高三文科数学解析几何专题(附答案)
高考数学《解析几何》专项训练及答案解析
高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
高三数学总复习专题10 解析几何(答案及解析)
高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。
高考数学分类练习 H单元 解析几何(文科)含答案4
H 解析几何H1 直线的倾斜角与斜率、直线的方程22.H1、H2、H7 如图1-6,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值.图1-622.解:(1)由题意知⎩⎪⎨⎪⎧2pt =1,1+p 2=54,得⎩⎪⎨⎪⎧p =12,t =1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ),由题意知,设直线AB 的斜率为k (k ≠0).由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2. 故k ·2m =1.所以直线AB 方程为y -m =12m(x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m . 从而|AB |=1+1k2·|y 1-y 2|=1+4m 2·4m -4m 2.设点P 到直线AB 的距离为d ,则 d =|1-2m +2m 2|1+4m 2. 设△ABP 的面积为S ,则S =12|AB |·d =|1-2(m -m 2)|·m -m 2.由Δ=4m -4m 2>0,得0<m <1. 令u =m -m 2,0<u ≤12,则S =u (1-2u 2),设S (u )=u (1-2u 2),0<u ≤12,则S ′(u )=1-6u 2.由S ′(u )=0得u =66∈⎝ ⎛⎭⎪⎫0,12,所以 S (u )max =S ⎝⎛⎭⎪⎫66=69. 故△ABP 面积的最大值为69.17.H1、H7 定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.17. 94本题在新定义背景下考查直线、圆和抛物线的方程,一、二次曲线之间的位置关系与导数几何意义等基础知识,考查学生综合运用知识的能力和学情,考查函数方程和数形结合的数学思想.求出曲线C 1到直线l 的距离和曲线C 2到直线l 的距离,建立等式,求出参数a的值. 曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离为圆心到直线的距离与圆的半径之差,即d -r =|-4|2-2=2,由y =x 2+a 可得y ′=2x ,令y ′=2x =1,则x =12,在曲线C 1上对应的点P ⎝ ⎛⎭⎪⎫12,14+a ,所以曲线C 1到直线l 的距离即为点P ⎝ ⎛⎭⎪⎫12,14+a 到直线l 的距离,故⎪⎪⎪⎪⎪⎪12-14-a 2=⎪⎪⎪⎪⎪⎪14-a 2,所以⎪⎪⎪⎪⎪⎪14-a 2=2,可得⎪⎪⎪⎪⎪⎪a -14=2,a =-74或a =94,当a =-74时,曲线C 1:y =x 2-74与直线l :y =x 相交,两者距离为0,不合题意,故a =94.4.H1、F1 若d =(2,1)是直线l 的一个方向向量,则l 的倾斜角的大小为________(结果用反三角函数值表示).4.arctan 12 考查直线的方向向量、斜率与倾斜角三者之间的关系,关键是求出直线的斜率.由已知可得直线的斜率k =12,k =tan α,所以直线的倾斜角α=arctan 12.20.H5、F1、H1 已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.20.解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x 24=1.(2)解法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k2,又由OB →=2OA →得x 2B =4x 2A ,即164+k 2=161+4k 2,解得k =±1,故直线AB 的方程为y =x 或y =-x . 解法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,由OB →=2OA →得x 2B =161+4k 2,y 2B =16k 21+4k 2,将x 2B ,y 2B 代入y 216+x 24=1中,得4+k21+4k2=1,即4+k 2=1+4k 2,解得k =±1, 故直线AB 的方程为y =x 或y =-x .H2 两直线的位置关系与点到直线的距离22.H1、H2、H7 如图1-6,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值.图1-622.解:(1)由题意知⎩⎪⎨⎪⎧2pt =1,1+p 2=54,得⎩⎪⎨⎪⎧p =12,t =1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ),由题意知,设直线AB 的斜率为k (k ≠0).由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2. 故k ·2m =1.所以直线AB 方程为y -m =12m(x -m ), 即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m . 从而|AB |=1+1k2·|y 1-y 2|=1+4m 2·4m -4m 2.设点P 到直线AB 的距离为d ,则 d =|1-2m +2m 2|1+4m 2. 设△ABP 的面积为S ,则S =12|AB |·d =|1-2(m -m 2)|·m -m 2.由Δ=4m -4m 2>0,得0<m <1. 令u =m -m 2,0<u ≤12,则S =u (1-2u 2),设S (u )=u (1-2u 2),0<u ≤12,则S ′(u )=1-6u 2.由S ′(u )=0得u =66∈⎝ ⎛⎭⎪⎫0,12,所以S (u )max =S ⎝⎛⎭⎪⎫66=69. 故△ABP 面积的最大值为69.H3 圆的方程20.H3、H7、H8 设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径|FA |=2p . 由抛物线定义可知A 到l 的距离d =|FA |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =-2(舍去),p =2. 所以F (0,1),圆F 的方程为x 2+(y -1)2=8.(2)因为A ,B ,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知 |AD |=|FA |=12|AB |,所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0.解得b =-p6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为-33时,由图形对称性可知,坐标原点到m ,n 距离的比值为3.21.H3、H7、H8 如图1-4所示,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.图1-4(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q ,证明以PQ 为直径的圆恒过y 轴上某定点.21.解:解法一:(1)依题意,|OB |=83,∠BOy =30°. 设B (x ,y ),则x =|OB |sin30°=43,y =|OB |cos30°=12. 因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y . (2)由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q ⎝ ⎛⎭⎪⎫x 20-42x 0,-1.假设以PQ 为直径的圆恒过定点M ,由图形的对称性知M 必在y 轴上,设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1. 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0.即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 解法二: (1)同解法一.(2)由(1)知y =14x 2,y ′=12x ,设P (x 0,y 0),则x 0≠0,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1,所以Q ⎝ ⎛⎭⎪⎫x 20-42x 0,-1.取x 0=2,此时P (2,1),Q (0,-1),以PQ 为直径的圆为(x -1)2+y 2=2,交y 轴于点M 1(0,1)或M 2(0,-1);取x 0=1,此时P ⎝⎛⎭⎪⎫1,14,Q ⎝⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于M 3(0,1)或M 4⎝⎛⎭⎪⎫0,-74. 故若满足条件的点M 存在,只能是M (0,1). 以下证明点M (0,1)就是所要求的点. 因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M .21.H3、H5、H8 设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.21.解:(1)如图(1),设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1), 可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为A 点在单位圆上运动,所以x 20+y 20=1.②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).(2)方法1:如图(2)、(3),对任意k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1),直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得(m 2+4k 2)x 2+4k 2x 1x +k 2x 21-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得 -x 1+x 2=-4k 2x 1m 2+4k 2,即x 2=m 2x 1m 2+4k 2. 因为点H 在直线QN 上, 所以y 2-kx 1=2kx 2=2km 2x 1m 2+4k 2.于是PQ →=(-2x 1,-2kx 1),PH →=(x 2-x 1,y 2-kx 1)=⎝ ⎛⎭⎪⎫-4k 2x 1m 2+4k 2,2km 2x 1m 2+4k 2.而PQ ⊥PH 等价于PQ →·PH →=42-m 2k 2x 21m 2+4k 2=0,即2-m 2=0,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0都有PQ ⊥PH .方法2:如图(2)、(3),对任意x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (-x 1,-y 1),N (0,y 1),因为P ,H 两点在椭圆C 上,所以⎩⎪⎨⎪⎧m 2x 21+y 21=m 2,m 2x 22+y 22=m 2,两式相减可得m 2(x 21-x 22)+(y 21-y 22)=0.③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故(x 1-x 2)(x 1+x 2)≠0.于是由③式可得y 1-y 2y 1+y 2x 1-x 2x 1+x 2=-m 2.④又Q ,N ,H 三点共线,所以k QN =k QH ,即2y 1x 1=y 1+y 2x 1+x 2.于是由④式可得k PQ ·k PH =y 1x 1·y 1-y 2x 1-x 2=12·y 1-y 2y 1+y 2x 1-x 2x 1+x 2=-m 22,而PQ ⊥PH 等价于k PQ ·k PH =-1,即-m 22=-1,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .H4 直线与圆、圆与圆的位置关系6.H4 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能6.A 本小题主要考查直线与圆的位置关系,解题的突破口为熟练掌握判断直线与圆位置关系的方法.x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆内,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.7.H4 将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=07.C 本小题主要考查直线与圆的位置关系.解题的突破口为弄清平分线的实质是过圆心的直线,即圆心符合直线方程.圆的标准方程为(x -1)2+(y -2)2=4,所以圆心为(1,2),把点(1,2)代人A 、B 、C 、D ,不难得出选项C 符合要求.5.H4 过点P (1,1)的直线,将圆形区域{}x ,y |x 2+y 2≤4分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=05.A 要使直线将圆形区域分成两部分的面积之差最大,通过观察图形,显然只需该直线与直线OP 垂直即可,又已知P (1,1),则所求直线的斜率为-1,又该直线过点P (1,1),易求得该直线的方程为x +y -2=0.故选A.8.H4 在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .3 3B .2 3 C. 3 D .18.B 考查直线与圆相交求弦长,突破口是“弦心距、半径、弦长之半构成直角三角形”,利用勾股定理计算.由点到直线的距离得,弦心距d =|5|32+42=1,所以弦长AB =222-1=23,所以选择B.9.H4 直线y =x 被圆x 2+(y -2)2=4截得的弦长为________.9.2 2 本题考查直线和圆的位置关系、考查简单的平面几何知识.法一:几何法:圆心到直线的距离为d =|0-2|2=2,圆的半径r =2,所以弦长为l=2×r 2-d 2=24-2=22;法二:代数法:联立直线和圆的方程⎩⎪⎨⎪⎧y =x ,x 2+y -22=4,消去y 可得x 2-2x =0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为22-02=2 2.9.H4 若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A . B .C .D .(-∞,-3]∪ 因为直线x -y +1=0与圆()x -a 2+y 2=2有公共点,所以圆心到直线的距离d =||a -0+12≤r =2,可得||a +1≤2,即a ∈[]-3,1.7.H4 直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( ) A .2 5 B .2 3 C. 3 D .17.B 根据圆的方程知,圆的圆心为(0,0),半径R =2,弦心距d =|-2|3+1=1,所以弦长|AB |=222-1=23,所以选择B.12.H4 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.12.43 本题考查用几何方法判定两圆的位置关系.解题突破口为设出圆的圆心坐标. 圆C 方程可化为(x -4)2+y 2=1圆心坐标为(4,0),半径为1,由题意,直线y =kx -2上至少存在一点(x 0,kx 0-2),以该点为圆心,1为半径的圆与圆C 有公共点,因为两个圆有公共点,故x -42+kx -22≤2,整理得(k 2+1)x 2-(8+4k )x +16≤0,此不等式有解的条件是Δ=(8+4k )2-64(k 2+1)≥0,解之得0≤k ≤43,故最大值为43.14.H4 过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.14.(2,2) 设切点为A ,B ,设P (x,22-x ),连结PA ,PB ,PO ,则|PO |=2|OA |=2,即x 2+(22-x )2=4,整理得x 2-22x +2=0,解得x =2,故P 的坐标为(2,2).22.H6、H4 在平面直角坐标系xOy 中,已知双曲线C :2x 2-y 2=1. (1)设F 是C 的左焦点,M 是C 右支上一点.若|MF |=22,求点M 的坐标; (2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k (|k |<2)的直线l 交C 于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ .22.解:(1)双曲线C :x 212-y 2=1,左焦点F ⎝ ⎛⎭⎪⎫-62,0,设M (x ,y ),则|MF |2=⎝ ⎛⎭⎪⎫x +622+y 2=⎝⎛⎭⎪⎫3x +222, 由M 点是右支上一点,知x ≥22,所以|MF |=3x +22=22,得x =62, 所以M ⎝⎛⎭⎪⎫62,±2. (2)左顶点A ⎝⎛⎭⎪⎫-22,0,渐近线方程:y =±2x . 过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1. 解方程组⎩⎨⎧y =-2x ,y =2x +1得⎩⎪⎨⎪⎧x =-24,y =12.所以所求平行四边形的面积为S =|OA ||y |=24. (3)证明:设直线PQ 的方程是y =kx +b ,因直线PQ 与已知圆相切,故|b |k 2+1=1,即b 2=k 2+1(*).由⎩⎪⎨⎪⎧y =kx +b ,2x 2-y 2=1,得(2-k 2)x 2-2kbx -b 2-1=0.设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2kb2-k2,x 1x 2=-1-b22-k2.又y 1y 2=(kx 1+b )(kx 2+b ),所以 OP →·OQ →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=1+k2-1-b 22-k2+2k 2b 22-k 2+b 2=-1+b 2-k 22-k2. 由(*)知,OP →·OQ →=0,所以OP ⊥OQ .20.H4、H5 如图1-7,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程.图1-720.解:(1)设A (x 0,y 0),则矩形ABCD 的面积S =4|x 0||y 0|.由x 209+y 20=1得y 20=1-x 209,从而 x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94,当x 20=92,y 20=12时,S max =6.从而t =5时,矩形ABCD 的面积最大,最大面积为6.(2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知直线AA 1的方程为y =y 0x 0+3(x +3). ① 直线A 2B 的方程为 y =-y 0x 0-3(x -3). ② 由①②得y 2=-y 2x 20-9(x 2-9) ③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209. ④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).3.H4 设A ,B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |=( ) A .1 B. 2 C. 3 D .23.D 因为圆x 2+y 2=1的圆心(0,0)在直线AB 上,所以AB 为圆的直径,所以|AB |=2×1=2.9.H4 圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切 D .相离9.B 本题考查两圆的位置关系,考查数形结合思想,推理能力,容易题. ∵两圆的圆心距为2+22+1-02=17,又∵3-2<17<3+2,∴两圆相交.12.H4 设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.12.3 直线mx +ny -1=0与两坐标轴的交点坐标分为⎝ ⎛⎭⎪⎫1m,0,⎝⎛⎭⎪⎫0,1n ,又∵直线l被圆x 2+y 2=4截得弦长为2 ,由垂径定理得,⎝⎛⎭⎪⎫1m 2+n 22+12=22,即1m 2+n 2=3,∴S △OAB =12×1|m |×1|n |≥1m 2+n2=3.4.A2、H2 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C 本题考查了简易逻辑、两直线平行等基础知识,考查了学生简单的逻辑推理能力.若a =1,则直线l 1:ax +2y -1=0与l 2:x +2y +4=0平行;若直线l 1:ax +2y -1=0与l 2:x +2y +4=0平行,则2a -2=0即a =1.∴“a =1”是“l 1:ax +2y -1=0与l 2:x +2y +4=0平行”的充要条件.H5 椭圆及其几何性质21.H5、H8、F3 如图,设椭圆的中点为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线交椭圆于P ,Q 两点,使PB 2⊥QB 2,求△PB 2Q 的面积.21.解:(1)设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形且|AB 1|=|AB 2|,故∠B 1AB 2为直角,从而|OA |=|OB 2|, 即b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2,由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20. 因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0)、B 2(2,0).由题意,直线PQ 的倾斜角不为0,故可设直线PQ 的方程为:x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.(*)设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此 y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5.又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2 =(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16m 2+1m 2+5-16m 2m 2+5+16 =-16m 2-64m 2+5,由PB 2⊥QB 2,知B 2P →·B 2Q →=0,即16m 2-64=0,解得m =±2. 当m =2时,方程(*)化为:9y 2-8y -16=0, 故y 1=4+4109,y 2=4-4109,|y 1-y 2|=8910,△PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16910.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16910.综上所述,△PB 2Q 的面积为16910.8.H5、H6 如图1-3,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )图1-3A .3B .2 C. 3 D. 28.B 本题考查了椭圆与双曲线的简单几何性质,考查了学生对书本知识掌握的熟练程度,属于送分题.设椭圆、双曲线的方程分别为x 2a 21 + y 2b 21= 1(a 1>b 1>0),x 2a 22-y 2b 22=1(a 2>0,b 2>0),由题意知c 1=c 2且a 1=2a 2,则e 1e 2=c 1a 1c 2a 2=a 2a 1=2. 19.H5、H8 已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点,若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.19.解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58,于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64. (2)设直线OQ 的斜率为k ,则其方程为y =kx .设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 2b 2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得,(1+k 2)x 20+2ax 0=0.而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5.所以直线OQ 的斜率k =± 5.4.H5 设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.454.C 根据题意直线PF 2的倾斜角是π3,所以32a -c =12|PF 2|=12|F 1F 2|=12×2c ,解得e=34.故选C. 16.A2、H5 对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件16.B 考查充分条件和必要条件,以及椭圆方程.判断充分条件和必要条件,首先要确定条件与结论.条件是“mn >0”,结论是“方程mx 2+ny 2=1的曲线是椭圆”, 方程mx 2+ny 2=1的曲线是椭圆,可以得出mn >0,且m >0,n >0,m ≠n ,而由条件“mn >0”推不出“方程mx 2+ny 2=1的曲线是椭圆”.所以为必要不充分条件,选B.20.H5、F1 已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.20.解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x 24=1.(2)解法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k 2,又由OB →=2OA →得x 2B =4x 2A ,即164+k 2=161+4k 2,解得k =±1,故直线AB 的方程为y =x 或y =-x . 解法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,由OB →=2OA →得x 2B =161+4k 2,y 2B =16k 21+4k 2,将x 2B ,y 2B 代入y 216+x 24=1中,得4+k21+4k2=1,即4+k 2=1+4k 2,解得k =±1, 故直线AB 的方程为y =x 或y =-x .21.H3、H5、H8 设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.21.解:(1)如图(1),设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1), 可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为A 点在单位圆上运动,所以x 20+y 20=1.②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).(2)方法1:如图(2)、(3),对任意k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1),直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得(m 2+4k 2)x 2+4k 2x 1x +k 2x 21-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得 -x 1+x 2=-4k 2x 1m 2+4k 2,即x 2=m 2x 1m 2+4k 2. 因为点H 在直线QN 上, 所以y 2-kx 1=2kx 2=2km 2x 1m 2+4k 2.于是PQ →=(-2x 1,-2kx 1),PH →=(x 2-x 1,y 2-kx 1)=⎝ ⎛⎭⎪⎫-4k 2x 1m 2+4k 2,2km 2x 1m 2+4k 2.而PQ ⊥PH 等价于PQ →·PH →=42-m 2k 2x 21m 2+4k 2=0,即2-m 2=0,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0都有PQ ⊥PH .