第三章函数的应用章末总结

合集下载

高一数学第三章函数的应用知识点总结

高一数学第三章函数的应用知识点总结

高一数学第三章函数的应用知识点总结一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.零点存在性定理:如果函数y=f(x)在区间〔a,b 〕上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。

先判定函数单调性,然后证明是否有f (a )·f(b)<04、二次函数的零点:二次函数)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.5、二分法求方程的近似解或函数的零点①确定区间〔a,b 〕,验证f(a)·f(b)<0,给定精度ε;②求区间(a,b)的中点c ;③计算f(c):若f(c)=0,则c 就是函数的零点; 若f(a)·f(c)<0,则令b=c (此时零点x0∈(a,c));若f(c)·f(b)<0,则令a=c (此时零点x0∈(c,b));④判断是否达到精度ε;即若∣a-b ∣<ε,则得到零点近似值a (或b );否则重复步骤②~④.第三章函数的应用习题一、选择题1.下列函数有2个零点的是 ( )A 、24510y x x =+-B 、310y x =+C 、235y x x =-+-D 、2441y x x =-+ 2.用二分法计算23380x x +-=在(1,2)x ∈内的根的过程中得:(1)0f <,(1.5)0f >,(1.25)0f <,则方程的根落在区间 ( )A 、(1,1.5)B 、(1.5,2)C 、(1,1.25)D 、(1.25,1.5)3.若方程0x a x a --=有两个解,则实数a 的取值范围是( ) A 、(1,)+∞ B 、(0,1) C 、(0,)+∞ D 、Φ4.2函数f(x)=lnx-的零点所在的大致区间是 ( )x ()()().,3.,C e D e +∞ A.(1,2) B.2,e5.已知方程310x x --=仅有一个正零点,则此零点所在的区间是 ( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)6.函数62ln )(-+=x x x f 的零点落在区间 ( )A .(2,2.25)B .(2.25,2.5)C .(2.5,2.75)D .(2.75,3)7. 已知函数()f x 的图象是不间断的,并有如下的对应值表:那么函数在区间(1,6)上的零点至少有( )个A .5B .4C .3D .28.方程5x 21x =+-的解所在的区间是() A(0,1) B(1,2) C(2,3) D(3,4)9.方程34560x x -+=的根所在的区间为( ) A 、(3,2)-- B 、(2,1)-- C 、(1,0)- D 、(0,1)10.已知2()22x f x x =-,则在下列区间中,()0f x =有实数解的是 ( )(A)(-3,-2) (B)(-1,0) (C) (2,3) (D) (4,5)11. ( )12、方程12xx +=根的个数为( )A 、0B 、1C 、2D 、3二、填空题13. 下列函数:1) y=x lg ; 2);2x y = 3)y = x2; 4)y= |x| -1;其中有2个零点的函数的序号是 。

