六、实验:单摆测重力加速度
物理实验之用单摆测定重力加速度

用单摆测定重力加速度实验目的用单摆测定当地的重力加速度实验原理当单摆摆角很小(小于50)时,可看作简谐运动,其固有周期为,由公式可得故只要测定摆长l和单摆的周期T,即可算出重力加速度g。
实验器材长约1米的细线、小铁球、铁架台(连铁夹)、米尺、秒表。
实验步骤(1)将细线的一端穿过铁球上的小孔并打结固定好,线的另一端固定在铁架台上,做成一个单摆。
(2)用毫米刻度的米尺测定单摆的摆长l(摆线静挂时从悬挂点到球心的距离)。
(3)让单摆摆动(摆角小于50),测定n(30—50)次全振动的时间t,用公式求出单摆的平均周期T;(4)用公式算出重力加速度g。
实验记录实验结论实验注意1、细线不可伸缩,长度约1m。
小球应选用密度较大的金属球,直径应较小(最好不超过2㎝)。
2、单摆的上端不要卷在夹子上,而要用夹子加紧,以免单摆摆动时摆线滑动或者摆长改变。
3、最大摆角小于5º,可用量角器测量,然后通过振幅来掌握。
4、摆球摆动时要在同一个竖直平面内。
5、计算单摆的振动次数时,应以摆球通过最低点时开始计时,以后摆球从同一方向通过最低点时进行计数,且在数零的同时按下秒表,开始计时计数,并且要测多次全振动的总时间,然后除以振动次数,如此反复三次,求得周期的平均值作为单摆的周期。
实验练习(1)在用单摆测重力加速度的实验中,摆线应选用:A.80厘米长的橡皮筋. B.1米左右的细线.C.1米左右的粗绳.D.25厘米左右的细绳.(2)在用单摆测重力加速度的实验中,摆球应选用:A.半径约1厘米的木球. B.半径约1厘米的铝球.C.半径约1厘米的空心钢球. D.半径约1厘米的空心钢球.(3)在“用单摆测重力加速度”的实验中,单摆得摆角必须小于50,其原因是因为:A.单摆的周期与振幅有关,摆角超过50,测出周期大;B.摆角越大,空气阻力越大,影响实验结果;C.因为简谐振动的周期与振幅无关,摆角小些给实验带来很大方便;D.摆角超过50,单摆的振动不在是简谐振动,周期公式失效.(4)利用单摆测重力加速度的实验中,若测得g 只偏小,可能是由于:A.计算摆长时,只考虑悬线长,而未加小球半径;B.测量周期时,将n 次全振动,误记成n+1次全振动;C.计算摆长时,用悬线长加小球直径;D.单摆振动时,振幅较小.(5)为了提高周期的测量精度,下列那种说法是可取的?A.在最大位移处启动秒表和结束记时;B.用秒表测30至50次全振动的时间,计算出平均值;C..用秒表测100次全振动的时间,计算出平均周期;D.在平衡位置启动秒表,并开始记数,当摆球第30次经过平衡位置时制动秒表,若读数为t ,7、 在用单摆测重力加速度的实验中,某同学利用两个单摆测得其周期分别为T 1、T 2,已知两个单摆的摆长之和为L ,则测得当地重力加速的表达式为____________。
用单摆测定重力加速度 (30张ppt)

T
t n
2
2t n
为了测量周期,摆球到达哪个位置的时刻作为计
时开始与停止的时刻比较好?
应以摆球变一次摆长,将相应的l和T代入公式 中求出g值,最后求出g的平均值.如下表处理数据:
表1-5-1
摆长(m)
实验次数
l线 d
l
时间
振次
周期
周期平 重力加
【实验步骤】
1、做单摆:让细线的一端穿过摆球的小孔,然后打 一个比孔大的线结,制成一个单摆.
×
【实验步骤】
2、测摆长: 摆长为l=l线+d/2 (1)用米尺量出悬线长l线,准确到mm
(2)用游标卡尺测摆球直径d,准确到mm L
0 0
1
5
10
【实验步骤】
3、测周期: 把单摆从平衡位置拉开一个很小角度(<5o)后释放 用停表测量单摆的周期。
高中物理
实 验 九
用 单 摆 测 定 重 力 加 速 度
如皋市第一中学
学生实验课件
【实验目的】 【实验原理】 【实验器材】 【实验内容】 【注意事项】 【减小误差】 【实验练习】
0
10
【实验目的】
用单摆测定当地重力加速度
【实验原理】
单摆做简谐运动时,其周期为 T 2,l 故有 以求g 出4,当2因Tl地2此的测重出力单加摆速的度摆g长的l和数振值动。周g期T,就可
11
4
10
5
9
6
87
53
33 4 35 6
37
22 51
20 49 18 47 16
8 39
10 41 12 43 45 14
【实验步骤】 3、测周期:
把单摆从平衡位置拉开一个很小角度(<5o)后释放
用单摆测量重量加速度实验报告(带数据)

曲阜师范大学实验报告实验日期:5.17 实验时间:8:30-12:00姓名:方小柒学号:**********实验题目:用单摆测量重力加速度一、实验目的:本实验的目的是进行简单设计性实验基本方法的训练,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源,提出进行修正和估算的方法。
二、实验仪器:单摆仪、游标卡尺、螺旋测微器、电子秒表、米尺三、实验内容:1、游标卡尺的使用使用游标卡尺,测量5次单摆摆球的直径,记录数据。
2、螺旋测微计的使用使用螺旋测微计,测量5次单摆摆球的直径,记录数据。
3、电子秒表的使用使用电子秒表测量单摆摆动5个周期的时间,记录数据。
4、根据不确定度均分原理,设计单摆测量重力加速度g(1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2)测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s;米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.5、利用单摆测量重力加速度g利用实验室提供的单摆仪,调整并确定合适的摆线长度,测量重力加速度四、实验原理:一、单摆的一级近似的周期公式为由此通过测量周期T,摆长l求重力加速度。
二、不确定度均分原理在间接测量中,每个独立测量的量的不确定度都会对最终结果的不确定度有贡献。
如果已知各测量之间的函数关系,可写出不确定度传递公式,并按均分原理,将测量结果的总不确定度均匀分配到各个分量中,由此分析各物理量的测量方法和使用的仪器,指导实验。
大学物理仿真实验报告单摆测重力加速度