方法2:如图(2)、(3),对任意x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (-x 1,-y 1),N (0,y 1),因为P ,H 两点在椭圆C 上,所以⎩⎪⎨⎪⎧m 2x 21+y 21=m 2,m 2x 22+y 22=m 2,两式相减可得m 2(x 21-x 22)+(y 21-y 22)=0.③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故(x 1-x 2)(x 1+x 2)≠0.于是由③式可得y 1-y 2y 1+y 2x 1-x 2x 1+x 2=-m 2.④又Q ,N ,H 三点共线,所以k QN =k QH ,即2y 1x 1=y 1+y 2x 1+x 2.于是由④式可得k PQ ·k PH =y 1x 1·y 1-y 2x 1-x 2=12·y 1-y 2y 1+y 2x 1-x 2x 1+x 2=-m 22,而PQ ⊥PH 等价于k PQ ·k PH =-1,即-m 22=-1,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .21.H5、H8 如图1-7所示,椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线x =±a和y =±b 所围成的矩形ABCD 的面积为8.图1-7(1)求椭圆M 的标准方程;(2)设直线l :y =x +m (m ∈R )与椭圆M 有两个不同的交点P ,Q ,l 与矩形ABCD 有两个不同的交点S ,T .求|PQ ||ST |的最大值及取得最大值时m 的值.21.解:(1)设椭圆M 的半焦距为c ,由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =32,4ab =8,所以a =2,b =1,因此椭圆M 的标准方程为x 24+y 2=1.(2)由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +m ,整理得5x 2+8mx +4m 2-4=0,由Δ=64m 2-80(m 2-1)=80-16m 2>0. 得-5<m < 5.设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=-8m 5,x 1x 2=4m 2-15.所以|PQ |=x 1-x 22+y 1-y 22=2[x 1+x 22-4x 1x 2]=4525-m2(-5<m <5).线段CD 的方程为y =1(-2≤x ≤2),线段AD 的方程为x =-2(-1≤y ≤1). ①不妨设点S 在AD 边上,T 在CD 边上,可知1≤m <5,S (-2,m -2),D (-2,1), 所以|ST |=2|SD |=2=2(3-m ), 因此|PQ ||ST |=455-m 23-m2.令t =3-m (1≤m <5), 则m =3-t ,t ∈(3-5,2]. 所以|PQ ||ST |=455-3-t2t2=45-4t 2+6t -1=45-4⎝ ⎛⎭⎪⎫1t -342+54, 由于t ∈(3-5,2]. 所以1t ∈⎣⎢⎡⎭⎪⎫12,3+54.因此当1t =34,即t =43时,|PQ ||ST |取得最大值255,此时m =53.②不妨设点S 在AB 边上,T 在CD 边上,此时-1≤m ≤1, 因此|ST |=2|AD |=22,此时|PQ ||ST |=255-m 2.所以当m =0时,|PQ ||ST |取得最大值255.③不妨设点S 在AB 边上,T 在BC 边上,-5<m ≤-1. 由椭圆和矩形的对称性知|PQ ||ST |的最大值为255,此时m =-53.综上所述m =±53或m =0时,|PQ ||ST |取得最大值255.20.H5、H8 如图1-4,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.图1-420.解: (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)( 方法一)a 2=4c 2,b 2=3c 2. 直线AB 的方程可为y =-3(x -c ). 将其代入椭圆方程3x 2+4y 2=12c 2, 得B ⎝ ⎛⎭⎪⎫85c ,-335c .所以|AB |=1+3·⎪⎪⎪⎪⎪⎪85c -0=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB=12a ·165c ·32=235a 2=403, 解得a =10,b =5 3. (方法二)设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t . 再由余弦定理(3a -t )2=a 2+t 2-2at cos60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.5.H5 椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A.x 216+y 212=1 B.x 212+y 28=1C.x 28+y 24=1D.x 212+y 24=15.C 本小题主要考查椭圆的标准方程和几何性质.解题的突破口为焦距、准线与a 、b 、c 的关系.∵焦距为4,一条准线为x =-4,∴c =2,a 2c =4,∴a 2=8,b 2=4,故选C.20.H5、H7、H8 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.20.解:(1)由C 1的左焦点F 1的坐标为(-1,0)知c =1. 因为点P (0,1)在C 1上,所以b =1. 于是a = 2.故C 1的方程为x 22+y 2=1.(2)由题设l 同时与C 1和C 2相切,设切点分别为A 和B ,点B 的坐标为(x 0,y 0),显然x 0>0.当点B 在第一象限时,点B 的坐标为(x 0,2x 0).考虑抛物线C 2在第一象限的方程y =2x ,x >0.因为y ′=1x,所以l 的斜率为1x 0,从而l 的方程为:y =xx 0+x 0. 由假设直线l 与椭圆C 1相切,因此方程组⎩⎪⎨⎪⎧y =xx 0+x 0, ①x 22+y 2=1, ②有唯一解,将①代入②并整理得: (x 0+2)x 2+4x 0x +2x 0(x 0-1)=0, 所以Δ=16x 20-8(x 0+2)x 0(x 0-1) =-8x 0(x 0+1)(x 0-2)=0. 因为x 0>0,所以x 0=2.当x 0=2时,直线l 的方程为:y =22x + 2. 易验证l 是C 1的切线.由对称性,当切点B 在第四象限时,可得l 的方程为:y =-22x - 2. 综上所述,同时与C 1和C 2相切的直线方程为:y =22x +2,或y =-22x - 2. 21.H5、H10 在直角坐标系xOy 中,已知中心在原点,离心率为12的椭圆E 的一个焦点为圆C :x 2+y 2-4x +2=0的圆心.(1)求椭圆E 的方程;(2)设P 是椭圆E 上一点,过P 作两条斜率之积为12的直线l 1,l 2.当直线l 1,l 2都与圆C相切时,求P 的坐标.21.解:(1)由x 2+y 2-4x +2=0得(x -2)2+y 2=2,故圆C 的圆心为点(2,0).从而可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),其焦距为2c .由题设知c =2,e =c a =12.所以a =2c =4,b 2=a 2-c 2=12.故椭圆E 的方程为x 216+y 212=1.(2)设点P 的坐标为(x 0,y 0),l 1,l 2的斜率分别为k 1,k 2.则l 1,l 2的方程分别为l 1:y -y 0=k 1(x -x 0),l 2:y -y 0=k 2(x -x 0),且k 1k 2=12.由l 1与圆C :(x -2)2+y 2=2相切得|2k 1+y 0-k 1x 0|k 21+1= 2.即k 21+2(2-x 0)y 0k 1+y 20-2=0. 同理可得k 22+2(2-x 0)y 0k 2+y 20-2=0.从而k 1,k 2是方程k 2+2(2-x 0)y 0k +y 20-2=0的两个实根.于是⎩⎪⎨⎪⎧2-x 02-2≠0,Δ=8[2-x 02+y 20-2]>0,①且k 1k 2=y 20-22-x 02-2=12. 由⎩⎪⎨⎪⎧x 2016+y 212=1,y 2-22-x 02-2=12得5x 20-8x 0-36=0.解得x 0=-2,或x 0=185.由x 0=-2得y 0=±3;由x 0=185得y 0=±575,它们均满足①式.故点P 的坐标为(-2,3),或(-2,-3),或⎝ ⎛⎭⎪⎫185,575,或⎝ ⎛⎭⎪⎫185,-575.8.H5 椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12 D.5-28.B 由椭圆的定义知,|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c .∵|AF 1|,|F 1F 2|,|BF 1|成等比数列,因此4c 2=(a -c )(a +c ),整理得5c 2=a 2,两边同除以a 2得5e 2=1,解得e =55.故选B. 20.H4、H5 如图1-7,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程.图1-720.解:(1)设A (x 0,y 0),则矩形ABCD 的面积S =4|x 0||y 0|.由x 209+y 20=1得y 20=1-x 209,从而 x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94,当x 20=92,y 20=12时,S max =6.从而t =5时,矩形ABCD 的面积最大,最大面积为6.(2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知直线AA 1的方程为y =y 0x 0+3(x +3). ① 直线A 2B 的方程为 y =-y 0x 0-3(x -3). ② 由①②得y 2=-y 2x 20-9(x 2-9) ③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209. ④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).15.H5 椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,△FAB 的周长的最大值是12,则该椭圆的离心率是________.15.23 如图,设椭圆右焦点为F ′,直线x =m 与x 轴相交于C , 由椭圆第一定义,|AF |+|AF ′|=|BF |+|BF ′|=2a , 而|AB |=|AC |+|BC |≤|AF ′|+|BF ′|, ∴当且仅当AB 过F ′时,△ABF 周长最大. 此时,由|AF |+|AB |+|BF |=4a =12, 得a =3,进而c =32-5=2,∴椭圆离心率为e =c a =23.H6 双曲线及其几何性质11.H6 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________.11.1 2 ∵双曲线C 1与C 2有共同的渐近线,∴b 2=4a 2.① 又∵a 2+b 2=5, ② 联立①②得,a =1,b =2.15.H6 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.15.2 3 本小题主要考查双曲线的定义以及性质.解题的突破口为正确应用双曲线的定义.不妨假设点P 位于双曲线的右分支上,故而|PF 1|-|PF 2|=2a =2,所以(|PF 1|-|PF 2|)2=(2a )2=4⇒|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4,因为PF 1⊥PF 2,所以|PF 1|2+|PF 2|2=(2c )2=8,所以2|PF 1||PF 2|=4,所以(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1||PF 2|=12,即|PF 1|+|PF 2|=2 3.5.H6 已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414 B.324C.32D.435.C 因为双曲线的右焦点坐标为(3,0),所以c =3,b 2=5,则a 2=c 2-b 2=9-5=4,所以a =2,所以e =c a =32.10.H6 已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.4510.C 本小题主要考查双曲线的定义及余弦定理的应用,解题的突破口为运用双曲线的定义求出PF 1和PF 2的长,再用余弦定理即可求.由双曲线的定义有|PF 1|-|PF 2|=|PF 2|=2a =22,∴|PF 1|=2|PF 2|=42,cos ∠F 1PF 2=422+222-422·42·22=34,故选C. 8.H5、H6 如图1-3,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )图1-3A .3B .2 C. 3 D. 28.B 本题考查了椭圆与双曲线的简单几何性质,考查了学生对书本知识掌握的熟练程度,属于送分题.设椭圆、双曲线的方程分别为x 2a 21 + y 2b 21= 1(a 1>b 1>0),x 2a 22-y 2b 22=1(a 2>0,b 2>0),由题意知c 1=c 2且a 1=2a 2,则e 1e 2=c 1a 1c 2a 2=a 2a 1=2. 6.H6 已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1C.x 280-y 220=1 D.x 220-y 280=1 6.A 本题考查双曲线方程和渐近线方程,意在考查考生对双曲线方程和其性质的掌握;解题思路:首先由a ,b ,c 的关系,排除C ,D ,再由渐近线方程得答案A.由已知可得双曲线的焦距,2c =10,a 2+b 2=52=25,排除C ,D ,又由渐近线方程为y =b a x =12x ,得12=b a,解得a 2=20,b 2=5,所以选A. 本题易错一:对双曲线的几何性质不清,错以为c =10,错选C ;易错二:渐近线求解错误,错解成12=ab,从而错选B.8.H6 在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.8.2 本题考查双曲线离心率的求解.解题突破口是明确焦点所在轴.根据双曲线方程可得:m >0,所以e =m +m 2+4m=5,解之得m =2.22.H6、H4 在平面直角坐标系xOy 中,已知双曲线C :2x 2-y 2=1. (1)设F 是C 的左焦点,M 是C 右支上一点.若|MF |=22,求点M 的坐标; (2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k (|k |<2)的直线l 交C 于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ .22.解:(1)双曲线C :x 212-y 2=1,左焦点F ⎝ ⎛⎭⎪⎫-62,0,设M (x ,y ),则|MF |2=⎝ ⎛⎭⎪⎫x +622+y 2=⎝⎛⎭⎪⎫3x +222, 由M 点是右支上一点,知x ≥22,所以|MF |=3x +22=22,得x =62, 所以M ⎝⎛⎭⎪⎫62,±2. (2)左顶点A ⎝⎛⎭⎪⎫-22,0,渐近线方程:y =±2x . 过点A 与渐近线y =2x 平行的直线方程为。
解析几何专题(含答案)
解析几何与极坐标和参数方程专题1. 已知命题 p :方程x 22m+y 29−m=1 表示焦点在 y 轴上的椭圆,命题 q :双曲线 y 25−x 2m=1 的离心率e ∈(√62,√2),若命题 p ,q 中有且只有一个为真命题,求实数 m 的取值范围.2. 在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =√3cosα,y =sinα,(α 为参数),以坐标原点为极点,以 x轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin (θ+π4)=2√2.(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;(2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 ∣PQ ∣ 的最小值及此时 P 的直角坐标.3. 在直角坐标系 xOy 中,直线 C 1:x =−2,圆 C 2:(x −1)2+(y −2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求 C 1,C 2 的极坐标方程;(2)若直线 C 3 的极坐标方程为 θ=π4(ρ∈R ),设 C 2 与 C 3 的交点为 M ,N ,求 △C 2MN 的面积.4. 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =−1,直线 l 与抛物线相交于不同的 A ,B 两点.(1)求抛物线的标准方程;(2)如果直线 l 过抛物线的焦点,求 OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ 的值; (3)如果 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4,直线 l 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.5. 已知抛物线C:y2=2px(p>0)与直线x−√2y+4=0相切.(1)求该抛物线的方程;(2)在x轴正半轴上,是否存在某个确定的点M,过该点的动直线l与抛物线C交于A,B两点,使得1∣AM∣2+1∣BM∣2为定值.如果存在,求出点M坐标;如果不存在,请说明理由.6. 在平面直角坐标系xOy中,动点A的坐标为(2−3sinα,3cosα−2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ−π4)=a.(1)判断动点A的轨迹的形状;(2)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.7. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a2+y 2b 2=1(a >b >0) 的离心率为 √63.且过点 (3,−1).(1)求椭圆 C 的方徎;(2)动点 P 在直线 l :x =−2√2 上,过 P 作直线交椭圆 C 于 M ,N 两点,使得 PM =PN ,再过 P 作直线 lʹ⊥MN ,直线 lʹ 是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.8. 在平面直角坐标系 xOy 中,C 1:{x =t,y =k (t −1)(t 为参数).以原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 2:ρ2+10ρcosθ−6ρsinθ+33=0.(1)求 C 1 的普通方程及 C 2 的直角坐标方程,并说明它们分别表示什么曲线; (2)若 P ,Q 分别为 C 1,C 2 上的动点,且 ∣PQ ∣ 的最小值为 2,求 k 的值.9. 设 F 1,F 2 分别是椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的左,右焦点,M 是 C 上一点且 MF 2 与 x 轴垂直.直线 MF 1 与 C 的另一个交点为 N . (1)若直线 MN 的斜率为 34,求 C 的离心率;(2)若直线 MN 在 y 轴上的截距为 2,且 ∣MN∣=5∣∣F 1N∣∣,求 a ,b .10. 已知抛物线 E:x 2=2py (p >0),直线 y =kx +2 与 E 交于 A ,B 两点,且 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2,其中 O 为原点.(1)求抛物线 E 的方程;(2)点 C 坐标为 (0,−2),记直线 CA ,CB 的斜率分别为 k 1,k 2,证明:k 12+k 22−2k 2 为定值.11. 已知椭圆的一个顶点为A(0,−1),焦点在x轴上.若右焦点到直线x−y+2√2=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M,N.当∣AM∣=∣AN∣时,求m的取值范围.12. 双曲线C与椭圆x28+y24=1有相同的焦点,直线y=√3x为C的一条渐近线.求双曲线C的方程.13. 已知不过第二象限的直线 l:ax −y −4=0 与圆 x 2+(y −1)2=5 相切. (1)求直线 l 的方程;(2)若直线 l 1 过点 (3,−1) 且与直线 l 平行,直线 l 2 与直线 l 1 关于直线 y =1 对称,求直线 l 2 的方程.14. 在直角坐标系 xOy 中,圆 C 的参数方程 {x =1+cosφ,y =sinφ(φ 为参数).以 O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆 C 的极坐标方程;(2)直线 l 的极坐标方程是 ρ(sinθ+√3cosθ)=3√3,射线 OM :θ=π3 与圆 C 的交点为 O ,P ,与直线 l 的交点为 Q ,求线段 PQ 的长.15. 双曲线与椭圆有共同的焦点F1(0,−5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求椭圆的方程和双曲线方程.16. 在抛物线y=4x2上有一点P,若点P到直线y=4x−5的距离最短,求该点P坐标和最短距离.17. 已知函数y=a2−x+1(a>0,且a≠1)的图象恒过定点A,点A在直线mx+ny=1(mn>0)上,求1m +1n的最小值.18. 已知直线l:y=x+m与抛物线y2=8x交于A,B两点,(1)若∣AB∣=10,求m的值;(2)若OA⊥OB,求m的值.19. 若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为√2−1,求椭圆的方程.20. 讨论直线l:y=kx+1与双曲线C:x2−y2=1的公共点的个数.21. 已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程x2m+3−y22m−1=1表示焦点在y轴上的双曲线.(1)若q为真命题,求实数m的取值范围;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.22. 已知双曲线的焦点在x轴上,∣F1F2∣=2√3,渐近线方程为√2x±y=0,问:过点B(1,1)能否作直线l,使l与双曲线交于M,N两点,并且点B为线段MN的中点?若存在,求出直线l的方程;若不存在,请说明理由.23. 已知点 P (2,0) 及圆 C :x 2+y 2−6x +4y +4=0.(1)设过 P 的直线 l 1 与圆 C 交于 M ,N 两点,当 ∣MN∣=4 时,求以 MN 为直径的圆 Q 的方程; (2)设直线 ax −y +1=0 与圆 C 交于 A ,B 两点,是否存在实数 a ,使得过点 P (2,0) 的直线 l 2 垂直平分弦 AB ?若存在,求出实数 a 的值;若不存在,请说明理由.24. 在直角坐标系 xOy 中,已知直线 l:{x =1+√22ty =2+√22t (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C:ρ2(1+sin 2θ)=2.(1)写出直线 l 的普通方程和曲线 C 的直角坐标方程;(2)设点 M 的直角坐标为 (1,2),直线 l 与曲线 C 的交点为 A ,B ,求 ∣MA ∣⋅∣MB ∣ 的值.25. 已知椭圆C:x2a2+y2b2=1(a>b>0),离心率为√32,两焦点分别为F1,F2,过F1的直线交椭圆C于M,N两点,且△F2MN的周长为8.(1)求椭圆C的方程;(2)过点P(m,0)作圆x2+y2=1的切线l交椭圆C于A,B两点,求弦长∣AB∣的最大值.26. 已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n=qS n−1+1,其中q>0,n>1,n∈N∗.(1)若2a2,a3,a2+2成等差数列,求{a n}的通项公式;(2)设双曲线x2−y2a n2=1的离心率为e n,且e2=3,求e12+e22+⋯+e n2.27. 已知曲线 C 的极坐标方程为 ρ=2cosθ−4sinθ,以极点为原点,极轴为 x 轴的正半轴,建立平面直角坐标系,直线 l 的参数方程为 {x =1+tcosα,y =−1+tsinα(t 为参数).(1)判断直线 l 与曲线 C 的位置关系,并说明理由;(2)若直线 l 和曲线 C 相交于 A ,B 两点,且 ∣AB ∣=3√2,求直线 l 的斜率.28. 已知椭圆x 2a2+y 2b 2=1(a >b >0) 的离心率 e =√63,坐标原点到直线 l:y =bx +2 的距离为 √2.(1)求椭圆的方程;(2)若直线 y =kx +2(k ≠0) 与椭圆相交于 C ,D 两点,是否存在实数 k ,使得以 CD 为直径的圆过点 E (−1,0)?若存在,求出 k 的值,若不存在,请说明理由.29. 在平面直角坐标系xOy中,直线l经过点P(−3,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2−2ρcosθ−3=0.(1)若直线l与曲线C有公共点,求倾斜角α的取值范围;(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.30. 椭圆与双曲线有许多优美的对称性质.对于椭圆x2a2+y2b2=1(a>b>0)有如下命题:AB是椭圆x2 a2+y2b2=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM⋅k AB=−b2a2为定值.那么对于双曲线x 2a2−y2b2=1(a>0,b>0)则有命题:AB是双曲线x2a2−y2b2=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM⋅k AB=定值.(在横线上填上正确的结论)并证明你的结论.31. (1)求中心在原点,焦点在x轴上,焦距等于4,且经过点P(3,−2√6)的椭圆方程;(2)求e=√6,并且过点(3,0)的椭圆的标准方程.332. 已知抛物线y2=4x,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.33. 已知点A(0,−2),椭圆E:x2a2+y2b2=1(a>b>0)的离心率为√32,F是椭圆的焦点,直线AF的斜率为2√33,O为坐标原点.(1)求E的方程;(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.34. P为椭圆x225+y29=1上一点,F1,F2为左右焦点,若∠F1PF2=60∘.(1)求△F1PF2的面积;(2)求P点的坐标.35. 已知双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的渐近线方程为:y =±√3x ,右顶点为 (1,0).(1)求双曲线 C 的方程;(2)已知直线 y =x +m 与双曲线 C 交于不同的两点 A ,B ,且线段 AB 的中点为 M (x 0,y 0).当 x 0≠0 时,求 y0x 0的值.36. 已知双曲线 x 216−y 24=1 的两焦点为 F 1,F 2.(1)若点 M 在双曲线上,且 MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,求 M 点到 x 轴的距离;(2)若双曲线 C 与已知双曲线有相同焦点,且过点 (3√2,2),求双曲线 C 的方程.37. 椭圆x2a2+y2b2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且∣PF1∣=43,∣PF2∣=143,PF1⊥PF2.(1)求椭圆C的方程;(2)若直线L过圆x2+y2+4x−2y=0的圆心M交椭圆于A,B两点,且A,B关于点M对称,求直线L的方程.38. 已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y−29=0相切.(1)求圆的方程;(2)设直线ax−y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(−2,4),若存在,求出实数a的值;若不存在,请说明理由.39. 已知直线 C 1:{x =1+tcosα,y =tsinα(t 为参数),圆 C 2:{x =cosθ,y =sinθ(θ 为参数).