高中数学第三章函数的应用章末复习课(三)学案(含解析)新人教版必修1

高中数学第三章函数的应用章末复习课(三)学案(含解析)新人教版必修1

三章函数的应用章末复习课网络构建核心归纳1.函数的零点与方程的根的关系函数f(x)的零点就是方程f(x)=0的解,函数f(x)的零点的个数与方程f(x)=0的解的个数相等,也可以说方程f(x)=0的解就是函数f(x)的图象与x轴交点的横坐标,即函数f(x)的函数值等于0时自变量x的取值.因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数.2.函数零点存在性定理(1)该定理的条件是:①函数f(x)在区间[a,b]上的图象是连续不断的;②f(a)·f(b)<0,即f(a)和f(b)的符号相反.这两个条件缺一不可.(2)该定理的结论是“至少存在一个零点”,仅仅能确定函数零点是存在的,但是不能确定函数零点的个数.3.函数应用(1)要解决函数应用问题,首先要增强应用函数的意识.一般来说,解决函数应用问题可分三步:第一步,理解题意,弄清关系;第二步,抓住关键,建立模型;第三步,数学解决、检验模型.其中第二步尤为关键.(2)在解题中要充分运用数形结合、转化与化归、函数与方程等数学思想及策略,寻求解题途径.(3)根据已知条件建立函数解析式是函数应用的一个重要方面.一般分为两类:一类是借助于生活经验、函数知识等建立函数模型,以二次函数模型为主,一般是求二次函数的最值.另一类是根据几何、物理概念建立函数模型.要点一 函数的零点与方程的根 函数的零点与方程的根的关系及应用1.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.2.确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.【例1】 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________;(2)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________.解析 (1)①当x ≤0时,由f (x )=0,即x 2-2=0,解得x =2或x =- 2.因为x ≤0,所以x =- 2.②法一 (函数单调性法)当x >0时,f (x )=2x -6+ln x .而f (1)=2×1-6+ln 1=-4<0,f (3)=2×3-6+ln 3=ln 3>0,所以f (1)·f (3)<0,又函数f (x )的图象是连续的,故由零点存在性定理,可得函数f (x )在(1,3)内至少有一个零点.而函数y =2x -6在(0,+∞)上单调递增,y =ln x 在(0,+∞)上单调递增,所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增.故函数f (x )=2x -6+ln x 在(0,+∞)内有且只有1个零点.综上,函数f (x )共有2个零点.法二 (数形结合法)当x >0时,由f (x )=0,得2x -6+ln x =0, 即ln x =6-2x .如图,分别作出函数y =ln x 和y =6-2x 的图象.显然,由图可知,两函数图象只有一个交点,且在y 轴的右侧,故当x >0时,f (x )=0只有一个解.综上,函数f (x )共有2个零点.(2)由f(x)=0得|2x-2|=b,在同一坐标系中作出函数y=|2x-2|和y=b的图象,如图所示,由图可知,若f(x)有两个零点,则b的取值范围是(0,2).答案(1)2 (2)(0,2)【训练1】已知关于x的方程a·4x+b·2x+c=0(a≠0),常数a,b同号,b,c异号,则下列结论中正确的是( )A.此方程无实根B.此方程有两个互异的负实根C.此方程有两个异号实根D.此方程仅有一个实根解析由常数a,b同号,b,c异号,可得a,c异号,令2x=t,则方程变为at2+bt+c=0,t>0,由于此方程的判别式Δ=b2-4ac>0,故此方程有2个不等实数根,且两根之积为c<0,故关于t的方程只有一个实数根,故关于x的方程只有一个实数根.a答案 D要点二二分法求方程的近似解(或函数的零点)1.二分法求方程的近似解的步骤(1)构造函数,转化为求函数的零点.(2)明确精确度和函数的零点所在的区间(最好区间左右端点相差1).(3)利用二分法求函数的零点.(4)归纳结论.2.使用二分法的注意事项(1)二分法的实质是通过“取中点”,不断缩小零点所在区间的范围,所以要选好计算的初始区间,保证所选区间既符合条件,又使区间长度尽量小.(2)计算时注意依据给定的精确度,及时检验计算所得的区间是否满足精确度的要求.(3)二分法在具体使用时有一定的局限性,首先二分法只能一次求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法求得.【例2】设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的.先求值:f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在一个零点x0,填下表,结论x0解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,所以初始区间为(1,2).因为所以x0≈1.125(不唯一).【训练2】若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下:f(1)=-2,f(1.5)=0.625;f(1.25)=-0.984,f(1.375)=-0.260;f(1.438)=0.165.那么方程x3+x2-2x-2=0的一个近似根可以为(精确度为0.1)( )A.1.2B.1.35C.1.43D.1.5解析∵f(1.438)=0.165>0,f(1.375)=-0.260<0,∴函数f(x)在(1.375,1.438)内存在零点,又1.438-1.375<0.1,结合选项知1.43为方程f(x)=0的一个近似根.答案 C要点三函数的实际应用1.建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x,y分别表示.(2)建立函数模型,将变量y表示为x的函数,此时要注意函数的定义域.(3)求解函数模型,并还原为实际问题的解.2.建模的三个原则(1)简化原则:建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则:建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题. 【例3】 某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x (0≤x ≤5),11(x >5). 假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)要使工厂有盈利,求产量x 的取值范围; (3)工厂生产多少台产品时,可使盈利最多? 解 (1)由题意得G (x )=2.8+x . ∴f (x )=R (x )-G (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8(0≤x ≤5),8.2-x (x >5). (2)①当0≤x ≤5时,由-0.4x 2+3.2x -2.8>0得x 2-8x +7<0,解得1<x <7,∴1<x ≤5. ②当x >5时,由8.2-x >0,得x <8.2, 所以5<x <8.2.综上,当1<x <8.2时,有y >0,即当产量x 大于100台,小于820台时,能使工厂有盈利. (3)当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6; 当x >5时,∵函数f (x )单调递减, ∴f (x )<f (5)=3.2(万元).综上,当工厂生产4百台产品时,可使盈利最多,为3.6万元.【训练3】 《中华人民共和国个人所得税法》规定,个人所得税起征点为3 500元(即3 500元以下不必纳税,超过3 500元的部分为当月应纳税所得额),应缴纳的税款按下表分段累计计算:(1) (2)刘丽十二月份缴纳个人所得税款300元,那么她当月工资总额是多少?解 (1)依题意可得: ①当0<x ≤3 500时,y =0. ②当3 500<x ≤5 000时,y =(x -3 500)·3%=0.03x -105.③当5 000<x <8 000时,y =45+(x -5 000)·10%=0.1x -455.综上可得y =⎩⎪⎨⎪⎧0,0<x ≤3 500,0.03x -105,3 500<x ≤5 000,0.1x -455,5 000<x <8 000.(2)因为需交税300元, 故有5 000<x <8 000,所以300=0.1x -455,所以x =7 550. 答:刘丽十二月份工资总额为7 550元.基础过关1.函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A.(1,2)B.(2,3)C.(3,4)D.(1,2)与(2,3)解析 易知f (x )在(1,+∞)上单调递减,f (2)=1>0,f (3)=23+ln 12=23-ln 2<0,所以f (x )在(2,3)内只有一个零点.答案 B2.实数a ,b ,c 是图象连续不断的函数y =f (x )定义域中的三个数,且满足a <b <c ,f (a )·f (b )<0,f (c )·f (b )<0,则函数y =f (x )在区间(a ,c )上的零点个数为( )A.2B.奇数C.偶数D.至少是2解析 由零点存在性定理,f (a )f (b )<0,f (c )f (b )<0,则y =f (x )在区间(a ,b )上至少有一个零点,在(b ,c )上至少有一个零点,而f (b )≠0,所以y =f (x )在区间(a ,c )上的零点个数为至少2个.选D. 答案 D3.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( ) A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)解析 易知当x >0时,2x -1=0有一个根,所以需使函数y =e x+a (x ≤0)有一个零点,即方程e x +a =0(x ≤0)有一个根,即a =-e x .由x ≤0,得-e x∈[-1,0),故a ∈[-1,0). 答案 D4.用二分法求方程x 2=2的正实根的近似解(精确度0.001)时,如果选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算________次.解析 设至少需要计算n 次,则n 满足0.12n <0.001,即2n >100,由于27=128,故要达到精确度要求至少需要计算7次. 答案 75.方程|x 2-2x |=a 2+1(a >0)的解的个数是________.解析 在同一个坐标系中作出函数y =|x 2-2x |和y =a 2+1的图象,如图所示,易知a 2+1>1,由图知方程有2个解.答案 26.方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.解 不存在.理由如下:因为当x <0时,-1x >0,所以x 2-1x>0恒成立,故不存在x ∈(-∞,0),使x 2-1x=0.7.某地的出租车价格规定:起步价为a 元,可行3公里,3公里以上按每公里b 元计算,可再行7公里;超过10公里按每公里c 元计算(这里a ,b ,c 规定为正的常数,且c >b ),假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)若取a =14,b =2.4,c =3.6,小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(2)求车费y (元)与行车里程x (公里)之间的函数解析式y =f (x ).解 (1)由题意可知,起步价(3公里以内)是14元,则这8公里内的前3公里的收费是14元,超过3公里而10公里以内每公里按2.4元计价,则8-3=5(公里)的收费是5×2.4=12(元),总共收费14+12=26(元),故他应付出租车费26元.(2)3公里以内,即起步价是a 元,即0<x ≤3时,y =a (元);大于3公里而不超过10公里时,即3<x ≤10时,收费y =a +(x -3)b =bx +a -3b (元);大于10公里时,即x >10时,收费y =a +7×b +(x -10)c =cx +a +7b -10c (元).所以y =⎩⎪⎨⎪⎧a ,0<x ≤3,bx +a -3b ,3<x ≤10,cx +a +7b -10c ,x >10.能力提升8.已知函数f (x )的图象如图所示,则它的一个可能的解析式为( )A.y =2xB.y =4-4x +1C.y =log 3(x +1)D.y =3x解析 由于图象过点(1,2),可排除C ,D ;由图象与直线y =4无限接近,但到达不了,即y <4,而y =2x 可无限大,排除A ,选B.答案 B9.若函数f (x )是定义在R 上的偶函数,在区间(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是( ) A.(-∞,-2] B.(-∞,-2]∪(2,+∞) C.(2,+∞)D.(-2,2)解析 ∵函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,∴函数f (x )在[0,+∞)上为增函数,且f (-2)=f (2)=0,作出函数f (x )的示意图,如图,则不等式f (x )<0的解为-2<x <2,故选D.答案 D10.已知函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,则实数a 的取值范围是________.解析 ∵f (x )的两个零点一个大于2,一个小于2, ∴f (2)<0,∴22+2a +a -1<0,解得a <-1. 答案 (-∞,-1)11.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400. 答案 2012.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解 (1)租金增加了600元,所以未租出的车有12辆,一共租出了88辆.(2)设每辆车的月租金为x 元(x ≥3 000),租赁公司的月收益为y 元,则y =x ⎝ ⎛⎭⎪⎫100-x -3 00050-x -3 00050×50-⎝⎛⎭⎪⎫100-x -3 00050×150=-x 250+162x -21 000=-150(x -4 050)2+307 050.当x =4 050时,y max =307 050.所以每辆车的月租金定为4 050元时,租赁公司的月收益最大,为307 050元.13.(选做题)设a ∈R ,试讨论关于x 的方程lg(x -1)+lg(3-x )=lg(a -x )的实根的个数.解 原方程等价于⎩⎪⎨⎪⎧x -1>0,3-x >0,a -x >0,(x -1)(3-x )=a -x ,⇒⎩⎪⎨⎪⎧x -1>0,3-x >0,(x -1)(3-x )=a -x ,整理得-x 2+5x -3=a (1<x <3).在同一平面直角坐标系中分别作出函数y =a , 及y =-x 2+5x -3,x ∈(1,3)的图象,如图所示.(1)当a >134或a ≤1时,两个函数的图象无交点,故原方程无实数根;(2)当a =134或1<a ≤3时,两个函数的图象有一个交点,故原方程有一个实数根;(3)当3<a <134时,两个函数的图象有两个交点,故原方程有两个实数根.章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知下列四个函数图象,其中能用“二分法”求出函数零点的是( )解析由二分法的定义可知选A.答案 A2.已知函数f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则函数f(x)的图象与x轴在区间[a,b]内( )A.至多有一个交点B.必有唯一个交点C.至少有一个交点D.没有交点解析∵f(a)·f(b)<0,∴f(a)与f(b)异号,即:f(a)>0,f(b)<0或者f(a)<0,f(b)>0,显然,在[a,b]内,必有一点c,使得f(c)=0.又f(x)在区间[a,b]上单调,所以,这样的点只有一个,故选B.答案 B3.若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象是( )解析A:与直线y=2的交点是(0,2),不符合题意,故不正确;B:与直线y=2无交点,不符合题意,故不正确;C:与直线y=2只在区间(0,+∞)上有交点,不符合题意,故不正确;D :与直线y =2在(-∞,0)上有交点,故正确.故选D. 答案 D4.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点解析 由题图可知,甲到达终点用时短,故选D. 答案 D5.据统计某地区1月、2月、3月的用工人数分别为0.2万,0.4万和0.76万,则该地区这三个月的用工人数y 万人关于月数x 的函数关系近似的是( ) A.y =0.2x B.y =110(x 2+2x )C.y =2x10D.y =0.2+log 16x解析 当x =1时,否定B ;当x =2时,否定D ;当x =3时,否定A ,故选C. 答案 C6.若函数f (x )=log 3x +x -3的一个零点附近的函数值用二分法逐次计算的参考数据如下:那么方程x -3+3A.2.1 B.2.2 C.2.3D.2.4解析 由参考数据可知f (2.25)·f (2.312 5)<0,且|2.312 5-2.25|=0.062 5<0.1,所以当精确度为0.1时,可以将2.3作为函数f (x )=log 3x +x -3零点的近似值,也即方程x -3+log 3x =0的根的近似值. 答案 C7.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )C.3D.4解析 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数,即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1.∵⎩⎪⎨⎪⎧-x >0,x -3≠0,解得x <0,∴函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1.故选A.答案 A8.函数f (x )=3x+12x -2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)解析 由已知可知,函数f (x )=3x+12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数零点存在性定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C.答案 C9.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A.2 B.3C.4D.与a 的值有关解析 设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.答案 A10.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a2x(a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )C.± 5D.- 5解析 设投放x (0≤x ≤20)万元经销甲商品,则投放(20-x )万元经销乙商品,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a2·20-x ≥5,∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x ≤20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.答案 A11.已知函数f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,则有( ) A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1D.0<x 1x 2<1解析 f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,即y =|lg x |与y =2-x有两个交点,由题意x >0,分别画y =2-x 和y =|lg x |的图象,发现在(0,1)和(1,+∞)上分别有一个交点,不妨设x 1∈(0,1),x 2∈(1,+∞),那么在(0,1)上有2-x 1=-lg x 1,即-2-x 1=lg x 1.①在(1,+∞)上有2-x 2=lg x 2.②①②相加有2-x 2-2-x 1=lg x 1x 2,∵x 2>x 1,∴2-x 2<2-x 1, 即2-x 2-2-x 1<0,∴lg x 1x 2<0, ∴0<x 1x 2<1,故选D. 