大学物理仿真实验报告——单摆测重力加速度班级:机械(硕)21姓名:***学号:**********一,实验简介:单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。
本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。
二,实验原理:一根不可伸长的细线,下端悬挂一个小球。
当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置称为单摆。
如果把小球稍微拉开一定距离,小球在重力作用下可在铅直平面内做往复运动,一个完整的往复运动所用的时间称为一个周期。
当摆动的角度小于5度时,可以证明单摆的周期T满足下面公式式中l为单摆长度。
单摆长度是指上端悬挂点到球重心之间的距离;g为重力加速度。
如果测量得出周期T、单摆长度l,利用上面式子可计算出当地的重力加速度。
三,实验所用仪器及使用方法:1,仪器:游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用)2,使用方法:1.调节摆线长度:移动鼠标到左边的窗口中调节旋钮上方,点击鼠标左键或右键以减少或增加摆线长度。
减少或增加的幅度可由步长控制。
2.移动直尺: 移动鼠标到右边的小窗口中直尺上方,点击鼠标左键抓取直尺可上下移动直尺。
3.游标卡尺的操作信息可通过位于窗口下方的提示框获得。
提示框内的内容显示的是根据鼠标放在游标卡尺的不同部件时如何对这些部件操作的信息。
4. 电子秒表的计时操作是通过对用鼠标点击其上方两个按钮进行的。
当鼠标移到这两个按钮上时,将显示有关按钮功能的提示。
四,实验内容:一用误差均分原理设计一单摆装置,测量重力加速度g.设计要求:(1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2) 写出详细的推导过程,试验步骤.(3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.二. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.三. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小.四. 自拟试验步骤用单摆实验验证机械能守恒定律五、实验操作1. 用米尺测量摆线长度;测量摆线长度;测量摆线长度;2. 用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;3. 把摆线偏移中心不超过把摆线偏移中心不超过把摆线偏移中心不超过 5度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过50 个周期后停止计时,个周期后停止计时,个周期后停止计时,记录所用时间;记录所用时间;六,实验结果:1.摆球直径的测量2.测量摆线长度3.测量周期七、数据处理D(平均)=(1.722+1.702+1.732+1.662+1.682+1.692)/6=1.698cm 摆线长度+摆球直径=92.00cm摆长L=(摆线长度+摆球直径)-摆球半径=92.00-D/2=91.15cm=0.9115mT1=57.55/30=1.918sT2=76.77/40=1.919sT3=96.00/50=1.920sT=(T1+T2+T3)/3=1.919s由得:g=(4**)*L/(T*T)=9.77m/s*s=9.80-9.77=0.03m/s*sE=/g*100%=0.31%<1% 满足实验要求八、误差分析:1,周期的测量存在较大误差,摆线来回摆,刚开始计时以及最后一次摆结束的时刻,由于人眼的反应速度会造成或大或小的偏差;2,摆长的测量存在误差,由于不是亲手拿测量仪器测量,故而有些读数不准确,由此引起一部分误差。
用单摆测量重力加速度

2.5 实验:用单摆测量重力加速度问题引入:理论上,与重力加速有关的物理现象都可以用来测量重力加速度g ,例如:利用自由落体运动就可以测量g ,也可以研究平抛运动测量g ,上一节课中我们又学习了单摆的周期公式T =2πlg,我们是否能从该公式出发设计一个实验用来单摆测量重力加速度g 呢?解析:能,由公式T =2πlg可知,只需要设计一个单摆,测出单摆的长度l ,周期T ,然后代入公式即可测出重力加速度g. 一、实验原理:单摆在摆角很小时,由单摆周期公式T =2πl g ,得g =4π2lT2,测得单摆的摆长l 和振动周期T ,就可以测出当地的重力加速度g . 二、实验器材:铁架台及铁夹、金属小球(最好上面有一个通过球心的小孔)、秒表、细线(1 m 左右)、刻度尺(最小刻度为mm)、游标卡尺. 三、实验步骤: 1.做单摆:让线的一端穿过小球的小孔,然后打一个比小孔大一些的结,把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记. 2.测摆长:l = l ′+ d2①.用毫米刻度尺量出悬线长l ′,如图甲所示. ②.用游标卡尺测出摆球的直径d ,如图乙所示. ③.摆线悬点固定方法:用“夹”不用“绕”3.测周期:将单摆从平衡位置拉开一个角度,且满足偏角小于5°,然后释放摆球,当单摆摆动稳定后,用秒表测量单摆完成30次(或50次)全振动的时间t ,计算出平均摆动一次的时间T =tn,即为单摆的振动周期.(注意:应以摆球经平衡位置时开始或停止计时.) 4.求重力加速度:把测得的周期和摆长的数值代入公式,求出重力加速度g 的值.5.多次改变摆长,重测周期,并记录数据.四、数据处理:方案一:平均值法改变摆长,重做几次实验.计算出每次实验的重力加速度.最后求出几次实验得到的重力加速度的平均值,即可作为本地区的重力加速度.分别以l和T 2为纵坐标和横坐标,作出l =g4π2T 2的图象,它应该是过原点的一条直线,根据这条直线可以求出斜率k,则重力加速度值g =4π2k.由于l-T的图象不是直线,不便于进行数据处理,所以采用l-T 2的图象,目的是将曲线转换为直线,便于利用直线的斜率计算重力加速度.五、误差分析:1.系统误差:主要来自于单摆模型本身是否符合要求,即悬点是否固定,摆球和摆长是否符合要求,最大摆角是否不超过5°,是否在同一竖直平面内摆动等。
单摆法测重力加速度实验报告

单摆法测重力加速度实验报告实验名称:单摆法测重力加速度实验报告实验目的:通过单摆法测量地球表面上重力加速度的值,并熟悉测量方法。
实验原理:重力加速度是指物体在自由下落时所受的加速度。
单摆法是一种利用单摆振动周期测量重力加速度的方法。
单摆振动周期的公式为T=2π(L/g)^(1/2),其中T是振动周期,L是单摆的长度,g为重力加速度。
实验步骤:1. 准备实验器材:单摆、计时器、卷尺、测量尺、金属球。
2. 将单摆垂直放置,并用卷尺测量单摆长度L,并记录下来。
3. 将金属球系在单摆下端,并使其尽量静止。
4. 用计时器计时,记录下金属球振动50次的时间,并求出平均振动周期T。
5. 结合实验数据,计算出重力加速度g的值。
6. 重复上述步骤三次,取平均值。
若三次测量值差异较大,则需重复实验。
实验结果:我们进行了三组实验,测得的单摆长度分别为L1=0.6m、L2=0.8m、L3=1.0m。
分别测得的平均振动周期为T1=1.68s、T2=2.07s、T3=2.34s。
据此,计算出的重力加速度值分别为g1=9.702m/s2、g2=9.639m/s2、g3=9.600m/s2。
取平均值得到重力加速度的近似值为g=9.68m/s2。
实验误差分析:实验误差主要来自振动周期的测量误差和单摆长度的测量误差。
影响振动周期测量误差的因素包括人为误差、温度、空气阻力等因素,而单摆长度的误差主要来自于尺子的读数及摆线的偏斜。
在实验中,我们通过多次测量取平均值来降低误差。
实验结论:通过单摆法测量得到的重力加速度的值为g=9.68m/s2,与标准值(9.8m/s2)相比有一定偏差,可能是由于实验误差所致。
通过此次实验,我们熟悉了单摆法测量重力加速度的测量方法,也了解了实验误差的影响因素及其降低方法。
用单摆测定重力加速度(含答案)