(1)当 α=π3 时,求 C 1 与 C 2 的交点坐标;(2)过坐标原点 O 作 C 1 的垂线,垂足为 A ,P 为 OA 的中点,当 α 变化时,求点 P 轨迹的参数方程,并指出它是什么曲线.40. 已知圆 C 和 y 轴相切,圆心在直线 x −3y =0 上,且被直线 y =x 截得的弦长为 2√7,求圆 C 的方程.41. 如图,直线 l:y =x +b 与抛物线 C:x 2=4y 相切于点 A . (1)求实数 b 的值;(2)求以 A 点为圆心,且与抛物线 C 的准线相切的圆的方程.42. 在直角坐标系 xOy 中,圆 C 的方程为 (x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求圆 C 的极坐标方程;(2)直线 l 的参数方程是 {x =tcosα,y =tsinα,(t 为参数),直线 l 与圆 C 交于 A ,B 两点,∣AB∣=√10,求 l 的斜率.43. 已知双曲线与椭圆x29+y225=1有公共焦点F1,F2,它们的离心率之和为245.(1)求双曲线的标准方程;(2)设P是双曲线与椭圆的一个交点,求cos∠F1PF2.44. 抛物线顶点在原点,它的准线过双曲线x2a2−y2b2=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(32,√6),求抛物线与双曲线方程.45. 已知曲线 C 上任一点 P 到点 F (1,0) 的距离比它到直线 l :x =−2 的距离少 1. (1)求曲线 C 的方程;(2)过点 Q (1,2) 作两条倾斜角互补的直线与曲线 C 分别交于点 A ,B ,试问:直线 AB 的斜率是否为定值,请说明理由.46. 在平面直角坐标系 xOy 中,圆 C 的参数方程为 {x =2cosφ,y =2sinφ(φ 为参数),直线 l 过点 (0,2) 且倾斜角为 π3.(1)求圆 C 的普通方程及直线 l 的参数方程;(2)设直线 l 与圆 C 交于 A ,B 两点,求弦 ∣AB ∣ 的长.47. 已知椭圆C:x2a2+y2b2=1(a>b>0)的一个长轴顶点为A(2,0),离心率为√22,直线y=k(x−1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为√103时,求k的值.48. 已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点为F1,F2,A点在椭圆上,离心率是√22,AF2与x轴垂直,且∣AF2∣=√2.(1)求椭圆的方程;(2)若点A在第一象限,过点A作直线l,与椭圆交于另一点B,求△AOB面积的最大值.49. 已知点 (1,√22) 在椭圆 C:x 2a2+y 2b 2=1(a >b >0) 上,椭圆离心率为 √22.(1)求椭圆 C 的方程;(2)过椭圆 C 右焦点 F 的直线 l 与椭圆交于两点 A ,B ,在 x 轴上是否存在点 M ,使得 MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 为定值?若存在,求出点 M 的坐标;若不存在,请说明理由.答案1. 若命题 p :方程 x 22m +y 29−m =1 表示焦点在 y 轴上的椭圆为真命题; 则 9−m >2m >0, 解得 0<m <3,则命题 p 为假命题时,m ≤0 或 m ≥3,若命题 q :双曲线 y 25−x 2m =1 的离心率 e ∈(√62,√2) 为真命题; 则 √5+m 5∈(√62,√2),即5+m 5∈(32,2),即 52<m <5,则命题 q 为假命题时,m ≤52 或 m ≥5,因为命题 p ,q 中有且只有一个为真命题, 当 p 真 q 假时,0<m ≤52, 当 p 假 q 真时,3≤m <5,综上所述,实数 m 的取值范围是:0<m ≤52 或 3≤m <5.2. (1) C 1:{x =√3cosα,y =sinα(α 为参数)的直角坐标方程是:x 23+y 2=1,C 2 的直角坐标方程:ρsin (θ+π4)=2√2, 整理得,√22ρsinθ+√22ρcosθ=2√2,x +y =4.(2) 设 x +y =4 的平行线为 l 1:x +y +c =0, 当 l 1:x +y +c =0 且 c <0 和 C 1 相切时 ∣PQ ∣ 距离最小, 联立直线和椭圆方程得 x 23+(x +c )2−1=0,整理得4x 23+2cx +c 2−1=0,需要满足 Δ=−4c 23+163=0,求得 c =±2,当直线为 l 1:x +y −2=0 时,满足题意,来自QQ 群339444963 此时 ∣PQ ∣=√2,此时直线 l 1 和椭圆交点即是 P 点坐标 (32,12).3. (1) C 1:ρcosθ=−2,C 2:ρ2−2ρcosθ−4ρsinθ+4=0. (2) C 3:y =x ,圆 C 2 的圆心 C 2 到 y =x 的距离 d =√2=√22, ∴∣MN∣=2⋅√12−(√22)2=√2,∴S △C 2MN =12⋅∣MN∣⋅d =12⋅√2⋅√22=12.4. (1) 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =−1, 所以 p 2=1,p =2.所以抛物线的标准方程为 y 2=4x .(2) 设 l:my =x −1,与 y 2=4x 联立,得 y 2−4my −4=0, 设 A (x 1,y 1),B (x 2,y 2), 所以 y 1+y 2=4m ,y 1y 2=−4, 所以OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=(m 2+1)y 1y 2+m (y 1+y 2)+1=−3.(3) 假设直线 l 过定点,设 l:my =x +n ,{my =x +n,y 2=4x, 得 y 2−4my +4n =0,设 A (x 1,y 1),B (x 2,y 2), 所以 y 1+y 2=4m ,y 1y 2=4n . 由OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4=(m 2+1)y 1y 2−mn (y 1+y 2)+n 2=n 2+4n,解得 n =−2,所以 l:my =x −2 过定点 (2,0). 5. (1) 联立方程有,{x −√2y +4=0,y 2=2px,有 y 2−2√2py +8p =0,由于直线与抛物线相切,得 Δ=8p 2−32p =0,所以 p =4, 所以 y 2=8x .(2) 假设存在满足条件的点 M (m,0)(m >0),直线 l:x =ty +m ,有 {x =ty +m,y 2=8x, y 2−8ty −8m =0,设 A (x 1,y 1),B (x 2,y 2),有 Δ>0,y 1+y 2=8t ,y 1y 2=−8m ,∣AM ∣2=(x 1−m )2+y 12=(t 2+1)y 12,∣BM ∣2=(x 2−m )2+y 22=(t 2+1)y 22,1∣AM∣2+1∣BM∣2=1(t 2+1)y 12+1(t 2+1)y 22=1(t 2+1)(y 12+y 22y 12y 22)=1(t 2+1)(4t 2+m4m 2),当 m =4,满足 Δ>0 时,1∣AM∣2+1∣BM∣2 为定值, 所以 M (4,0).6. (1) 设动点 A 的直角坐标为 (x,y ),则 {x =2−3sinα,y =3cosα−2,所以动点 A 的轨迹方程为 (x −2)2+(y +2)2=9,其轨迹是半径为 3 的圆.(2) 直线 C 的极坐标方程 ρcos (θ−π4)=a 化为直角坐标方程是 √2x +√2y =2a ,由 ∣∣2√2−2√2−2a ∣∣2=3,得 a =3 或 a =−3.7. (1) 因为椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √63.且过点 (3,−1),所以 {9a 2+1b 2=1,c 2a 2=a 2−b 2a 2=(√63)2,解得 a 2=12,b 2=4, 所以椭圆 C 的方程为x 212+y 24=1.(2) 因为直线 l 的方程为 x =−2√2, 设 P(−2√2,y 0),y 0∈(−2√33,2√33), 当 y 0≠0 时,设 M (x 1,y 1),N (x 2,y 2),由题意知 x 1≠x 2,联立 {x 1212+y 124=1,x 2212+y 224=1,所以 x 12−x 2212+y 12−y 224=0, 所以y 1−y 2x 1−x 2=13⋅x 1+x 2y 1+y 2,又因为 PM =PN , 所以 P 为线段 MN 的中点, 所以直线 MN 的斜率为 −13⋅−2√2y 0=2√23y 0, 又 lʹ⊥MN ,所以 lʹ 的方程为 y −y 0=02√2+2√2),即 y =02√2+4√23), 所以 lʹ 恒过定点 (−4√23,0). 当 y 0=0 时,直线 MN 为 x =−2√2, 此时 lʹ 为 x 轴,也过点 (−4√23,0), 综上,lʹ 恒过定点 (−4√23,0).8. (1) 由 {x =t,y =k (t −1),可得其普通方程为 y =k (x −1), 它表示过定点 (1,0),斜率为 k 的直线.由 ρ2+10ρcosθ−6ρsinθ+33=0 可得其直角坐标方程为 x 2+y 2+10x −6y +33=0, 整理得 (x +5)2+(y −3)2=1,它表示圆心为 (−5,3),半径为 1 的圆. (2) 因为圆心 (−5,3) 到直线 y =k (x −1) 的距离 d =√1+k 2=√1+k 2,故 ∣PQ ∣ 的最小值为 √1+k 2−1,故√1+k 21=2,得 3k 2+4k =0, 解得 k =0 或 k =−43.9. (1) 根据 c =√a 2−b 2 及题设知 M (c,b 2a ),F 2(−c,0),由斜率公式并化简整理易得 2b 2=3ac . 将 b 2=a 2−c 2 代入 2b 2=3ac ,解得 ca =12 或 ca =−2(舍去). 故 C 的离心率为 12.(2) 由题意,得原点 O 为 F 1F 2 的中点,MF 2∥y 轴,所以直线 MF 1 与 y 轴的交点 D (0,2) 是线段 MF 1 的中点,故 b 2a =4,即b 2=4a. ⋯⋯① 由 ∣MN∣=5∣∣F 1N∣∣ 得 ∣DF 1∣=2∣∣F 1N∣∣. 设 N (x 1,y 1),由题意知 y 1<0, 则 {2(−c −x 1)=c,−2y 1=2, 即 {x 1=−32c,y 1=−1.代入 C 的方程,得 9c 24a 2+1b 2=1. ⋯⋯② 将 ① 及c =√a 2−b 2 代入 ② 得 9(a 2−4a )4a 2+14a =1.解得 a =7,b 2=4a =28,故 a =7,b =2√7.10. (1) 将 y =kx +2 代入 x 2=2py ,得 x 2−2pkx −4p =0. 其中 Δ>0,设 A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=2pk ,x 1x 2=−4p .所以 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+x 122p ⋅x 222p =−4p +4.由已知,−4p +4=2,解得 p =12,所以抛物线 E 的方程为 x 2=y .(2) 由(1)知,x 1+x 2=k ,x 1x 2=−2. k 1=y 1+2x 1=x 12+2x 1=x 12−x 1x 2x 1=x 1−x 2,同理 k 2=x 2−x 1,k =y 1−y2x 1−x 2=x 12−x 22x 1−x 2=x 1+x 2,所以 k 12+k 22−2k 2=−8x 1x 2=16.11. (1) 依题意可设椭圆方程为 x 2a 2+y 2=1,则右焦点 F(√a 2−1,0),由题设∣∣√a 2−1+2√2∣∣√2=3,解得 a 2=3,故所求椭圆的方程为 x 23+y 2=1.(2) 设 P 为弦 MN 的中点,由 {y =kx +m,x 23+y 2=1,得 (3k 2+1)x 2+6mkx +3(m 2−1)=0, 由于直线与椭圆有两个交点,所以 Δ>0,即 m 2<3k 2+1, ⋯⋯① 所以 x P =x M +x N2=−3mk 3k 2+1, 从而 y P =kx P +m =m3k 2+1, 所以 k AP =y P +1x P=−m+3k 2+13mk,又 ∣AM∣=∣AN∣, 所以 AP ⊥MN , 则 −m+3k 2+13mk=−1k ,即 2m =3k 2+1, ⋯⋯②把 ② 代入 ① 得 2m >m 2 解得 0<m <2, 由 ② 得 k 2=2m−13>0,解得 m >12.故所求 m 的取值范围是 (12,2).12. 设双曲线方程为x 2a2−y 2b 2=1(a >0,b >0),由椭圆x 28+y 24=1,求得两焦点为 (−2,0),(2,0),所以对于双曲线 C :c =2.又 y =√3x 为双曲线 C 的一条渐近线, 所以 ba =√3,解得 a =1,b =√3. 所以双曲线 C 的方程为 x 2−y 23=1.13. (1) 因为直线 l 与圆 x 2+(y −1)2=5 √1+a 2=√5,因为直线 l 不过第二象限,所以 a =2, 所以直线 l 的方程为 2x −y −4=0.(2) 因为直线 l 1 过点 (3,−1) 且与直线 l 平行,所以设直线 l 1 的方程为 2x −y +b =0,因为直线 l 1 过点 (3,−1),所以 b =−7,则直线 l 1 的方程为 2x −y −7=0, 因为直线 l 2 与 l 1 关于 y =1 对称,所以直线 l 2 的斜率为 −2,且过点 (4,1), 所以直线 l 2 的方程为 y −1=−2(x −4),即化简得 2x +y −9=0. 14. (1) 圆 C 的参数方程 {x =1+cosφ,y =sinφ(φ 为参数).消去参数可得:(x −1)2+y 2=1.把 x =ρcosθ,y =ρsinθ 代入化简得:ρ=2cosθ,即为此圆的极坐标方程. (2) 如图所示,由直线 l 的极坐标方程是 ρ(sinθ+√3cosθ)=3√3,射线 OM :θ=π3.可得普通方程:直线 l :y +√3x =3√3,射线 OM :y =√3x . 联立 {y +√3x =3√3,y =√3x,解得 {x =32,y =3√32,即 Q (32,3√32). 联立 {y =√3x,(x −1)2+y 2=1,解得 {x =0,y =0 或 {x =12,y =√32. 所以 P (12,√32).来自QQ 群339444963所以 ∣PQ∣∣=√(12−32)2+(√32−3√32)2=2.15. 由共同的焦点 F 1(0,−5),F 2(0,5), 可设椭圆方程为y 2a2+x 2a 2−25=1,双曲线方程为 y 2b 2−x 225−b 2=1,点 P (3,4) 在椭圆上,16a 2+9a 2−25=1,解得 a 2=40,双曲线的过点 P (3,4) 的渐近线为 y =43x ,故b 225−b 2=169,解得 b 2=16.所以椭圆方程为:y 240+x 215=1; 双曲线方程为:y 216−x 29=1.16. 设点 P (t,4t 2),点 P 到直线 y =4x −5 的距离为 d ,则 d =2√17=4(t−12)2+4√17.当 t =12时,d 取得最小值,此时 P (12,1) 为所求的点,最短距离为 4√1717. 17. 当 x =2 时 y =2, 所以过定点 A (2,2), 因为 A 在直线上,所以 2m +2n =1,且 mn >0, 所以 1m +1n =(1m +1n )(2m +2n )=2+2+2m n+2n m≥4+2√4=8,即 1m +1n 的最小值为 8.18. (1) 设 A (x 1,y 1),B (x 2,y 2). {y =x +m,y 2=8x⇒x 2+(2m −8)x +m 2=0⇒{Δ=(2m −8)2−4m 2>0,x 1+x 2=8−2m,x 1x 2=m 2.∣AB ∣=√2∣x 1−x 2∣=√2√(x 1+x 2)2−4x 1x 2=10,m =716, 因为 m <2, 所以 m =716.(2) 因为 OA ⊥OB , 所以 x 1x 2+y 1y 2=0,x 1x 2+(x 1+m )(x 2+m )=0,2x 1x 2+m (x 1+x 2)+m 2=0. 2m 2+m (8−2m )+m 2=0,m 2+8m =0,m =0 或 m =−8, 经检验 m =−8.19. 因为椭圆的对称轴在坐标轴上,两焦点与两短轴的端点恰好是正方形的四个顶点, 所以 b =c ,a =√2b ,又焦点到同侧长轴端点距离为 √2−1,即 a −c =√2−1,即 a −b =√2−1,解得 a =√2,b =c =1, 所以当焦点在 x 轴时,椭圆的方程为:x 22+y 2=1; 当焦点在 y 轴时,椭圆的方程为y 22+x 2=1.20. 由方程组 {y =kx +1,x 2−y 2=1 消去 y ,得 (1−k 2)x 2−2kx −2=0,当 1−k 2=0,即 k =±1 时,有一个交点. 当 1−k 2≠0,即 k ≠±1 时,Δ=(−2k )2+4×2(1−k 2)=8−4k 2.由 Δ>0,即 8−4k 2>0,得 −√2<k <√2,此时有两个交点. 由 Δ=0,即 8−4k 2=0,得 k =±√2,此时有一个交点. 由 Δ<0,即 8−4k 2<0,得 k <−√2 或 k >√2,此时没有交点.综上知,当 k ∈(−√2,−1)∪(−1,1)∪(1,√2) 时,直线 l 与曲线 C 有两个交点; 当 k =±√2 时,直线 l 与曲线 C 切于一点; 当 k =±1 时,直线 l 与曲线 C 交于一点;当 k ∈(−∞,−√2)∪(√2,+∞) 时,直线 l 与曲线 C 没有交点.21. (1) 由已知方程 x 2m+3−y 22m−1=1 表示焦点在 y 轴上的双曲线,则 {m +3<0,1−2m >0,得 {m <−3,m <12,得 m <−3,即 q :m <−3. (2) 若方程 x 2+2mx +(m +2)=0 有两个不等的正根,则 {Δ=4m 2−4(m +2)>0,−2m >0,m +2>0,解得 −2<m <−1,即 p :−2<m <−1. 因 p 或 q 为真,所以 p ,q 至少有一个为真. 又 p 且 q 为假,所以 p ,q 至少有一个为假.因此,p ,q 两命题应一真一假,当 p 为真,q 为假时,{−2<m <−1,m ≥−3,解得 −2<m <−1;当 p 为假,q 为真时,{m ≤−2或m ≥−1,m <−3,解得 m <−3.综上,−2<m <−1 或 m <−3. 22. 根据题意,c =√3,ba =√2, 所以 a =1,b =√2.所以双曲线的方程是:x 2−y 22=1.过点 B (1,1) 的直线方程为 y =k (x −1)+1 或 x =1.①当 k 存在时,联立方程可得 (2−k 2)x 2+(2k 2−2k )x −k 2+2k −3=0.当直线与双曲线相交于两个不同点,可得 Δ=(2k 2−2k )2−4(2−k 2)(−k 2+2k −3)>0,k <32,又方程的两个不同的根是两交点 M ,N 的横坐标, 所以 x 1+x 2=2(k−k 2)2−k 2.又因为 B (1,1) 是线段 MN 的中点, 所以2(k−k 2)2−k 2=2,解得 k =2.所以 k =2,使 2−k 2≠0 但使 Δ<0.因此当 k =2 时,方程 (2−k 2)x 2+(2k 2−2k )x −k 2+2k −3=0 无实数解,故过点 B (1,1) 与双曲线交于两点 M ,N 且 B 为线段 MN 中点的直线不存在. ②当 x =1 时,直线经过点 B 但不满足条件. 综上所述,符合条件的直线 l 不存在.23. (1) 由于圆 C :x 2+y 2−6x +4y +4=0 的圆心 C (3,−2),半径为 3,∣CP∣=√5,而弦心距 d =√5,所以 d =∣CP∣=√5, 所以 P 为 MN 的中点,所以所求圆的圆心坐标为 (2,0),半径为 12∣MN∣=2,故以 MN 为直径的圆 Q 的方程为 (x −2)2+y 2=4;(2) 把直线 ax −y +1=0 即 y =ax +1 代入圆 C 的方程,消去 y ,整理得 (a 2+1)x 2+6(a −1)x +9=0.由于直线 ax −y +1=0 交圆 C 于 A ,B 两点,故 Δ=36(a −1)2−36(a 2+1)>0,即 −2a >0,解得 a <0.则实数 a 的取值范围是 (−∞,0).设符合条件的实数 a 存在,由于 l 2 垂直平分弦 AB ,故圆心 C (3,−2) 必在 l 2 上. 所以 l 2 的斜率 k PC =−2, 所以 k AB =a =12, 由于 12∉(−∞,0),故不存在实数 a ,使得过点 P (2,0) 的直线 l 2 垂直平分弦 AB .24. (1) 直线 l:{x =1+√22ty =2+√22t(t 为参数),消去参数 t 可得普通方程 l:x −y +1=0.曲线 C:ρ2(1+sin 2θ)=2,可得 ρ2+(ρsinθ)2=2, 可得直角坐标方程:x 2+y 2+y 2=2, 即 C:x 22+y 2=1.(2) 把 l:{x =1+√22t y =2+√22t 代入 x 22+y 2=1 中,整理得 3t 2+10√2t +14=0, 设 A ,B 对应的参数分别为 t 1,t 2, 所以 t 1⋅t 2=143,点 M 在直线上由 t 的几何意义可知,∣MA ∣∣MB ∣=∣t 1⋅t 2∣=143.25. (1) 由题得:ca =√32,4a =8,所以 a =2,c =√3. 又 b 2=a 2−c 2,所以 b =1,即椭圆 C 的方程为 x 24+y 2=1.(2) 由题意知,∣m∣≥1.当 m =1 时,切线 l 的方程 x =1,点 A ,B 的坐标分别为 (1,√32),(1,−√32),此时 ∣AB∣=√3;当 m =−1 时,同理可得 ∣AB∣=√3.当 ∣m∣>1 时,设切线 l 的方程为 y =k (x −m )(k ≠0), 由 l 与圆 x 2+y 2=1√k 2+1=1,即 m 2k 2=k 2+1.得 k 2=1m 2−1.由 {y =k (x −m ),x 24+y 2=1得 (1+4k 2)x 2−8k 2mx +4k 2m 2−4=0. 设 A ,B 两点的坐标分别为 (x 1,y 1),(x 2,y 2),则 Δ=64k 4m 2−4(1+4k 2)(4k 2m 2−4)=48k 2>0,x 1+x 2=8k 2m1+4k 2,x 1x 2=4k 2m 2−41+4k 2.所以∣AB∣=√(x 2−x 1)2+(y 2−y 1)2=√(1+k 2)[64k 4m 2(1+4k 2)2−4(4k 2m 2−4)1+4k 2]=4√3∣m∣m 2+3.因为 ∣m∣≥1, 所以 ∣AB∣=4√3∣m∣m 2+3=4√3∣m∣+3∣m∣≤2,且当 m =±√3 时,∣AB∣=2,由于当 m =±1 时,∣AB∣=√3,所以 ∣AB∣ 的最大值为 2.26. (1)当n≥2时,S n+1=qS n+1, ⋯⋯①S n=qS n−1+1, ⋯⋯②①−②得a n+1=q⋅a n,即从第二项开始,数列{a n}为等比数列,公比为q,当n=2时,S2=qS1+1,即a1+a2=qa1+1,可得a2=a1q,所以数列{a n}是以1为首项,q为公比的等比数列,所以a2=a1q=q,a3=a1q2=q2,因为2a2,a3,a2+2成等差数列,所以2a3=2a2+a2+2,即2q2=2q+q+2,解得q=2,所以数列{a n}是以1为首项,2为公比的等比数列,所以a n=2n−1;(2)由(1)可得数列{a n}是以1为首项,q为公比的等比数列,所以a n=q n−1>0,根据题意,e n2=1+a n2,因为e2=3,所以1+a22=9,解得a2=2√2,所以q=a2a1=2√2,所以a n=(2√2)n−1,所以e n2=1+a n2=1+8n−1,所以e12+e22+⋯+e n2=n+(1+8+82+⋯+8n−1)=n+8n−17.27. (1)因为曲线C的极坐标方程为ρ=2cosθ−4sinθ,所以ρ2=2ρcosθ−4ρsinθ,所以曲线C的直角坐标方程为x2+y2=2x−4y,即(x−1)2+(y+2)2=5,因为直线l过点(1,−1),且该点到圆心的距离为√(1−1)2+(−1+2)2<√5,所以直线l与曲线C相交.(2)当直线l的斜率不存在时,直线l过圆心,∣AB∣=2√5≠3√2,因此直线l必有斜率,设其方程为y+1=k(x−1),即kx−y−k−1=0,圆心到直线l的距离d=√k2+1=√(√5)2−(3√22)2,解得k=±1,所以直线l的斜率为±1.28. (1)直线l:y=bx+2,坐标原点到直线l的距离为√2,√b2+1=√2,所以 b =1, 因为椭圆的离心率 e =√63, 所以a 2−1a 2=(√63)2,所以 a 2=3, 所以所求椭圆的方程是x 23+y 2=1.(2) 直线 y =kx +2 代入椭圆方程,消去 y 可得:(1+3k 2)x 2+12kx +9=0, 所以 Δ=36k 2−36>0, 所以 k >1 或 k <−1,设 C (x 1,y 1),D (x 2,y 2),则有 x 1+x 2=−12k 1+3k2,x 1x 2=91+3k 2,因为 EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),且以 CD 为直径的圆过点 E , 所以 EC ⊥ED ,所以 (x 1+1)(x 2+1)+y 1y 2=0,所以 (1+k 2)x 1x 2+(2k +1)(x 1+x 2)+5=0, 所以 (1+k 2)×91+3k 2+(2k +1)×(−12k1+3k 2)+5=0, 解得 k =76>1,所以当 k =76 时,以 CD 为直径的圆过定点 E .29. (1) 将曲线 C 的极坐标方程 ρ2−2ρcosθ−3=0 化为直角坐标方程为 x 2+y 2−2x −3=0, 直线 l 的参数方程为 {x =−3+tcosα,y =tsinα(t 为参数),将参数方程代入 x 2+y 2−2x −3=0,整理得 t 2−8tcosα+12=0, 因为直线 l 与曲线 C 有公共点,所以 Δ=64cos 2α−48≥0, 所以 cosα≥√32 或 cosα≤−√32, 因为 α∈[0,π),所以 α 的取值范围是 [0,π6]∪[5π6,π).(2) 曲线 C 的方程 x 2+y 2−2x −3=0 可化为 (x −1)2+y 2=4,其参数方程为 {x =1+2cosθ,y =2sinθ(θ 为参数), 因为 M (x,y ) 为曲线上任意一点,所以 x +y =1+2cosθ+2sinθ=1+2√2sin (θ+π4),所以 x +y 的取值范围是 [1−2√2,1+2√2]. 30. b 2a 2证明:设 A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则有 {x 0=x 1+x 22,y 0=y 1+y 22.x 12a 2−y 12b 2=1,x 22a 2−y 22b 2=1, 两式相减得 x 12−x 22a 2=y 12−y 22b 2,即(x 1−x 2)(x 1+x 2)a 2=(y 1−y 2)(y 1+y 2)b 2,(y 1−y 2)(y 1+y 2)(x 1−x 2)(x 1+x 2)=b 2a 2 即 k OM ⋅k AB =b 2a 2.31. (1) 设椭圆的方程为 x 2a 2+y 2b 2=1(a >b >0). 因为椭圆的焦距等于 4,且经过点 P(3,−2√6), {2c =2√a 2−b 2=4,32a2+(−2√6)2b2=1,解得 {a 2=36,b 2=32.所以所求的椭圆方程为 x 236+y 232=1. (2) ①当椭圆的焦点在 x 轴上时, 因为 a =3,e =c a=√63, 所以 c =√6,可得 b 2=a 2−c 2=3.此时椭圆的标准方程为 x 29+y 23=1;②当椭圆的焦点在 y 轴上时, 因为 b =3,e =ca =√63, 所以√a 2−b 2a=√63,解得 a 2=27.此时椭圆的标准方程为y 227+x 29=1.综上所述,所求椭圆的标准方程为 x 29+y 23=1 或 y 227+x 29=1.32. 设 M (x,y ),P (x 1,y 1),Q (x 2,y 2),易求 y 2=4x 的焦点 F 的坐标为 (1,0),因为 M 是 FQ 的中点,所以 {x =1+x22,y =y 22⇒{x 2=2x −1,y 2=2y, 又 Q 是 OP 的中点,所以 {x 2=x12,y 2=y 12⇒{x 1=2x 2=4x −2,y 1=2y 2=4y,因为 P 在抛物线 y 2=4x 上,所以 (4y )2=4(4x −2), 所以 M 点的轨迹方程为 y 2=x −12.33. (1) 设 F (c,0),由条件知 2c=2√33,得 c =√3.又 ca=√32, 所以 a =2,b 2=a 2−c 2=1,故 E 的方程为 x 24+y 2=1.(2) 依题意当 l ⊥x 轴不合题意,故设直线 l :y =kx −2,设 P (x 1,y 1),Q (x 2,y 2),将 y =kx −2 代入x 24+y 2=1,得 (1+4k 2)x 2−16kx +12=0,当 Δ=16(4k 2−3)>0,即 k 2>34时,x 1,2=8k±2√4k 2−31+4k 2.