答案 D12.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f (n )=k (n )(n -10),n >10(其中n 是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f (n )的单位为元),而k (n )=⎩⎪⎨⎪⎧0,n ≤10,100,10<n ≤15,200,15<n ≤20,300,20<n ≤25,400,n >25.现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( )A.600元B.900元C.1 600元D.1 700元解析∵k(18)=200(元),∴f(18)=200×(18-10)=1 600(元).又∵k(21)=300(元),∴f(21)=300×(21-10)=3 300(元),∴f(21)-f(18)=3 300-1 600=1 700(元).故选D.答案 D二、填空题(本大题共4个小题,每小题5分,共20分)13.如果函数f(x)=x2+mx+m+3的一个零点为0,则另一个零点是________.解析函数f(x)=x2+mx+m+3的一个零点为0,则f(0)=0,∴m+3=0,∴m=-3,则f(x)=x2-3x,于是另一个零点是3.答案 314.若方程|x2-4x|-a=0有四个不相等的实根,则实数a的取值范围是________.解析由|x2-4x|-a=0得a=|x2-4x|,作出函数y=|x2-4x|的图象,则由图象可知,要使方程|x2-4x|-a=0有四个不相等的实根,则0<a<4,故答案为(0,4).答案(0,4)15.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品销售价应定为每个________元.解析设每个涨价x元,则实际销售价为(10+x)元,销售的个数为100-10x.则利润为y =(10+x)(100-10x)-8(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).因此,当x=4,即售价定为每个14元时,利润最大.答案1416.给出下列四个命题:①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;②函数y=log2x2与函数y=2log2x是相等函数;③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0时,有2x>x2成立;④对于函数y=f(x),x∈[a,b],若有f(a)·f(b)<0,则f(x)在(a,b)内有零点.其中正确的序号是________.解析 对于①,函数表示每个输入值对应唯一输出值的一种对应关系,根据定义进行判定即可判断①错;对于②,函数y =log 2x 2与函数y =2log 2x 的定义域不相同,故不是相等函数,故②错;对于③,当x 0取大于等于4的值都可使当x >x 0时,有2x >x 2成立,故③正确;对于④,函数y =f (x )的图象在区间[a ,b ]上不连续时,既使有f (a )·f (b )<0,f (x )在(a ,b )内也不一定有零点.故④错. 答案 ③三、解答题(本大题共6个小题,共70分)17.(10分)判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=-8x 2+7x +1; (2)f (x )=x 2+x +2; (3)f (x )=x 3+1.解 (1)因为f (x )=-8x 2+7x +1=-(8x +1)(x -1), 令f (x )=0,可解得x =-18,或x =1,所以函数f (x )的零点为-18和1.(2)因为f (x )=x 2+x +2,令x 2+x +2=0,Δ=12-4×1×2=-7<0,所以方程x 2+x +2=0无实数解.所以f (x )=x 2+x +2不存在零点. (3)因为f (x )=x 3+1=(x +1)(x 2-x +1), 令(x +1)(x 2-x +1)=0,解得x =-1. 所以函数f (x )的零点为-1.18.(12分)定义在R 上的偶函数y =f (x )在(-∞,0]上递增,函数f (x )的一个零点为-12,求满足f (log 14x )≥0的x 的取值集合.解 ∵-12是函数的一个零点,∴f ⎝ ⎛⎭⎪⎫-12=0.∵y =f (x )是偶函数且在(-∞,0]上递增,∴当log 14x ≤0,即x ≥1时,log 14x ≥-12,解得x ≤2,即1≤x ≤2.由对称性可知,当log14x >0,即0<x <1时,log 14x ≤12,解得12≤x <1.综上所述,x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(12分)已知函数f (x )=x -1+12x 2-2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).解 令y 1=x -1,y 2=-12x 2+2,在同一直角坐标系中分别画出它们的图象(如图所示),其中抛物线的顶点坐标为(0,2),与x 轴的交点分别为(-2,0),(2,0),y 1与y 2的图象有3个交点,从而函数f (x )有3个零点.由f (x )的解析式知x ≠0,f (x )的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f (-3)=136>0,f (-2)=-12<0,f ⎝ ⎛⎭⎪⎫12=18>0,f (1)=-12<0,f (2)=12>0,即f (-3)·f (-2)<0,f ⎝ ⎛⎭⎪⎫12·f (1)<0,f (1)·f (2)<0,∴3个零点分别在区间(-3,-2),⎝ ⎛⎭⎪⎫12,1,(1,2)内.20.(12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q10,解得Q=10,即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s),即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.21.(12分)如图,直角梯形OABC 位于直线x =t (t ≥0)右侧的图象的面积为f (t ).(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 解 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2,当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,0≤t ≤2,10-2t ,2<t ≤5.(2)函数f (t )的图象如图所示.22.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件. (1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解 (1)当0<x ≤100时,p =60; 当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .∴p =⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ; 当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.∴y =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600. 当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000;当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,∴当x =550时,y 最大,此时y =6 050. 显然6 050>2 000.∴当一次订购550件时,利润最大,最大利润为6 050元.模块检测(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A.{1,2,4} B.{2,3,4} C.{0,2,4}D.{0,2,3,4}解析 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C. 答案 C2.可作为函数y =f (x )的图象的是( )解析 由函数的定义可知:每当给出x 的一个值,则f (x )有唯一确定的实数值与之对应,只有D 符合.故正确答案为D. 答案 D3.同时满足以下三个条件的函数是( )①图象过点(0,1);②在区间(0,+∞)上单调递减;③是偶函数 A.f (x )=-(x +1)2+2B.f (x )=3|x |C.f (x )=⎝ ⎛⎭⎪⎫12|x |D.f (x )=x -2解析 A.若f (x )=-(x +1)2+2,则函数图象关于x =-1对称,不是偶函数,不满足条件③.B.若f (x )=3|x |,则f (x )在区间(0,+∞)上单调递增,不满足条件②.C.若f (x )=⎝ ⎛⎭⎪⎫12|x |,则三个条件都满足.D.若f (x )=x -2,则f (0)无意义,不满足条件①.故选C. 答案 C4.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))等于( ) A.0 B.1 C.2D.3 解析 f (2)=log 3(22-1)=1,f (1)=2e1-1=2,即f (f (2))=2. 答案 C5.函数f (x )=2x -1+log 2x 的零点所在区间是( )A ⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,1 D.(1,2)解析 ∵函数f (x )=2x -1+log 2x ,∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1,∴f ⎝ ⎛⎭⎪⎫12·f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C.答案 C6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是( ) A.13 B.-13C.3D.-3解析 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得:α=-3,所以幂函数解析式为y =x -3,由f (x )=27,得:x -3=27,所以x =13.答案 A7.函数f (x )=2-x +ln(3x +2)+12x-1的定义域为( ) A.⎝ ⎛⎭⎪⎫-23,0∪(0,2] B.⎝ ⎛⎦⎥⎤23,2 C.⎝ ⎛⎭⎪⎫-23,1∪(1,2] D.⎝ ⎛⎦⎥⎤-23,2 解析 由⎩⎪⎨⎪⎧2-x ≥0,3x +2>0,2x -1≠0,解得-23<x ≤2且x ≠0,故f (x )的定义域为⎝ ⎛⎭⎪⎫-23,0∪(0,2].答案 A8.设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A.c <a <b B.b <a <c C.c <b <aD.a <b <c解析 因为y =x 0.5在(0,+∞)上是增函数,且0.5>0.3,所以0.50.5>0.30.5,即a >b ,c =log 0.30.2>log 0.30.3=1,而1=0.50>0.50.5,所以b <a <c .故选B.答案 B9.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )解析 由f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,所以k =2,0<a <1,再由对数的图象可知A 正确. 答案 A10.定义在R 上的函数f (x )满足f (-x )=f (x ),f (x -2)=f (x +2)且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)等于( )A.1B.45C.-1D.-45解析 由f (x -2)=f (x +2)⇒f (x )=f (x +4), 因为4<log 220<5,所以0<log 220-4<1,-1<4-log 220<0, 所以f (log 220)=f (log 220-4)=f (4-log 220) =f ⎝ ⎛⎭⎪⎫log 245=2log 245+15=1.故选A. 答案 A11.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解集是( )A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(1,3)解析 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴在(-∞,0)内f (x )也是增函数,又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0;∵(x -1)·f (x )<0,∴⎩⎪⎨⎪⎧x -1<0,f (x )>0或⎩⎪⎨⎪⎧x -1>0,f (x )<0,可解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D. 答案 D12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A.(0,1]∪[23,+∞) B.(0,1]∪[3,+∞) C.(0,2]∪[23,+∞)D.(0,2]∪[3,+∞)解析 y =(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2,相当于y =x 2向右平移1m 个单位,再将函数值放大m 2倍得到的;y =x +m 相当于y =x 向上平移m 个单位.①若0<m ≤1,两函数的图象如图1所示,可知两函数图象在x ∈[0,1]上有且只有1个交点,恒成立;②若m >1,两函数的大致图象如图2所示,为使两函数在x ∈[0,1]上有且只有1个交点,需要(m -1)2≥1+m ,得m ≥3.综上,m ∈(0,1]∪[3,+∞). 答案 B二、填空题(本大题共4个小题,每小题5分,共20分) 13.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点________.解析 因为a 0=1,故f (2)=a 0-3=-2,所以函数f (x )=a x -2-3必过定点(2,-2).答案 (2,-2)14.用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间).解析 ∵f (2)·f (4)<0,f (2)·f (3)<0, ∴f (3)·f (4)>0,故x 0∈(2,3). 答案 (2,3)15.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.解析 (∁U A )∩(∁U B )=∁U (A ∪B )={1,5,6}, 所以A ∪B ={2,3,4,7,8,9},又(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},所以A ∩B ={4,9},所以A ={2,4,8,9},B ={3,4,7,9}.答案 {2,4,8,9} {3,4,7,9}16.已知函数f (x )=⎩⎪⎨⎪⎧1+4x ,(x ≥4),log 2x ,(0<x <4),若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 关于x 的方程f (x )=k 有两个不同的实根,等价于函数f (x )与函数y =k 的图象有两个不同的交点,作出函数的图象如图.由图可知实数k 的取值范围是(1,2). 答案 (1,2)三、解答题(本大题共6个小题,共70分) 17.(10分)计算下列各式的值: (1)1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42-;(2)(log 3312)2+log 0.2514+9log 55-log 31.解 (1)原式=⎝ ⎛⎭⎪⎫2313×1+23×14×214-⎝ ⎛⎭⎪⎫2313=2.(2)原式=⎝ ⎛⎭⎪⎫122+1+9×12-0=14+1+92=234.18.(12分)已知函数f (x )是R 上的奇函数,当x ∈(0,+∞)时,f (x )=2x+x ,求f (x )的解析式.解 由题意,当x =0时,f (x )=0.∵x >0时,f (x )=2x+x ,∴当x <0时,-x >0,f (-x )=2-x-x ,又∵函数y =f (x )是定义在R 上的奇函数, ∴x <0时,f (x )=-f (-x )=-2-x+x , 综上所述,f (x )=⎩⎪⎨⎪⎧-2-x+x ,x <0,0,x =0,2x +x ,x >0.19.(12分)已知集合A ={x |3≤3x≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 解 (1)A ={x |3≤3x≤27}={x |1≤x ≤3},B ={x |log 2x >1}={x |x >2}. A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3; 综合①②,可得a 的取值范围是(-∞,3].20.(12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1). (1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0.解 (1)要使函数有意义,则有⎩⎪⎨⎪⎧2x +1>0,1-2x >0,∴-12<x <12.∴函数F (x )的定义域为⎩⎨⎧⎭⎬⎫x |-12<x <12.(2)由(1)知F (x )的定义域关于原点对称, 又F (-x )=f (-x )-g (-x )=log a (-2x +1)- log a (1+2x )=-F (x ), ∴F (x )为奇函数.(3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0, 即log a (2x +1)>log a (1-2x ).①当0<a <1时,0<2x +1<1-2x ,∴-12<x <0.②当a >1时,2x +1>1-2x >0,∴0<x <12.21.(12分)甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条. 乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大还是缩小了?说明理由; (3)哪一年的规模(即总产量)最大?说明理由.解 由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y甲=0.2x +0.8,图乙图象经过(1,30)和(6,10)两点.从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲×y 乙=1.2×26=31.2. 所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规模比第1年缩小了. (3)设当第m 年时的规模,即总出产量为n , 那么n =y 甲·y 乙=(0.2m +0.8)(-4m +34) =-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25,因此,当m =2时,n 最大值为31.2, 即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条. 22.(12分)已知函数f (x )=a ·2x -2+a2x+1(a ∈R ).(1)试判断f (x )的单调性,并证明你的结论; (2)若f (x )为定义域上的奇函数, ①求函数f (x )的值域;②求满足f (ax )<f (2a -x 2)的x 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),关于原点对称,且f (x )=a -22x +1.任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则f (x 2)-f (x 1)=a -22x 2+1-a +22x 1+1=2(2x2-2x1)(2x 2+1)(2x1+1). ∵y =2x在R 上单调递增,且x 1<x 2, ∴0<2x1<2x2,2x2-2x1>0,2x1+1>0,2x2+1>0, ∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), ∴f (x )是(-∞,+∞)上的单调增函数.(2)∵f (x )是定义域上的奇函数,∴f (-x )=-f (x ),即a -22-x +1+⎝ ⎛⎭⎪⎫a -22x +1=0对任意实数x 恒成立,化简得2a -⎝ ⎛⎭⎪⎫2·2x2x +1+22x +1=0,。