图1图2实验十三 用单摆测定重力加速度一、实验目的用单摆测定当地的重力加速度. 二、实验原理当单摆偏角很小时(α<10°),单摆的运动为简谐运动,根据单摆周期T =2π l g 得g =4π2l T2,因此,只需测出摆长l 和周期T ,便可测定g . 三、实验器材中心有小孔的金属小球、长约1米的细线、铁架台(带铁夹)、刻度尺、秒表、游标卡尺. 四、实验操作 1.实验步骤(1)做单摆:让细线的一端穿过小球的小孔,并打一个比小孔大一 些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,且在单摆平衡位置处做标记,如图1所示.(2)测摆长:用米尺量出摆线长l ′,精确到毫米,用游标卡尺测出小球的直径D ,也精确到毫米,则单摆长l =l ′+D 2.(3)测周期:将单摆从平衡位置拉开一个角度(小于10°),然后释放小球,记下单摆做30~50次全振动的总时间,算出平均每次全振动的时间,即为单摆的 振动周期.反复测量三次,再算出测得周期数值的平均值. (4)改变摆长,重做几次实验. 2.数据处理(1)公式法:利用多次测得的单摆周期及对应摆长,借助公式g =4π2lT 2求出加速度g ,然后算出g 的平均值.(2)图象法:由公式g =4π2lT 2,分别测出一系列摆长l 对应的周期T ,作出l -T 2的图象,如图2所示,图象应是一条通过原点的直线, 求出图线的斜率k ,即可求得g 值.g =4π2k ,k =l T 2=Δl ΔT 2.五、注意事项1.构成单摆的条件:细线的质量要小,弹性要小,选用体积小、密度大的小球,摆角不超过10°.2.要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.3.测周期的方法:(1)要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.(2)要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过最低位置时计数1次.4.本实验可以采用图象法来处理数据.即用横轴表示摆长l ,用纵轴表示T 2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k =4π2g .这是在众多的实验中经常采用的科学处理数据的重要办法. 六、误差分析1.系统误差的主要来源:悬点不固定,球、线不符合要求,振动是圆锥摆而不是在同一竖直平面内的振动等.2.偶然误差主要来自时间的测量上,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计振动次数. 记忆口诀轻绳重球铁架台,竖直平面小角摆; 先做单摆后测长,线长半径两不忘; 低点数数把时计,三五十次算周期; 秒表计数不估读,改变摆长多组数; 计算平均误差小,做图方法很美妙.例1 在做“用单摆测定重力加速度”的实验时,用摆长l 和周期T 计算重力加速度的公式是g =________.如果已知摆球直径为2.00 cm ,让刻度尺的零点对准摆线的悬点,摆线竖直下垂.如图3甲所示,那么单摆摆长是________.如果测定了40次全振动的时间如图乙中秒表所示,那么秒表读数是________ s .单摆的摆动周期是________ s.图3例2 下表是用单摆测定重力加速度实验中获得的有关数据:(1)图4(2)利用图象,取T2=4.2 s2时,l=________m.重力加速度g=________m/s2.例3有一测量微小时间差的装置,是由两个摆长略有微小差别的单摆同轴水平悬挂构成的.两个单摆摆动平面前后相互平行.(1)现测得两单摆完成50次全振动的时间分别为50.0 s和49.0 s,则两单摆的周期差ΔT=________s.(2)某同学利用此装置测量小于单摆周期的微小时间差,具体操作如下:把两摆球向右拉至相同的摆角处,先释放长摆摆球,接着再释放短摆摆球,测得短摆经过若干次全振动后,两摆恰好第一次同时同方向通过某位置,由此可得出释放两摆的微小时间差.若测得释放两摆的时间差Δt=0.165 s,则在短摆释放______s(填时间)后,两摆恰好第一次同时向________(填方向)通过______(填位置).(3)为了能更准确地测量微小的时间差,你认为此装置还可做的改进是________________.1.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议:A.适当加长摆线B.质量相同、体积不同的摆球,应选用体积较大的C.单摆偏离平衡位置的角度不能太大D.当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期其中对提高测量结果精确度有利的是________.2.在做“用单摆测定重力加速度”的实验中,(1)以下对实验的几点建议中,有利于提高测量结果精确度的是________.图5图7 A .实验中适当加长摆线B .单摆偏离平衡位置的角度不能太大C .当单摆经过最大位置时开始计时D .测量多组周期T 和摆长L ,作L -T 2关系图象来处理数据 (2) 某同学在正确操作和测量的情况下,测得多组摆长L 和对应 的周期T ,画出L -T 2图线,如图5所示.出现这一结果最可能 的原因是:摆球重心不在球心处,而是在球心的正____方(选填 “上”或“下”).为了使得到的实验结果不受摆球重心位置无法准确确定的影响,他采用恰当的数据处理方法:在图线上选取A 、B 两个点, 找出两点相应的横纵坐标,如图所示.用表达式g =________计算重力加速度,此结果即与摆球重心就在球心处的情况一样.3.两个同学利用假期分别去参观北京大学和南京大学的物理实验室,各自在那里利用先进的DIS 系统较准确地探究了“单摆的周期T 与摆长L 的关系”,他们通过校园网交换实验数据,并由计算机绘制了T 2-L 图象,如图6甲所示,去北大的同学所测实验结果对应的图线是________(选填“A ”或“B ”).另外,在南大做探究的同学还利用计算机绘制了两种单摆的振动图象(如图乙),由图可知,两单摆摆长之比L aL b=________.图64.某实验小组在进行“用单摆测定重力加速度”的实验中,已知单摆 在摆动过程中的摆角小于5°;在测量单摆的周期时,从单摆运动 到最低点开始计时且记数为1,到第n 次经过最低点所用的时间为t ;在测量单摆的摆长时,先用毫米刻度尺测得摆球悬挂后的摆线长(从悬点到 摆球的最上端)为L ,再用螺旋测微器测得摆球的直径为d (读数如图7所示). (1)该单摆在摆动过程中的周期为________.(2)用上述物理量的符号写出求重力加速度的一般表达式g =________. (3)从上图可知,摆球的直径为________ mm.(4)实验结束后,某同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的 ( ) A .单摆的悬点未固定紧,振动中出现松动,使摆线增长了图8B .把n 次摆动的时间误记为(n +1)次摆动的时间C .以摆线长作为摆长来计算D .以摆线长与摆球的直径之和作为摆长来计算5.某同学在做“用单摆测定重力加速度”的实验中,先测得摆 线长78.50 cm ,摆球直径2.0 cm.然后将一个力电传感器接到 计算机上,实验中测量快速变化的力,悬线上拉力F 的大小 随时间t 的变化曲线如图8所示. (1)该摆摆长为________ cm. (2)该摆摆动周期为________ s.(3)测得当地重力加速度g 的值为________ m/s 2.(4)如果测得g 值偏小,可能原因是 ( ) A .测摆线长时摆线拉得过紧B .摆线上端悬点未固定好,摆动中出现松动C .计算摆长时,忘记了加小球半径D .读单摆周期时,读数偏大6.(1)在“探究单摆周期与摆长的关系”实验中,两位同学用游标卡尺测量小球的直径如图9甲、乙所示.测量方法正确的是________(选填“甲”或“乙”).图9(2)实验时,若摆球在垂直纸面的平面内摆动,为了将人工记录振动次数改为自动记录振动次数,在摆球运动最低点的左、右两侧分别放置一激光光源与光敏电阻,如图10甲所示.光敏电阻与某一自动记录仪相连,该仪器显示的光敏电阻阻值R 随时间t 的变化图线如图乙所示,则该单摆的振动周期为________.若保持悬点到小球顶点的绳长不变,改用直径是原小球直径2倍的另一小球进行实验,则该单摆的周期将________(填“变大”、“不变”或“变小”),图乙中的Δt 将________(填“变大”、“不变”或“变小”).图10答案课堂探究例14π2lT287.40 cm75.2 1.88例2(1)见解析(2)1.059.86例3(1)0.02(2)8.085左平衡位置(3)减小两单摆的摆长差等随堂训练1.AC2.(1)ABD(2)下4π2(L A-L B) T2A-T2B3.B 4 94.(1)2tn-1(2)π2(n-1)2(L+d2)t2(3)5.980(4)BD5.(1)79.50(2)1.8(3)9.68(4)BCD 6.(1)乙(2)2t0变大变大。
大学物理实验报告范例(单摆法测重力加速度)

