串联开关电源储能电感的计算1-3-3.反转式串联开关电源储能滤波电容的计算1-4.并联式开关电源1-4-1.并联式开关电源的工作原理1-4-2.并联式开关电源输出电压滤波电路1-4-3.并联开关电源储能电感的计算1-4-4.并联式开关电源储能滤波电容的计算1-5.单激式变压器开关电源1-5-1.单激式变压器开关电源的工作原理1-6.正激式变压器开关电源1-6-1.正激式变压器开关电源工作原理1-6-2.正激式变压器开关电源的优缺点1-6-3.正激式变压器开关电源电路参数计算1-6-3-1.正激式变压器开关电源储能滤波电感和储能滤波电容参数的计算1-6-3-2.正激式开关变压器参数的计算1-6-3-2-1.变压器初级线圈匝数的计算1-6-3-2-2.变压器初、次级线圈匝数比的计算1-7.反激式变压器开关电源工作原理1-7-1.反激式变压器开关电源工作原理1-7-2.开关电源电路的过渡过程1-7-3.反激式变压器开关电源电路参数计算1-7-3-1.反激式变压器开关电源储能滤波电容参数的计算1-7-3-2.反激式开关变压器参数的计算1-7-3-2-1.反激式开关变压器初级线圈匝数的计算1-7-3-2-2.反激式开关变压器初级线圈电感量的计算1-7-3-2-3.变压器初、次级线圈匝数比的计算1-7-4.反激式变压器开关电源的优缺点1-8.双激式变压器开关电源1-8-1.推挽式变压器开关电源的工作原理1-8-1-1.交流输出推挽式变压器开关电源1-8-1-2.整流输出推挽式变压器开关电源1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算1-8-1-3-2.推挽式变压器开关电源储能滤波电容参数的计算1-8-1-4.推挽式开关变压器参数的计算1-8-1-4-1.推挽式开关变压器初级线圈匝数的计算1-8-1-4-2.推挽式开关变压器初、次级线圈匝数比的计算A)交流输出推挽式开关变压器初、次级线圈匝数比的计算B)直流输出电压非调整式推挽开关变压器初、次级线圈匝数比的计算C)直流输出电压可调整式推挽开关变压器初、次级线圈匝数比的计算1-8-1-5.推挽式开关电源的优缺点1-8-2.半桥式变压器开关电源1-8-2-1.交流输出半桥式变压器开关电源1-8-2-2.交流输出单电容半桥式变压器开关电源1-8-2-3.整流输出半桥式变压器开关电源1-8-2-4.半桥式开关电源储能滤波电感、电容参数的计算A)半桥式开关电源储能滤波电感参数的计算B)半桥式开关电源储能滤波电容参数的计算1-8-2-5.半桥式开关变压器参数的计算A)半桥式开关变压器初级线圈匝数的计算B)交流输出半桥式开关变压器初、次级线圈匝数比的计算C)直流输出电压非调整式半桥开关变压器初、次级线圈匝数比的计算D)直流输出电压可调整式半桥开关变压器初、次级线圈匝数比的计算1-8-2-6.半桥式变压器开关电源的优缺点1-8-3.全桥式变压器开关电源1-8-3-1.全桥式变压器开关电源的工作原理1-8-3-2.整流输出全桥式变压器开关电源1-8-3-3.全桥式开关电源储能滤波电感、电容参数的计算A)全桥式开关电源储能滤波电感参数的计算B)全桥式开关电源储能滤波电容参数的计算1-8-3-4.全桥式开关变压器参数的计算A)全式开关变压器初级线圈匝数的计算B)交流输出全桥式开关变压器初、次级线圈匝数比的计算C)直流输出电压非调整式全桥开关变压器初、次级线圈匝数比的计算D)直流输出电压可调整式全桥开关变压器初、次级线圈匝数比的计算1-8-3-5.全桥式变压器开关电源的优缺点1-9.第一章总结第一章开关电源的基本工作原理1-1.几种基本类型的开关电源顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。
开关电源设计全过程资料
开关电源设计全过程资料一、开关电源的基本原理开关电源是一种利用电子技术将交流电转换为直流电的电源装置。
其基本原理是通过对交流电进行整流、滤波、转换和稳压等处理,得到稳定的直流电输出。
二、开关电源的设计步骤1.确定电源的输入和输出要求首先确定所需电源的输入电压范围、输出电压和电流要求。
根据具体应用需求,选择合适的输入电压范围,确定输出电压和电流的设计值。
2.选择开关电源拓扑结构常见的开关电源拓扑结构有单端式、双端式、反激式、谐振式等。
根据实际需求,选择适合的拓扑结构。
3.开关电源原件的选取与设计根据拓扑结构的选择,选取合适的元件,如开关管、二极管、电感、电容等。