高中数学选修1-1(人教A版)第三章导数及其应用3.3知识点总结含同步练习及答案

高中数学选修1-1(人教A版)第三章导数及其应用3.3知识点总结含同步练习及答案

描述:例题:高中数学选修1-1(人教A版)知识点总结含同步练习题及答案第三章 导数及其应用 3.3 导数在研究函数中的应用一、学习任务1. 了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求不超过三次的多项式函数的单调区间.2. 了解函数的极大(小)值、最大(小)与导数的关系;会求函数的极大(小)值,以及在指定区间上函数的最大(小)值.二、知识清单导数与函数的图象 利用导数研究函数的单调性 利用导数求函数的极值利用导数求函数的最值三、知识讲解1.导数与函数的图象(1)导数 表示函数 在点 处的切线斜率.当切线斜率为正值时,切线的倾斜角小于 ,函数曲线呈上升状态;当切线的斜率为负值时,切线的倾斜角大于 且小于 ,函数曲线呈下降状态.(2)如果在区间 内恒有 ,那么函数 在区间 内是常函数.()f ′x 0y =f (x )(,f ()x 0x 090∘90∘180∘(a ,b )(x )=0f′y =f (x )(a ,b ) 是函数 的导函数, 的图象如图所示,则 的图象最有可能是下列选项中的( )解:C导函数的图象在 轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在 轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由 时导函数图象在 轴的上方,表示在此区间上,原函数图象呈上升趋势,可排除 B、D 选项;由 时导函数图象在 轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除 A 选项.(x )f ′f (x )y =(x )f ′f (x )x x x ∈(−∞,0)x x ∈(0,1)xy=f(x)已知函数 的图象如图所示,则导函数f(x)(a,b)则函数 在开区间答案:解析:3. 已知函数 , 的导函数的图象如下图,那么 , 的图象可能是.A.B .C .D .D 和 都是单调递增的,但 增长的越来越慢, 增长的越来越快,并且在 处, 的切线的斜率应该相等.y =f (x )y =g (x )y =f (x )y =g (x )()f (x )g (x )f (x )g (x )x 0f (x ),g (x)高考不提分,赔付1万元,关注快乐学了解详情。

高一上数学必修一第三章《3.3 函数的应用》知识点梳理

高一上数学必修一第三章《3.3 函数的应用》知识点梳理

高一上必修一第三章《函数》知识点梳理3.3 函数的应用【学习目标】能够运用一次函数、二次函数、分段函数的性质解决某些简单的实际问题.(1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学道理,弄清题中出现的量及其数学含义.(2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题(即建立数学模型),并运用函数的相关性质解决问题。

(3)能处理有民生、经济、物里等方面的实际问题。

【重点】1.通过运用函数的有关知识解决实际生活中的问题,加深对函数概念的理解2.会应用一次函数、二次函数、分段函数模型解决实际问题3.了解数学知识来于生活,又服务于生活.【难点】1、增强运用函数思想理解和处理问题的意识,理解数学建模中将实际问题抽象、转化为数学问题的一般方法。

【典型例题】例1 为了鼓励大家节约用水,自2013年以后,上海市实行了阶梯水价制度,其中每户的综合用水单价与户年用水量的关系如下表所示。

解(1)不难看出,f(x)是一个分段函数,而且:当0<x≤220时,有f(x)=3.45x;当220<x≤300时,有f(x)=220×3.45+(x-220)×4.83=4.83x-303.6;当x>300时,有f(x)=220×3.45+(300-220)×4.83+(x-300)×5.83=5.83x-603.6.因此=3.45x,0<x≤220,f(x)=14.83x-303.6,220<x≤300,=5.83x-603.6,x>300.(2)因为220<260≤300,所以f(260)=4.83×260-303.6=952.2,因此张明一家2015年应缴纳水费952.2元。

由例1可知,可以用分段函数来描述生活中的阶梯水价、阶梯电价等内容.例2 城镇化是国家现代化的重要指标,据有关资料显示,1978-2013年,我国城镇常住人口从1.7亿增加到7.3亿。

高一数学必修一第三章函数的应用知识点总结.docx

高一数学必修一第三章函数的应用知识点总结.docx

第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数y = /(x)(xeD),把使/(x) = 0成立的实数无叫做函数y =f(x)(xeD)的零点。

2、函数零点的意义:函数y = /(x)的零点就是方程/(x) = 0实数根,亦即函数y = /(x)的图象与兀轴交点的横坐标。

即:方程/(%) = 0有实数根o函数y = /(x)的图象与兀轴有交点o函数y = /(x) 有零点.3、函数零点的求法:①(代数法)求方程f(x) = 0的实数根;© (几何法)对于不能用求根公式的方程,可以将它与函数y = /(x)的图象联系起來, 并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数y = kx(k 0)仅有一个零点。

②反比例函数y =-伙H 0)没有零点。

x③一次函数y = 伙工0)仅有一个零点。

④二次函数y = ax2 + bx^- c(a H 0).(1)A> 0 ,方程ax2+bx+c = 0(a^0)有两不等实根,二次函数的图象与兀轴有两个交点,二次函数有两个零点.(2)A=0,方程加+C =0(QH0)有两相等实根,二次函数的图象与兀轴有一个交点,二次函数有一个二重零点或二阶零点.(3)A<0,方程a^+fex+c = 0(dH0)无实根,二次函数的图象与x轴无交点,二次函数无零点.⑤指数函数y = a x(a > 0,且o h 1)没有零点。

⑥对数函数歹=log“ x(a > 0,且a工1)仅有一个零点1.⑦幕函数丁 =屮,当〃>0时,仅有一个零点0,当〃50时,没有零点。

5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把/(兀)转化成/(x) = 0,再把复杂的函数拆分成两个我们常见的函数)[,儿(基本初等函数),这另个函数图像的交点个数就是函数/ (兀)零点的个数。

6、选择题判断区间(a,b)上是否含有零点,只需满足/(a)/(b)<0。

高中数学 第三章 函数的概念与性质 3.4 函数的应用(一)

高中数学  第三章 函数的概念与性质 3.4  函数的应用(一)

3.4函数的应用(一)知识解读•必须会知识点1 常见的几种函数模型1.(2022·安徽亳州高一期中)商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该商店现推出两种优惠方案:①买一个茶壶赠送一个茶杯;②按购买总价的92%付款。

某顾客需购买茶壶4个,茶杯若干个(不少于4个)。

当购买茶杯x个时,付款为y 元,试分别建立两种优惠方案中的y与x之间的函数解析式,并指出如果该顾客需购买茶杯40个,应选择哪种优惠方案。

解析:由优惠方案①,得函数解析式为y1=20×4+5(x-4)=5x+60(x≥4,x∈N*)。

由优惠方案②,得函数解析式为y2=(20×4+5x)×92%=4.6x+73.6(x≥4,x∈N*)。

当该顾客需购买茶杯40个时,采用优惠方案①应付款y1=5×40+60=260(元),采用优惠方案②应付款y2=4.6×40+73.6=257.6(元)。

由于y2<y1,故应选择优惠方案②。

知识点2 用函数模型解决实际问题的方法与步骤2.(2021·山东菏泽23校高一期末联考)为节约能源,倡导绿色环保,某主题公园有60辆电动观光车供租赁使用,管理这些电动观光车的费用是每日120元。

根据经验,若每辆电动观光车的日租金不超过5元,则电动观光车可以全部租出;若超过5元,则每超过1元,租不出的电动观光车就增加2辆。

为了便于结算,每辆电动观光车的日租金x(元)(x只取整数),并且要求出租电动观光车一日的收入必须高于这一日的管理费用,用y(元)表示出租电动观光车的日净收入(即一日出租电动观光车的总收入减去管理费用后的所得)。

(1)求函数y=f(x)的解析式及其定义域;答案:(1)当x≤5时,y=60x-120,令60x-120>0,解得x>2,因为x∈N*,所以3≤x≤5。

当x>5时,y=[60-2(x-5)]x-120=-2x2+70x-120,令-2x2+70x-120>0,有x2-35x+60<0,上述不等式的整数解为2≤x ≤33(x ∈N *),所以5<x ≤33(x ∈N *)。

高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理

高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理

高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。

【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。

一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。

【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。

以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。

医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。

第三章:函数的应用

第三章:函数的应用

第三章:函数的应用考纲要求:1.方程的根和函数的零点:(1)理解函数(结合二次函数)零点的概念 (2)领会函数零点与相应方程根的关系 (3)掌握零点存在的判定条件. 2.用二分法求方程的解:(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解 (2)体会程序化解决问题的思想,为算法的学习作准备 3.函数模型的应用:(1)结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性(2)能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题(3)能够利用给定的函数模型或建立确定性函数模型解决实际问题第一课时;方程的根和函数的零点:(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。