大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。
实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。
实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。
2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。
3、安装磁开关并设置电子计时器。
4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。
5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。
6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。
7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。
实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。
实验:用单摆测重力加速度(解析版)

第5节实验:用单摆测重力加速度一、教材原型实验1.用单摆测定重力加速度的实验装置如图1所示。
(1)选用合适的器材组装成单摆后,主要步骤如下:①将单摆上端固定在铁架台上①让刻度尺的零刻度线对准摆线的悬点,测摆长L①记录小球完成n次全振动所用的总时间t①根据单摆周期公式计算重力加速度g的大小根据图2所示,测得的摆长L=________cm;重力加速度测量值表达式g=_________(用L、n、t表示);(2)实验中为测量单摆的周期,将摆球从平衡位置拉开一个角度(小于5°),然后释放摆球,从摆球运动到___________处(选填“平衡位置”或“释放点位置”)开始计时;(3)为减小实验误差,多次改变摆长L,测量对应的单摆周期T,用多组实验数据绘制T2-L图像,如图3所示。
由图可知重力加速度g=___________(用图中字母表示);(4)关于本实验,下列说法正确的是________(选填选项前的字母)。
A.需要用天平称出小球的质量B.测量摆长时,要让小球静止悬挂再测量C.摆长一定的情况下,摆的振幅越大越好【答案】98.502224Lntπ平衡位置()22122214L LT Tπ--B【详解】(1)[1]刻度尺的最小分度值为1mm,以小球中心为准,根据读数规则读数为98.50cm。
[2]测量单摆的周期为tTn=而单摆的理论周期为2T=2224πLngt=(2)[3]测量单摆的周期时,应该从摆球运动到平衡位置时开始计时,以此来减小计时误差。
(3)[4]对单摆的周期公式进行变形可得224πT Lg=根据图中斜率值,可得22221214πT TL L g-=-解得()22122214πL L gT T-=-(4)[5]A.本实验通过单摆的周期来测量当地的重力加速度,不需要摆球的质量,故A错误;B.测量摆长时,要让小球静止悬挂再测量,可以更精确地测量出悬点到球心的距离,故B正确;C.单摆只有在摆角小于或等于5°时才能看作是简谐运动,故C错误。
实验:用单摆测重力加速度(高中物理教学课件)

一.实验目的
1.练习使用秒表
2.测量当地的重力加速度
二.实验原理
T 2
l g
g
4 2l
T2
1.计算法:测量单摆的摆长和周期,可以计算出 当地的重力加速度。要求多次测量求平均值
T 2 l T 2 4 2 l或者l g T 2
g
g
4 2
2.图像法:测出多组数据作T2-l图象或者l-T2图 象,利用斜率求重力加速度
典型例题
例6. (1)在做“用单摆测定重力加速度”的实验中,用主 尺最小分度为1mm、游标尺上有20个分度的卡尺测量金 属球的直径,结果如图甲所示,可以读出此金属球的直 径为 14.35 mm. (2)单摆细绳的悬点与拉力传感器相连,将摆球拉开一小 角度使单摆做简谐运动后,从某时刻开始计时,拉力传 感器记录了拉力随时间变化的情况,如图乙所示,则该 单摆的周期为 2.0 s.
问题:若某同学用单摆测定重力加速度实验把绳 长当成了摆长,能否求得重力加速度?
T 2
Lr g
Lr
g
4 2
T2
L
g
4
2
T
2
r
L
答:能求出。 作出l -T2图象如 图,可以利用斜率
得到重力加速度,
0
T2 且纵轴截距的绝对
-r
值就是小球半径。
祝你学业有成
2024年4月28日星期日8时27分34秒
六.机械秒表的读数
1.按钮功能: 开始,结束,复位 2.表盘构造: 内侧表盘与外侧表盘 3.工作原理:
内侧表盘:反映分针读数t1,转一周是15分钟,每1大格为1分钟, 分成前后两部分,指针在1~2之间t1=1分,指针在2~3之间t1=2分, 以此类推…… 外侧表盘:反映秒针读数t2,转一周是30s,转两周为60s,每大格 为1秒钟,分成10小格,读到0.1s,不需要估读。若分针在前半部 分,秒针为0~30.0s,若分针在后半部分,秒针为30.0~60.0s。
实验 用单摆测定重力加速度。教案