根据电流和功率的要求,计算电感和电容的数值。
同时,设计控制电路,包括开关频率、占空比等参数的确定。
4.稳压控制电路设计开关电源中稳压控制电路起到保持输出电压稳定的作用。
根据选择的拓扑结构和需求,设计合适的稳压控制电路,如比例积分稳压控制电路、反馈稳压控制电路等。
5.保护电路设计6.电路板设计根据电路设计完成电路板的布局设计和走线设计。
保证电路板的贴片电容、电感等元件的布局合理,走线紧凑,避免干扰和散热问题。
7.原型机制作与测试根据设计的电路板完成原型机的组装与焊接。
进行相应的测试:包括电源输出电压、电流的测量,以及各项保护功能的测试。
8.优化与调整测试后,根据测试结果进行相应的优化与调整工作,包括稳压性能的调整,保护功能的完善等。
三、常见问题及解决方案1.输出电压波动过大:可以通过增加滤波电容、提高稳压控制电路的准确度等方法来降低输出电压波动。
2.开关管损坏:可以通过增加过流保护电路、过压保护电路等来提高开关管的可靠性。
3.效率低:可以通过优化开关频率、增加反馈环路稳定电路等方法来提高开关电源的效率。
四、开关电源设计的一般流程1.确定输入输出电压和电流;2.选择拓扑结构;3.选取合适的原件并进行设计;4.设计稳压控制电路;5.设计保护电路;6.进行电路板设计;7.制作原型机并测试;8.优化与调整。
如何设计和实现电子电路的开关电源
如何设计和实现电子电路的开关电源电子电路的开关电源是一种常见且重要的电源类型,它在各种电子设备中被广泛使用。
设计和实现一个高效可靠的开关电源需要考虑多个因素,包括输出功率需求、稳定性、效率和成本等。
本文将介绍如何设计和实现电子电路的开关电源,并提供一些实用的技巧和指导。
一、开关电源的工作原理开关电源通过使用开关元件(通常是MOSFET)来控制电流的通断,以实现电源输出电压的调节。
其主要组成部分包括输入滤波电路、整流电路、功率调节电路和输出滤波电路。
首先,输入滤波电路用来滤除输入电源中的高频噪声和波动。
常见的输入滤波电路包括电容滤波器和电感滤波器,它们能有效地消除输入电源中的纹波和电磁干扰。
接下来,整流电路将交流输入电压转换为直流电压。
常用的整流电路有全波桥式整流电路和半波整流电路,其中全波桥式整流电路具有更好的效率和更低的纹波。
然后,功率调节电路使用开关元件来控制电流的导通和截止,实现对输出电压的精确调节。
调节电路通常由开关元件、反馈电路和控制电路组成。
反馈电路会监测输出电压,并与参考电压进行比较,从而控制开关元件的工作状态,以使输出电压稳定在设定值。
最后,输出滤波电路用来滤除输出电压中的高频噪声和纹波。
常见的输出滤波电路包括LC滤波器和电容滤波器。
二、开关电源设计的关键因素1. 输出功率需求:根据所需应用和负载要求,确定所需的输出功率范围。
2. 功率调节方式:有两种常见的功率调节方式,一种是脉宽调制(PWM),一种是脉冲频率调制(PFM)。
PWM方式在大部分应用中更为常用,因为它具有较高的稳定性和响应速度。
3. 效率和转换效能:开关电源的效率是一个重要的指标,高效率能减少能源浪费和散热问题。
4. 稳定性和纹波:稳定的输出电压和低纹波是开关电源设计的核心要求。
合适的反馈电路和滤波器的设计可以提升稳定性和降低纹波。
5. 控制保护机制:开关电源需要具备过载保护、短路保护和过温保护等功能,以保证电源的可靠性和安全性。
开关电源(适配器)工艺详解(史上最全最完整)
三.生产制程
3.1 注意事项
3.1.1 ESD防护
静电(ESD)是一种客观存在的自然现象,产生的方式多种,如接触、 摩擦、电器间感应等。静电的特点是长时间积聚、高电压、低电量、小电流 和作用时间短的特点。
人体自身的动作或与其他物体的接触,分离,摩擦或感应等因素,可以 产生几千伏甚至上万伏的静电。
静电在多个领域造成严重危害。摩擦起电和人体静电是电子工业中的两 大危害,常常造成电子电器产品运行不稳定,甚至损坏。
6
5
4
插件中投板工位作业要求:
NG
3.4 补焊
元件空 焊不良 元件连 锡不良
➢主要检查元件是否有虚焊、短路、少锡、锡尖、锡多、假焊等不良现象并进行修补; ➢必须做好静电防护。
良好焊点标准:
➢ 光滑亮泽、锡量适中、形状良好; ➢ 无冷焊(虚假焊)、针孔; ➢ 元件脚清晰可见,无包焊、无锡尖; ➢ 无残留松香焊剂、残锡、锡珠; ➢ 无起铜皮、无烫傷元器件本体及绝缘皮现象; ➢ 焊锡应覆盖整个焊盘,至少覆盖95%以上 。
环境温度 /Temp.