(2)二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。

(3)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。

既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。

【红对勾】高中数学 第三章 函数的应用本章小结课件 新人教版必修1

【红对勾】高中数学 第三章 函数的应用本章小结课件 新人教版必修1

20 km/h,巡逻艇不停地往返于A,B两港口巡逻(巡逻艇掉 头的时间忽略不计).
(3)有,x=0,它来源于2x-1=0;x=-1,它来源于 -x-1=0. (4)规定k的范围是{k|k≤-1}.
【例2】
已知f(x)=1-(x-a)(x-b)(a<b),m,n是f(x) )
的零点,且m<n,则实数a,b,m,n的大小关系是( A.m<a<b<n C.a<m<b<n B.a<m<n<b D.m<a<n<b
确定函数零点的个数有两个基本方法:一是利用图象 研究与x轴的交点个数或转化成两个函数图象的交点个数 定性判断.二是利用零点存在性定理判断,但还需结合函 数的图象和单调性,特别是二重根容易漏掉.
【例1】
x 2 ,x≥0, 设f(x)= -x,x<0.
(1)f(x)有零点吗? (2)设g(x)=f(x)+k,为了使方程g(x)=0有且只有一个 根,k应该怎样限制? (3)当k=-1时,g(x)有零点吗?如果有,把它求出 来,如果没有,请说明理由; (4)你给k规定一个范围,使得方程g(x)=0总有两个 根.
3.二分法的定义:对于在区间[a,b]上连续不断,且 f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在 区间一分为二,使区间的两个端点逐步逼近零点,进而得 到零点近似值的方法叫做二分法.
4.几种不同增长的函数模型. (1)一次函数型模型:y=kx+b(k≠0); (2)二次函数型模型:y=ax2+bx+c(a≠0); (3)指数函数型模型:y=abx+c(a≠0); (4)对数函数型模型:y=mlogax+n(m≠0,且a>0, a≠1,x>0); (5)幂函数型模型:y=axn+b(a≠0).

苏教版高中数学必修一 第三章 章末知识整合(附答案)

苏教版高中数学必修一 第三章 章末知识整合(附答案)

章末知识整合一 指数、对数的基本运算[例1] 计算:(1)⎝ ⎛⎭⎪⎫-780+⎝ ⎛⎭⎪⎫18-13+ 4(3-π)4=________.(2)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.解析:(1)原式=1+813+|3-π|=1+2+π-3=π. (2)因为f (a 2)+f (b 2)=lg a 2+lg b 2=lg a 2b 2, 又f (ab )=lg ab =1,所以lg a 2b 2=2lg ab =2. 答案:(1)π (2)2 规律方法1.指数与指数运算、对数与对数运算是两个重要的知识点,不仅是考查的重要问题类型,也是高考的常考内容.主要考查指数和对数的运算性质,以客观题为主.2.(1)指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为指数运算.(2)对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式进行对数计算、化简.[即时演练] 1.计算:(1)(2014·安徽卷)⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.(2)(2015·浙江卷)2log 23+log 43=________. 解析:(1)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34+log 3⎝ ⎛⎭⎪⎫54×45=⎝ ⎛⎭⎪⎫23-3+log 31=⎝ ⎛⎭⎪⎫323+0=278.(2)原式=2log 23+log 23=2log 2(33)=3 3. 答案:(1)278 (2)3 3二 幂函数的图象与性质[例2] 已知幂函数f (x )=xm 2-2m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随着x 的增大而减小,求满足(a +1)-m2<(3-2a )-m2的a 的取值范围.解:因为函数f (x )在(0,+∞)上的函数值随着x 的增大而减小, 所以m 2-2m -3<0.利用二次函数的图象可得-1<m <3. 又m ∈N *,所以m =1,2. 又函数图象关于y 轴对称, 所以m 2-2m -3为偶数,故m =1. 所以所以有(a +1)-12<(3-2a )-12.又因为y =x -12的定义域为(0,+∞),且在(0,+∞)上是减函数, 所以有⎩⎪⎨⎪⎧a +1>0,3-2a >0,a +1>3-2a ,解得23<a <32.故实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪23<a <32. 规律方法1.幂函数y =x n 的图象,关键是根据n 的取值,确定第一象限的情况,然后再由定义域及奇偶性进一步确定幂函数在其他象限的图象.2.幂函数中的参数问题,要依据题设条件列出指数中参数所含的方程或不等式,求出参数,然后再利用幂函数的图象和相关的性质进行计算检验.[即时演练] 2.已知幂函数f (x )=x (m 2+m )-1(m ∈N *). (1)试确定函数的定义域,并指明该函数的单调性; (2)若该函数的图象经过点(2,2),求函数的解析式. 解:(1)m 2+m =m (m +1),m ∈N *, 而m 与m +1中必有一个为偶数, 所以m (m +1)为偶数.所以函数f (x )=x (m 2+m )-1(m ∈N *)的定义域为[0,+∞),并且在定义域上为增函数.(2)因为函数f (x )经过点(2,2),所以2=2(m 2+m )-1,即212=2(m 2+m )-1. 所以m 2+m =2.解得m =1或m =-2. 又因为m ∈N *,所以m =1.因此函数f (x )=x 12.三 指数函数与对数函数的图象与性质 [例3] 已知函数f (x )=log 12ax -2x -1(a 为常数). (1)若常数a <2且a ≠0,求f (x )的定义域;(2)若f (x )在区间(2,4)上是减函数,求实数a 的取值范围. 解:(1)由题意,ax -2x -1>0,即(x -1)(ax -2)>0.当0<a <2时,2a >1.解不等式得x <1或x >2a .当a <0时,解得2a<x <1.故当a <0时,定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a <x <1;当0<a <2时,定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1或x >2a .(2)令u =ax -2x -1,因为f (x )=log 12u 为减函数,故要使f (x )在(2,4)上是减函数,只需函数u (x )=ax -2x -1=a +a -2x -1, 在(2,4)上单调递增且为正.故由⎩⎨⎧a-2<0,u(2)=2a-22-1≥0,解得1≤a<2.所以实数a的取值范围为[1,2).规律方法1.求解f(x)的定义域,注意a的取值影响,要进行分类讨论.2.第(2)问中,逆用“对数型”复合函数的性质,在脱去对数符号时,其真数一定要大于0,从而u(2)≥0得到关于a的不等式组.[即时演练] 3.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=⎝⎛⎭⎪⎫12x.(1)画出函数f(x)的图象;(2)根据图象写出f(x)的单调区间,并写出函数的值域.解:(1)先作出当x≥0时,f(x)=⎝⎛⎭⎪⎫12x的图象,利用偶函数的图象关于y轴对称,再作出f(x)在x∈(-∞,0)时的图象.(2)函数f(x)的单调递增区间为(-∞,0),单调递减区间为[0,+∞),值域为(0,1].四 函数模型的实际应用[例4] 甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如图甲和图乙所示.甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第六年2万只.乙调查表明:甲鱼池个数由第一年30个减少到第六年10个,请你根据提供的信息说明.图甲 图乙(1)第二年甲鱼池的个数及全县出产甲鱼总数;(2)到第六年这个县的甲鱼养殖业的规模比第一年是扩大了还是缩小了?说明理由;(3)哪一年的规模最大?说明理由.解:(1)由题图可知,直线y 甲=kx +b ,经过(1,1)和(6,2).可求得k =0.2,b =0.8.所以y 甲=0.2(x +4).故第二年甲鱼池的产量为1.2万只.同理可得y 乙=4⎝ ⎛⎭⎪⎫-x +172.故第二年甲鱼池的个数为26个,全县出产甲鱼的总数为26×1.2=31.2(万只).(2)规模缩小,原因是:第一年出产甲鱼总数30万只,而第6年出产甲鱼总数为20万只.(3)设第x 年规模最大,即求y 甲·y 乙=0.2(x +4)·4⎝⎛⎭⎪⎫-x +172=-0.8x 2+3.6x +27.2的最大值.当x =- 3.62×(-0.8)=214≈2时,y 甲·y 乙=-0.8×4+3.6×2+27.2=31.2(万只)最大. 即第二年规模最大,甲鱼产量为31.2万只.[即时演练] 4.某汽车公司曾在2014年初公告:2014年销量目标为39.3万辆;且该公司董事长极力表示有信心完成这个销量目标.已知2011年,某汽车年销量8万辆;2012年,某汽车年销量18万辆;2013年,某汽车年销量30万辆.如果我们分别将2011,2012,2013,2014年定义为第一、第二、第三、第四年,现在有两个函数模型:二次函数型f (x )=ax 2+bx +c (a ≠0),指数函数型g (x )=a ·b x +c (a ≠0,b ≠1,b >0),哪个模型能更好地反映该公司年销量y 与第x 年的关系?解:建立年销量y (万辆)与第x 年的函数,可知函数图象必过点(1,8),(2,18),(3,30).(1)构造二次函数型f (x )=ax 2+bx +c (a ≠0),将点的坐标代入,可得⎩⎪⎨⎪⎧a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得⎩⎪⎨⎪⎧a =1,b =7,c =0.则f (x )=x 2+7x ,故f (4)=44,与计划误差为4.7. (2)构造指数函数型g (x )=a ·b x +c ,将点的坐标代入,可得⎩⎪⎨⎪⎧ab +c =8,ab 2+c =18,ab 3+c =30,解得⎩⎪⎨⎪⎧a =1253,b =65,c =-42.则g (x )=1253×⎝ ⎛⎭⎪⎫65x-42,故g (4)=1253×⎝ ⎛⎭⎪⎫654-42=44.4,与计划误差为5.1.由上可得,f (x )=x 2+7x 模型能更好地反映该公司年销量y (万辆)与第x 年的关系.五 转化与数形结合思想[例5] 当a 为何值时,函数y =7x 2-(a +13)x +a 2-a -2的一个零点在区间(0,1)上,另一个零点在区间(1,2)上?解:已知函数对应的方程为7x 2-(a +13)x +a 2-a -2=0, 函数的大致图象如图所示.根据方程的根与函数的零点的关系,方程的根一个在(0,1)上,另一个在(1,2)上,则:⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧a 2-a -2>0,a 2-2a -8<0,a 2-3a >0,解得⎩⎪⎨⎪⎧a <-1或a >2,-2<a <4,a <0或a >3,所以-2<a <-1或3<a <4. 规律方法1.转化是将数学命题由一种形式转向另一种形式的转换过程;化归是将待解决的问题通过某种转化的过程,归结为一类已解决或比较容易解决的问题.2.在解决函数问题时,常进行数与形或数与数的转化,从而达到解决问题的目的.[即时演练] 5.(2015·湖南卷)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.解析:函数f (x )=|2x -2|-b 有两个零点,等价于函数y =|2x -2|与y =b 的图象有两个不同的交点.在同一坐标系中作出y =|2x -2|与y =b 的图象(如图所示). 由图象知,两图象有2个交点,则0<b <2.答案:{b|0<b<2}。