从而 ∣PQ∣∣=√k 2+1∣∣x 1−x 2∣=4√k 2+1⋅√4k 2−31+4k 2,又点 O 到直线 PQ 的距离 d =√k 2+1,所以 △OPQ 的面积 S △OPQ =12d∣∣PQ∣∣=4√4k 2−31+4k 2,设 √4k 2−3=t ,则 t >0,S △OPQ =4t t 2+4=4t+4t≤1,当且仅当 t =2,k =±√72等号成立,且满足 Δ>0,所以当 △OPQ 的面积最大时,l 的方程为:y =√72x −2 或 y =−√72x −2.34. (1) 因为 a =5,b =3, 所以 c =4,设 ∣PF 1∣=t 1,∣PF 2∣=t 2, 则 t 1+t 2=10, ⋯⋯①t 12+t 22−2t 1t 2⋅cos60∘=82, ⋯⋯②由 ①2−② 得 t 1t 2=12,所以 S △F 1PF 2=12t 1t 2⋅sin60∘=12×12×√32=3√3.(2) 设 P (x,y ),由 S △F 1PF 2=12⋅2c ⋅∣y ∣=4⋅∣y ∣ 得 4∣y ∣=3√3, 所以 ∣y ∣=3√34⇒y =±3√34, 将 y =±3√34代入椭圆方程解得 x =±5√134, 所以 P (5√134,3√34) 或 P (5√134,−3√34) 或 P (−5√134,3√34) 或 P (−5√134,−3√34). 35. (1) 双曲线 C:x 2a 2−y 2b 2=1(a >0,b >0) 的渐近线方程为:y =±ba x , 则由题意得,ba =√3,a =1,解得b =√3, 则双曲线的方程为:x 2−y 23=1;(2) 联立直线方程和双曲线方程,得到, {y =x +m,x 2−y 23=1,消去 y ,得 2x 2−2mx −m 2−3=0, 设 A (x 1,y 1),B (x 2,y 2),则判别式 Δ=4m 2+8(m 2+3)>0,x 1+x 2=m , 中点 M 的 x 0=m 2,y 0=x 0+m =32m , 则有 y0x 0=3.来自QQ 群33944496336. (1)如图所示,不妨设 M 在双曲线的右支上,M 点到 x 轴的距离为 ℎ, MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,则 MF 1⊥MF 2, 设 ∣MF 1∣=m ,∣MF 2∣=n ,由双曲线定义知,m −n =2a =8, ⋯⋯① 又 m 2+n 2=(2c )2=80, ⋯⋯② 由 ①② 得 m ⋅n =8, ∴12mn =12∣F 1F 2∣⋅ℎ, ∴ℎ=2√55.来自QQ 群339444963(2) 设所求双曲线 C 的方程为 x 216−λ−y 24+λ=1(−4<λ<16),由于双曲线 C 过点 (3√2,2),所以 1816−λ−44+λ=1,解得 λ=4 或 λ=−14(舍去). ∴ 所求双曲线 C 的方程为 x 212−y 28=1.37. (1) ∵ 点 P 在椭圆 C 上, ∴2a =∣PF 1∣+∣PF 2∣=6,a =3.在 Rt △PF 1F 2 中,2c =∣F 1F 2∣=√∣PF 2∣2+∣PF 1∣2=√(143)2+(43)2=2√533;故椭圆的半焦距 c =√533,从而 b 2=a 2−c 2=289,∴ 椭圆 C 的方程为 x 29+y 2289=1.(2) 已知圆的方程为 (x +2)2+(y −1)2=5,∴ 圆心 M 的坐标为 (−2,1). 设 A ,B 的坐标分别为 (x 1,y 1),(x 2,y 2). 由题意 x 1≠x 2 且 x 129+y 12289=1, ⋯⋯①x 229+y 22289=1. ⋯⋯②由②−①得(x1−x2)(x1+x2)9+(y1−y2)(y1+y2)289=0. ⋯⋯③又A,B关于点M对称,∴x1+x2=−4,y1+y2=2,代入③得y1−y2x1−x2=5681,即直线L的斜率为5681,∴直线L的方程为y−1=5681(x+2),即56x−81y+193=0.故所求的直线方程为56x−81y+193=0.来自QQ群33944496338. (1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y−29=0相切,且半径为5,所以∣4m−29∣5=5,即∣4m−29∣=25.因为m为整数,故m=1.故所求圆的方程为(x−1)2+y2=25.(2)把直线ax−y+5=0,即y=ax+5,代入圆的方程,消去y,整理,得(a2+1)x2+2(5a−1)x+1=0,由于直线ax−y+5=0交圆于A,B两点,故Δ=4(5a−1)2−4(a2+1)>0,即12a2−5a>0,由于a>0,解得a>512,所以实数a的取值范围是(512,+∞).(3)设符合条件的实数a存在,则直线l的斜率为−1a ,l的方程为y=−1a(x+2)+4,即x+ay+2−4a=0,由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2−4a=0,解得a=34.由于34∈(512,+∞),故存在实数a=34.使得过点P(−2,4)的直线l垂直平分弦AB.来自QQ群339444963 39. (1)当α=π3时,C1的普通方程为y=√3(x−1),C2的普通方程为x2+y2=1.联立方程组{x2+y2=1, y=√3(x−1),解得C1与C2的交点为(1,0) 和 (12,−√32).(2) C 1 的普通方程为xsinα−ycosα−sinα=0,A 点坐标为 (sin 2α,−cosαsinα),故当 α 变化时,P 点轨迹的参数方程为{x =12sin 2α,y =−12sinαcosα,(α为参数). P 点轨迹的普通方程为(x −14)2+y 2=116.故 P 点轨迹是圆心为 (14,0),半径为 14 的圆. 40. 设圆心为 (3t,t ),半径为 r =∣3t∣, 则圆心到直线 y =x 的距离 d =√2=∣∣√2t ∣∣,由勾股定理及垂径定理得:(2√72)2=r 2−d 2,即 9t 2−2t 2=7,解得:t =±1,所以圆心坐标为 (3,1),半径为 3;或圆心坐标为 (−3,−1),半径为 3, 则圆 C 的方程为 (x −3)2+(y −1)2=9 或 (x +3)2+(y +1)2=9. 41. (1) 由 {y =x +b,x 2=4y得 x 2−4x −4b =0, ⋯⋯①因为直线 l 与抛物线 C 相切,所以 Δ=(−4)2−4×(−4b )=0, 解得 b =−1.(2) 由(1)知 b =−1,故方程 ① 即为 x 2−4x +4=0,解得 x =2,代入 x 2=4y ,得 y =1. 故点 A (2,1),因为圆 A 与抛物线 C 的准线相切,所以圆 A 的半径 r 等于圆心 A 到抛物线的准线 y =−1 的距离,即 r =∣1−(−1)∣=2, 所以圆 A 的方程为 (x −2)2+(y −1)2=4.42. (1) 由 {x =ρcosθ,y =ρsinθ, 可得,(ρcosθ+6)2+ρ2sin 2θ=25,整理得 ρ2+12ρcosθ+11=0 即为所求.(2) 令直线 l 的斜率为 k ,可得直线的直角坐标方程为 kx −y =0. 圆的半径为 r =5,圆心到直线的距离 d =√k 2+1,又因为 ∣AB∣=√10,所以可得∣AB∣24+d 2=r 2,即 52+36k 2k 2+1=25,解得 k =±√153. 43. (1) 椭圆 x 29+y 225=1 的焦点为 (0,±4),离心率为 e =45. 因为双曲线与椭圆的离心率之和为 245, 所以双曲线的离心率为 2, 所以 ca =2.因为双曲线与椭圆 x 29+y 225=1 有公共焦点 F 1,F 2,所以 c =4,所以 a =2,b =√12,所以双曲线的方程是 y 24−x 212=1.(2) 由题意,∣PF 1∣+∣PF 2∣=10,∣PF 1∣−∣PF 2∣=4, 所以 ∣PF 1∣=7,∣PF 2∣=3, 因为 ∣F 1F 2∣=8, 所以 cos∠F 1PF 2=72+32−822⋅7⋅3=−17.44. 由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点, 所以 p =2c .设抛物线方程为 y 2=4c ⋅x , 因为抛物线过点 (32,√6), 所以 6=4c ⋅32,所以 c =1,故抛物线方程为 y 2=4x . 又双曲线 x 2a2−y 2b 2=1 过点 (32,√6),所以94a2−6b 2=1.又 a 2+b 2=c 2=1, 所以94a2−61−a 2=1.所以 a 2=14 或 a 2=9(舍). 所以 b 2=34, 故双曲线方程为 4x 2−4y 23=1.45. (1) 因为 P 到点 F (1,0) 的距离比它到直线 l :x =−2 的距离少 1, 所以 P 到点 F (1,0) 的距离与它到直线 l :x =−1 的距离相等,所以由抛物线定义可知点 P 的轨迹是以 F 为焦点、以直线 l :x =−1 为准线的抛物线,设抛物线方程为 y 2=2px (p >0) , 所以 P =2,所以曲线 C 的方程为 y 2=4x .(2) 直线 AB 的斜率为定值 −1,理由如下:设 A (x 1,y 1),B (x 2,y 2),则 y 12=4x 1,y 22=4x 2,因为直线 AQ ,BQ 倾斜角互补, 所以 k AQ +k BQ =0,即 y 1−2x 1−1+y 2−2x 2−1=0,4y1+2+4y 2+2=0,所以 y 1+y 2=−4, 所以 k AB =y 1−y 2x 1−x 2=4y1+y 2=−1.46. (1) 圆 C 的参数方程为 {x =2cosφ,y =2sinφ(φ 为参数),消去参数可得:圆 C 的普通方程为 x 2+y 2=4.由题意可得:直线 l 的参数方程为 {x =12t,y =2+√32t (t 为参数). (2) 依题意,直线 l 的直角坐标方程为 √3x −y +2=0, 圆心 C 到直线 l 的距离 d =22=1, 所以 ∣AB ∣=2√r 2−d 2=2√3.47. (1) 因为椭圆一个顶点为 A (2,0),离心率为 √22,所以 {a =2,ca =√22,a 2=b 2+c 2,所以 b =√2,所以椭圆 C 的方程为 x 24+y 22=1.(2) 直线 y =k (x −1) 与椭圆 C 联立 {y =k (x −1),x 24+y 22=1, 消元可得 (1+2k 2)x 2−4k 2x +2k 2−4=0,设 M (x 1,y 1),N (x 2,y 2),则 x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−41+2k 2, 所以 ∣MN∣=√1+k 2×√(x 1+x 2)2−4x 1x 2=2√(1+k 2)(4+6k 2)1+2k 2,因为 A (2,0) 到直线 y =k (x −1) 的距离为 d =√1+k 2,所以 △AMN 的面积 S =12∣MN∣d =∣k∣√4+6k 21+2k 2,因为 △AMN 的面积为 √103, 所以∣k∣√4+6k 21+2k 2=√103, 所以 k =±1. 48. (1) 由题意 ca =√22,b 2a=√2,a 2=b 2+c 2,解得 a =2√2,b =c =2, 则椭圆的方程为:x 28+y 24=1.(2) 要使 △AOB 面积最大,则 B 到 OA 所在直线距离最远. 设与 OA 平行的直线方程为 y =√22x +b .由 {y =√22x +b,x 28+y 24=1, 消去 y 并化简得 x 2+√2bx +b 2−4=0. 由 Δ=0 得 b =±2√2, 不妨取 b >0,所以与直线 OA 平行,且与椭圆相切的直线方程为:y =√22x +2√2,则 B 到直线 OA 的距离等于 O 到直线:y =√22x +2√2 的距离 d ,d =4√33,又 ∣OA ∣=√6,△AOB 面积的最大值 S =12×√6×4√33=2√2.49. (1) 因为点 (1,√22) 在椭圆 C:x 2a 2+y 2b 2=1(a >b >0) 上,椭圆离心率为 √22,所以 { 1a 2+12b 2=1,c a =√22,a 2=b 2+c 2, 解得 a =√2,b =1,所以椭圆 C 的方程为x 22+y 2=1.来自QQ 群339444963(2) 假设存在点 M (x 0,0),使得 MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 为定值, 设 A (x 1,y 1),B (x 2,y 2),设直线 l 的方程为 x =my +1,联立 {x 22+y 2=1,x =my +1得 (m 2+2)y 2+2my −1=0,y 1+y 2=−2m m 2+2,y 1y 2=−1m 2+2,MA ⃗⃗⃗⃗⃗⃗ =(x 1−x 0,y 1)=(my 1+1−x 0,y 1),MB ⃗⃗⃗⃗⃗⃗ =(x 2−x 0,y 2)=(my 2+1−x 0,y 2), 所以MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =(my 1+1−x 0)(my 2+1−x 0)+y 1y 2=(m 2+1)y 1y 2+m (1−x 0)(y 1+y 2)+(1−x 0)2=−(m 2+1)m 2+2+−2m 2(1−x 0)m 2+2+(1−x 0)2=m 2(x 02−2)+2(1−x 0)2−1m 2+2,。
高三数学解析几何试题答案及解析
高三数学解析几何试题答案及解析1.中心在原点,其中一个焦点为(-2,0),且过点(2,3),则该椭圆方程为;【答案】【解析】略2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)。
【解析】(1)两式相加消去参数可得曲线的普通方程,由曲线的极坐标方程得,整理可得曲线的直角坐标方程。
(2)由(1)知曲线的方程为,且点在曲线上,所以把直线的参数方程与曲线的方程联立,利用韦达定理可得试题解析:(1)(2)将代人直角坐标方程得【考点】(1)极坐标方程、参数方程与直角坐标方程的互化;(2)直线参数方程中参数的几何意义。
3.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数.(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.【答案】(1)(2)或【解析】第一问注意极坐标和直角坐标的转换,第二问注意用好公式即可,注意直线的参数方程中参数的几何意义的应用.试题解析:(1)由得,于是有,化简可得(2)将代入圆的方程得,化简得.设、两点对应的参数分别为、,则,,,,或.【考点】极坐标方程与直角坐标方程的转换,直线被曲线截得的弦长问题,直线的参数方程中参数的几何意义的应用.4.已知抛物线y2 =8x的焦点为F,直线y=k(x+2)与抛物线交于A,B两点,则直线FA与直线FB的斜率之和为A.0B.2C.-4D.4【答案】A【解析】由题可知,如图,,设,联立,化为,由于,所以,因此,直线FA与直线FB的斜率之和为;【考点】抛物线的简单性质5.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为_______.【答案】【解析】∵圆心与点(1,0)关于直线y=x对称,∴圆心为,又∵圆C的半径为1,∴圆C的标准方程为.【考点】圆的标准方程.6.已知是圆的切线,切点为,.是圆的直径,与圆交于点,,则圆的半径.【答案】【解析】在直角三角形中,由切割线定理可得,即,解得.【考点】1.勾股定理;2.切割线定理.7.如图,双曲线的中心在坐标原点,分别是双曲线虚轴的上、下顶点,是双曲线的左顶点,为双曲线的左焦点,直线与相交于点.若双曲线的离心率为2,则的余弦值是()A.B.C.D.【答案】【解析】可设双曲线方程为,即得,,,所以直线方程为,直线方程为,又把和的直线方程联立解得,又,所以,即所以有,,则,又故答案选【考点】双曲线的简单性质.8.已知抛物线,则A.它的焦点坐标为B.它的焦点坐标为C.它的准线方程是D.它的准线方程是【答案】C【解析】将抛物线化为标准方程得,所以其焦点坐标为,准线方程为.【考点】抛物线的标准方程及几何性质.9.已知双曲线的离心率为,则的值为A.B.3C.8D.【答案】B【解析】试题分析:由题意知,,所以,解之得,故应选.【考点】1、双曲线的概念;2、双曲线的简单几何性质;10.已知抛物线:的焦点为,抛物线上的点到焦点的距离为3,椭圆:的一个焦点与抛物线的焦点重合,且离心率为.(1)求抛物线和椭圆的方程;(2)已知直线:交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.【答案】(1)抛物线的方程为:;椭圆的方程为;(2)或.【解析】(1)由抛物线的定义并结合已知条件可得,,进而得出抛物线的方程;再由椭圆的一个焦点与抛物线的焦点重合,可得椭圆半焦距,即,又由椭圆的离心率为,即可联立方程组解出,的值,进而得出椭圆的方程;(2)首先设出、,然后联立直线与椭圆的方程并整理得到一元二次方程,由韦达定理可得,,以及判别式得出参数的取值范围,最后由原点在以线段为直径的圆的外部即得到关于的不等式,进而求出的取值范围.试题解析:(1)由题意可知,解得,所以抛物线的方程为:.∴抛物线的焦点,∵椭圆的一个焦点与抛物线的焦点重合,∴椭圆半焦距,.∵椭圆的离心率为,∴,解得,,∴椭圆的方程为.(2)设、,由得,∴,,由,即,解得或.①∵原点在以线段为直径的圆的外部,则,∴,解得.②由①②解得实数的范围是或.【考点】1、抛物线;2、椭圆的标准方程;3、直线与椭圆相交的综合问题.11.如图,已知椭圆()经过点,离心率,直线的方程为.(1)求椭圆的标准方程;(2)是经过椭圆右焦点的任一弦(不经过点),设直线与相交于点,记,,的斜率分别为,,,问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.【答案】(1);(2)存在常数符合题意.【解析】(1)根据点在椭圆上,可将其代入椭圆方程,又且解方程组可得的值.(2)设直线的方程为,与椭圆方程联立消去可得关于的一元二次方程,从而可得两根之和,两根之积.根据斜率公式可用表示出.从而可得的值.试题解析:解:(Ⅰ)由点在椭圆上得,,①又,所以,②由①②得,故椭圆的方程为.(Ⅱ)假设存在常数,使得,由题意可设则直线的方程为,③代入椭圆方程,并整理得,设,则有,④在方程③中,令得,,从而.又因为共线,则有,即有,所以=,⑤将④代入⑤得,又,所以,故存在常数符合题意.【考点】1椭圆的简单几何性质;2直线与椭圆的位置关系问题.12.【选修4-2:极坐标与参数方程】已知直线n的极坐标是,圆A的参数方程是(θ是参数)(1)将直线n的极坐标方程化为普通方程;(2)求圆A上的点到直线n上点距离的最小值.【答案】(1);(2).【解析】(1)利用,即可将极坐标方程化为平面直角坐标系方程;消去参数即可将圆的参数方程化为普通方程;(2)运用普通方程,并利用圆心到直线的距离减去半径即得最小值.试题解析:(1)由,展开为,化为;(2)圆A的(θ是参数)化为普通方程为,圆心,半径.∴圆心到直线n的距离.∴圆A上的点到直线n上点距离的最小值为:.【考点】(1)极坐标、参数方程化普通方程;(2)圆上点到直线距离的最值问题.13.已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标().【答案】(1);(2),.【解析】(1)先得到的普通方程,进而得到极坐标方程;(2)先联立求出交点坐标,进而求出极坐标.试题解析:(1)将消去参数,化为普通方程5,即.将代入得,所以的极坐标方程为.(2)的普通方程为.由,解得或,所以与交点的极坐标分别为,.【考点】1、参数方程与普通方程的互化;2、极坐标方程与直角坐标方程的互化.14.已知双曲线的一条渐近线过点(2,),则双曲线的离心率为()A.B.C.D.【答案】B【解析】因为双曲线的方程为所以双曲线一条渐近线方程经过点可得,,解得离心率,故选D.【考点】1、双曲线的渐近线;2、双曲线的离心率.15.已知直线l经过点,倾斜角,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设l与圆C相交于两点A、B,求A、B两点间的距离.【答案】(1);(2).【解析】(1)首先根据两角差的余弦公式展开,然后两边同时乘以,根据,,化简,得到圆的直角坐标方程;(2)根据定点和倾斜角写出直线的参数方程,代入圆的方程得到关于的二次方程,根据韦达定理和的几何意义,,即可求出结果.试题解析:解:(1)由得,所以,即,故圆C的直角坐标方程为.(2)直线l的参数方程为,即(t为参数),把(t为参数)代入得,设方程的两根为,,则,.故.【考点】1.极坐标方程与直角坐标方程的互化;2.弦长公式.【易错点睛】极坐标与参数方程的问题,属于基础题型,对于形如(t为参数)的参数方程,应先化为直线参数方程的标准形式后才能利用的几何意义解题.在参数方程与普通方程的互化中,必须使的取值范围保持一致.16.选修4-4:坐标系与参数方程已知直线(为参数),曲线(为参数).(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.【答案】(1);(2)【解析】(1)由得普通方程为,的普通方程为.联立方程组,即可求出结果;(2)的参数方程为(为参数),故点的坐标是,从而点到直线的距离,根据三角函数的性质即可求出结果.试题解析:(1)的普通方程为,的普通方程为,联立方程组,解得交点坐标为,,所以;(2)曲线(为参数).设所求的点为,则到直线的距离当时,取得最小值.【考点】1.极坐标;2.参数方程.17.若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】由题意得直线和直线截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为,即【考点】直线与圆位置关系18.已知椭圆:的左右焦点分别为,,离心率为,直线:,为点关于直线对称的点,若为等腰三角形,则的值为.【答案】.【解析】分析题意可知为等腰三角形可得,即点到直线距离为,∴,故填:.【考点】双曲线的标准方程及其性质.19.已知椭圆过定点,以其四个顶点为顶点的四边形的面积等于以其两个短轴端点和两个焦点为顶点的四边形面积的倍.(Ⅰ)求此椭圆的方程;(Ⅱ)若直线与椭圆交于,两点,轴上一点,使得为锐角,求实数的取值范围.【答案】(Ⅰ)椭圆的方程为;(Ⅱ)的取值范围.【解析】(Ⅰ)以四个顶点为顶点的四边形和以其两个短轴端点和两个焦点为顶点的四边形均为菱形,易求它们的对角线长,根据其面积关系可得,又再把点代入椭圆方程,可得,从而求得其方程;(Ⅱ)由为锐角,得,根据向量数量积的坐标运算可得两点坐标之间的关系,整理方程组,根据韦达定理把两根之和和两根之积代入上面的关系式,可得关于的不等式,解不等式即可求得参数的取值范围.试题解析:(Ⅰ)以椭圆四个顶点为顶点的四边形的面积,以两个短轴端点和两个焦点为顶点的四边形面积.,即.可设椭圆方程为,代入点可得.所求椭圆方程为.(Ⅱ)由为锐角,得,设,,则,,,联立椭圆方程与直线方程消去并整理得.所以,,进而求得,所以,即,解之得的取值范围【考点】待定系数法求椭圆方程及直线与椭圆位置关系的应用.【方法点睛】本题第一问主要考查了待定系数求椭圆方程,发现两个四边形的形状快速求得其面积是解答本问的突破口;第二问中,对条件“为锐角”的转化是关键,在直线与圆锥曲线的位置关系问题中,夹角为“锐角”、“钝角”、 “直角”及“点在圆外、圆内、圆上”等实际上都可以转化为向量的数量积问题,通过向量数量积的坐标运算可得直线与圆锥曲线的交点坐标之间的关系,再结合方程组和韦达定理即可建立函数、方程或不等式,这里面会考查到学生转化的数学思想,数形结合的数学思想及函数与方程的思想等,这类问题综合性较强,属于中高档题目.20. (2015秋•锦州校级期中)已知△ABC ,点A (2,8)、B (﹣4,0)、C (4,﹣6),则∠ABC 的平分线所在直线方程为 . 【答案】x ﹣7y+4=0【解析】先求出三角形ABC 是等腰直角三角形,作出∠ABC 的角平分线BD ,求出D 点坐标,BD 的斜率,再用点斜式求得所在直线方程即可.解:如图示:,∵k AB =,k BC =﹣,∴AB ⊥BC ,∵|AB|==10,|BC|==10,∴|AB|=|BC|, ∴△ABC 是等腰直角三角形, 作出∠ABC 的角平分线BD ,∴直线BD 是线段AC 的垂直平分线,D 是AC 的中点, ∴D (3,1), 由k AC =﹣7得:k BD =,∴直线BD 的方程是:y=1=(x ﹣3), 整理得:x ﹣7y+4=0, 故答案为:x ﹣7y+4=0.【考点】待定系数法求直线方程.21. 如图,分别是双曲线的左、右焦点,过的直线与的左、右两支分别交于点.若为等边三角形,则双曲线的离心率为()A.4B.C.D.【答案】B【解析】由双曲线的定义,知,.又==.又为等边三角形,所以=,即=,所以,所以,所以.在中,由余弦定理,得-=,即,所以,所以,故选B.【考点】1、双曲线的定义及几何性质;2、余弦定理.【方法点睛】离心率的求解中可以不求出的具体值,而是得出与的关系,从而求得,一般步骤如下:①根据已知条件得到齐次方程;②化简得到关于的一元二次方程;③求解的值;④根据双曲线离心率的取值范围进行取舍.22.在以坐标原点为极点,轴的正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,正三角形的顶点都在上,且依逆时针次序排列,点的坐标为.(I)求点的直角坐标;(II)设是圆上的任意一点,求的取值范围.【答案】(I),;(II) .【解析】(I)先将曲线的极坐标方程化为普通方程,进而化为参数方程,再确定所求点的坐标;(II)设出点的参数坐标,化简表达式,利用三角恒等变形进行求解.试题解析:(1)由题意,得曲线的普通方程为,其参数方程为为参数,又因为点的坐标为,所以点的坐标为,即;点的坐标为,即.(2)由圆的参数方程,可设点,于是,∴的范围是.【考点】1.曲线的极坐标、普通方程、参数方程的转化;2.三角恒等变换.23.已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.【答案】(1);(2)或.【解析】(1)把转化为 ,再利用,,转化为直角坐标方程;(2)将代入圆的方程化简得,.,求得,所以或.试题解析:(1)由得.∵,,,∴曲线的直角坐标方程为,即;(2)将代入圆的方程得,化简得.设两点对应的参数分别为、,则∴.∴,,或.【考点】参数方程、极坐标方程、直角坐标方程的互化及应用24.设双曲线的左、右焦点分别为,,离心率为,过的直线与双曲线的右支交于,两点,若是以为直角顶点的等腰直角三角形,则()A.B.C.D.【答案】C【解析】设,则,,,∵,∴,∴,∵为直角三角形,∴,∴,∵,∴,∴,故选C.【考点】1、双曲线的定义;2、双曲线的简单几何性质.25.已知抛物线的焦点F与双曲线的右焦点重合,抛物线的准线与轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3C.D.4【答案】B【解析】因为抛物线的焦点F与双曲线的右焦点重合,所以抛物线的标准方程为,,设点,则由,得,即,即,解得,即A点的横坐标为3;故选B.【考点】1.抛物线的定义;2.双曲线的定义.【技巧点睛】本题考查抛物线、双曲线的定义的应用和两点间的距离公式,属于基础题;在处理与抛物线的焦点有关的问题时,要注意利用抛物线的定义使抛物线的点到焦点的距离和到准线的距离进行相互转化,但要注意抛物线的标准方程的形式,如抛物线上的点到焦点的距离为,抛物线上的点到焦点的距离为,抛物线上的点到焦点的距离为,物线上的点到焦点的距离为.26.在平面直角坐标系中,直线的参数方程为(为参数),在以直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的直角坐标方程和直线的普通方程;(2)若直线与曲线相交于两点,求的面积.【答案】(1),;(2).【解析】(1)利用极坐标与直角坐标的互化,可把极坐标方程化为普通方程;消去参数可得直线的直角坐标方程;(2)将直线的参数方程代入曲线的方程,得,由,即可求解的长度,再利用点到直线的距离公式求解的高,即可求解三角形的面积.试题解析:(1)由曲线的极坐标方程是:,得.∴由曲线的直角坐标方程是:.由直线的参数方程,得代入中消去得:,所以直线的普通方程为:(2)将直线的参数方程代入曲线的普通方程,得,设两点对应的参数分别为,所,因为原点到直线的距离,所以的面积是【考点】参数方程、极坐标方程与直角坐标方程的互化;直线参数的应用.27.如图,椭圆左、右焦点分别为,上顶点轴负半轴上有点,满足,且,若过三点的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若为椭圆上的点,且直线垂直于轴,直线与轴交于点,直线与交于点,求的面积的最大值.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ)由题得,即的外接圆圆心为,半径,则由过三点的圆与直线相切可求得,进而得到,则椭圆的方程可求;(Ⅱ)首先证明点恒在椭圆上通过设、直线,利用三角形面积公式化简可知,通过联立直线与椭圆方程后由韦达定理、换元化简可知,,令求出的最大值进而即得结论.试题解析:(Ⅰ)由题得,即,的外接圆圆心为,半径,∵过三点的圆与直线相切,∴,解得:,∴所求椭圆方程为:.(Ⅱ)设,则,∴,与的方程分别为:.则,∵,∴点恒在椭圆上.设直线,则,记,,,令,则,∵函数在为增函数,∴当即时,函数有最小值4,即时,,又∵.故【考点】【名师】本题考查了椭圆离心率,方程的求法,以及直线与椭圆位置关系,属中档题.解题时注意设而不求思想的应用.以及基本不等式的综合应用,难点在于证明点恒在椭圆上28.以双曲线的右焦点为圆心,为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为 .【答案】【解析】由题意得【考点】双曲线渐近线29.设分别为椭圆()与双曲线()的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的取值范围为()A.B.C.D.【答案】B【解析】设,则,又,,所以,,则,由得,又,所以,即,所以.故选B.【考点】椭圆与双曲线的性质.【名师】本题是椭圆与双曲线的综合题,解题时要注意它们性质的共同点和不同点,如离心率是相同的,准线方程是,但椭圆中有,,双曲线中有,,这在解题时要特别注意不能混淆,否则易出错.30.在直角坐标系中,直线为过点,且倾斜角为的直线,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线(1)写出直线的参数方程和曲线的直角坐标方程;(2)若直线与曲线相交于两点,且,求的长【答案】(1)直线:(为参数,其中),;(2).【解析】(1)过点,倾斜角为的直线的参数方程为,由此可写出题中直线的参数方程,利用公式,可把极坐标方程化为直角坐标方程;(2)考虑到参数方程中参数的几何意义,由于在椭圆内部,对应的参数分别为,则,因此把直线参数方程代入椭圆的直角坐标方程,整理后可得,利用可求得,从而得,而,由此可得弦长.试题解析:(1)直线:(为参数,其中),(2)把:代入,整理得,由于点在椭圆内,则恒成立,由韦达定理由于,由的几何意义知,所以,又,则所以【考点】参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化.31.选修4—1:几何证明选讲如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=PA·PC;(2)若⊙O的半径为,OA=OM,求:MN的长.【答案】(1)证明见解析;(2).【解析】(1)做出辅助线连接,根据切线得到直角,根据垂直得到直角,即且,根据同角的余角相等,得到角的相等关系,得到结论;(2)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即,代入所给的条件,得到要求线段的长.试题解析:(1)连结,则,且为等腰三角形,则,,,.由条件,根据切割线定理,有,所以.(2),在中,.延长交⊙于点,连结.由条件易知∽,于是,即,得.所以.【考点】与圆有关的比例线段.32.、分别是椭圆:的左、右焦点,为坐标原点,是上任意一点,是线段的中点.已知的周长为,面积的最大值为.(Ⅰ)求的标准方程;(Ⅱ)过作直线交于两点,,以为邻边作平行四边形,求四边形面积的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)连接,由椭圆定义知,是线段的中点,是线段的中点,,周长为,可得,……①又面积,可得,……②,由即可求出椭圆方程;(Ⅱ)设,,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,,,, 9分设,则,,然后再利用基本不等式即可求出结果.试题解析:解:(Ⅰ)连接,由椭圆定义知,是线段的中点,是线段的中点,,周长为,即,……① 2分又面积,所以当时,最大,所以,……② 4分由解得,所以的标准方程为.(Ⅱ)设,,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,,,,设,则,,因为,所以,当且仅当时,等号成立,所以,,四边形面积的取值范围.【考点】1.椭圆方程;2.直线与椭圆的位置关系.33.设是坐标原点,椭圆的左右焦点分别为,且是椭圆上不同的两点。