输入电压 /AC Input
输入频率 /Freq.
输出负载设置 /Output Load Setup
25°C
90V/115V/132V 180V/230V/264V
NG
锡点
检查
OK
装外壳 OK
功能 测试
OK
超声波压合
NG 维修
NG
PE NG
报废
老化 测试
OK
高压 测试
OK
ATE 测试
OK
外观 检查
OK 包装
返工
NG
成品
检验
OK
入库
开关电源基本原理与设计介绍
工作狀態
BUCK-BUST(FLYBACK)變換器
工作原理
當電路中的開關S關閉時,電流就會流經電感L,並將能量儲存 于其中,由于電壓極性的關系,二級体D是在逆向偏壓狀態,此時負 載電阻RL上就沒有電壓輸出. 當開關S打開時,由于磁場的消失,電感L呈逆向極性,二級体D 為順向偏壓,環路中則有Ic感應電流產生,因此負載RL上的輸出電 壓极性正好和輸入電壓极性相反,由于開關ON/OFF的作用,使得電 感器的電流交替地在輸入与輸出間,連續不斷的改變其方向,不過 這二者電流都是屬于脈動電流形式. 所以該變換器電路中,當開關是在導通周期時,能量是儲存在 電感器裏,反之,當開關是在打開周期時能量會轉移至負載上.
Boost DC-DC變換器主要架构
2. Boost (step up) Ideal transfer function
peak drain current
.peak drain voltage
Average diode currents
Diode voltages (vrm
Boost變換器工作狀態
Peak drain voltage
Average diode currents
Diode voltages (vrm)
DC-DC變換器拓補
Voltage and current waveforms
HALF BRIDGE
FULL BRIDGE
FULL BRIDGE circuit
DPS-1001AB C FULLBRIDGE CIRCUIT
DC-DC變換器拓補
HALF BRIDGE
Ideal transfer function Peak drain current
64个开关电源设计必须掌握的技巧
64个开关电源设计必须掌握的技巧1. 变压器图纸、PCB、原理图这三者的变压器飞线位号需一致。
理由:安规认证要求这是很多工程师在申请安规认证提交资料时会犯的一个毛病。
2.X电容的泄放电阻需放两组。
理由:UL62368、CCC认证要求断开一组电阻再测试X电容的残留电压很多新手会犯的一个错误,修正的办法只能重新改PCB Layout,浪费自己和采购打样的时间。
3.变压器飞线的PCB孔径需考虑到最大飞线直径,必要是预留两组一大一小的PCB孔。
理由:避免组装困难或过炉空焊问题因为安规申请认证通常会有一个系列,比如说24W申请一个系列,其中包含4.2V-36V电压段,输出低压4.2V大电流和高压36V小电流的飞线线径是不一样的。
多根飞线直径计算参考如下表格:4.输出的DC线材的PCB孔径需考虑到最大线材直径。
理由:避免组装困难因为你的PCB可能会用在不同电流段上,比如5V/8A,和20V/2A,两者使用的线材是不一样的参考如下表格:5.电路调试,OCP限流电阻多个并联的阻值要设计成一样。
理由:阻值越大的那颗电阻承受的功率越大6.电路设计,散热片引脚的孔做成长方形椭圆形(经验值:2*1mm)。
理由:避免组装困难椭圆形的孔方便散热器有个移动的空间,这对组装和过炉是非常有利的。
7.电路调试,异常测试时,输出电压或OVP设计要小于60Vac(Vpk)/42.4Vdc(Vrms)。
理由:安规要求这个新手比较容易忽略,所以申请认证的产品一定要做OVP测试,抓输出瞬间波形。
8.电路设计,电解电容的防爆孔距离大于2mm,卧式弯脚留1.5mm。
理由:品质提升一般正规公司都有这个要求,防爆孔的问题日本比较重视,特殊情况除外。
9.电路调试,输出有LC滤波的电路需要老化确认纹波,如果纹波异常请调整环路。
理由:验证产品稳定性这个很重要,我之前经常碰到这个问题,产线老化后测试纹波会变高,现象是环路震荡。
10.电路调试,二极管并联时,应该测试一颗二极管故障开路时, 产生的异常(包括TO-220 里的两颗二极管)。
开关电源设计过程中的十个经验-设计应用