人教A版必修1第三章“函数的应用”教材分析

人教A版必修1第三章“函数的应用”教材分析

人教A版必修1第三章“函数的应用”教材分析作者:于红燕来源:《读写算·教研版》2016年第07期中图分类号:G632 文献标识码:B 文章编号:1002-7661(2016)07-189-03一、教材功能与地位本章是人教A版必修1第三章函数的应用,前两章已经学习了一些有关基本初等函数的知识,本章对函数知识进行应用,体会函数与方程、数学建模的思想。

函数与方程的思想和函数贯穿于整个高中数学学习的始终,是高中数学的重要思想和支撑高中数学的主干知识。

《普通高中课程标准》提出要发展学生的数学应用意识,而本章第一次提及数学建模,学生通过解决实际问题,感受数学建模的思想方法,认识数学在解决实际问题当中的威力,为今后进一步运用理论解决实际问题打下坚实基础。

二、内容安排本章共4节:1.1方程的根与函数零点,1.2用二分法求方程的近似解,1.3几类不同增长的函数模型,1.4函数模型的应用实例。

本章主要围绕函数的应用展开,首先介绍了函数与方程的关系,方程的根是函数的零点,借助于函数的零点来确定方程的根,这是函数的应用之一。

其次,生产和生活中的许多模型几乎都与基本初等函数有关,本章第二节就专门介绍函数模型及具体的实例。

这样我们学习完前两章的理论知识,对理论知识进行了实际应用。

三、课程目标与学习目标1、课程目标学习知识是为了进一步学习其他知识或运用到现实生活中去,尤其数学的学习,如果只是学习理论知识而不去运用与实践,这就完全违背了数学的初衷。

本章的学习是建立在前两章的基础之上,体会函数在现实生活中的应用,利用已经学习过的基本初等函数理论知识,很好的理解本章内容。

2、学习目标《普通高中数学课程标准》中对本章的要求:(1)结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的联系。

(2)根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

第三章函数的概念与性质 小结与复习(第1课时) 教案-高一上学期数学人教A版必修第一册

第三章函数的概念与性质 小结与复习(第1课时) 教案-高一上学期数学人教A版必修第一册

第三章函数的概念与性质小结与复习教案第1课时一、内容和内容解析1.内容函数的概念、表示和函数单调性的复习课2. 内容解析这是在学生已经学习完本章内容的基础上进行的复习课,复习课一共两节课,这是第一节复习课.在这一章中,学生从用变量之间依赖关系描述函数上升到用集合语言和对应关系刻画函数,建立了完整的函数概念,并体会集合语言和对应关系在刻画函数概念中的作用.这是一个难点,因此在复习的过程中还要巩固.除此之外,还要了解构成函数的要素,能求简单函数的定义域,能根据实际的情况用不同的函数表示方法表示函数,了解简单的分段函数,并能简单应用.同样地,在研究函数单调性的过程中,能够使用符号化的语言来描述,这是学生学习这部分内容时的一个难点. 这样一种从形象直观到定性刻画再到定量刻画的研究过程,以及通过引入数学符号、借助代数语言精确刻画刻画定量变化规律的方法,体现了数学抽象的一般过程,对于培养学生的数学抽象能力具有重要意义.基于以上分析,确定教学重点:复习建立在集合与对应关系的函数概念以及函数单调性的符号语言刻画和单调性的应用.二、目标和目标解析1.目标(1)理解函数的概念和表示方法,并能应用函数的概念解决一些问题;(2)掌握函数单调性的概念,会用符号语言表达单调性、最值,理解它们的作用和实际意义;(3)能用定义证明简单函数的单调性;(4)能运用所学的知识解决一些数学问题和实际问题.2.目标解析达成上述目标的标志是:(1)能用集合间的对应关系的观点定义函数,能根据实际的问题表示函数;(2)知道用符号语言刻画函数单调性时,“任意”“都有”等关键词的含义;能够从函数图象,或通过代数推理,得出函数的单调递增、单调递减区间;知道函数的单调性反映了现实世界中事物在量的增加或减小上的变化趋势.(3)会用函数单调性的定义,按一定的步骤证明函数的单调性;(4)会用函数最大值、最小值的定义,按一定的步骤求函数的最大(小)值.三、教学问题诊断分析学生已经学习了相关的知识,在这节复习课上,要巩固前面学习的相关内容,让学生进一步体会用数学的语言和符号化的方式表达数学概念,表达函数的概念、函数的性质等.作为复习课,在教学的过程中也要充分利用信息技术展示函数的对应关系、函数的单调变化规律、函数的最值等,也可以用表格形式加强自变量从小到大时函数值的大小变化趋势等,数形结合地提出问题,给学生设置一条从定性到定量、从粗糙到精确的归纳过程,引导学生逐步抽象出函数单调性的定义,再通过辨析、练习帮助学生理解定义.另外,在教学的过程中,还要有一定的习题,让学生通过习题,自己体会函数的概念和函数的性质等,通过习题,体会这些概念和性质的应用,并体会一些内容的综合运用.根据以上分析,确定教学难点是:符号化的语言表述,对量词的使用和运用函数的单调性解决问题.四、教学支持条件分析为使学生更好地理解形式化定义,降低归纳定义过程中的难度,可利用计算工具,采用动态方式展现函数图象、展示变化规律等.五、教学过程设计(一)引入问题1:初中函数概念和高中函数概念的区别是什么?(1)请说出初中函数的定义;(2)请说出高中函数的定义;(3)辨析这两者有什么不同.师生活动:教师提出问题,前2个问题学生自主回答,第3个问题由学生之间讨论、分析并总结.设计意图:让学生复习函数的概念,并通过对比初中和高中的概念区别,进一步体会函数是建立在集合间的对应关系.(二)函数的概念和表示法的巩固师生活动:学生先独立思考,计算,黑板板书(或者利用信息技术将学生的书写过程展示).设计意图:让学生体会在一个熟知的二次函数中,利用单调性解决数学问题.(四)课堂小结问题11:回答下列问题(1)在解决有关函数概念的问题,以及利用函数的概念解决其他问题的时候,有什么需要特别注意的问题吗?(2)在处理函数单调性的问题时,有什么需要注意的吗?师生活动:学生先独立思考,然后讨论,发表观点,教师进行归纳.设计意图:让学生进一步体会和注意,处理有关函数问题的时候,需要注意的问题.六、目标检测设计设计意图:本题通过绘制函数图象,能够观察出(也可以严格的证明)它是一个增函数,因此将f(2-a2)>f(a)转化为1-a2>a,解二次不等式得到结果. 这道题目将分段函数,函数的图象,函数的单调性充分综合,是检测学生综合运用本章知识分析和解决问题的能力.。