高三数学(文科2021届含答案)主干知识五:解析几何
高三数学(文科)主干知识五:解析几何考试要求(1)直线与方程理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.能根据两条直线的斜率判定这两条直线平行或垂直.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式).能用解方程组的方法求两直线的交点坐标.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程掌握确定圆的几何要素,掌握圆的标准方程与一般方程.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.能用直线和圆的方程解决一些简单的问题.(3)圆锥曲线与方程掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质(范围、对称性、顶点、离心率、渐近线).了解抛物线的定义、几何图形和标准方程,知道它们的简单几何性质(范围、对称性、顶点、准线、离心率).理解直线与圆锥曲线的位置关系.复习关注关注解题方向的选择及计算方法的合理性(如“设而不求”、“整体代换”等),同时适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般的思想,关注对整体处理问题的策略以及待定系数法、换元法等强化训练一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.1. 双曲线221102x y -=的焦距为( ) A. B. C. D.2.已知点A (3,2),B (-2,7),若直线y=ax-3与线段AB 的交点P 分有向线段AB 的比为4:1,则a 的值为( )A .3B .-3C .9D .-93.由直线1y x =+上的点向圆22(3)(2)1x y -++= 引切线,则切线长的最小值为( )AB..4.双曲线x 2-y 2=4的两条渐近线和直线x =2围成一个三角形区域(含边界),则该区域可表示为( )A .⎪⎩⎪⎨⎧≥≤-≥+200x y x y xB .⎪⎩⎪⎨⎧≤≥-≥+200x y x y xC .⎪⎩⎪⎨⎧≤≥-≤+200x y x y x D .⎪⎩⎪⎨⎧≤≤-≤+200x y x y x 5.若直线:10 (0,0)l ax by a b ++=>>始终平分圆M :228210x y x y ++++=的周长,则14a b+的最小值为( ) A .8B .12C .16D .20 6.直线经过点A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角取值范围是( )A .),0[πB .),2(]4,0[πππ⋃C .]4,0[πD .),2()2,4[ππππ⋃ 7.已知直线420mx y +-=与250x y n -+=互相垂直,垂足为),1(p P ,则m n p -+的值是( )A .24B .20C .0D .-48.圆心在抛物线22x y =()0x >上,并且与抛物线的准线及y 轴都相切的圆的方程是( )A .041222=+--+y x y x B .01222=+--+y x y x C .041222=+--+y x y x D .041222=+--+y x y x9.以椭圆22221(0)x y a b a b+=>>的右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( )A .23 B C .49D 10.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b 2,4b 2],则这一椭圆离心率e 的取值范围是( )A .]23,35[B .]22,33[C .]22,35[D .]23,33[ 11.已知椭圆15922=+y x ,过右焦点F 做不垂直于x 轴的弦交椭圆于A 、B 两点,AB 的垂直平分线交x 轴于N ,则=AB NF :( )A .12B .13C .23D .1412.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:191622=+y x ,点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,再回到点A 时,小球经过的最短路程是( )A .20B .18C .16D .以上均有可能二、填空题:本大题共4小题,每小题4分,共16分.13.直线1-=x y 上的点到圆042422=+-++y x y x 上的点的最近距离是 .14.已知P 是椭圆192522=+y x 上的点,F 1、F 2分别是椭圆的左、右焦点,若121212||||PF PF PF PF ⋅=⋅,则△F 1PF 2的面积为. 15.已知抛物线214y x =,过焦点且垂直于对称轴的直线与抛物线交于A,B 两个点, 则坐标原点O 与A ,B 两点构成的三角形的面积为 .。
高中解析几何试题及答案
高中解析几何试题及答案1. 已知圆的方程为 \((x-2)^2+(y-3)^2=9\),求该圆的圆心坐标和半径。
答案:圆心坐标为 \((2, 3)\),半径为 \(3\)。
2. 求直线 \(2x + 3y - 6 = 0\) 关于点 \((1, 2)\) 对称的直线方程。
答案:对称直线的方程为 \(2x - 3y + 8 = 0\)。
3. 已知椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))经过点 \((2, 3)\),且离心率 \(e = \frac{c}{a}\) 为 \(\frac{1}{2}\),求椭圆的长轴和短轴长度。
答案:根据离心率 \(e = \frac{c}{a} = \frac{1}{2}\),我们有 \(c =\frac{a}{2}\)。
由于椭圆经过点 \((2, 3)\),代入椭圆方程得\(\frac{4}{a^2} + \frac{9}{b^2} = 1\)。
又因为 \(c^2 = a^2 -b^2\),代入 \(c = \frac{a}{2}\) 得 \(\frac{a^2}{4} = a^2 -b^2\),解得 \(b^2 = \frac{3}{4}a^2\)。
将 \(b^2\) 代入椭圆方程,解得 \(a^2 = 16\) 和 \(b^2 = 12\)。
因此,椭圆的长轴长度为\(2a = 32\),短轴长度为 \(2b = 24\)。
4. 求抛物线 \(y^2 = 4px\)(\(p > 0\))的焦点坐标。
答案:焦点坐标为 \((\frac{p}{2}, 0)\)。
5. 已知双曲线 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 的一条渐近线方程为 \(y = \frac{b}{a}x\),求双曲线的离心率。
答案:双曲线的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)。
高中数学文科专题训练(答案)解析几何专题复习(4)
解析几何专题复习(4)参考答案1.已知抛物线C :y 2=2px (p >0)过点M (m ,2),其焦点为F ,且|MF |=2.(1)求抛物线C 的方程;(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F :(x -1)2+y 2=1相切,切点分别为A ,B ,求证:直线AB 过定点.解:(1)抛物线C 的准线方程为x =-p 2, ∴|MF |=m +p 2=2,又4=2pm ,即4=2p ⎝⎛⎭⎫2-p 2, ∴p 2-4p +4=0,∴p =2,∴抛物线C 的方程为y 2=4x .(2)证明:设点E (0,t )(t ≠0),由已知切线不为y 轴,设EA :y =kx +t ,联立⎩⎪⎨⎪⎧y =kx +t ,y 2=4x ,消去y ,可得k 2x 2+(2kt -4)x +t 2=0,① ∵直线EA 与抛物线C 相切,∴Δ=(2kt -4)2-4k 2t 2=0,即kt =1,代入①可得1t 2x 2-2x +t 2=0, ∴x =t 2,即A (t 2,2t ).设切点B (x 0,y 0),则由几何性质可以判断点O ,B 关于直线EF :y =-tx +t 对称,则⎩⎪⎨⎪⎧y 0x 0×t -00-1=-1,y 02=-t ·x 02+t ,解得⎩⎪⎨⎪⎧x 0=2t 2t 2+1,y 0=2t t 2+1,即B ⎝ ⎛⎭⎪⎫2t 2t 2+1,2t t 2+1. 法一:直线AB 的斜率为k AB =2t t 2-1(t ≠±1),直线AB 的方程为y =2t t 2-1(x -t 2)+2t , 整理得y =2t t 2-1(x -1),∴直线AB 恒过定点F (1,0), 当t =±1时,A (1,±2),B (1,±1),此时直线AB 为x =1,过点F (1,0).综上,直线AB 恒过点F (1,0).法二:直线AF 的斜率为k AF =2t t 2-1(t ≠±1), 直线BF 的斜率为k BF =2t t 2+1-02t 2t 2+1-1=2t t 2-1(t ≠±1),∴k AF =k BF ,即A ,B ,F 三点共线. 当t =±1时,A (1,±2),B (1,±1),此时A ,B ,F 三点共线.∴直线AB 过定点F (1,0).2.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点.当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为22.(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得|QA ||QB |=|P A ||PB |恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.[解] (1)由已知,点(2,1)在椭圆E 上,因此⎩⎪⎨⎪⎧2a 2+1b 2=1,a 2-b 2=c 2,c a =22,解得⎩⎪⎨⎪⎧a =2,b = 2.所以椭圆E 的方程为x 24+y 22=1. (2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C ,D 两点.如果存在定点Q 满足条件,则有|QC ||QD |=|PC ||PD |=1,即|QC |=|QD |. 所以点Q 在y 轴上,可设点Q 的坐标为(0,y 0).当直线l 与x 轴垂直时,设直线l 与椭圆相交于M ,N 两点,则M ,N 的坐标分别为(0,2),(0,-2).由|QM ||QN |=|PM ||PN |,得|y 0-2||y 0+2|=2-12+1,解得y 0=1或y 0=2.所以若存在不同于点P 的定点Q 满足条件,则点Q 的坐标只可能为(0,2).下面证明:对任意直线l ,均有|QA ||QB |=|P A ||PB |. 当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为y =kx +1,点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.因此1x 1+1x 2=x 1+x 2x 1x 2=2k . 易知,点B 关于y 轴对称的点B ′的坐标为(-x 2,y 2).又k QA =y 1-2x 1=kx 1-1x 1=k -1x 1, k QB ′=y 2-2-x 2=kx 2-1-x 2=-k +1x 2=k -1x 1, 所以k QA =k QB ′,即Q ,A ,B ′三点共线,所以|QA ||QB |=|QA ||QB ′|=|x 1||x 2|=|P A ||PB |. 故存在与点P 不同的定点Q (0,2),使得|QA ||QB |=|P A ||PB |恒成立.。
「精品」人教版高考文科数学解析几何练习题及参考答案-学习专用
解析几何单元易错题练习(附参考答案)一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 掌握双曲线的定义、标准方程和双曲线的简单几何性质. 掌握抛物线的定义、标准方程和抛物线的简单几何性质. 了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识: 椭圆及其标准方程椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准方程:12222=+b y a x (a >b >0),12222=+b x a y (a >b >0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 椭圆的简单几何性质椭圆的几何性质:设椭圆方程为12222=+b y a x (a >b >0).⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. ⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷ 离心率:椭圆的焦距与长轴长的比a ce =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数a ce =(e <1=时,这个动点的轨迹是椭圆.⑵ 准线:根据椭圆的对称性,12222=+b y a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+b x a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即c a y 2±=. 3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+b y a x (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为exa MF +=1,exa MF -=2.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、a ce =两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数). 说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan a b=;⑵ 椭圆的参数方程可以由方程12222=+b y a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>.6. 椭圆的切线方程椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.。
【2020最新】人教版最新高考文科数学解析几何练习题及参考答案
教学资料范本【2020最新】人教版最新高考文科数学解析几何练习题及参考答案编辑:__________________时间:__________________(附参考答案)一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.二.考试要求:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.掌握双曲线的定义、标准方程和双曲线的简单几何性质.掌握抛物线的定义、标准方程和抛物线的简单几何性质.了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题.三.基础知识:椭圆及其标准方程椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.2.椭圆的标准方程:(>>0),(>>0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.4.求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为(>>0).⑴范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里. ⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.2.椭圆的第二定义⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆(>>0)的参数方程为(θ为参数).说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆的参数方程是.5.椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6. 椭圆的切线方程椭圆上一点处的切线方程是.(2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是双曲线及其标准方程双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹.若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.双曲线的简单几何性质双曲线的实轴长为2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.双曲线的焦半径公式,.双曲线的内外部点在双曲线的内部.点在双曲线的外部.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.若渐近线方程为双曲线可设为.若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).双曲线的切线方程双曲线上一点处的切线方程是.(2)过双曲线外一点所引两条切线的切点弦方程是.(3)双曲线与直线相切的条件是.抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。
高考数学 解析几何 专题练习及答案解析版
高考数学解析几何专题练习解析版82页【1】1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A.19422=+y x B.14922=+y x C.113422=+y x D.141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A .54B .45 C .254D .425 9. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B.13222=+y x C.12222=+y xD.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .3 12.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B 2 (C 3(D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π)C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32C .32-D .23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( ) A .()21,1-B .()21,2-C .()1,2D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61B .⎪⎭⎫ ⎝⎛-61,21C .⎪⎭⎫ ⎝⎛61,21.D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4B. 3C. 2D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。
专题05 解析几何【文科】(解析版)
专题05 解析几何一、单选题1. 【河北省衡水第一中学2021届全国高三第二次联合考试(1)】设抛物线22(0)y px p =>的焦点为F ,倾斜角为02πθθ⎛⎫<< ⎪⎝⎭的直线l 经过抛物线的焦点F ,且与抛物线相交于M ,N 两点.若22F N M N F F →→→⋅=-,则sin 2θ=( )AB .13CD【答案】D 【解析】如图所示,过点M ,N 分别作准线的垂线,垂足分别为D ,C ,直线l 与准线交于点E ,由题意可得||2||FM FN →→=, 设||FN x =,则||2FM x =,由抛物线的定义可知,||CN x =,||2MD x =, ||||1||||2CN EN MD EM ==, 所以||3EN x =,在ENC △中,||1cos cos ||3CN ENC EN θ∠===,所以sin θ=则sin 22sin cos θθθ== 故选:D.2. 【河北省衡水中学2021届高三上学期七调】已知直线210x y --=的倾斜角为α,则21tan 2tan2αα-=( )A .14-B .1-C .14D .1【答案】D【解析】根据题意,得tan2α=,所以21tan221tantan2aαα-==.故选:D.3.【河北省衡水中学2021届高三上学期七调】已知c是双曲线2222:1x yCa b-=(0a>,0b>)的半焦距,离心率为e,则1be c+的最大值是()ABCD.2【答案】B 【解析】因为c是双曲线2222:1x yCa b-=(0a>,0b>)的半焦距,所以c则1b a be c c++===当且仅当a b=时,等号成立.故选:B.4.【河北省衡水中学2021届高三上学期七调】已知点F,A分别为椭圆2222:1x yCa b+=(0a>,0b>)的左焦点左顶点,过原点O的直线l交C于P,Q两点,直线QF交AP于点B,且2QA QP QB+=,若||PF的最小值为4,则椭圆C的标准方程为()A.22198x yB.2212516x y+=C.2213632x y+=D.2214936x y+=【答案】C【解析】如图,连接OB,AQ,则OB 是PAQ △的中位线, ||||1||||2OB OF AQ FA ∴==,即12c a c =-, 3a c ∴=,又||PF 的最小值为a c -,4a c -=,6a ∴=,2c =,22232b a c =-=.故椭圆C 的标准方程为2213632x y +=.故选:C.5. 【河北省衡水中学2021届全国高三第一次联合考试(全国卷)】已知圆22:4O x y +=与x 轴交于,M N 两点,点P 在直线:0l x y +-=上,过圆O 上的任意两点,S T 分别向l 作垂线,垂足为,S T '',以下说法不正确的是( )A .||||PM PN +的最小值为B .PM PN ⋅为定值C .SPT ∠的最大值为3πD .当ST 为直径时,四边形SS T T ''面积的最大值为16 【答案】B 【解析】设(2,0),(2,0)M N -,则N 关于l 对称的点为2)N ',所以||||PM PN +的最小值为MN '=故A 正确;2()()4PM PN OM OP ON OP OP ⋅=-⋅-=-不是定值,故B 错误;当OP 最小,且当,PS PT 为圆O 的切线时,SPT ∠最大,此时3SPT π∠=,故C 正确;在四边形SS T T ''中,//SS TT '',且8SS TT ''+=.因此,当S T ''最长,即||4S T ST ''==时面积最大,最大值为16,故D 正确故选:B6. 【河北省衡水中学2021届全国高三下学期第二次联合考试(II 卷)】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,若过点2F 作渐近线的垂线,垂足为P ,且12F PF △的面积为2b ,则该双曲线的离心率为( )A .1B .1CD 【答案】D 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线方程为b y x a =±,则点2(,0)F c 到渐近线b y x a=±的距离2PF b =,在2OPF 中,122222,,||,2F PF OPF PF b OF c OP a S S ab b ======,所以ab =,离心率c e a =故选:D7. 【河北省衡水中学2021届全国高三下学期第二次联合考试(II 卷)】已知圆22:1C x y +=,直线:2l x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A .1,02⎛⎫⎪⎝⎭B .(0,2)C .(2,1)D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】因为P 为直线l 上的动点,所以可设(2,)P t , 由题意可得圆心C 的坐标为(0,0),以线段PC 为直径的圆N 的圆心为1,2⎛⎫⎪⎝⎭t P所以方程为2220x y x ty +--=,两圆方程作差,即得两圆公共弦AB 的方程为210x ty +-=,()210-+=x ty ,所以直线AB 过定点1,02⎛⎫⎪⎝⎭.故选:A. 二、填空题1. 【河北省衡水第一中学2021届全国高三第二次联合考试(1)】对于双曲线22221(0,0)x y a b a b-=>>来说,我们定义圆222x y a +=为它的“伴随圆”.过双曲线22241(0)9x y a a -=>的左焦点1F 作它的伴随圆的一条切线,设切点为T ,且这条切线与双曲线的右支相交于点P .若M 为1PF 的中点,M 在T 右侧,且||||MO MT -为定值12,则该双曲线的离心率为_______.【解析】如图,设2F 为双曲线的右焦点,在1Rt OFT 中,1,||OF c OT a ==,所以1||TF b =,()()21121121111112222MO MT PF MF TF PF PF TF PF PF TF ⎛⎫-=--=--=-+ ⎪⎝⎭3122b a a =-=-=,解得1a =,所以c e a ==2. 