开关电源设计过程中的十个经验-设计应用1、整流桥并联在小功率设计中,一般很少用到整流桥的并联,但在某些大功率输出的情况下,不想增添新的器件单个整流桥电流又不满足输入功率要求,就需要用到整流桥的并联了,整流桥的并联不能采用两个整流桥各自整流后直流并联的方式,也就是不能采用图1的方式,因为整流桥没有配对,单纯靠自身的V-I特性,一般是无法均流的,这样就会造成两个整流桥发热不一致。
而采用图2的方式,通常认为在一个封装内的两个二极管是非常匹配的,是可以均分电流的,所以采用图2的方式就可以实现整流桥的并联了。
2、浮地驱动在驱动电路设计中,经常会提到MOS管需要浮地驱动,那么什么是浮地驱动呢?简单的说就是MOS管的S极与控制IC的地不是直接相连的,也就是说不是共地的。
以我们常用的BUCK 电路为例,如下图:控制IC的地一般是与输入电源的地共地的,而MOS管的S极与输入电源的地之间还有一个二极管,所以控制IC的驱动信号不能直接接到MOS管的栅极,而需要额外的驱动电路或驱动IC,比如变压器隔离驱动或类似IR2110这样的带自举电路的驱动芯片。
当然还有另外的方式,那就是采用别的方式给控制IC供电,然后将控制IC的地连接到MOS管的S端,这样就不是浮地了,控制IC的输出就可以直接驱动MOS管。
3、滞环比较器在保护电路中,为了防止保护电路在保护点附近来回震荡,所以一般都增加一定的滞环。
在下图中,1M电阻就起到滞环的作用,如果没有1M电阻,很明显,VF电压达到2.5V运放输出低电平,低于2.5V,运放输出高电平。
增加1M电阻后,在运放输出低电平时,6脚电平为0.7 (2.5-0.7)*1000/1010=2.48V。
当VF低于6脚电平后,7脚输出高电平(如果运放供电15V,7脚输出可按照14V计算)可以计算此时6脚电平为2.5 (14-2.5)*10/1010=2.61V,如果这是一个输入欠压保护电路,且VF为100:1的取样,则当输入电压高于261V,电路正常工作,当电压低于248V才会欠压保护,这样就增强了保护电路的抗干扰能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdI LV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。
那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。
B,保证负载电流下降时,工作在连续导通方式P24-26,最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63电感的能量处理能力1/2×L ×I 2电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。
确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O最终确认L 的值基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。
单位A/mB 场:磁通密度或磁感应。
单位是特斯拉(T )或韦伯每平方米Wb/m 2恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。
在SI 单位制中k =μ0/4π,μ0=4π×10-7H/m 为真空的磁导率。
则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B =340R CRIdl ⨯⎰πμ磁通量:通过一个表面上B 的总量 Φ=⎰•SB ds ,如果B 是常数,则Φ=BA ,A 是表面积H =B/μ→B =μH ,μ是材料的磁导率。
空气磁导率μ0=4π×10-7H/m 法拉第定律(楞次定律):电感电压V 与线圈匝数N 成正比与磁通量变化率 V =N ×d Φ/dt =NA ×dB/dt线圈的电感量:通过线圈的磁通量相对于通过它的电流的比值L=H*N Φ/I 磁通量Φ与匝数N 成正比,所以电感量L 与匝数N 的平方成正比。