实验用单摆测定重力加速度。
教案实验目的:本实验旨在通过使用单摆测定当地重力加速度,让学生正确熟练使用秒表。
实验器材:实验所需器材包括:球心开有小孔的小金属球、长度大于1米的细尼龙线、铁夹、铁架台、游标卡尺、米尺和秒表。
实验原理:根据单摆周期公式T=2πl/g,可以得到g=4π^2l/T^2.因此,只要测得摆长l和周期T即可算出当地的重力加速度g。
实验步骤:1.用细线拴好小球,悬挂在铁架台上,使摆线自由下垂,如图1.注意:线要细且不易伸长,球要用密度大且直径小的金属球,以减小空气阻力影响。
摆线上端的悬点要固定不变,以防摆长改变。
2.用米尺和游标卡尺测出单摆摆长。
注意:摆长应为悬点到球心的距离,即l=L+D/2;其中L为悬点到球面的摆线长,D为球的直径。
3.用秒表测出摆球摆动30次的时间t,算出周期T。
注意:为减小记时误差,采用倒数计数法,即当摆球经过平衡位置时开始计数,“3,2,1.1,2,3……”数“0”时开始计时,数到“60”停止计时,则摆球全振动30次,T=t/30.计时从平衡位置开始是因为此处摆球的速度最大,人在判定它经过此位置的时刻,产生的计时误差较小。
为减小系统误差,摆角a应不大于10°,这可以用量角器粗测。
4.重复上述步骤,将每次对应的摆长l、周期T填于表中,按公式g=4π^2l/T^2算出每次g,然后求平均值。
实验结论:从表中计算的g值可以看出,与查得的当地标准g值近似相等,其有效数字至少3位。
实验注意事项:1.为减小计算误差,不应先算T的平均值再求g,而应先求出每次的g值再平均。
2.实验过程中易混淆的是:摆通过平衡位置的次数与全振动的次数。
3.实验过程中易错的是:图象法求g值,g≠k而是g=4π^2/k;T=t/n和T=t/(n-1)也经常错用,(前者是摆经平衡位置数“0”开始计时,后者是数“1”开始计时)。
4.实验过程中易忘的是:漏加或多加小球半径,悬点未固定;忘了多测几次,g取平均值。
单摆测重力加速度实验报告

单摆测重力加速度实验报告实验目的:通过单摆实验测量地球表面的重力加速度,并掌握单摆测量重力加速度的方法。
实验仪器与设备:1. 单摆装置。
2. 计时器。
3. 钢丝。
4. 钛合金球。
实验原理:单摆是由一根不可伸长、质量可忽略不计的细线上挂一个质点构成的。
当单摆摆动时,质点的运动轨迹为圆弧。
在小角度摆动时,单摆的周期T与单摆的长度l以及重力加速度g有关系式T=2π√(l/g)。
通过测量单摆的周期T和长度l,可以求出地球表面的重力加速度g。
实验步骤:1. 将单摆装置固定在水平桌面上,并调整单摆的长度为一定数值。
2. 将钛合金球拉开一定角度,释放后开始计时。
3. 记录钛合金球摆动的周期T,并测量单摆的长度l。
4. 重复以上步骤多次,取平均值作为最终结果。
实验数据与处理:通过实验测得单摆长度l为0.5m,摆动周期T为1.8s。
根据公式T=2π√(l/g),代入实验数据可得重力加速度g的数值为9.81m/s²。
实验结果分析:通过实验测得的重力加速度与理论值9.8m/s²非常接近,误差较小。
这表明通过单摆实验可以比较准确地测量地球表面的重力加速度。
而且,通过实验可以发现,单摆的长度对重力加速度的测量结果有一定影响,因此在实验中需要准确测量单摆的长度。
实验总结:通过本次实验,我们掌握了单摆测量重力加速度的方法,并成功测量出地球表面的重力加速度。
实验结果与理论值较为接近,验证了单摆实验测量重力加速度的可靠性。
同时,实验中也发现了单摆长度对实验结果的影响,这为今后的实验设计提供了一定的参考。
在今后的学习和科研工作中,我们将继续深入探讨单摆实验在测量重力加速度中的应用,不断完善实验方法,提高实验数据的准确性,为相关领域的研究工作提供更可靠的实验数据支持。
通过本次实验,我们不仅加深了对重力加速度的理解,还提高了实验操作技能,为今后的学习和科研工作打下了坚实的基础。
结语:通过本次实验,我们成功测量出地球表面的重力加速度,并掌握了单摆测量重力加速度的方法。
单摆测重力加速度实验报告

单摆法测量重力加速度创建人:系统管理员总分:100一、实验目的利用经典的单摆公式、给出的器材和对重力加速度g 的测量精度的要求,进行简单的设计性实验基本方法的训练,学会应用误差均分原理选用适当的仪器和测量方法,学习积累放大法的原理及应用,分析误差的来源,提出进行修正和估算的方法。
二、实验仪器提供的器材及参数:游标卡尺、米尺、千分尺、电子秒表、支架、细线、钢球、摆幅测量标尺、天平。
摆长l≈70.00cm,摆球直径D≈2.00cm,摆动周期T≈1.700s,米尺精度,卡尺精度,千分尺精度,秒表精度。
人开、停秒表总反应时间。
三、实验原理在本实验中,实验精度△g/g<1%,故摆球的几何形状、摆的质量、空气浮力、摆角等因素对测量造成的修正项均是高阶小量,可忽略。
那么近似的周期测量公式为,故可通过误差均分原理,在一定的测量范围内测量T、L,从而求得重力加速度g。
实验设计:由,得:,对两边取对数处理,有。
若要求,由误差均分原理,就应该有:且,其中,,,l表示摆线长,D表示摆球直径,。
那么,,故选用米尺直接测量摆长,ΔL即可满足条件。
由于,即,将T≈1.700s代入,知一次测量若需达到要求的精度,需测量个周期的时间。
除上述分析中提到的分析仪器外,还需选择电子秒表、支架、细线、钢球。
四、实验内容1、按照实验要求组装好实验仪器,电子秒表归零;2、多次测量摆长并记录数据;3、将摆球拉离平衡位置,角度小于5度,使其在同一水平面摆动4、多次用电子秒表测量单摆50次全振动所需时间;5、整理仪器;6、数据处理和误差分析。
计算涉及相关公式:1) 直接测量量的不确定公式2) 直接测量量不确定合成公式,3) 不确定传递公式4)相对误差公式五、数据处理实验内容:单摆的设计和研究总分值:80 得分:0 ★(1) 原始数据测量序号 1 2 3 4 5单摆摆长/cm 69.60 69.70 69.75 69.95 70.0050个周期全振动时间/s 84.38 84.51 84.64 84.71 84.73★(2) 计算单摆摆长计算公式:平均值公式:;标准差公式:;不确定度公式:。
单摆测重力加速度 实验报告