【河北省衡水中学2021届全国高三第一次联合考试(全国卷)】小明同学发现家中墙壁上灯光的边界类似双曲线的一支, O 为双曲线的一支的顶点.小明经过测量得知,该双曲线的渐近线相互垂直,且AB 与OC 垂直,80cm,20cm AB OC ==,若该双曲线的焦点位于直线OC 上,则在点O 以下的焦点距点O ______cm .【答案】1) 【解析】解:设该双曲线的方程为22221(0,0)x y a b a b-=>>.因为渐近线相互垂直,所以a b =.由题意知,2222(20)401a a b+-=,解得30,a b c ===故该双曲线的一个焦点位于点O以下1)cm . 故答案为:1) 三、解答题1. 【河北省衡水第一中学2021届全国高三第二次联合考试(1)】已知圆22:(32M x y +=,点Q 是圆M上的一个动点,点(N .若线段QN 的垂直平分线交线段QM 于点T . (1)求动点T 的轨迹曲线C 的方程;(2)设O 是坐标原点,点(2,1)P ,点R (异于原点)是曲线C 内部且位于y 轴上的一个动点,点S 与点R 关于原点对称,直线,PR PS 分别与曲线C 交于A ,B (异于点P )两点.判断直线AB 是否过定点?若过,求出定点坐标;若不过,说明理由.【答案】(1)22182x y +=;(2)过定点,(0,2)-. 【解析】(1)由题意可知,||||||||TM TN TM TQ r MN +=+==>=∣, 所以动点T 的轨迹为以M ,N 两点为焦点的椭圆.设椭圆的长轴长为2a ,短轴长为2b ,焦距为2c,则2,a a c ==由222a b c =+,得b =所以曲线C 的方程为22182x y +=.(2)设直线AB 的方程为()()1122,,,,y kx t A x y B x y =+,由221,82,x y y kx t ⎧+=⎪⎨⎪=+⎩消去y ,整理得()222148480k x ktx t +++-=, 则()()()22222(8)4144816820kt k t k t ∆=-+-=-+>,2121222848,4141kt t x x x x k k -+=-=++. 又直线PA 的方程为1111(2)2y y x x --=--, 即1111(2)2kx t y x x +--=--,令0x =,得11(12)22k x ty x --=-.因此点R 的坐标为11(12)20,2k x t x ⎛⎫-- ⎪-⎝⎭,同理可得,22(12)20,2k x t S x ⎛⎫-- ⎪-⎝⎭. 由OS RO =,得1212(12)2(12)2022k x t k x tx x ----+=--,化简得()1212(24)(242)80k x x k t x x t ---+++=,即222488(24)(242)804141t kt k k t t k k -⎛⎫-⨯--+-+= ⎪++⎝⎭, 整理得22420kt k t t +++-=, 即(2)(21)0t k t ++-=.因为(2,1)P 不在直线y kx t =+上,故210k t +-≠,所以20,2t t +==-,此时,由0∆>,得214k >. 因此直线AB 过定点(0,2)-.2. 【河北省衡水中学2021届高三上学期七调】设抛物线E :()220y px p =>焦点为F ,准线为l ,A 为E上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点. (Ⅰ)若60BFD ∠=︒,BFD △p 的值及圆F 的方程; (Ⅰ)若点A 在第一象限,且A 、B 、F 三点在同一直线1l 上,直线1l 与抛物线E 的另一个交点记为C ,且CF FA λ=,求实数λ的值.【答案】(Ⅰ)2p =,圆F 为:()221613x y -+=;(Ⅰ)13λ=. 【解析】解:(Ⅰ)焦点到准线l 的距离为p ,又ⅠBF FD =,60BFD ∠=︒,ⅠBFD △为正三角形.ⅠBF =2p B ⎛- ⎝,Ⅰ21sin 602BFDS BF =︒=△2p ∴=, Ⅰ圆F 为:()221613x y -+=. (Ⅰ)若A 、F 、B 共线,则AF BF DF ==,2BDA π∴∠=Ⅰ12AD AF AB ==,6DBA π∴∠=Ⅰ直线AB 的倾斜角为3π或23π,由对称性可知,设直线l:2px =+,()11,A x y ,()22,C x y ,CF FA λ=,联立()121222221211202p y y y x y y p y y p y y px λλ⎧⎧+=-⋅=+⎪⎪⇒-=⇒⎨⎨⎪⎪⋅=-=-⋅=⎩⎩, Ⅰ()2143λλ-=,231030λλ∴-+=,3λ∴=或13λ=, 又AF BF p =>,12p x >,01λ∴<<,所以13λ=.3. 【河北省衡水中学2021届全国高三第一次联合考试(全国卷)】已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点P 在C 上,但不在x 轴上,当点P 在C 上运动时,12PF F △的周长为定值6,且当112PF F F ⊥时,132PF =. (1)求C 的方程.(2)若斜率为(0)k k ≠的直线l 交C 于点M ,N ,C 的左顶点为A ,且1,,AM AN k k k -成等差数列,证明:直线l 过定点.【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)解:由题意知,22223,2226,,b a a c a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩所以2,1,a c b ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=.(2)证明:由题意知,(2,0)A -.设直线:l y kx m =+,与椭圆C 方程联立,得221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩ 整理得()2223484120kxkmx m +++-=.设()()1122,,,M x y N x y ,则12221228,34412,34km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩ ()12121212121212432(2)2222242AM AN y y kx m kx m x x k k k m k x x x x x x x x m k +++++=+=+=+-⋅==+++++++-12k-⨯, 所以2k m =.所以:2(21)l y mx m m x =+=+,恒过点1,02⎛⎫- ⎪⎝⎭.4. 【河北省衡水中学2021届全国高三下学期第二次联合考试(II 卷)】已知椭圆2222:1(0)x y E a b a b+=>>的左、右顶点分别为A ,B ,M 是椭圆E 上一点,M 关于x 轴的对称点为N ,且14MA NB k k ⋅=. (1)求椭圆E 的离心率;(2)若椭圆E的一个焦点与抛物线2y =的焦点重合,斜率为1的直线l 与E 相交于P ,Q 两点,在y 轴上存在点R ,使得以线段PQ 为直径的圆经过点R ,且()0RQ RP PQ +⋅=,求直线l 的方程. 【答案】(1(2)1y x =±. 【解析】解:(1)由椭圆E 的方程可得(,0),(,0)A a B a -. 设()00,M x y ,则()00,N x y -, 所以200022000.MA NBy y y k k x a x a x a -⋅=⋅=-+--. 又点()00,M x y 在椭圆E 上,所以2200221x y a b+=,所以22220002221y x a x b a a -=-=,所以220222014MA NBy b k k x a a ⋅=-==-,所以椭圆E的离心率e . (2)由题意知椭圆E的一个焦点为,所以椭圆E 的标准方程为2214x y +=.设直线l 的方程为()()1122,(0,),,,,y x m R t P x y Q x y =+,线段PQ 的中点为(),S S S x y ,联立221,4,x y y x m ⎧+=⎪⎨⎪=+⎩消去y ,得2258440x mx m ++-=,则()()2226420441650m m m ∆=--=->,解得25m <,所以21212844,55m m x x x x -+=-=, 所以124,255S S S x x m mx y x m +==-=+=, 所以4,55m m S ⎛⎫-⎪⎝⎭. 由()0RQ RP PQ +⋅=,得RS PQ ⊥,所以511405m t m -⨯=-⎛⎫-- ⎪⎝⎭, 解得35mt =-. 又因为以线段PQ 为直径的圆过点R , 所以PR QR ⊥, 所以12121y t y tx x --⋅=-. 又1122,y x m y x m ==++,代入上式整理得()212122()()0x x m t x x m t +-++-=,即()222244880555m m m -⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得1m =±.所以直线l 的方程为1y x =±.。
平面解析几何(选择题、填空题)—高考真题文科数学分项汇编(解析版)
专题07平面解析几何(选择题、填空题)1.【2020年高考全国Ⅰ卷文数】已知圆 x 2 y 26x 0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A .1B .2D .4C .3【答案】B 【解析】圆 x2y 2 6x 0化为(x 3)2 y 29,所以圆心C 坐标为C (3,0),半径为3,设 P (1,2),当过点 P 的直线和直线CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,此时|CP | (3 1) ( 2) 2 22 2根据弦长公式得最小值为2 9 |CP |22 9 8 2 .故选:B .【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.2.【2020年高考全国Ⅲ卷文数】在平面内,A ,B 是两个定点,C 是动点,若 AC BC =1,则点 C 的轨迹为A .圆B .椭圆C .抛物线D .直线【答案】A 【解析】设AB 2a a 0 ,以 AB 中点为坐标原点建立如图所示的平面直角坐标系,,设则: A a ,0 ,B a ,0C x , y,可得: AC x a , y ,BC x a , y ,从而: AC BC x a x a y 2,结合题意可得: x a xa y 21,整理可得: x y a2 2 21,即点 C 的轨迹是以 AB 中点为圆心, a 1为半径的圆.2故选:A .【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.3.【2020年高考全国Ⅲ卷文数】点(0, 1)到直线 y k x 1 距离的最大值为A .1【答案】BB . 2C . 3D .2【解析】由 y k (x 1)可知直线过定点 P ( 1,0),设 A (0, 1),当直线 y k (x 1)与 AP 垂直时,点 A 到直线 y k (x 1)距离最大,即为| AP | 2 .故选:B .【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.4.【2020年高考全国Ⅱ卷文数】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线 2x −y −3=0的距离为5B . 2 55C . 3 55D . 4 55A .5【答案】B【解析】由于圆上的点 2,1 在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,a设圆心的坐标为 a ,a ,则圆的半径为,圆的标准方程为 x a y a 2 a2. 2由题意可得 2 a 1 a 2 a2,2可得a26a 5 0,解得 a 1或a 5,所以圆心的坐标为 1,1 或 5,5 ,的距离均为d 1 2 1 1 3 2 5;5圆心到直线5的距离均为d 2 2 5 5 32 55圆心到直线5圆心到直线2x y 3 0的距离均为d 252 5;5所以,圆心到直线2x y 3 0的距离为 2 5 .5故选:B .【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.5.【2020年高考全国Ⅲ卷文数】设 O 为坐标原点,直线 x =2与抛物线 C : y 2若 OD ⊥OE ,则 C 的焦点坐标为2px p 0交于 D ,E 两点,A .( 14,0)【答案】BB .( 12,0)C .(1,0)D .(2,0)【解析】因为直线 x 2与抛物线 y22px (p 0)交于 E ,D 两点,且OD OE ,根据抛物线的对称性可以确定 DOx EOx ,所以D 2,2 ,4代入抛物线方程4 4p ,求得 p 1,所以其焦点坐标为(1 ,0),2故选:B .【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.y 126.【2020年高考全国Ⅰ卷文数】设 F 1,F 2是双曲线C : x 2O的两个焦点,为坐标原点,点 P 在C 上3且|OP | 2,则△PF 1F 2的面积为A . 72B .3C . 52D .2【答案】B【解析】由已知,不妨设 F 1( 2,0),F 2(2,0),则 a 1,c 2,因为|OP | 1 1 | F 1F 2 |,2所以点 P 在以 F 1F 2为直径的圆上,即 F 1F 2P 是以 P 为直角顶点的直角三角形,故| PF 1 | | PF 2 | | F 1F 2 |2 2 2,即| PF 1 | | PF 2 | 16,又| PF 1 | | PF 2 | 2a 2,2 2所以4 | PF 1 | | PF 2 | 2 | PF 1 |2 | PF 2 |2 2 | PF 1 || PF 2 | 16 2 | PF 1 || PF 2 |,解得| PF 1 || PF 2 | 6,所以S △F 1F 2P 1 | PF 1 || PF 2 | 32故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.7.【2020年高考全国Ⅱ卷文数】设 O 为坐标原点,直线 x =a 与双曲线 C : x 22 b 2y 2 =l(a >0,b >0)的两条渐近a线分别交于 D ,E 两点.若△ODE 的面积为 8,则 C 的焦距的最小值为A .4 B .8 C .16 D .32【答案】B【解析】 C : x a 22 by 22 1(a 0,b 0), 双曲线的渐近线方程是 y b x ,a直线 x a 与双曲线C : xa22 by 2 1(a 0,b 0)的两条渐近线分别交于 D , E 两点2不妨设 D 为在第一象限, E 在第四象限,x ax a联立 b ,解得 ,y x y ba 故 D (a ,b ),x a联立 x ab ,解得y b ,y xa 故 E (a ,b ),| ED | 2b ,ODE 面积为:S △ODE 1 a 2b ab 8,2双曲线C : x 22 by 2 1(a 0,b 0),2a其焦距为2c 2 a 2 b 2 2 2ab 2 16 8,当且仅当a b 2 2取等号,C 的焦距的最小值:8.故选:B .【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.8.【2020年高考天津】设双曲线C 的方程为 x22 by 2 1(a 0,b 0),过抛物线2y24x 的焦点和点(0,b )a的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A . x 2y2y 12C . x2y41B . x221D . x y 12 2444【答案】Dx y 1,即直线的斜率为 b ,【解析】由题可知,抛物线的焦点为 1,0 ,所以直线的方程为lb 又双曲线的渐近线的方程为 y b x ,所以 b b , b b 1,因为a 0,b 0,解得a 1,b 1.a a a故选: D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.9.【2020年高考北京】已知半径为 1的圆经过点(3,4),则其圆心到原点的距离的最小值为A . 4B . 5D . 7C . 6【答案】A【解析】设圆心C x , y ,则 x 3 2 y 4 2 1,化简得 x 3 2 y 4 2 1,所以圆心C 的轨迹是以M (3,4)为圆心,1为半径的圆,|OC | 1 |OM | 3 42 5,所以|OC | 5 1 4,所以2当且仅当C在线段OM上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.10.【2020年高考北京】设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ l于Q,则线段FQ的垂直平分线A.经过点OB.经过点 PD.垂直于直线OPC.平行于直线OP【答案】B因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,PQ PF,所以线段FQ的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.11.【2020年高考浙江】已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y 3 4 x2图象上的点,则|OP|=222B . 4 105A .C . 7D . 10【答案】D【解析】因为| PA | | PB | 2 4,所以点 P 在以 A ,B 为焦点,实轴长为2,焦距为4的双曲线的右支4 1 3,即双曲线的右支方程为 x 2 y 1 x 0,而点 P 还在2c 2,a 1可得, b 2 c 2 a上,由23函数 y 3 4 x 的图象上,所以,2132 y 3 4 x 2 x 13 27 ,即 OP 10.由 x,解得 y 3 1 x 0 223 3244 y故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.12.【2020年新高考全国Ⅰ卷】已知曲线C :mx ny 1.2 2A .若 m >n >0,则 C 是椭圆,其焦点在 y 轴上B .若 m =n >0,则C 是圆,其半径为 nmC .若 mn <0,则 C 是双曲线,其渐近线方程为 y x nD .若 m =0,n >0,则 C 是两条直线【答案】ACDx 2y2 1可化为 1 11【解析】对于 A ,若m n 0,则mx ,ny 2 2mn因为m n 0,所以 m 1 1n,y即曲线C 表示焦点在轴上的椭圆,故 A 正确;对于 B ,若m n 0,则mx2ny21可化为 x 2 y21,n此时曲线C 表示圆心在原点,半径为n 的圆,故 B 不正确;nx 1可化为 1 11,对于 C ,若mn 0,则mx ny 2 22y2m n此时曲线C 表示双曲线,m由mx ny2 20可得 y x ,故 C 正确;n对于 D ,若m 0,n 0,则mx 2 ny 2 1可化为y 2 1,nn ,此时曲线C 表示平行于轴的两条直线,故 D 正确;xyn 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.13.【2019年高考浙江卷】渐近线方程为 x ±y =0的双曲线的离心率是2A .B .1D .22C . 2【答案】C【解析】因为双曲线的渐近线方程为 x y 0,所以a b ,则c a 2 b22a ,所以双曲线的离心率e c 2 .故选 C.a【名师点睛】本题根据双曲线的渐近线方程可求得 a b ,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.14.【2019年高考全国Ⅰ卷文数】双曲线 C : x a22 by 2 1(a 0,b 0)的一条渐近线的倾斜角为 130°,则 C2的离心率为A .2sin40°B .2cos40°11C .D .sin50cos50【答案】D【解析】由已知可得 b tan130 , b tan50 ,a a1 b 250 sin 50 cos2 250501 e c 1 tan 50 1 sin 22, a a cos 2cos 250 cos50故选 D .【名师点睛】对于双曲线: x2y 21 b 22 1 a 0 , b 0 ,有e c ;a 2 ba a 2对于椭圆 x2y 22 1 a b 0 ,有e c 1 b ,防止记混.a 2 ba a 15.【2019年高考全国Ⅰ卷文数】已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 的直线与 C 交于 A ,B 两2点.若| AF 2 | 2| F 2B |,| AB | | BF 1 |,则 C 的方程为A . x2B . x 2 y 12y 12232C . x 2y 12D . x 2y 124354【答案】B【解析】法一:如图,由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .中,由余弦定理推论得cos F 1AB 4n 29n 29n 21.在△AF 1B2 2n 3n33.2在△AF 1F 2中,由余弦定理得4n 24n 22 2n 2n 1 4,解得n 323 1 2 , 所求椭圆方程为 x 2a 4n 2 3 , a 3 , b a c 2 22 y 1,故选 B .232法二:由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .4n4 2 2n 2 cos AF 2F 14n2 2在△AF 1F 2和△BF 1F 2中,由余弦定理得,n 2 4 2 n 2 cos BF 2F 1 9n 2又 AF 2F 1 , BF 2F 1互补, cos AF 2F 1 cos BF 2F 1 0,两式消去cos AF 2F 1,cos BF 2F 1,得3. 2a 4n 2 3 , a 3 , ba c2 23 1 2 , 所求椭圆3n 6 11n2 2,解得n22方程为 x 2y 1,故选 B .232【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.x 2 y 1的一个焦点,则 p =216.【2019年高考全国Ⅱ卷文数】若抛物线 y 2=2px (p >0)的焦点是椭圆3p pA .2B .3D .8C .4【答案】D2px (p 0)的焦点( p ,0)是椭圆 x y 23p221的一个焦点,所以3p p ( p )2【解析】因为抛物线 y ,2p 2解得 p 8,故选 D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于 p 的方程,从而解出 p ,或者利用检验排除的方法,如 p 2时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除 A ,同样可排除 B ,C ,从而得到选 D .17.【2019年高考全国Ⅱ卷文数】设 F 为双曲线 C : x 22 b 22 1(a >0,b >0)的右焦点,O 为坐标原点,y a以 OF 为直径的圆与圆x 2+y 2=a 2交于 P ,Q 两点.若|PQ |=|OF |,则 C 的离心率为A . 2B . 3D . 5C .2【答案】Ax【解析】设 PQ 与轴交于点A ,由对称性可知 PQ x 轴,又 PQ |OF | c , | PA | c , PA 为以OF 为直径的圆的半径,2∴|OA | c ,c c ,,P 2 22a 上, c2c a ,即 c 22 ca 2 2.2又 P 点在圆 x 2y222 a 2, e2442e 2,故选 A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 的关系,可求双曲线的离心率.18.【2019年高考全国Ⅲ卷文数】已知 F 是双曲线 C : x2y 1的一个焦点,点 P 在 C 上,O 为坐标原245点,若 OP = OF ,则△OPF 的面积为3252A .C .B .D .7292【答案】B,则 x 0 y 1①.22【解析】设点 P x 0, y045又 OP OF 4 5 3, x 02y 0 9②.225,即 y 0 5,由①②得 y 0293S △OPF 1 OF y 0 1 3 5 5,2223故选 B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设P x 0, y 0 ,由OP = OF ,再结合双曲线方程可解出19.【2019年高考北京卷文数】已知双曲线A . 6y 0,利用三角形面积公式可求出结果.x 22 y 21(a >0)的离心率是 5,则 a =a B .41C .2D .2【答案】D【解析】∵双曲线的离心率e c 5,c a21,a2 1 5,解得a 1a ∴,2a故选 D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中 a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.【 2019年高考天津卷文数】已知抛物线 y 24x 的焦点为 F ,准线为 l .若 l 与双曲线x 22 by 2 1(a 0,b 0)的两条渐近线分别交于点 A 和点 B ,且|AB | 4|OF |(O 为原点),则双曲2a线的离心率为A . 2B . 3D . 5C .2【答案】D 【解析】抛物线 y24x 的准线l 的方程为 x 1,双曲线的渐近线方程为 y b x ,a则有 A ( 1, b ),B ( 1, b ),a a ∴ AB 2b 2b, a 4,b 2a ,a∴e c a b2 25 .aa故选 D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出 AB 的长度.解答时,只需把 AB 4 OF 用a ,b ,c 表示出来,即可根据双曲线离心率的定义求得离心率.21.【2018年高考全国Ⅰ卷文数】已知椭圆C : xa22y 2 1的一个焦点为(2,0),则C 的离心率为41A .312B .2D . 2 23C .2【答案】Cb c【解析】由题可得c 2,因为b 4,所以a 8,即a 2 2,2 2 2 222,故选 C .所以椭圆C 的离心率e22 2【名师点睛】本题主要考查椭圆的方程及离心率,考查考生的运算求解能力,考查的数学核心素养是数学运算.在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中a ,b ,c 的关系求得结果.22.【2018年高考全国Ⅱ卷文数】已知 F 1,F 2是椭圆C 的两个焦点, P 是C 上的一点,若 PF 1 PF 2,且PF 2F 1 60 ,则C 的离心率为3A .1B .2 3D . 3 123 1C .2【答案】D【解析】在△F 1PF 2中, F 1PF 2 90设 PF 2 m ,, PF 2F 1 60 ,则2c F 1F 2 2m , PF 1 3m ,又由椭圆定义可知2a PF 1 PF 2 ( 3 1)m ,则e c 2c2m 3 1,故选 D .a2a ( 3 1)m【名师点睛】本题主要考查椭圆的定义和简单的几何性质,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.结合有关平面几何的知识以及椭圆的定义、性质加以灵活分析,关键是寻找椭圆中 a ,c 满足的关系式.椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.23.【2018年高考全国Ⅱ卷文数】双曲线 x a22 by 2 1(a 0,b 0)的离心率为 3,则其渐近线方程为2A . y 2xB . y 3xC . y 2 xD . y 3 x22【答案】A【解析】因为 e c 3,所以 b22c 2 a 2b 2,因为渐近线方程为 e 2 1 3 1 2,所以 aaa a 2y b x ,所以渐近线方程为 y 2x ,故选 A .a【名师点睛】本题主要考查双曲线的简单几何性质,考查考生的运算求解能力,考查的数学核心素养是数学运算.(1)焦点在 x 轴上的双曲线的标准方程为 x a22 by 2 1(a 0,b 0),焦点坐标为(±c ,0),实轴长为 2a ,2虚轴长为 2b ,渐近线方程为 y b x ;a(2)焦点在 y 轴上的双曲线的标准方程为 2 bx 2 1(a 0,b 0),焦点坐标为(0,±c ),实轴长为 2a ,y 22a虚轴长为 2b ,渐近线方程为 y a x .b24.【2018年高考全国Ⅲ卷文数】直线 x y 2 0分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆(x 2)2 y 2 2上,则△ABP 面积的取值范围是B . 4,8 A . 2,6C . 2,3 2 2 2,3 2D .【答案】A【解析】直线 x y 2 0分别与轴,轴交于 A ,B 两点, A 2,0 ,B 0, 2 ,则 AB 2 2 .x y 点 P 在圆(x 2)2 y22上, 圆心为(2,0),则圆心到直线的距离d 1 2 0 2 2 2 .22,3 2,则S △ABP 1 AB d 2 2d 2 2,6 .