这个比例常数叫电感常数,用A L 表示,它的单位是nH/匝数2(有时也用nH/1000匝数2)L=A L *N 2*10-9H 所以增加线圈匝数会急剧增加电感量若H 是一闭合回路,可得该闭合回路包围的电流总量⎰Hdl =IA ,安培环路定律结合楞次定律和电感等式dtdILV =可得到 V =N ×d Φ/dt =NA ×dB/dt =L ×dI/dt 可得功率变换器2个关键方程: ΔB =L ΔI/NA 非独立电压方程 →B =LI/NAΔB =V Δt/NA 独立电压方程 →B AC =ΔB/2=V ON ×D/2NAf 见P72-73N 表示线圈匝数,A 表示磁心实际几何面积(通常指中心柱或磁心资料给出的有效面积Ae ) B PK =LI PK /NA 不能超过磁心的饱和磁通密度由公式知道,大的电感量,需要大的体积,否则只增加匝数不增加体积会让磁心饱和 磁场纹波率对应电流纹波率r r =2I AC /I DC =2B AC /B DCB PK =(1+r/2)B DC →B DC =2B PK /(r +2)B PK =(1+2/r )B AC →B AC =r B PK /(r +2)→ΔB =2 B AC =2r B PK /(r +2) 磁心损耗,决定于磁通密度摆幅ΔB ,开关频率和温度 磁心损耗=单位体积损耗×体积,具体见P75-76Buck 电路电容的输入输出平均电流为0,在整个周期内电感平均电流=负载平均电流,所以有:5,I L=I o6,二极管只在sw关断时流过电流,所以I D=I L×(1-D)7,则平均开关电流I sw=I L×D8,由基尔霍夫电压定律知:Sw导通时:V IN=V ON+V O+V SW →V ON=V IN-V O-V SW≈V IN-V O假设V SW相比足够小V O=V IN-V ON-V SW≈V IN-V ONSw关断时:V OFF=V O+V D →V O=V OFF-V D≈V OFF 假设V D相比足够小9,由3、4可得D=t ON/(t ON+t OFF)=V OFF/(V OFF+V ON)由8可得:D=V O/{(V IN-V O)+V O}D=V O/ V IN10,直流电流I DC=电感平均电流I L,即I DC≡I L=I o见511,纹波电流I AC=ΔI/2=V IN(1-D)D/ 2Lf=V O(1-D)/2Lf由1,3、4、9得,ΔI=V ON×t ON/L=(V IN-V O)×D/Lf=(V IN-DV IN)×D/Lf=V IN(1-D)D/ LfΔI/ t ON=V ON/L=(V IN-V O)/LΔI=V OFF×t OFF/L=V O T(1-D)/L=V O(1-D)/LfΔI/ t OFF=V OFF/L=V O/L12,电流纹波率r=ΔI/ I L=2I AC/I DC在临界导通模式下,I AC=I DC,此时r=2 见P51r=ΔI/ I L=V ON×D/Lf I L=(V IN-V O)×D/Lf I L=V OFF×(1-D)/Lf I L=V O×(1-D)/Lf I L13,峰峰电流I PP=ΔI=2I AC=r×I DC=r×I L14,峰值电流I PK=I DC+I AC=(1+r/2)×I DC=(1+r/2)×I L=(1+r/2)×I O最恶劣输入电压的确定:V O、I o不变,V IN对I PK的影响:D=V O/ V IN V IN增加↑→D↓→ΔI↑, I DC=I O,不变,所以I PK↑要在V IN最大输入电压时设计buck电路p49-51例题:变压器的电压输入范围是15-20v,输出电压为5v,最大输出电流是5A。
如果开关频率是200KHZ,那么电感的推荐值是多大?解:也可以用伏微秒数快速求解,见P69(1)buck电路在V INMAX=20V时设计电感(2)由9得到D=V O/ V IN=5/20=0.25(3)L=V O×(1-D)/ rf I L=5*(1-0.25)/(0.4*200*103*5)=9.375μH(4)I PK=(1+r/2)×I O=(1+0.4/2)*5=6A(5)需要9.375μH 6A附近的电感例题:buck变换器,电压输入范围是18-24v,输出电压为12v,最大负载电流是1A。
期望电流纹波率为0.3(最大负载电流处),假设V SW=1.5V,VD=0.5V,并且f=150KHz。
那么选择一个产品电感并验证这些应用。