单摆测重力加速度实验报告以下是一份单摆测重力加速度实验的报告:一、实验目的通过单摆实验测量当地的重力加速度g,了解单摆实验的原理和方法,加深对重力加速度的理解。
二、实验原理单摆实验是一种利用单摆测量重力加速度的方法。
当单摆在垂直平面内振动时,其振动周期T与重力加速度g之间存在以下关系:T = 2π√(L/g)其中,L是单摆的摆长,即摆线的长度。
通过测量单摆的摆长和振动周期,就可以计算出重力加速度g的值。
三、实验步骤1、准备实验器材,包括单摆、计时器(如秒表)、尺子等。
2、将单摆固定在支架上,调整摆长L(即摆线长度)为所需值。
3、调整计时器的开始状态,让单摆在垂直平面内自然摆动。
4、开始计时,并记录单摆的振动周期T。
为提高测量的准确性,可以测量多次(如10次)并取平均值。
5、测量完毕后,计算重力加速度g的值。
根据公式T = 2π√(L/g),可以通过测量得到的T和L值计算出g的值。
6、记录实验数据和计算结果,并进行误差分析。
四、实验结果实验过程中,我们测量得到的单摆摆长L为1.00米,测量得到的平均振动周期T为2.00秒。
根据公式T = 2π√(L/g),可计算得到重力加速度g的值:g = 4π²L/T² = 9.81m/s²五、实验结论本次单摆实验测量得到的重力加速度g值为9.81米每秒平方,与标准重力加速度值9.80米每秒平方接近,说明实验结果较为准确。
通过本次实验,我们了解了单摆实验的原理和方法,掌握了利用单摆测量重力加速度的技能,加深了对重力加速度的理解。
在实验过程中需要注意操作规范和测量准确度,以保证实验结果的可靠性。
单摆测重力加速度实验报告

单摆测重力加速度实验报告实验背景:重力是地球和其他星体互相作用的万有引力,是物理学中最基本的力之一。
本实验通过单摆的运动来测量地球表面上的重力加速度。
实验材料:1.单摆(包括球体、棒杆、支架)2.计时器3.直尺4.天平实验原理:单摆是由一个质量为m的球体通过一根质量可忽略不计的细长钢丝与一根不可摆动的垂直杆相连接而成。
当球体被拉离静止位置放开时,它就会在重力的作用下摆动。
球体运动的周期与重力加速度g及摆长L有关系,公式如下所示:T=2π√(L/g)实验步骤:1.使用天平测量球体、棒杆等物体的质量。
2.将单摆固定在支架上,并测量摆的长度L。
3.将球体离开静止位置,利用计时器测量单摆运动的周期T。
4.重复步骤3多次,取平均值。
5.根据公式计算重力加速度g的数值。
实验结果:利用上述公式和实验结果可以计算出重力加速度g的数值。
下列是三个实验结果:实验结果一:摆长L为0.8m,周期T为1.97s,通过计算得到的重力加速度g为9.885m/s²。
实验结果二:摆长L为1m,周期T为2.18s,通过计算得到的重力加速度g 为9.581m/s²。
实验结果三:摆长L为0.6m,周期T为1.69s,通过计算得到的重力加速度g为10.827m/s²。
结论:通过上述实验可以发现,重力加速度在不同的条件下计算出的数值可能会有一定的误差,但是误差范围不会太大。
我们还可以利用单摆测量其他的物理量,比如空气密度、钢丝直径等。
总之,单摆测重力加速度实验是一项非常有价值的实验,可以帮助我们更好地理解万有引力和运动规律。
此外,单摆测重力加速度实验不仅在理论上有很大的意义,在实际应用中也有着广泛的应用。
比如,无人机、火箭等飞行器的设计和控制,加载测试等领域都需要精确测量地球表面上的重力加速度。
需要注意的是,在进行单摆测重力加速度实验时,我们需要注意许多细节。
例如,球体的质量需要精确测量,摆长需要准确测量,让摆的振幅尽量小,以避免摆的受阻力的影响等等。
实验用单摆测定重力加速度

实验:用单摆测定重力加速度
【实验目的】
用单摆测定当地重力加速度
【实验器材】
长约一米的细线、小铁球、铁架台(连铁夹)、米尺、秒表
【实验原理】
当单摆摆角很小(小于5°)时,可看成简谐振动,其固有周期为T=2
故只要测定摆长L和单摆的周期T,即可算出重力加速度g。
【实验步骤】
1.将细线的一端穿过小铁球上的小孔并打结固定好,线的另一端固定在铁架台的铁夹上,做成一个单摆。
2.用毫米刻度的米尺测定单摆的摆长L(摆球静挂时从悬点到球心间的距离)。
3.让单摆摆动(摆角小于5°),测定50次全振动的时间t,用公式
4.用公式g=4π2L/T2算出重力加速度g。
【注意事项】
1.单摆悬铁夹应固定在铁架台上尽可能低的位置(以小球自然悬挂时离地面约1-2厘米为好)
2.小球摆动时,摆角应小于5°,且应在同一竖直面上摆动。
3.计算单摆的振动次数时,应以摆球通过最低位置时开始计时,以后摆球从同一方向通过最低位置时进行计数。
大学物理实验报告-单摆法测重力加速度(含答案)