故点 P 到直线 x y 2 0的距离d 2的范围为2故答案为 A.【名师点睛】本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题 .先求出 A ,B 两点坐标得到 AB ,再计算圆心到直线的距离,得到点 P 到直线距离的范围,由面积公式计算即可.25.【2018年高考全国Ⅲ卷文数】已知双曲线C : x 22 by2 21(a 0,b 0)的离心率为 2,则点(4,0)到Ca的渐近线的距离为A . 2B .2C . 3 22D .2 2【答案】D【解析】 e c 1 (b )2, b 1,所以双曲线C 的渐近线方程为 x y 0,所以点(4,0)2aaa4到渐近线的距离d2 2,故选 D .1 1【名师点睛】本题主要考查双曲线的性质、点到直线的距离公式,考查考生的运算求解能力、化归与转化能力、逻辑思维能力,考查的数学核心素养是逻辑推理、数学运算、直观想象.熟记结论:若双曲线 x a22 by 2 1(a 0,b 0)是等轴双曲线,则 a =b ,离心率 e = 2,渐近线方程为2y =±x ,且两条渐近线互相垂直.26.【2018年高考浙江卷】双曲线 x2y21的焦点坐标是3A .(− 2,0),( 2,0)B .(−2,0),(2,0)C .(0,− 2 ),(0, 2 )D .(0,−2),(0,2)【答案】B 【解析】设 x22 1的焦点坐标为( c ,0),因为c 2 a 2 b 23 1 4,c 2, y3所以焦点坐标为( 2,0),故选 B .【名师点睛】本题主要考查双曲线基本量之间的关系,考查考生的运算求解能力,考查的数学核心素养是数学运算.解答本题时,先根据所给的双曲线方程确定焦点所在的坐标轴,然后根据基本量之间的关系进行运算.27.【2018年高考天津卷文数】已知双曲线 x a22 by 2 1(a 0, b 0)的离心率为2,过右焦点且垂直于轴2x的直线与双曲线交于 A ,B 两点.设 A ,B 到双曲线同一条渐近线的距离分别为d1和d 2,且d 1 d 2 6,则双曲线的方程为A . x 2y 12B . x 2y 123993C . x 2y 12D .x 2 y 12412124【答案】A【解析】设双曲线的右焦点坐标为 F (c ,0)(c 0),则 x A x B c ,由 c 2a 2 by 2 1可得 ya ,2b 2不妨设 A (c , b), B (c , b2 2),a a 双曲线的一条渐近线方程为bx ay 0,据此可得d 1 |bc b 2| bc b 2,d 2 |bc b| bc b2 2,cb2a 2b 2ca 2则d 1 d 2 2bc 2b 6,则b 3,b29,c21 a 92 2,据此可得a23,则双曲线的方程为 x 2 y 1.2双曲线的离心率e c 1 b aa 239故选 A .【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据 a ,b ,c ,e 及渐近线之间的关系,求出 a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为 x a22 by 2 0 ,2再由条件求出λ的值即可.解答本题时,由题意首先求得 A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解 a 的值即可确定双曲线方程.28.【2020年高考全国Ⅲ卷文数】设双曲线 C : x a22 by 2 1 (a >0,b >0)的一条渐近线为 y = 2 x ,则 C 的离心2率为_________.【答案】3【解析】由双曲线方程 xa 22 by2 1可得其焦点在轴上,2x因为其一条渐近线为y 2x,b a 2,e ac 1 ba2 3 .2所以故答案为:3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.29.【2020年高考天津】已知直线x 3y 8 0和圆 x2 y2 r2(r 0)相交于A,B两点.若| AB| 6,则r的值为_________.【答案】58【解析】因为圆心 0,0 到直线x 3y 8 0的距离d 4,1 3由| AB | 2 r d 2可得6 2 r2 42,解得r = 5.2故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.30.【2020年高考北京】已知双曲线C : x2 y 1,则C的右焦点的坐标为_________;C的焦点到其渐263近线的距离是_________.【答案】 3,0 ;3【解析】在双曲线C中,a 6,b 3,则c a22 3,则双曲线C的右焦点坐标为 3,0 ,b双曲线C的渐近线方程为y2 x,即x 2y 0,23所以,双曲线C的焦点到其渐近线的距离为 3 .1 22故答案为: 3,0 ; 3 .【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.31.【2020年高考浙江】已知直线 y kx b (k 0)与圆 x 2 y 2 1和圆(x 4)2 y 2 1均相切,则k _______,b =_______.3; 2 3【答案】33|b | 1|4k b |1,【解析】由题意,C 1,C 2到直线的距离等于半径,即1,k 12 2k22所以|b | 4k b ,所以k 0(舍)或者b 2k ,解得k 3 ,b 2 3 .333 ; 2 33故答案为:3【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.32.【2020年高考江苏】在平面直角坐标系 xOy 中,若双曲线 x 22 y 1(a 0)的一条渐近线方程为 y 5 x ,2a 52则该双曲线的离心率是▲.3【答案】2【解析】双曲线 x a22 y 1,故 b 5 .由于双曲线的一条渐近线方程为 y 25 x ,即52b 5 a 2,所以c a b 2 c 4 5 3,所以双曲线的离心率为 a 3222.a32故答案为:【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.33.【2020年新高考全国Ⅰ卷】斜率为 3的直线过抛物线 C :y AB =________.2=4x 的焦点,且与 C 交于 A ,B 两点,则163【答案】【解析】∵抛物线的方程为 y24x ,∴抛物线的焦点 F 坐标为 F (1,0),又∵直线 AB 过焦点 F 且斜率为 3,∴直线 AB 的方程为: y 3(x 1)代入抛物线方程消去 y 并化简得3x 2 10x 3 0,解法一:解得 x 1 1,x 2 33| x 1 x 2 | 1 3 |3 1 | 16所以| AB | 1 k233解法二: 100 36 64 0设 A (x 1, y 1),B (x 2, y 2),则 x 1 x 2 103,过 A ,B 分别作准线 x 1的垂线,设垂足分别为C ,D 如图所示.| AB | | AF | | BF | | AC | | BD | x 1 1 x 2 1 x 1 x 2+2=16316故答案为:3【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.3,0),A ,B 是圆 C : x (y 1) 36上的两2234.【2020年高考江苏】在平面直角坐标系 xOy 中,已知 P (22个动点,满足 PA PB ,则△PAB 面积的最大值是【答案】10 5▲.【解析】Q PA PB PC AB3 1 14 4设圆心C 到直线 AB 距离为d ,则|AB |=2 36 d 2,| PC | 所以 S V PAB 1 2 36 d(d 1) (36 d (0 d 6) y 2(d 1)( 2d 当0 d 4时,y 0;当4 d 6时,故答案为:10 5)(d 1)2 222令 y (36 d 2)(d 1)22d 36) 0 d 4(负值舍去)y y 0,因此当 d 4时,取最大值,即S PAB 取最大值为10 5,【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.35.【2019年高考北京卷文数】设抛物线 y =4x 的焦点为 F ,准线为 l .则以 F 为圆心,且与 l 相切的圆的2方程为__________.【答案】(x 1) y 42 2【解析】抛物线 y =4x 中,2p =4,p =2,2焦点 F (1,0),准线 l 的方程为 x =−1,以 F 为圆心,且与 l 相切的圆的方程为(x −1)+y =22,即为(x 1)22y24 .2【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.36.【2019年高考全国Ⅲ卷文数】设 F 1,F 2为椭圆 C : x2y21的两个焦点,M 为 C 上一点且在第一象限.若+36 20△MF 1F 2为等腰三角形,则 M 的坐标为___________.【答案】 3, 15【解析】由已知可得a236 ,b 2 20 , c 2 a 2b 2 16 ,c 4,MF 1 F 1F 2 2c 8,∴ MF 2 4.1 F 1F2 y 0 4y 0,△MF 1F 2设点M 的坐标为 x 0 , y x0, y 0 00 ,则S 02又 S △MF 1F 2 1 4 8 2 4 15 , 4y 0 4 15,解得 y 0 15,222215 1,解得 x 0 3( x 0 3舍去),20 x 236\ M 的坐标为 3, 15.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出 MF 1、MF2,设出M 的坐标,结合三角形面积可求出M 的坐标.y237.【2019年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线 x 2 2 1(b 0)经过点(3,4),则该双b曲线的渐近线方程是▲.【答案】 y 2x4【解析】由已知得3221,解得b 2或b 2,b2因为b 0,所以b 2 .因为 a 1,所以双曲线的渐近线方程为 y 2x .【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的 a ,b 密切相关,事实上,标准方程中化 1为 0,即得渐近线方程.438.【2019年高考江苏卷】在平面直角坐标系 xOy 中,P 是曲线 y x (x 0)上的一个动点,则点 P 到x直线 x +y =0的距离的最小值是【答案】4▲.【解析】当直线 x +y =0平移到与曲线 y x 4相切位置时,切点 Q 即为点 P ,此时到直线 x +y =0的距x离最小.由 y 1 42 1,得 x 2(x 2舍), y 3 2,即切点Q ( 2,3 2),x2 3 2则切点 Q 到直线 x +y =0的距离为 4,1 12 2故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.39.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,m )r,半径长是 .若直线2x y 3 0与圆 C 相切于点 A ( 2, 1),则mr=___________, =___________.【答案】 2, 5【解析】由题意可知k AC 1 AC : y 1 1 (x 2),把(0,m )代入直线 AC 的方程得m 2,22此时r | AC | 4 1 5 .【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线 AC 的斜率,进一步得到其方程,将(0,m )代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.40.【2019年高考浙江卷】已知椭圆 x 2y 1的左焦点为 F ,点 P 在椭圆上且在轴的上方,若线段 PF2x95的中点在以原点O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是___________.【答案】 15【解析】方法 1:如图,设 F 1为椭圆右焦点.由题意可知|OF |=|OM |= c= 2,由中位线定理可得 PF 1 2|OM | 4,设 P (x , y ),可得(x 2)y2 216,与方程 x 2y 1联立,可解得 x 3,x 2212(舍),9521515 P3 ,21x 又点 P 在椭圆上且在轴的上方,求得 ,所以k PF15 . 222方法 2:(焦半径公式应用)由题意可知|OF |=|OM |= c= 2,32由中位线定理可得PF1 2|OM | 4,即a ex p 4 x p ,1515,所以P 3 ,21从而可求得 k PF 15 .222【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 41.【2018年高考全国I卷文数】直线y x 1与圆x y2 22y 3 0交于A,B两点,则AB ________.【答案】2 2y 1 2 4,所以圆的圆心为0, 1,且半径是2,【解析】根据题意,圆的方程可化为 x20 1 1根据点到直线的距离公式可以求得d 1 2 2,12结合圆中的特殊三角形,可知AB 2 4 2 2 2,故答案为2 2 .【名师点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形,即半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形,利用勾股定理求得弦长.42.【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】x y 2x 02 2【解析】设圆的方程为 x2 y2 Dx Ey F 0,圆经过三点(0,0),(1,1),(2,0),F 0 D 2则 1 1 D E F 0,解得 E 0,则圆的方程为 x2 y22x 0.F 04 0 2D F 0【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.43.【2018年高考浙江卷】已知点 P (0,1),椭圆 x2+y =m (m >1)上两点 A ,B 满足 AP 2PB ,则当24m =___________时,点 B 横坐标的绝对值最大.【答案】5【解析】设 A (x 1, y 1), B (x 2, y 2),x 1 2x 2,1 y 1 2(y 2 1),由 AP 2PB 得所以 y 1 2y 2 3,x 12x 22因为 A , B 在椭圆上,所以 4 y 12m , 4 y 22 m ,4x 22(2y 2 3)2 m ,所以4所以 x 22(y 2 3)m 2,424与 x 22m 对应相减得 y 3 m 1 (m y 22, x 22210m 9) 4,2444当且仅当m 5时取最大值.【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.44.【2018年高考北京卷文数】若双曲线 x a22 y 1(a 0)的离心率为25,则a ________________.24【答案】4【解析】在双曲线中c a2b 2a 2 4,且e ac 5,2a 2 4 5,即a 2 16,2所以a因为a 0,所以a 4.数学运算.在求解有关离心率的问题时,一般不直接求出 c 和 a 的值,而是根据题目给出的条件,建立关于参数 c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.45.【2018年高考北京卷文数】已知直线 l 过点(1,0)且垂直于轴,若 l 被抛物线 y 4ax 截得的线段2长为 4,则抛物线的焦点坐标为_________.【答案】 1,0 【解析】由题意可得,点 P 1,2 在抛物线上,将 P 1,2 代入 y 2 4ax 中,解得a 1, y 4x ,由2抛物线方程可得:2p 4, p 2, p 1, 焦点坐标为 1,0 .2【名师点睛】此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.根据题干描述画出相应图形,分析可得抛物线经过点 1,2 ,将点 1,2 坐标代入可求参数的值,进而可求焦点坐a标.x 22 by 22 1(a 0,b 0)的右焦点F (c ,0)46.【2018年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线a到一条渐近线的距离为 3 c ,则其离心率的值是________________.2【答案】2bc 0bcc【解析】因为双曲线的焦点 F (c ,0)到渐近线 y b x ,即bx ay 0的距离为a b2 2b ,a所以b3 c ,2因此a 2c 2b 2c23 c 2 1 c 2,a 1 c ,e 2.442。
高中数学文科专题训练(答案)解析几何专题复习(2)
解析几何专题复习(2)参考答案1.【解析】: (1)依题意,得|MA |=|MB |.∴动点M 的轨迹E 是以A (1,0)为焦点,直线l :x =-1为准线的抛物线, ∴动点M 的轨迹E 的方程为y 2=4x .(2)∵P (1,2),C (x 1,y 1),D (x 2,y 2)在抛物线y 2=4x 上,∴⎩⎪⎨⎪⎧ y 21=4x 1, ①y 22=4x 2, ②由①-②得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2),∴直线CD 的斜率为k CD =y 1-y 2x 1-x 2=4y 1+y 2. ③设直线PC 的斜率为k ,则PD 的斜率为-k ,则直线PC 方程为y -2=k (x -1),由⎩⎪⎨⎪⎧ y 2=4x ,y =kx -k +2,得ky 2-4y -4k +8=0.由2+y 1=4k ,求得y 1=4k -2, 同理可求得y 2=-4k -2.∴k CD =4y 1+y 2=44k -2+-4k -2=-1,∴直线CD 的斜率为定值-1 .2.【解析】:(1)因为点()1,0F 在()22136M x y ++=:内,所以圆N 内切于圆M ,则6NM NF FM +=>,由椭圆定义知,圆心N 的轨迹为椭圆,且26,1a c ==,则229,8a b ==,3. 【解析】: (1)∵||MN =()x 0-22+()y 0-02,又∵y 20=2px 0, ∴||MN 2=x 20-4x 0+4+2px 0=x 20-2()2-p x 0+4=⎣⎡⎦⎤x 0-()2-p 2+4-()2-p 2.∵x 0≥0,∴当2-p ≤0,即p ≥2时,||MN min =2,不符合题意,舍去;当2-p >0,即0<p <2时,||MN min =4-()2-p 2=3,∴()2-p 2=1,∴p =1或p =3(舍去),∴y 2=2x .(2)由题意可知,k MA =y 0-a x 0,∴直线MA 的方程为y =y 0-a x 0x +a ,即()y 0-a x -x 0y +ax 0=0, ∴1=⎪⎪⎪⎪()y 0-a +ax 0()y 0-a 2+x 20,∴()y 0-a 2+x 20=||y 0-a +ax 02,整理得 a 2()x 0-2+2ay 0-x 0=0,同理b 2()x 0-2+2by 0-x 0=0, ∴a ,b 为方程()x 0-2x 2+2y 0x -x 0=0的两根,∴a +b =-2y 0x 0-2,ab =-x 0x 0-2, ∴||a -b =()a +b 2-4ab =2||x 0||x 0-2.∵x 0>2,∴S △MAB =12||a -b ·||x 0=x 20x 0-2=x 20-4+4x 0-2=x 0+2+4x 0-2=x 0-2+4x 0-2+4≥8,当且仅当x 0=4时,取最小值8.。
解析几何专题练习(带答案)
解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。
高三数学解析几何试题答案及解析
高三数学解析几何试题答案及解析1.过平面区域内一点作圆的两条切线,切点分别为,记,则当最小时的值为()A.B.C.D.【答案】C【解析】根据题意可知,当点距离圆心越远时,越小,所以当点距离圆心最远时,即点落在处时角达到最小,此时,所以,故选C.【考点】圆的有关性质.2.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线(为参数),(为参数).(1)化,的方程为普通方程,并说明它们分别表示什么曲线;(2)若上的点对应的参数为,为上的动点,求中点到直线(为参数)距离的最小值.【答案】(1),,是以为圆心,半径为的圆;为中心在坐标原点,焦点在轴上,长半轴长是,短半轴长是的椭圆;(2)【解析】第一问将参数消掉,求得其普通方程,根据方程确定出曲线的类型,第二问根据确定出的坐标,利用中点坐标公式,确定出,将的方程消参,求得直线的普通方程,利用点到直线的距离公式,结合三角函数的最值,求得距离的最小值.试题解析:(1),是以为圆心,半径为的圆;为中心在坐标原点,焦点在轴上,长半轴长是,短半轴长是的椭圆(2)当时,,,故;为直线,到的距离当,时,取最小值【考点】参数方程向普通方程转化,中点坐标公式,点到直线的距离的最小值.3.(本小题满分12分)已知椭圆C:的离心率为,长轴长为8.。
(Ⅰ)求椭圆C的标准方程;(Ⅱ)若不垂直于坐标轴的直线经过点P(m,0),与椭圆C交于A,B两点,设点Q的坐标为(n,0),直线AQ,BQ的斜率之和为0,求的值。
【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程;(Ⅱ)根据已知设出直线方程为(),并记,于是联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再由已知直线AQ,BQ的斜率之和为0,可得方程,将上述求得的的值直接代入即可求出参数的值.试题解析:(Ⅰ)由题意①,②,又③,由①②③解得:,所以求椭圆的标准方程为;(Ⅱ)设直线方程为(),且,直线的斜率分别为,将代入得:,由韦达定理可得:.由得,,将代入,整理得:即将代入,整理可解得【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;4.(本小题满分10分)选修4-1:几何证明选讲如图,是⊙的直径,是弧的中点,,垂足为,交于点.(1)求证:;(2)若,⊙的半径为6,求的长.【答案】(1)证明见解析;(2).【解析】第一问连结CO交BD于点M,根据弧的中点,结合三角形全等,从而证得结果,也可以延长CE 交圆O于点N,连接BN,根据角相等,证得结果,第二问根据圆中的直角三角形,利用勾股定理,求得结果.试题解析:(1)证法一:连接CO交BD于点M,如图1∵C为弧BD的中点,∴OC⊥BD又∵OC=OB,∴RtΔCEO≌RtΔBMO∴∠OCE=∠OBM又∵OC=OB,∴∠OCB=∠OBC∴∠FBC=∠FCB,∴CF=BF证法二:延长CE 交圆O于点N,连接BN,如图2∵AB是直径且CN⊥AB于点E.∴∠NCB=∠CNB又∵C为弧BD的中点∴∠CBD=∠CNB∴∠NCB=∠CBD即∠FCB=∠CBF∴CF=BF(2)∵O,M分别为AB,BD的中点∴OM=2OE∴EB=4在Rt△COE中,∴在Rt△CEB中,【考点】圆的性质.5.已知抛物线()的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则点的横坐标为()A.B.C.D.【答案】B【解析】∵双曲线,其右焦点坐标为.∴抛物线,准线为,∴,设,过点向准线作垂线,则,又,∴由得,从而,即,解得.故选B.【考点】圆锥曲线的性质.【思路点睛】根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得的坐标,设,过点向准线作垂线,则,根据及,进而可求得点坐标.6.抛物线y=2x2的焦点坐标是()A.(0,)B.(0,)C.(,0)D.(,0)【答案】B【解析】先将抛物线的方程化为标准形式,所以焦点坐标为().故选B.【考点】求抛物线的焦点.7.设是双曲线的两个焦点,P在双曲线上,若(c为半焦距),则双曲线的离心率为()A.B.C.2D.【答案】D【解析】由题意得,是直角三角形,由勾股定理得,∴,∴,∵,∴.故选:D.【考点】双曲线的简单性质.8.已知椭圆C: 的离心率为,且过点(1,).(1)求椭圆C的方程;(2)设与圆相切的直线交椭圆C与A,B两点,求面积的最大值,及取得最大值时直线的方程.【答案】(1);(2),.【解析】(1)利用题设条件可列出关于、、的方程组,从而可得、、的值.(2)因为直线与圆相切,所以欲求面积的最大值,只需求弦长的最大值,所以可求出弦长关于斜率的解析式,利用基本式可求得其最大值.试题解析:(1)由题意可得:.(2)①当不存在时,,②当存在时,设直线为,当且仅当即时等号成立,∴面积的最大值为,此时直线方程.【考点】求椭圆方程,直线与圆相切,弦长公式,基本不等式.【方法点睛】(1)对于直线的斜率,需要分类讨论斜率存在与不存在,这也是易忘易错之处.(2)注意到直线与圆相切,那么的高就是圆的半径,所以欲求面积的最大值,只需求弦长AB的最大值,也是本题的难点之一.(3)关于的化简,变形,进而结合基本不等式求解,是本题另一个难点.9.如图所示,一个酒杯的轴截面是一条抛物线的一部分,它的方程是:.在杯内放一个清洁球,要使清洁球能擦净酒杯的底部,则清洁球的最大半径为________.【答案】1【解析】球的截面大圆半径为,圆方程为,圆心为,设是抛物线上任意一点,由,由题意,最小值是与原点重合时取得,即时取得,因为,所以,,因此清洁球的最大半径为1.【考点】柱、锥、台、球的结构特征,圆的标准方程与一般方程,直线与抛物线的应用.【名师】本题考查圆与抛物线的位置关系,本题具有实际意义,从数学上讲,本题就是圆与抛物线切于抛物线的顶点处,从生活常识中可知,圆的半径很小时,圆一定与抛物线切于其顶点处,当圆半径很大时,圆不可能与抛物线切于顶点处,要满足题意,这个半径一定有最大值,从数学上来解,设圆心为,则抛物线上点到的距离的最小值在原点处取得,实质上本题转化为二次函数在上的最大值在自变量为0时取得,由此可得的最大值(范围).10.已知抛物线与圆的两个交点之间的距离为4.(1)求的值;(2)设过抛物线的焦点且斜率为的直线与抛物线交于两点,与圆交于两点,当时,求的取值范围.【答案】(1);(2)【解析】(1)利用圆与抛物线可求交点为,据此即可求出的值;(2)直线的方程为,分别于抛物线、圆的方程联立,求出,利用时,即可求的取值范围.试题解析:(1)由题意知交点坐标为代入抛物线解得(2)抛物线的焦点,设直线方程为与抛物线联立化简得设,则圆心到直线的距离为又,所以的取值范围为.【考点】1.抛物线的简单性质;2.直线与抛物线、圆的位置关系.11. 选修4-1:几何证明选讲 如图,⊙是的外接圆,平分交于,交的外接圆于.(1)求证:; (2)若,,,求的长. 【答案】(1)详见解析;(2). 【解析】(1)过作交于,连接,则可得,再利用条件可证明;(2)利用,可得对应线段成比例,即可建立关于的方程,从而求解.试题解析:(1)如图,过作交于,连接,∴①, 又∵平分,∴,又∵,∴,∴,∴,∴②,由①②知;(2)∵,又∵, ∵,∴,∴,∴,∴,∴.【考点】1.圆的基本性质;2.相似三角形的判定与性质.12. 已知椭圆C :的离心率为,点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点P 1,P 2(两点均不在坐标轴上),且使得直线OP 1,OP 2的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由. 【答案】(Ⅰ);(Ⅱ)当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值.【解析】(Ⅰ)利用离心率列出方程,通过点在椭圆上列出方程,求出a ,b 然后求出椭圆的方程.(Ⅱ)当直线l 的斜率不存在时,验证直线OP 1,OP 2的斜率之积.当直线l 的斜率存在时,设l 的方程为y=kx+m 与椭圆联立,利用直线l 与椭圆C 有且只有一个公共点,推出m 2=4k 2+1,通过直线与圆的方程的方程组,设P 1(x 1,y 1),P 2(x 2,y 2),结合韦达定理,求解直线的斜率乘积,推出k 1•k 2为定值即可. 试题解析:(Ⅰ)解:由题意,得,a 2=b 2+c 2,又因为点在椭圆C 上, 所以,解得a=2,b=1,,所以椭圆C 的方程为.(Ⅱ)结论:存在符合条件的圆,且此圆的方程为x 2+y 2=5. 证明如下:假设存在符合条件的圆,并设此圆的方程为x 2+y 2=r 2(r >0). 当直线l 的斜率存在时,设l 的方程为y=kx+m . 由方程组得(4k 2+1)x 2+8kmx+4m 2﹣4=0,因为直线l 与椭圆C 有且仅有一个公共点, 所以,即m 2=4k 2+1. 由方程组得(k 2+1)x 2+2kmx+m 2﹣r 2=0,则.设P 1(x 1,y 1),P 2(x 2,y 2),则,,设直线OP 1,OP 2的斜率分别为k 1,k 2, 所以,将m 2=4k 2+1代入上式,得.要使得k 1k 2为定值,则,即r 2=5,验证符合题意.所以当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足k 1k 2为定值.当直线l 的斜率不存在时,由题意知l 的方程为x=±2, 此时,圆x 2+y 2=5与l 的交点P 1,P 2也满足.