解:buck电路在最大输入电压V IN=24V时设计15,二极管只在sw关断时流过电流=负载电流,所以I D=I L×(1-D)=I O16,则平均开关电流I sw=I L×D17,由基尔霍夫电压定律知:Sw导通时:V IN=V ON+V SW →V ON=V IN-V SWV ON≈V IN假设V SW相比足够小Sw关断时:V OFF+V IN=V O+V D →V O=V OFF+V IN-V DV O≈V OFF+V IN假设V D相比足够小V OFF=V O+V D-V INV OFF≈V O-V IN18,由3、4可得D=t ON/(t ON+t OFF)=V OFF/(V OFF+V ON)由17可得:D=(V O-V IN)/{(V O-V IN)+V IN }=(V O-V IN)/ V O→V IN=V O×(1-D)19,直流电流I DC=电感平均电流I L,即I DC=I O/(1-D)20,纹波电流I AC=ΔI/2=V IN×D/2Lf=V O(1-D)D/2Lf由1,3、4、17,18得,ΔI=V ON×t ON/L=V IN×TD/L=V IN×D/LfΔI/ t ON=V ON/L=V IN/LΔI=V OFF×t OFF/L=(V O-V IN)T(1-D)/L=V O(1-D)D/LfΔI/ t OFF=V OFF/L=(V O-V IN)/L21,电流纹波率r=ΔI/ I L=2I AC/I DC在临界导通模式下,I AC=I DC,此时r=2 见P51r=ΔI/ I L=V ON×D/Lf I L=V OFF×(1-D)/Lf I L→L=V ON×D/rf I Lr=V ON×D/Lf I L=V IN×D/Lf I L=V OFF×(1-D)/Lf I L=(V O-V IN)×(1-D)/Lf I L电感量公式:L=V OFF×(1-D)/rf I L=V ON×D/rf I Lr的最佳值为0.4,见P5222,峰峰电流I PP=ΔI=2I AC=r×I DC=r×I L23,峰值电流I PK=I DC+I AC=(1+r/2)×I DC=(1+r/2)×I L=(1+r/2)×I O/(1-D)最恶劣输入电压的确定:要在V IN最小输入电压时设计boost电路p49-51例题:输入电压范围12-15V,输出电压24V,最大负载电流2A,开关管频率分别为100KHz、200KHz、1MHz,那么每种情况下最合适的电感量分别是多少?峰值电流分别是多大?能量处理要求是什么?解:只考虑最低输入电压时,即V IN=12V时,D=(V O-V IN)/ V O=(24-12)/24=0.5I L=I O/(1-D)=2/(1-0.5)=4A若r=0.4,则I PK=(1+r/2)×I L=(1+0.5/2)×4=4.8A电感量L=V ON×D/rI L f=12*0.5/0.4*4*100*1000=37.5μH=37.5*10-6Hf=200KHz L=18.75μH,f=1MHz L=3.75μH24,二极管只在sw关断时流过电流=负载电流,所以I D=I L×(1-D)=I O25,则平均开关电流I sw=I L×D26,由基尔霍夫电压定律知:Sw导通时:V IN=V ON+V SW →V ON=V IN-V SW≈V IN假设V SW相比足够小Sw关断时:V OFF=V O+V D →V O=V OFF-V D≈V OFF 假设V D相比足够小V OFF≈V O27,由3、4可得D=t ON/(t ON+t OFF)=V OFF/(V OFF+V ON)由26可得:D=V O/(V O+V IN)→V IN=V O×(1-D)/D28,直流电流I DC=电感平均电流I L,即I DC≡I L=I O /(1-D)29,纹波电流I AC=ΔI/2=V IN×D/2Lf=V O(1-D)/2Lf由1,3、4、26,27得,ΔI=V ON×t ON/L=V IN×TD/L=V IN×D/LfΔI/ t ON=V ON/L= V IN/LΔI=V OFF×t OFF/L=V O T(1-D)/L=V O(1-D)/LfΔI/ t OFF=V OFF/L=V O/L30,电流纹波率r=ΔI/ I L=2I AC/I DC在临界导通模式下,I AC=I DC,此时r=2 见P51r=ΔI/ I L=V ON×D/Lf I L=V OFF×(1-D)/Lf I L→L=V ON×D/rf I Lr=V ON×D/Lf I L=V IN×D/Lf I L r=V OFF×(1-D)/Lf I L= V O×(1-D)/Lf I L31,峰峰电流I PP=ΔI=2I AC=r×I DC=r×I L32,峰值电流I PK=I DC+I AC=(1+r/2)×I DC=(1+r/2)×I L=(1+r/2)×I O /(1-D)最恶劣输入电压的确定:要在V IN最小输入电压时设计buck-boost电路p49-51第3章离线式变换器设计与磁学技术在正激和反激变换器中,变压器的作用:1、电网隔离2、变压器“匝比”决定恒比降压转换功能。