高中数学 第三章 函数的应用章末整合提升课时作业(含解析)新人教A版必修1-新人教A版高一必修1数学

高中数学 第三章 函数的应用章末整合提升课时作业(含解析)新人教A版必修1-新人教A版高一必修1数学

第三章 函数的应用章末整合提升A 级 基础巩固一、选择题1.函数f (x )=x 2-3x -4的零点是( D ) A .(1,-4) B .(4,-1) C .1,-4D .4,-1[解析] 由x 2-3x -4=0,得x 1=4,x 2=-1.2.在用二分法求函数f (x )在区间(a ,b )上的唯一零点x 0的过程中,取区间(a ,b )上的中点c =a +b2,若f (c )=0,则函数f (x )在区间(a ,b )上的唯一零点x 0( D )A .在区间(a ,c )内B .在区间(c ,b )内C .在区间(a ,c )或(c ,b )内D .等于a +b2[解析] 根据二分法求方程的近似解的方法和步骤,函数f (x )在区间(a ,b )上的唯一零点,x 0=a +b2,故选D .3.某工厂2018年生产某种产品2万件,计划从2019年开始每年比上一年增产20%,那么这家工厂生产这种产品的年产量从哪一年开始超过12万件?( C )A .2026年B .2027年C .2028年D .2029年[解析] 设经过x 年这种产品的年产量开始超过12万件,则2(1+20%)x>12,即1.2x>6,∴x >lg6lg1.2≈9.8,取x =10,故选C .4.(2019·某某某某市高一期末测试)函数f (x )=2x+x -4,则f (x )的零点所在的大致区间是( B )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)[解析]f (0)=20-4=-3<0,f (1)=2+1-4=-1<0, f (2)=22+2-4=2>0,∴f (1)·f (2)<0,故选B .5.向高为H 的水瓶中注水,若注满为止,注水量V 与水深h 的函数关系图象如图所示,那么水瓶的形状是( B )[解析] 解法一:很明显,从V 与h 的函数图象看,V 从0开始后,随h 的增大而增大且增速越来越慢,因而应是底大口小的容器,即应选B .解法二:取特殊值h =H 2,可以看出C ,D 图中的水瓶的容量恰好是V2,A 图中的水瓶的容量小于V2,不符合上述分析,排除A ,C ,D ,应选B .解法三:取模型函数为y =kx 13(k >0),立即可排除A ,C ,D ,故选B .6.用长度为24 m 的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( A )A .3 mB .4 mC .5 mD .6 m[解析] 设隔墙的长度为x m ,即矩形的宽为x m ,则矩形的长为24-4x 2m(0<x <6),∴矩形的面积S =x ·24-4x 2=x (12-2x )=-2x 2+12x =-2(x -3)2+18,∴当x =3时,S max =18.∴当隔墙的长度为3 m 时,矩形的面积最大,最大为18 m 2. 二、填空题7.设函数f (x )=⎩⎪⎨⎪⎧12x -7x <0x x ≥0,f (a )<1,则实数a 的取值X 围是__(-3,1)__.[解析] 当a <0时,(12)a -7<1,即2-a <23,∴a >-3,∴-3<a <0;当a ≥0时,a <1, ∴0≤a <1.综上可知-3<a <1.故实数a 的取值X 围是(-3,1).8.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要清洗的次数是__4__(lg2≈0.301 0).[解析] 设至少要洗x 次,则(1-34)x ≤1100,∴x ≥1lg2≈3.322,所以需4次.三、解答题9.某旅行团去风景区旅游,若每团人数不超过30人,飞机票每X 收费900元;若每团人数多于30人,则给予优惠,每多1人,机票每X 减少10元,直至每X 降为450元为止.某团乘飞机,旅行社需付给航空公司包机费15 000元.假设一个旅行团不能超过70人.(1)写出每X 飞机票的价格关于人数的函数关系式; (2)每团人数为多少时,旅行社可获得最大利润? [解析] (1)设旅行团的人数为x ,机票价格为y ,则:y =⎩⎪⎨⎪⎧9001≤x ≤30900-x -30·1030<x ≤70,即y =⎩⎪⎨⎪⎧9001≤x ≤301 200-10x 30<x ≤70.(2)设旅行社可获得利润为Q ,则Q =⎩⎪⎨⎪⎧900x -15 0001≤x ≤3012 000-10x x -15 00030<x ≤70,即Q =⎩⎪⎨⎪⎧900x -15 0001≤x ≤30-10x 2+1 200x -15 00030<x ≤70.当x ∈[1,30]时,Q max =900×30-15 000=12 000(元), 当x ∈(30,70]时,Q =-10(x -60)2+21 000, 所以当x =60时,Q max =21 000(元),所以当每团人数为60时,旅行社可获得最大利润21 000元.B 级 素养提升一、选择题1.方程4x=4-x 的根所在区间是( B )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)[解析] 由4x=4-x ,得4x+x -4=0,令f (x )=4x+x -4, ∴方程4x=4-x 的根即为函数,f (x )=4x+x -4的零点,f (-1)=4-1-1-4=-194<0,f (0)=40-4=1-4=-3<0, f (1)=4+1-4=1>0,f (2)=42+2-4=14>0, f (3)=43+3-4=63>0,∴f (0)·f (1)<0,故选B .2.一水池有两个进水口,一个出水口,每个进水口的进水速度如图甲所示,出水口的出水速度如图乙所示,某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的是( A )A .①B .①②C .①③D .①②③[解析] 由甲、乙两图可知进水速度为1,出水速度为2,结合丙图中直线的斜率,只进水不出水时,蓄水量增加速度是2,故①正确;不进水只出水时,蓄水量减少速度是2,故②不正确;两个进水一个出水时,蓄水量减少速度也是0,故③不正确.3.四人赛跑,假设他们跑过的路程f i (x )(i ∈{1,2,3,4})和时间x (x >1)的函数关系式分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( D )A .f 1(x )=x 2B .f 2(x )=4xC .f 3(x )=log 2xD .f 4(x )=2x[解析] 显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f 4(x )=2x,故选D .4.中国共产党第十八届中央委员会第五次全体会议认为,至2020年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到2020年国内生产总值和城乡居民人均收入比2010年翻一番,产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从2011年起,城乡居民人均收入每年比上一年都增长p %.下面给出了依据“至2020年城乡居民人均收入比2010年翻一番”列出的关于p 的四个关系式:①(1+p %)×10=2;②(1+p %)10=2; ③lg(1+p %)=2;④1+10×p %=2. 其中正确的是( B ) A .① B .② C .③D .④[解析] 设从2011年起,城乡居民人均收入每一年比上一年都增长p %,由题意,得(1+p %)10=2,故选B .二、填空题5.函数f (x )=x 2-3x +2a 有两个不同的零点,则a 的取值X 围是__(-∞,98)__.[解析] 令x 2-3x +2a =0,由题意得Δ=9-8a >0, ∴a <98.6.某地野生薇甘菊的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生薇甘菊的面积就会超过30 m 2;③设野生薇甘菊蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3,则有t 1+t 2=t 3; ④野生薇甘菊在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有__①②③__(请把正确说法的序号都填在横线上). [解析]∵其关系为指数函数,图象过点(4,16),∴指数函数的底数为2,故①正确; 当t =5时,S =32>30,故②正确; ∵t 1=1,t 2=log 23,t 3=log 26, ∴t 1+t 2=t 3,故③正确;根据图象的变化快慢不同知④不正确,综上可知①②③正确. 三、解答题7.已知关于x 的二次方程x 2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值X 围.[解析] 由题意知,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,可以画出示意图(如图所示),观察图象可得⎩⎪⎨⎪⎧f0=2m +1<0f-1=2>0f1=4m +2<0f2=6m +5>0,解得-56<m <-12.所以m 的取值X 围是(-56,-12).8.我们知道,燕子每年秋天都要从北方飞向南方过冬.研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算,当燕子静止时的耗氧量是多少单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?[解析] (1)由题意可知,当燕子静止时,它的速度v =0,∴5log 2Q 10=0,∴log 2Q10=0,∴Q10=1,∴Q =10.∴当燕子静止时的耗氧量是10个单位.(2)由题意可知,当一只燕子的耗氧量是80个单位时,它的飞行速度v =5log 28010=5log 28=5×3=15.∴它的飞行速度是15 m/s.9.牧场中羊群的最大畜养量为m 只,为保证羊群的生长空间,实际畜养量不能达到最大畜养量,必须留出适当的空闲量.已知羊群的年增长量y 只和实际畜养量x 只与空闲率的乘积成正比,比例系数为k (k >0).(1)写出y 关于x 的函数解析式,并指出这个函数的定义域; (2)求羊群年增长量的最大值;(3)当羊群的年增长量达到最大值时,求k 的取值X 围.[解析] (1)根据题意,由于最大畜养量为m 只,实际畜养量为x 只,则畜养率为x m,故空闲率为1-x m ,由此可得y =kx (1-x m)(0<x <m ).(2)y =kx (1-x m )=-km (x 2-mx )=-k m (x -m2)2+km4,∵0<x <m ,∴当x =m 2时,y 取得最大值km4. (3)由题意知为给羊群留有一定的生长空间,则有实际畜养量与年增长量的和小于最大畜养量,即0<x +y <m .因为当x =m 2时,y max =km 4,所以0<m 2+km4<m , 解得-2<k <2.又因为k >0,所以0<k <2.。

2016学年度高一必修一数学第三章函数的应用知识点

2016学年度高一必修一数学第三章函数的应用知识点

2016学年度高一必修一数学第三章函数的应
用知识点
数学是学习和研究现代科学技术必不可少的基本工具。

以下是查字典数学网为大家整理的高一必修一数学第三章函数的应用知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:求函数的零点:1 (代数法)求方程的实数根;2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:二次函
数.1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.最后,希望小编整理的高一
必修一数学第三章函数的应用知识点对您有所帮助,祝同学们学习进步。

第三章 导数及其应用3-2利用导数研究函数的性质

第三章  导数及其应用3-2利用导数研究函数的性质

6 (1)若 Δ=12-8a =0,即 a=± . 2
2

a x∈-∞,3或
a x∈3,+∞时,f
′(x)>0,
此时 f(x)在(-∞,+∞)为增函数. 6 所以 a=± 满足. 2
(2)若 Δ=12-8a2<0,恒有 f ′(x)>0,f(x)在(-∞,+ 3 ∞)上为增函数.所以 a > , 2

(理)(2010·广东省东莞市模拟)已知函数f(x) 的导函数f ′(x)的图象如图所示,那么函数f(x) 的图象最有可能的是( )


解析:由图可知,当x>0时,f ′(x)<0,∴函 数f(x)的图象在(0,+∞)上是单调递减的; 当x<-2时,f ′(x)<0,∴函数f(x)的图象在 (-∞,-2)上也是单调递减的,所以只有A 符合,故选A. 答案:A

重点难点 重点:1.用导数判定函数单调性的方法 2.函数极值的概念及求法、函数的最值 难点:导函数的图象与函数单调性的关系


知识归纳 1.函数的单调性 (1)设函数y=f(x)在区间(a,b)内可导,如果 f ′(x)>0,则f(x)在区间(a,b)内为增函数; 如果f ′(x)<0,则f(x)在区间(a,b)内为减函 数. (2)①如果在某个区间内恒有f ′(x)=0,则f(x) 等于常数.