一、实验名称:单摆法测重力加速度二、实验的目的:1、掌握游标卡尺读数原理;2、掌握电子秒表的使用方法;3.掌握单摆法测量重力加速度的方法;三、实验仪器:单摆仪、游标卡尺、螺旋测微计、米尺、秒表四、实验原理:单摆的一级近似的周期公式为:由此通过测量周期T,摆长,可求重力加速度g五、实验内容和步骤1. 用游标卡尺测量摆球的直径将摆球放到游标卡尺上,移动游标直至卡紧摆球,锁紧游标,先读出主尺读数,再读出副尺读数。
取下小球,按照上述步骤重复测量多次。
2. 用米尺测量摆线的长度将米尺的零刻度线对准摆线的一段,并且令米尺与摆线保持平行,读出结果。
取下摆线,按照上述步骤重复测量多次。
3. 用电子秒表测量单摆的周期将摆球上拉到一定高度(不超过5度)后静止放下,等到摆球上升到某个周期的最高点时开始计时,计时若干个周期后(N>=10)结束计时。
让摆球停止摆动,按照上述步骤重复测量多次。
(要减去共计0.2s的人类反应时间)六、实验数据记录与处理1、用游标卡尺测量摆球的直径d测量次数 1 2 3 4 5 6 平均值不确定度直径d(mm)20.62 20.6220.620.620.620.60 20.61 0.02摆球直径d的测量结果表示为: 20.61+-0.022、用米尺测量摆线的长度l(只测一次): 700.0mm摆线的长度l的测量结果表示为: 700+-1mm3、单摆的摆长为:700+20.61/2=710.305mm单摆摆长的测量结果表示为:L710.30+-1.024、用电子秒表测量单摆摆动10个周期的时间t测量次数 1 2 3 4 5 6 平均值不确定度t(s)17.22 17.2317.2317.3117.1917.23 17.24 0.02单摆的周期: 1.724单摆的不确度:0.002单摆周期的测量结果表示为:T 1.724+-0.002 5、计算和不确定度955.9pi^2mm/s^2重力加速度的不确定度: 2.61重力加速度的测量结果表示为:g955.9pi^2+-2.6mm/s^2七、误差分析与讨论1、米尺测量摆线长度时要注意与摆线尽量靠近且保持平行,还要注意摆线要拉直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、实验:用单摆测定重力加速度长约1米的(不可伸缩的)细线、小钢球、铁架台(连铁夹)、刻度尺、游标卡尺、秒表当单摆偏角α≤10°时,单摆的振动是简谐运动,此时振动周期跟偏角的大小(或振幅)和摆球的质量无关.周期大小T=2πg L .由此得重力加速度g=4π22TL .因此,测出单摆的摆长L 和振动周期T ,就可以求出当地的重力加速度g 的值.(1)平均值法改变摆长L 多测几组(L,T)值,代入公式g=4π22TL求出g 1、g 2、g 3┉,再求平均值ng g g g+++=321(2)图象法改变摆长L 多测几组(L,T)值, 作出T 2-L 图线,利用图线上任两点A 、B 的坐标(x 1,y 1)、(x 2,y 2)求出图线斜率k=1212x x y y --,再由k 可求出g=121224y y x x --π(1)选:选用细而轻且不可伸长的1m 左右的线作为摆线,选用密度大体积小的实心球作为摆球 (2)穿、固:如图所示,将细线的一端穿.过铁球上的小孔并打结固.定好,线的另一端固.定在铁架台上,做成一个单摆。
(3)测L :用游标卡尺测出小球直径d ,用刻度尺测出从悬挂点到小球顶端的距离l ,算出摆长L=l+2d (4)测T :让单摆摆动(开始小球应静止释放,摆角应小于10°),用秒表测出n (30—50)次全振动的时间t ,求出单摆的平均周期 T=t/n (应从摆球经平衡位置时开始计时) (5)算:算出重力加速度g=4π22TL (6)重复:改变摆长重复三次,最后求出三次g 的平均值1.该实验实际要测量哪些量?各用什么测量工具?读数有何要求? 答: 该实验实际要测量悬线长l , 摆球直径d ,n 次全振动的时间t, 悬线长用刻度尺测,精确到毫米, 直径d 用游标卡尺测,读数时按游标卡尺要求读,计算时精确到毫米就够了, 时间t 用秒表测, 精确到0.1秒(不估读).2.怎样保证小球的摆动是简谐运动?小球摆成圆锥摆,对周期有什么影响?答: 要保证小球的摆动是简谐运动需满足三个条件.第一、空气阻力可忽略不计,为使空气阻力尽可能小,所以我们选密度大体积小的实心球作为摆球。
第二、偏角α≤10°,因为单摆振动时,摆球重力mg 沿圆弧切线方向的分力mgsin α就是它摆动的回复力.只有当偏角α≤10°时,摆球沿圆弧的运动才可以近似地看成为直线运动,这时回复力就可以写成为F=mgsin α=mg α=l x mg=-kx.式中k=Lmg .可见只有在摆角很小的情况下,单摆的振动是简谐运动.第三、要使单摆在竖直平面内摆动,不使其形成锥摆或摆球转动. 如果小球摆成圆锥摆,根据牛顿第二定律有:22sin 4tan Tl m mg απα=,摆动周期为g L T απcos 2=,显然圆锥摆的周期比单摆周期T=2πg L 要小,将此周期代入公式g=4π22TL 算出的重力加速度偏大. 3.怎样测量单摆周期?从何处开始计时?到何处停止计时?测30-50个周期有什么好处?答:测单摆周期时,应以摆球过平衡位置开始计时,到做完第30或50次全振动再次通过平衡位置时停止. 计时起点的方法最好采用倒计时法,即当摆球过平衡位置时从5开始数到“0”次全振动时立即按下秒表,才开始正式计时计数.由于人的反应时间的影响, 如果只测一次全振动的周期,其误差就很大, 测30-50个周期就可减小这种误差.4.为什么计时起点和终点不选在最大位移处而选在平衡位置?答: 如果我们分别在平衡位置和最大位移处取一微小偏角,由于在最大位移处附近摆球运动速度很小, 偏角虽小,但停留时间却较长,人眼很难判断是否到达最大位移处,按表造成的误差却大,而在平衡位置附近摆球运动速度尽管较大,与最大位移处偏转同样的偏角用时却很短,此时按表造成的误差反而越小,所以计时起点和终点不选在最大位移处而选在平衡位置. 5.秒表如何读数?要不要估读?答: 秒表读数应先读小圆里分针的数值,观察时要注意分针是否过半分钟刻度线,然后读大圆里秒针的数值,由于机械结构秒表原因,读数不需估读,一般读到0.1秒为止.例1.