哈夫曼树及其应用(完美版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构课程设计设计题目:哈夫曼树及其应用
学院:计算机科学与技术
专业:网络工程
班级:网络 131
学号:**********
学生姓名:谢*
指导教师:叶*
2015年7 月12 日
设计目的:
赫夫曼编码的应用很广泛,利用赫夫曼树求得的用于通信的二进制编码称为赫夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是赫夫曼编码。哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。
1、熟悉树的二叉树的存储结构及其特点。
2、掌握建立哈夫曼树和哈夫曼编码的方法。
设计内容:
欲发一封内容为AABBCAB ……(共长 100 字符,字符包括A 、B 、C 、D 、E 、F六种字符),分别输入六种字符在报文中出现的次数(次数总和为100),对这六种字符进行哈夫曼编码。
设计要求:
对输入的一串电文字符实现赫夫曼编码,再对赫夫曼编码生成的代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵赫夫曼树,此构造过程称为赫夫曼编码。设计实现的功能:
1.以二叉链表存储,
2.建立哈夫曼树;
3.求每个字符的哈夫曼编码并显示。
一:赫夫曼树的构造
“(1)由给定的n个权值{W1,W2,…,Wn}构成n棵二叉树的集合F={T1,T2,…,Tn},其中每棵二叉树Ti中只有一个带权为Wi的根节点,其左右子树均空。
(2)在F中选取根结点的权值最小和次小的两棵二叉树作为左、右子树构造一棵新的二叉树,这棵新的二叉树根结点的权值为其左、右子树根结点权值之和;
(3)在集合F中删除作为左、右子树的两棵二叉树,并将新建立的二叉树加入到集合F中;
(4)重复(2)(3)两步,当F中只剩下一棵二叉树时,这棵二叉树便是所要建立的哈夫曼树。”
二:设计概要
哈夫曼编\译码器的主要功能是先建立哈夫曼树,然后利用建好的哈夫曼树生成哈夫曼编码后进行译码。
在数据通信中,经常需要将传送的文字转换成由二进制字符0、1组成的二进制串,称之为编码。构造一棵哈夫曼树,规定哈夫曼树中的左分之代表0,右分支代表1,则从根节点到每个叶子节点所经过的路径分支组成的0和1的序列便为该节点对应字符的编码,称之为哈夫曼编码。
最简单的二进制编码方式是等长编码。若采用不等长编码,让出现频率高的字符具有较短的编码,让出现频率低的字符具有较长的编码,这样可能缩短传送电文的总长度。哈夫曼树课用于构造使电文的编码总长最短的编码方案。
(1)其主要流程图如图所示。
(2)设计包含的几个方面:
①赫夫曼树的建立
赫夫曼树的建立由赫夫曼算法的定义可知,初始森林中共有n棵只含有根结点的二叉树。算法的第二步是:将当前森林中的两棵根结点权值最小的二叉树,合并成一棵新的二叉树;每合并一次,森林中就减少一棵树,产生一个新结点。显然要进行n-1次合并,所以共产生n-1个新结点,它们都是具有两个孩子的分支结点。由此可知,最终求得的赫夫曼树中一共有2n-1个结点,其中n个结点是初始森林的n个孤立结点。并且赫夫曼树中没有度数为1的分支结点。我们可以利用一个大小为2n--1的一维数组来存储赫夫曼树中的结点。
②赫夫曼编码
要求电文的赫夫曼编码,必须先定义赫夫曼编码类型,根据设计要求和实际需要定义的类型如下:
typedet struct {
char ch; // 存放编码的字符
char bits[N+1]; // 存放编码位串
int len; // 编码的长度
}CodeNode; // 编码结构体类型
③字符串的译码
译码的基本思想是:读文件中编码,并与原先生成的赫夫曼编码表比较,遇到相等时,即取出其对应的字符存入一个新串中。
三、详细设计
(1)①赫夫曼树的存储结构描述为:
#define N 50 // 叶子结点数
#define M 2*N-1 // 赫夫曼树中结点总数
typedef struct {
int weight; // 叶子结点的权值
int lchild, rchild, parent; // 左右孩子及双亲指针
}HTNode; // 树中结点类型
typedef HTNode HuffmanTree[M+1];
②哈弗曼树的算法
void CreateHT(HTNode ht[],int n) //调用输入的数组ht[],和节点数n
{
int i,k,lnode,rnode;
int min1,min2;
for (i=0;i<2*n-1;i++)
ht[i].parent=ht[i].lchild=ht[i].rchild=-1; //所有结点的相关域置初值-1 for (i=n;i<2*n-1;i++) //构造哈夫曼树
{
min1=min2=32767; //int的范围是-32768—32767
lnode=rnode=-1; //lnode和rnode记录最小权值的两个结点位置