答案:3

[例3] 函数f(x)的导函数y=f ′(x)的图象如下 图所示,则y=f(x)的图象最有可能的是 ( )



分析:由导函数f ′(x)的图象位于x轴上方(下 方),确定f(x)的单调性,对比f(x)的图象, 用排除法求解. 解析:由f ′(x)的图象知,x∈(-∞,0)时,f ′(x)>0,f(x)为增函数,x∈(0,2)时,f ′(x)<0, f(x)为减函数,x∈(2,+∞)时,f ′(x)>0,f(x) 为增函数. 只有C符合题意,故选C. 答案:C

函数的应用知识点总结

函数的应用知识点总结

函数的应用知识点总结函数的应用知识点总结函数的应用类型问题一直是期末数学重要题型之一,那一起来看看函数的应用的知识点吧,下面是小编为大家收集整理的函数的应用知识点总结,欢迎阅读。

函数的应用知识点总结:函数图象的判断与应用1.图象的变换(1)平移变换①y=f(x±a) (a>0)的图象,可由y=f(x)的图象沿x轴方向向左(+a)或向右(-a)平移 a个单位得到;②y=f(x)±b (b>0)的图象,可由y=f(x)的图象沿y轴方向向上(+b)或向下(-b)平移 b个单位得到。

(2)对称变换①y=f(-x)与y=f(x)的图象关于y轴对称;②y=-f(x)与y=f(x)的图象关于x轴对称;③y=-f(-x)与y=f(x)的图象关于原点对称。

(3)伸缩变换①y=kf(x) (k>0)的图象,可由y=f(x)的图象上每一个点的纵坐标伸长(k>1)或缩短(0<k<1)为原来的k倍而得到;②y=f(kx) (k>0)的图象,可由y=f(x)的图象上每一个点的横坐标伸长(0<k<1)或缩短(k>1)为原来的1/k 而得到。

(4)翻折变换①要得到y=|f(x)|的图象,可先画出y=f(x)的图象,然后“上不动,下翻上”即可得到;②由于y=f(|x|)是偶函数,要得到y=f(|x|)的图象,可先画出y=f(x)的图象,然后“右不动,左去掉,右翻左”即可得到。

2.利用函数的性质确定函数图象的一般步骤(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性等)和图象上的特殊点线(如渐近线、对称轴等);(4)利用基本函数的图象确定所给函数的图象。

二、函数零点1.函数零点的等价关系2.零点存在性定理【注意】零点存在性定理只能判断函数在某区间上是否存在零点,并不能判断零点的个数,但如果函数在区间上是单调函数,则该函数在区间上至多有一个零点。

第三章 一元函数的导数及其应用-专题突破7 导数的综合应用

第三章 一元函数的导数及其应用-专题突破7 导数的综合应用
当 < 0时,′ > 0;当 > 0时,′ < 0.
所以函数 在 −∞, 0 上单调递增,在 0, +∞ 上单调递减.所以当 = 0时, 有最
大值 0 = − 1.
当 < 1时, 0 = − 1 < 0,函数 无零点.
返回至目录
当 = 1时, 0 = − 1 = 0,函数 有1个零点.
式的值的方法,称为洛必达法则.需要说明的是,洛必达法则在解答题中直接使用一
般至少会扣步骤分,属于考场中时间紧迫时的一种抢分技巧.
返回至目录
1.设函数 = e − 1 − − 2 .当 ≥ 0时, ≥ 0恒成立,求实数的取值范围.
解:当 = 0时, = 0.
当 > 0时, ≥ 0等价于 ≤
恒成立,即ln >
1
3
− 2 − − 4 恒成立,
4

即− < 3ln + + 在 0, +∞ 上恒成立.
令ℎ = 3ln + +
4
,则ℎ′

=
+4 −1
2

令ℎ′ < 0,得0 < < 1,令ℎ′ > 0,得 > 1.
则ℎ 在 0,1 上单调递减,在 1, +∞ 上单调递增.

则′
令ℎ
e −−1
=
>0 ,
2
e −2e ++2
=
.
3
= e − 2e + + 2
e −−1
.
2
> 0 ,则ℎ′ = e − e + 1.

第三章 一元函数的导数及其应用-专题突破5 三次函数的图象与性质

第三章 一元函数的导数及其应用-专题突破5 三次函数的图象与性质
′ 的极值点,同时也是″ 的零点.
返回至目录
变式2 已知函数 = 3 + 3 2 + 的图象上存在一定点满足:若过点的直线与曲
2
线交于不同于的两点 1 , 1 , 2 , 2 ,则1 + 2 等于定值.该定值为___.
解:当点是图象的对称中心时,1 + 2 为定值.
−24.
当 = −1时,函数 取得极大值,为 −1 = −1
3
− 3 × −1
2
− 9 × −1 + 3 52 − 9 × 5 + 3 = 8,所以函数 的最大值为 5 = −1 = 8.
作函数 在[−2,5]上的大致图象如图所示.
例3 已知函数 = 3 − 3 2 − 9 + 3,若函数 = − 在[−2,5]上有3个零
点,则的取值范围为 (
A. −24,8
)
B.(−24,1]
C.[1,8]
D.[1,8)

返回至目录
解:′ = 3 2 − 6 − 9 = 3 − 3 + 1 ,令′ = 0,解得 = −1或 = 3.
则 的图象关于“拐点” 1,2 对称.
一般地,三次函数 =
3
+
2
+ + ≠ 0

的“拐点”是(− ,
3


3
),它
就是 图象的对称中心(或者:任何一个三次函数都有拐点;任何一个三次函数都
有对称中心;任何一个三次函数平移后可以是奇函数).
返回至目录
【点拨】三次函数 的图象一定是中心对称图形,对称中心横坐标即其导函数
有三个不同的零点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正零点(精确度为 0.01). 解:由于 f(1)=-2<0,f(2)=5>0, 因此区间[1,2]作为计算的初始区间,用二分 法逐次计算,如下表:
端点(中点)坐标
1 2
x1=
=1.5
2
11.5
x2=
=1.25
2
1.25 1.5
x3=
=1.375
2
1.375 1.5
x4=
=1.4375
2
1.4375 1.5
(2)P(x)=-20
x
125 2
2
+74125,
当 x=62 或 63 时,P(x)max=74120(元).
因为 MP(x)=2480-40x 是减函数, 所以当 x=1 时,MP(x)max=2440(元). ∴利润函数 P(x)与边际利润函数 MP(x)没有 相同的最大值.
(3)边际利润函数 MP(x)当 x=1 时取得最大 值,说明生产第二台与生产第一台的利润差 最大,即第二台报警系统利润最大.MP(x)是 减函数,说明随着产量的增加,每台利润与 前一台利润相比在减小.
1 4
,
1 2
(D)
1 2
,3 4
解析:∵
f
1 2
=
e
1 2
+4×
1 2
-3=
e -1>0,
f
1 4
1
=e4
1
+1-3= e 4
-2<0,
∴f(x)=ex+4x-3
的零点所在的区间为
1 4
,
1 2
.
故选 C.
点击进入检测试题 点击进入综合检测
初始区间的选定既要保证所选 区间符合函数零点存在的条件,又要使区间长 度尽量小,并且最好选在两整数之间.
函数模型及应用
【例 3】 在经济学中,函数 f(x)的边际函数
Mf(x)定义为 Mf(x)=f(x+1)-f(x). 某公司每月最多生产 100 台报警系统装置,生 产 x 台(x>0)的收入函数为 R(x)=3000x-20x2(单位:元),其成本函数为 C(x)=500x+4000(单位:元),利润是收入与成 本之差.

网络建构



专题归纳
高考体验
函数的零点与方程的根的关系
及应用
【例
1】
设函数
f(x)=
2x
x
2
2, x 1, ,
2x, x ,1
,

1
函数 y=f(x)- 的零点.
4
1
解:求函数 y=f(x)- 的零点,
4
1
即求方程 f(x)- =0 的根.
4
1
9
当 x≥1 时,2x-2- =0 得 x= .
4
8
当 x<1 时,
由 x2-2x- 1 =0 得 x= 2
5 2
或 x=
5
.
4
2
2
2 5
2 5
∵x<1,∴x=
舍去,∴x=
.
2
2
1
9 2 5
∴函数 y=f(x)- 的零点是 x= ,x=
.
4
8
2
求分段函数的零点,需检验方程 的根是否符合条件.
用二分法求函数的零点
或方程的近似解
【例 2】 用二分法求函数 f(x)=x3-3 的一个
数形结合是解决函数零点问题 的常用的思想方法,数与形结合起来使问题 一目了然,但作图一定要准确,否则容易因图 不准而影响判断.
1.(2012
年高考北京卷)函数
f(x)=
1
x2
-
1 2
x
的零点个数为( B ) (A)0 (B)1 (C)2 (D)3
1
解析:函数 f(x)= x 2 -
1 2
=3000x-20x2-(500x+4000) =-20x2+2500x-4000, MP(x)=P(x+1)-P(x)=-20(x+1)2+2500(x+1) -4000-(-20x2+2500x-4000)=2480-40x. ∴P(x)=-20x2+2500x-4000,MP(x)=-40x+2480.
x5=
=1.46875
2
1.4375 1.46875
x6=
=1.453125
2
1.4375 1.453125
x7=
x7=1.4453125
2
计算中点函数值 f(1)=-2<0 f(2)=5>0
f(x1)=0.375>0
f(x2)≈-1.047<0
f(x3)≈-0.400<0
f(x4)≈-0.0295<0
f(x5)≈0.1684>0
f(x6)≈0.0684>0
f(x7)≈0.0191>0
取值区间 [1,2]
[1,1.5] [1.25,1.5] [1.375,1.5] [1.4375,1.5] [1.4375,1.46875] [1.4375,1.453125] [1.4375,1.4453125]
因为 1.4453125-1.4375=0Байду номын сангаас0078125<0.01, 所以 1.4375 为函数的一个近似解.
(1)求利润函数 P(x)及边际利润函数 MP(x); (2)利润函数 P(x)与边际利润函数 MP(x)是否 具有相同的最大值? (3)你认为本题中边际利润函数 MP(x)取得最 大值的实际意义是什么? 名师导引:准确把握和理解“边际函数”这一 新定义是解答本题的关键.
解:由题意知,x∈[1,100],且 x∈N, (1)P(x)=R(x)-C(x)

.
名师导引:函数 y=f(x)-m 有 3 个不同零点即函 数 y=f(x)与 y=m 的图象有 3 个交点,画出图象 可求得 m 的取值范围. 解析:在平面直角坐标系中画出函数 f(x)的图 象(如图所示),
函数 y=f(x)-m 有 3 个不同的零点, 即函数 f(x)的图象与直线 y=m 有三个不同的交 点,由图知有 0<m<1. 答案:(0,1)
函数模型的应用实例主要包含 三个方面:(1)利用给定的函数模型解决实际 问题;(2)建立确定性函数模型解决问题; (3)建立拟合函数模型解决实际问题.
数形结合思想
【例 4】 (2012 山东济宁一模)已知函数
2x 1, x 0
f(x)=
x
2
2x,
x
0
,若函数
y=f(x)-m
有 3 个不同的零点,则实数 m 的取值范围
x
的零点个数,也就是函

y=
x
1 2

y=
1 2
x
的图象的交点个数.在同一坐
标系中作出两个函数的图象,可得交点个数为 1.故 选 B.
2.(2011 年高考新课标全国卷)在下列区间中,函 数 f(x)=ex+4x-3 的零点所在的区间为( C )
(A)
1 4
,
0
(B)
0,
1 4
(C)
相关文档
最新文档