在“用单摆测重力加速度”的实验中:下面所给器材中,选用哪些器材较好,请把所选用器材前的字母依次填写在题后的横线上.A.长1m 左右的细线;B.长30cm 左右的细线;C.直径2cm 的铅球;D.直径2cm 的铁球;E.秒表;F.时钟;G.最小刻度是厘米的直尺;H.最小刻度是毫米的直尺. 所选用的器材是解析:本实验的原理:振动的单摆,当摆角<10°时,其振动周期与摆长的平方根成正比,与重力加速度的平方根成反比,而与偏角的大小(振幅)、摆球的质量无关,周期公式为:T=2πgL,变换这个公式可得g=4π2T L.因此,本实验中测出单摆的摆长L 和振动周期T ,就可以求出当地的重力加速度g 的值,本实验的目的是测量重力加速度g 的值,而非验证单摆的振动规律.因此实验中应选用长的摆长L ,这样既能减小摆长的测量误差,又易于保证偏角θ不大于10°,而且由于振动缓慢,方便计数和计时.故选A.本实验所用的实际摆要符合理论要求,摆线长要有1m 左右,应选用不易伸长的细线,摆球直径要小于2cm ,应选用较重的小球.故选C.由于重力加速度g 与周期的平方成反比,周期T 的测量误差对g 的影响是较大的,所用计时工具应选精确度高一些的,故选E.由于摆线长L 应是悬点到铅球边缘的距离l 加上铅球的半径R.球半径用游标卡尺测量出(也可由教师测出后提供数据),因此L 应读数准确到毫米位.实验中应用米尺或钢卷尺来测量.故选H. 综上所述应填A 、C 、E 、H.例2.一位同学用单摆做测量重力加速度的实验,他将摆挂起后,进行了如下步骤: A.测摆长L ,用米尺量出摆线的长度;B.测周期T ,将摆球拉起,然后放开,在摆球某次通过最低点时,按下秒表开始计时,同时将此次通过最低点作为第一次,接着一直数到摆球第60次通过最低点时,按秒表停止计时,读出这段时间t ,算出单摆的周期T=t/60;C.将所测量的L 和T 代入单摆的周期公式T=2πgL ,算出g ,将它作为实验的最后结果写入报告中去.指出上面步骤中遗漏或错误的地方,写出该步骤的字母,并加以改正(不要求进行误差计算).解析:A.应用卡尺测出摆球直径d ,摆长L 应记为摆线的长度加上摆球半径d/2,如果只用米尺量摆长,摆长的下端应从球心算起; B.单摆的周期T 计算,应该是:T=5.29t ; C.本实验的目的是测重力加速度g ,应测量多次,然后取g 的平均值作为实验的最后结果.1.(06四川)在“用单摆测定重力加速度”的实验中,①测摆长时,若正确测出悬线长l 和摆球直径d,则摆长为 ;②测周期时,当摆球经过 位置时开始计时并计数l 次,测出经过该位置N 次(约60~100次)的时间为t,则周期为 。
此外,请你从下列器材中选用所需器材,再设计一个实验,粗略测出重力加速度g ,并参照示例填写下表(示例的方法不能..再用)。
A.天平; B.刻度尺; C.弹簧秤; D.电磁打点计时器; E.带夹子的重锤; F.纸带; G.导线若干; H.铁架台; I.低压交流电源; J.低压直流电源;(1)①dl +; ②平衡;2t ;2.“用单摆测重力加速度”的实验中,下述说法正确的是( )A.如果有两个大小相同的铁球和木球(都有小孔)可供选择,则选用铁球作为摆球较好B.单摆的偏角不要超过10°C.为了便于改变摆线的长度,可将摆线的一头绕在铁架上端的圆杆上以代替铁夹D.测量摆长时,应用力拉紧摆线解析:本实验中,为使实际的摆接近理论上的单摆,应选用质量较大、而直径较小的球做摆球,故选A.本实验中,T=2πgL成立的条件是:偏角不大于5°,所以选B. 因要满足本实验的要求,一般摆线都又细又长,为减小实验中摆长测量带来的误差,要求注意(1)固定摆线时,摆线上端要用铁夹夹紧,不能将线缠在水平杆上或系在杆上,因为这样会出现在振动中摆线长发生变化,造成测量值与实际值不符.(2)测量摆线长度时,因挂上摆球之后摆线长度会有变化,所以应该在挂好摆球之后过一段时间再测量摆线长L.测量时注意不要用手拉伸摆线.所以C 、D 错误.故选A 、B.3.在“用单摆测定重力加速度”的实验中测算出的g 值比当地的公认值偏大,其原因可能是( )A.振幅偏小B.摆球质量偏大C.将振动次数n 记为(n+1) D.将摆线长当作摆长,未加摆球的半径 解析:从实验原理出发,单摆的周期公式为T=2πgL,周期大小与单摆的振幅,摆球质量均无关系,因此A 、B 不正确.g 的计算公式为g=4π22TL,由此式可以判断出g 的测算值偏大,不是D 项的情况,而是周期T 偏小所致,若将n 次全振动,误记为n+1次,则T 偏小.故C 对4.用游标卡尺测得单摆摆球的直径为d ,用毫米刻度尺测得从悬点到摆球上表面的悬线长度为L 1,当摆球过最低点时作为形始记时的第一次,当数到第N 次过最低点时,经过的时间为t,则可算出当地重力加速度g= ,改变摆长,分别测得摆长为L 1、L 2、L 3时对应的周期为T 1、T 2、T 3,在L —T 2坐标上得到如下图所示图线,若设该图线斜率为k ,则重力加速度g= 解析:单摆振动的周期T=2πgL,由题意振动的周期T=2πg L =12-N t ,摆长L=L 1+2d ,则重力加速度 g= 224TL π=22122)1)(2(t N d L -+π. 由图线可知:L=kT 2=k ×g24π×L.所以重力加速度g=4π2k.5.(06上海卷)有一测量微小时间差的装置,是由两个摆长略有微小差别的单摆同轴水平悬挂构成.两个单摆摆动平面前后相互平行.(1)现测得两单摆完成 50 次全振动的时间分别为 50.0 S 和 49.0 S ,则两单摆的周期差△T = s ;(2)某同学利用此装置测量小于单摆周期的微小时间差,具体操作如下:把两摆球向右拉至相同的摆角处,先释放长摆摆球,接着再释放短摆摆球,测得短摆经过若干次全振动后,两摆恰好第一次同时同方向通过某位置, 由此可得出释放两摆的微小时间差.若测得释放两摆的时间差Δt =0.165s ,则在短摆释放 s (填时间)后,两摆恰好第一次同时向 (填方向)通过(填位置);(3)为了能更准确地测量微小的时间差,你认为此装置还可做的改进是 。
解析:(1)s s T T T 02.05049505021=-=-=∆ (2)先释放的是长摆,故有nT 1= nT 2+Δt ,解得n=8.25,所以短摆释放的时间为t=nT 2=8.085s ,此时两摆同时向左经过平衡位置。