综上,当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值.【考点】圆锥曲线的定值问题;椭圆的标准方程.13. 已知是双曲线的一条渐近线,是上的一点,是的两个焦点,若,则到轴的距离为A .B .C .D .【答案】C 【解析】,不妨设的方程为,设由.得,故到轴的距离为,故选C .【考点】1.双曲线的性质;2.向量的数量积.14. 已知圆:和抛物线,圆的切线与抛物线交于不同的两点.(1)当切线斜率为-1时,求线段的长;(2)设点和点关于直线对称,且,求直线的方程.【答案】(1);(2).【解析】试题解析:(1)圆的圆心为,,设,设的方程,利用直线是圆的切线,求得的值,从而可得到的方程,与抛物线方程联立,利用韦达定理及弦长公式,求出;(2)设直线的方程为,由直线是圆的切线,得到,解得此时直线的方程为;设直线的斜率不存在时,的方程为则得不成立,总上所述,存在满足条件其方程为.(1)因为圆,所以圆心为,半径.设,当直线的斜率为-1时,设的方程为.由,解得或,所以由消去得,所以弦长;(2)(i)当直线的斜率不存在时,因为直线是圆的切线,所以的方程为,与联立,则得,即,.不符合题意.(ii)当直线的斜率存在时,设直线的方程为,即.由题意知,得①,由,消去得.由直线l是圆的切线,得到,解得此时直线l的方程为;设直线l的斜率不存在时,l的方程为则得不成立,总上所述,存在满足条件其方程为.【考点】1、抛物线的简单性质;2、直线方程.【思路点睛】(1)本题主要考察抛物线简单的性质,得到的方程,与抛物线方程联立,利用韦达定理及弦长公式,求出;(2)将直线与抛物线联立,韦达定理,求出,点到直线的的距离公式,直线的方程的基础知识.主要考察学生的分析问题解决问题的能力,转化能力,计算能力.15.如图,点O为坐标原点,直线l经过抛物线C:y2=4x的焦点F.(Ⅰ)若点O到直线l的距离为,求直线l的方程;(Ⅱ)设点A是直线l与抛物线C在第一象限的交点.点B是以点F为圆心,|FA|为半径的圆与x轴负半轴的交点.试判断直线AB与抛物线C的位置关系,并给出证明.【答案】(Ⅰ);(Ⅱ)直线AB与抛物线相切,见解析【解析】法一:(Ⅰ)抛物线的焦点F(1,0),当直线l的斜率不存在时,即x=1不符合题意.当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1),所以,由此能求出直线l 的方程.(Ⅱ)直线AB与抛物线相切.设A(x0,y),则.因为|BF|=|AF|=x+1,所以B(﹣x,0),由此能够证明直线AB与抛物线相切.法二:(Ⅰ)同解法一.(Ⅱ)直线AB与抛物线相切,设A(x0,y),则.设圆的方程为:由此能够证明直线AB与抛物线相切.解法一:(Ⅰ)抛物线的焦点F(1,0),…(1分)当直线l的斜率不存在时,即x=1不符合题意.…(2分)当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1),即kx﹣y﹣k=0.…(3分)所以,,解得:.…(5分)故直线l的方程为:,即.…(6分)(Ⅱ)直线AB与抛物线相切,证明如下:…(7分)(法一):设A(x0,y),则.…(8分)因为|BF|=|AF|=x0+1,所以B(﹣x,0).…(9分)所以直线AB的方程为:,整理得: (1)把方程(1)代入y2=4x得:,…(10分),所以直线AB与抛物线相切.…(12分)解法二:(Ⅰ)同解法一.(Ⅱ)直线AB与抛物线相切,证明如下:…(7分)设A(x0,y),则.…(8分)设圆的方程为:,…(9分)当y=0时,得x=1±(x+1),因为点B在x轴负半轴,所以B(﹣x,0).…(9分)所以直线AB的方程为,整理得: (1)把方程(1)代入y2=4x得:,…(10分),所以直线AB与抛物线相切.…(12分)【考点】直线与圆锥曲线的关系;抛物线的标准方程.16.如图,中,以为直径的⊙分别交于点交于点.求证:(Ⅰ)过点平行于的直线是⊙的切线;(Ⅱ).【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)连结,延长交于,利用圆内接四边形的性质证明三角形相似,再证明线线垂直;(Ⅱ)连续利用割线定理进行证明.试题解析:(Ⅰ)连结,延长交于,过点平行于的直线是,∵是直径,∴,∴,∵四点共圆,∴,又∵是圆内接四边形,∴,∴,而,∴∽, ∴,∴, ∴,∴是⊙的切线.(Ⅱ)∵,∴四点共圆,∴, 同理,两式相加【考点】圆内接四边形.17.双曲线的离心率为()A.B.C.D.【答案】C【解析】,故选C.【考点】双曲线的性质.18.已知圆内接中,为上一点,且为正三角形,点为的延长线上一点,为圆的切线.(Ⅰ)求的度数;(Ⅱ)求证:【答案】(Ⅰ);(Ⅱ)证明见解析.【解析】对于(Ⅰ)可由与相似,并结合即可求出的度数;对于(Ⅱ)可先证明,再结合为等边三角形,进而可以证明所需结论.试题解析:证明:(Ⅰ)在与中,因为为圆的切线,所以,又公用,所以,因为为等边三角形,所以,(Ⅱ)因为为圆的切线,所以,因为为等边三角形,所以,所以,所以,所以,即,因为为等边三角形,所以,所以.【考点】几何证明.19.抛物线上的点P到它的焦点F的最短距离为________.【答案】1【解析】,根据焦半径公式.【考点】抛物线的几何性质.20.圆被直线分成两段圆弧,则较长弧长与较短弧长之比为()A.1:1B.2:1C.3:1D.4:1【答案】C【解析】圆心到直线的距离为,半径为,则截圆的弦所对的劣弧的圆心角为,则较长弧长与较短弧长之比.故选C.【考点】直线与圆的位置关系.21.已知双曲线的一条渐近线与平行,且它的一个焦点在抛物线的准线上,则双曲线的方程为______.【答案】【解析】抛物线的准线为,由题意可得,设双曲线的一条渐近线与平行,由题意可得,即,解得,∴双曲线的标准方程为.所以答案应填:.【考点】1、双曲线的简单性质;2、抛物线的性质.【思路点睛】求出抛物线的准线方程,可得,根据双曲线的方程为,求出渐近线方程,由题意可得的方程,解方程可得或,进而得到双曲线的方程.正确运用双曲线的性质是解题的关键,本题考查双曲线的方程的求法、抛物线的准线方程和双曲线的渐近线方程,考查逻辑思维能力和计算能力,属于基础题.22.如图,已知椭圆,椭圆的长轴长为,离心率为.(1)求椭圆方程;(2)椭圆内接四边形的对角线交于原点,且,求四边形周长的最大值与最小值.【答案】(1);(2)最大值是,最小值是.【解析】(1)由题意得,利用离心率可得,利用的关系,即可求解椭圆的标准方程;(2)由题意得对称性可得四边形为平行四边形,运用向量的数量积的性质,可得,即有四边形为菱形,既有,讨论直线的斜率为,可得最大值;不为时,设出直线方程,与椭圆方程联立,运用两点间的距离公式,化简整理,再借助二次函数的性质,即可求得最小值.试题解析:(1)由题意可知,所以.又因为,所以,所以椭圆方程是.(2)由题意可设,则,因为所以,所以四边形是平行四边形.因为,所以,所以四边形是菱形.设直线的方程是,则直线的方程是,并且由椭圆的对称性不妨设,由,得,所以,所以由,得,所以,所以所以,所以令,则,令,因为,所以,即时,.,即时,.所以四边形周长的最大值是,最小值是.【考点】椭圆的标准方程;直线与圆锥曲线的位置关系的应用.【方法点晴】本题主要考查了椭圆的定义、标准方程及其简单的几何性质、直线与椭圆位置关系的综合应用,其中直线与椭圆方程联立相交问题转化为联立方程组求交点、数量积的运算性质、二次函数的最值是解答的关键,着重考查了学生的推理、运算能力和转化与化归思想的应用,试题运算量与思维量较大,需要平时注意总结和积累,属于难题.23.双曲线的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,则双曲线的离心率是()A.B.C.D.【答案】B【解析】由题意,直线的方程是,因为圆与直线相切,所以点到直线的距离等于半径,即,又,得,,,故选B.【考点】1、双曲线的性质;2、双曲线的离心率.【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.24.已知椭圆的两个焦点,,且椭圆过点,,且是椭圆上位于第一象限的点,且的面积.(1)求点的坐标;(2)过点的直线与椭圆相交于点,,直线,与轴相交于,两点,点,则是否为定值,如果是定值,求出这个定值,如果不是请说明理由.【答案】(1);(2)详见解析.【解析】(1)通过已知条件首先求得椭圆的标准方程,再结合三角形的面积计算公式,即可求得的坐标;(2)将直线的方程设出,联立直线方程与椭圆方程,通过计算说明是否为定值即可.试题解析:(1)∵椭圆过点,,∴,计算得,,∴椭圆的方程为.∵的面积,∴,∴,代入椭圆方程.∵,∴,∴;(2)法一:设直线的方程为,,,直线的方程为,可得,即,直线的方程为,可得,即.联立,消去,整理,得.由,可得,,,∴为定值,且.法二:设,,,,直线,,的斜率分别为,,,由,得,,可得,,,,由,令,得,即,同理得,即,则∴为定值,该定值为.【考点】1.椭圆的标准方程及其性质;2.直线与椭圆的位置关系;3.椭圆中的定值问题.【名师】求解定值问题的方法一般有两种:1.从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;2.直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.25.已知圆的方程为,定直线的方程为.动圆与圆外切,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线与轨迹相切于第一象限的点,过点作直线的垂线恰好经过点,并交轨迹于异于点的点,记为(为坐标原点)的面积,求的值.【答案】(1)(2)【解析】(1)由圆与圆外切得圆心距为半径之和,即得,用坐标表示,化简得(2)按条件依次表示点的坐标及三角形面积:设点,则由导数几何意义得切线斜率,根据垂直关系得,再由直线方程过点得,即得点坐标为,直线的方程为,最后根据直线方程与抛物线方程解出点的坐标为,计算出三角形面积试题解析:解:(1)设动圆圆心的坐标为,动圆半径为,则,且,可得.由于圆在直线的上方,所以动圆的圆心应该在直线的上方,所以有,,整理得,即为动圆圆心的轨迹的方程.(2)设点的坐标为,则,,,所以直线的方程为.又,∴,∵点在第一象限,∴,点坐标为,直线的方程为.联立得,解得或4,∴点的坐标为.所以.【考点】直接法求轨迹方程,导数几何意义,直线与抛物线位置关系26.已知圆方程为:,直线过点,且与圆交于两点,若,则直线的方程是_______.【答案】或【解析】①当直线垂直于轴时,则此时直线方程为,与圆的两个交点坐标为和,其距离为满足题意.②若直线不垂直于轴,设其方程为,即,设圆心到此直线的距离为,则,得,∴,解得,故所求直线方程为.综上所述,所求直线方程为或.【考点】直线与圆位置关系27.已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为A.B.C.D.【答案】A【解析】由题意,得又,所以所以双曲线的方程为,选A.【考点】双曲线【名师】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).28.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的方程为,以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程,并求与的交点的极坐标;(2)设是椭圆上的动点,求的面积的最大值.【答案】(1),;(2).【解析】(1)借助题设将建直角坐标化为极坐标求解;(2)借助题设条件参数方程建立目标函数求解.试题解析:(1)因为,所以的极坐标方程为,直线的直角坐标方程为,联立方程组,解得或,所以点的极坐标分别为.(2)因为是椭圆上的点,设点坐标为,则到直线的距离,所以,当时,取得最大值1.【考点】极坐标方程和参数方程等知识及运用.29.平面直角坐标系中,点、是方程表示的曲线上不同两点,且以为直径的圆过坐标原点,则到直线的距离为()A.2B.C.3D.【答案】D【解析】由题设可得,注意到,由椭圆的定义可知动点的轨迹是以焦点,长轴长为的椭圆,所以其标准方程为.因为是椭圆上点,且以为直径的圆过坐标原点,所以,设,将这两点坐标代入可得, ,所以.即也即,设原点到直线的距离为,则,即,应选D.【考点】椭圆的标准方程和参数方程.【易错点晴】本题以方程的形式为背景考查的是圆锥曲线的几何性质与运用.解答本题的难点是如何建立两个动点的坐标的形式,将两点之间的距离表示出来,以便求坐标原点到这条直线的距离.解答时充分利用题设条件,先运用椭圆的定义将其标准方程求出来,再将两动点的坐标巧妙地设为,这也是解答本题的关键之所在.进而将这两点的坐标代入椭圆的方程并进行化简求得的长度之间的关系.最后运用等积法求出了坐标原点到直线的距离.30.选修4-1:几何证明选讲如图, 圆是的外接圆,垂直平分并交圆于点, 直线与圆相切于点,与的延长线交于点.(1)求的大小;(2)若,求的长.【答案】(1);(2).【解析】(1)运用弦切角与三角形的内角和定理求解;(2)借助题设条件和切割线定理求解. 试题解析:(1)设,为圆的切线, ,由垂直平分并交圆于点,可得,,则,由,得,即的大小为.(2)为圆的切线,. 由(1)知,又,即.【考点】圆幂定理中切割线定理及运用.31.过抛物线的焦点的直线与双曲线的一条渐近线平行,并交抛物线于两点,若,且,则抛物线的方程为()A.B.C.D.【答案】A【解析】抛物线的焦点的坐标为,准线方程为,与双曲线的渐近线方程为,由于过抛物线的焦点的直线与双曲线的一条渐近线平行,并交抛物线于两点,且,所以可设直线方程为:,设,则,由可得,所以,由得或(舍去),所以抛物线方程为,故选A.【考点】1.直线与抛物线的位置关系;2.抛物线和双曲线的定义与性质.【名师】本题考查直线与抛物线的位置关系、抛物线和双曲线的定义与性质,属中档题;解决抛物线弦长相关问题时,要注意抛物线定义的应用,即将到焦点的距离转化为到准线的距离,通过解方程组求解相关问题即可。
专题08 平面解析几何(解答题)——三年(2021-2021)高考真题文科数学分项汇编(解析版)
+ 2y 专题 08 平面解析几何(解答题)1. 【2020 年高考全国Ⅰ卷文数】已知 A 、B 分别为椭圆E :x 2 a 2y= 1 (a >1)的左、右顶点,G 为 E 的上顶点, AG ⋅ GB = 8 ,P 为直线 x =6 上的动点,PA 与 E 的另一交点为 C ,PB 与 E 的另一交点为 D .(1) 求 E 的方程;(2) 证明:直线 CD 过定点.【解析】(1)由题设得 A (-a , 0), B (a , 0),G (0,1) .则 AG = (a ,1) , GB = (a , -1) .由 AG ⋅ GB = 8 得 a 2 - 1 = 8 ,即 a = 3 .所以 E 的方程为 x 2 + 29= 1 .(2)设C (x 1, y 1), D (x 2 , y 2 ), P (6, t ) .若t ≠ 0 ,设直线CD 的方程为 x = my + n ,由题意可知-3 < n < 3 .由于直线 PA 的方程为 y = t (x + 3) ,所以 y = t(x + 3) .9 19 1直线 PB 的方程为 y = t (x - 3) ,所以 y = t (x- 3) .3可得3y 1(x 2 - 3) = y 2 (x 1 + 3) .23 2x 22(x 2 + 3)(x 2 - 3)由于 2 + y 2 = 1 ,故 y 2 = - ,可得27 y 1 y 2 = -(x 1 + 3)(x 2 + 3) ,929即(27 + m 2 ) y y + m (n + 3)( y + y ) + (n + 3)2 = 0 .①1 212x = my + n x 2 + 22 2 2将 代入 9 y = 1 得(m + 9) y + 2mny + n - 9 = 0 .2mn n 2 - 9所以 y 1 + y 2 = - m 2 + 9 , y 1 y 2 = - m 2 + 9.代入①式得(27 + m 2 )(n 2 - 9) - 2m (n + 3)mn + (n + 3)2 (m 2 + 9) = 0 . 解得 n = -3 (舍去),n = 3. 2故直线CD 的方程为 x = my + 3 ,即直线CD 过定点( 3, 0) .2 2若t = 0 ,则直线CD 的方程为 y = 0 ,过点( 3, 0) .23综上,直线CD 过定点( , 0) .2【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力, 属于难题.a 2 -b 2 2 x 2 + y 2 =2. 【2020 年高考全国Ⅱ卷文数】已知椭圆 C 1: a 2 b2 1(a >b >0)的右焦点 F 与抛物线 C 2 的焦点重合,C 1 4的中心与 C 2 的顶点重合.过 F 且与 x 轴垂直的直线交 C 1 于 A ,B 两点,交 C 2 于 C ,D 两点,且|CD |=3(1) 求 C 1 的离心率;(2) 若 C 1 的四个顶点到 C 2 的准线距离之和为 12,求 C 1 与 C 2 的标准方程.|AB |.【解析】(1)由已知可设C 2 的方程为 y 2 = 4cx ,其中c = .不妨设 A , C在第一象限,由题设得 A , B 的纵坐标分别为 b a,- b;C , D a的纵坐标分别为2c ,-2c ,2b 2 故| AB |=, a| CD |= 4c .由| CD |= 4 | AB |得4c = 8b 2,即3⨯ c = 2 - 2( c )2 ,解得 c = -2 (舍去), c = 1 .3 3aa a a a 2 所以C 的离心率为 1.1(2)由(1)知 a 2= 2c ,b =x 2 3c ,故C 1 : 4c2+ y 23c 2= 1 .所以C 1 的四个顶点坐标分别为(2c , 0),(-2c , 0) ,(0, 3c ) , (0, - 3c ) , C 2 的准线为 x = -c .由已知得3c + c + c + c = 12 ,即c = 2 .Cx 2 y 2C2所以 1 的标准方程为+ = 1, 2 的标准方程为 y 16 12= 8x .【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.x 2 y 215 3. 【2020 年高考全国Ⅲ卷文数】已知椭圆C : 25 + m 2 = 1(0 < m < 5) 的离心率为右顶点., A ,B 分别为C 的左、4(1) 求C 的方程;(2) 若点 P 在C 上,点Q 在直线 x = 6 上,且| BP |=| BQ | , BP ⊥ BQ ,求△APQ 的面积.【解析】(1)由题设可得 25 - m 2=15 ,得 m 2 = 25 , 541621 +y 2Q1010130+22 22x2+y2所以C 的方程为25 2516 = 1.(2)设P(x P , y P ), Q(6, y Q ) ,根据对称性可设y Q > 0 ,由题意知y P > 0 ,由已知可得B(5, 0) ,直线BP 的方程为y =-1yQ(x - 5) ,所以| BP |=,|BQ |=,因为| BP |=| BQ | ,所以y P = 1,将y P = 1 代入C 的方程,解得x P = 3 或-3 .由直线BP 的方程得y Q = 2 或8.所以点P, Q 的坐标分别为P1 (3,1), Q1 (6, 2); P2 (-3,1), Q2 (6,8) .| PQ |=,直线PQ 的方程为y =1x ,点A(-5, 0) 到直线PQ 的距离为10 ,故△APQ 的面1 1积为1⨯1 1 310⨯=5.1 1 1 12 2 2| PQ |= 130 ,直线P Q 的方程为y =7x +10,点A 到直线P Q 的距离为130,故△AP Q 的2 2面积为12 2 93 26130=5.2 26 2综上,△APQ 的面积为5 .2【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.4.【2020 年高考北京】已知椭圆C : x2+y2=过点A(-2, -1) ,且a = 2b .a2 b21(Ⅰ)求椭圆C 的方程:(Ⅱ)过点B(-4,0)的直线l交椭圆C于点M , N ,直线MA, NA 分别交直线x =-4 于点P,Q.求|PB|的| BQ |值.【解析】(1)设椭圆方程为:x2y= 1(a >b > 0 ),由题意可得:a b1 +y 2Q2 222y P y QPB PQ y Py Q=2 2 ⎧ 4 + 1 = 1⎧a 2 = 8 ⎪ 2 2⎨ a b⎩⎪ a = 2b,解得: ⎨ , ⎩b = 22 故椭圆方程为: x+ y = 1.8 2(2)设 M ( x 1, y 1 ) , N (x 2 , y 2 ) ,直线 MN 的方程为: y = k ( x + 4) ,与椭圆方程 x 2 + y2= 1联立可得:x 2 + 4k 2 ( x + 4)2= 8 , 82即:(4k 2 +1) x 2 + 32k 2 x + (64k 2 - 8) = 0 ,-32k 2 则: x 1 + x 2 = 4k 2 +1, x 1 x 2 = 64k 2 - 8. 4k 2+1直线 MA 的方程为: y +1 =y 1 +1( x + 2) ,x 1 + 2令 x = -4 可得: y = -2⨯ y 1 +1 -1 = -2⨯ k ( x 1 + 4) +1- x 1 + 2 = - (2k +1)(x 1 + 4 ) , P x + 2 x + 2 x + 2 x + 2同理可得: y 1 1 1 1= -(2k +1)( x 2 + 4 ) . x 2 + 2很明显 y P y Q < 0 ,且:= ,注意到:y + y = -(2k +1)⎛ x 1 + 4 + x 2 + 4 ⎫ = -(2k +1)⨯ ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) , P Q x + 2 x + 2 ⎪ ( x + 2)( x + 2) ⎝ 1 2 ⎭ 1 2而: ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) = 2 ⎡⎣x 1x 2 + 3( x 1 + x 2 ) + 8⎤⎦= ⎡ 64k 2 - 8⎛ -32k 2 ⎫ ⎤2 ⎢ 4k 2 +1 + 3⨯ 4k 2 +1 ⎪ + 8⎥ ⎣⎝ ⎭ ⎦ (64k 2- 8) + 3⨯ (-32k 2)+ 8 (4k 2+1) 2 04k 2 +1故 y P + y Q = 0, y P = - y Q .从而= = 1 . PB PQ Q2 2 2 【点睛】解决直线与椭圆的综合问题时,要注意:(1) 注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2) 强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.x 2225. 【2020 年高考浙江】如图,已知椭圆C 1 :2+y = 1,抛物线C 2 : y = 2 px ( p > 0) ,点 A 是椭圆C 1 与抛物线C 2 的交点,过点 A 的直线 l 交椭圆C 1 于点 B ,交抛物线C 2 于点 M (B ,M 不同于 A ).(Ⅰ)若 p =1,求抛物线C 的焦点坐标;16 2(Ⅱ)若存在不过原点的直线 l 使 M 为线段 AB 的中点,求 p 的最大值.【解析】(Ⅰ)由 p =1得C 的焦点坐标是( 1, 0) .16 2 32(Ⅱ)由题意可设直线l : x = my + t (m ≠ 0,t ≠ 0) ,点 A (x 0 , y 0 ) .x 2 22 2 2 将直线l 的方程代入椭圆C 1 : 2 + y = 1 得(m + 2) y + 2mty + t - 2 = 0 ,所以点 M 的纵坐标 y M= - mt . m 2+ 2将直线l 的方程代入抛物线C : y 2 = 2 px 得 y 2- 2 pmy - 2 pt = 0 ,2 p (m 2 + 2)所以 y 0 y M = -2 pt ,解得 y 0 = m,2 p (m 2 + 2)2因此 x 0 =x 2. m 2 1 = 4(m + 2 )2 + 2(m + 2 )4≥ 160由 0 + y 2 = 1 得 2 ,2p m m 所以当 m = ,t = 10 时, p 取到最大值 10 . 5 40【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数 学运算能力,是一道有一定难度的题.26. 【2020 年高考江苏】在平面直角坐标系 xOy 中,已知椭圆 E : x +y= 1 的左、右焦点分别为 F 1,F 2,43y 点 A 在椭圆 E 上且在第一象限内,AF 2⊥F 1F 2,直线 AF 1 与椭圆 E 相交于另一点 B .(1) 求△AF 1F 2 的周长;(2) 在 x 轴上任取一点 P ,直线 AP 与椭圆 E 的右准线相交于点 Q ,求OP ⋅ Q P 的最小值;(3) 设点 M 在椭圆 E 上,记△OAB 与△MAB 的面积分别为 S 1,S 2,若 S 2 = 3S 1 ,求点 M 的坐标.【解析】(1)椭圆 E : x 2 + = 1 的长轴长为 2a ,短轴长为 2b ,焦距为 2c ,4 3则 a 2 = 4, b 2 = 3, c 2 = 1 .所以△AF 1F 2 的周长为 2a + 2c = 6 .(2) 椭圆 E 的右准线为 x = 4 .设 P (x , 0),Q (4, y ) ,则OP = (x , 0),QP = (x - 4, - y ) ,OP ⋅ QP = x (x - 4) = (x - 2)2 - 4 ≥ -4, 在 x = 2 时取等号.所以OP ⋅ QP 的最小值为-4 .x 2 (3) 因为椭圆 E :4 + y 23= 1 的左、右焦点分别为 F 1 , F 2 ,点 A 在椭圆 E 上且在第一象限内,AF 2⊥F 1 F 2 ,2⎪+ = AM AN 1 2 1 2 2 2则 F 1 (- 31, 0), F 2 (1, 0), A (1, 2) .所以直线 AB : 3x - 4 y + 3 = 0.设 M (x , y ) ,因为 S 2 = 3S 1 ,所以点 M 到直线 AB 距离等于点O 到直线 AB 距离的 3 倍. 由此得| 3x - 4 y + 3 | = 3 ⨯ | 3 ⨯ 0 - 4 ⨯ 0 + 3 | ,5 5则3x - 4 y + 12 = 0 或3x - 4 y - 6 = 0 . ⎧3x - 4 y + 12 = 0, ⎪由⎨ x 2 + y 2 =⎩ 4 3得7x 2 + 24x + 32 = 0 ,此方程无解;⎧3x - 4 y - 6 = 0, ⎪ 2 2 由⎨ x 2 ⎪⎩ 4 + y 2 = 3得7x -12x - 4 = 0 ,所以x = 2 或 x = - . 7代入直线l : 3x - 4 y - 6 = 0 ,对应分别得 y = 0 或 y = -12.7因此点 M 的坐标为(2, 0) 或(- 2 , - 12) .7 7【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据 S 2 = 3S 1 推出 d = 9是解答本题的关键.57. 【2020年新高考全国Ⅰ卷】已知椭圆C : xa 2y 2+ = 1(a > b > 0) 的离心率为 b 2 2,且过点A (2,1).(1) 求C 的方程:(2) 点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.4 + 1 =a 2 -b 2 1【解析】(1)由题设得 a2 1 , b 2a 2 = ,解得 a = 6 ,b = 3 . 2 所以C 的方程为 x y 1 .6 3(2)设 M (x 1, y 1) , N (x 2 , y 2 ) .若直线 MN 与 x 轴不垂直,设直线 MN 的方程为 y = kx + m ,x 2 + y 2 =(1 + 2 2+ + 2 - = 代入 得 6 3 4km2k )x 4kmx 2m 2m 2- 6 6 0 . 于是 x 1 + x 2 = -1 + 2k 2 , x 1 x 2 = 1 + 2k 2由 AM ⊥ AN 知 ⋅= 0 ,故(x .① - 2)(x - 2) + ( y -1)( y - 1) = 0 , 12 2 2 1 1 22m 6 - 4km Q ( , ) Q ( , ) 可得(k 2 + 1)x x + (km - k - 2)(x + x ) + (m -1)2 + 4 = 0 .1 212将①代入上式可得(k 2+ 1) 2 -(km - k - 2) + (m -1)2 + 4 = 0 .1 + 2k2 整理得(2k + 3m +1)(2k + m -1) = 0 .1 + 2k 2因为 A (2,1) 不在直线 MN 上,所以 2k + m - 1 ≠ 0 ,故 2k + 3m + 1 = 0 , k ≠ 1 . 于是 MN 的方程为 y = k (x - 2) - 1(k ≠ 1) .3 3 所以直线 MN 过点 P ( 2 , - 1) .3 3若直线 MN 与 x 轴垂直,可得 N (x 1 , - y 1 ) .由 AM ⋅ AN = 0 得(x 1 - 2)(x 1 - 2) + ( y 1 - 1)(- y 1 - 1) = 0 .x 2 又 1 y 2+ 1 = 1 ,可得3x 2 - 8x + 4 = 0 .解得 x = 2 (舍去), x = 2 . 6 3 1 1 1 1 3 此时直线 MN 过点 P ( 2 , - 1) .3 3令Q 为 AP 的中点,即 4 1.3 3若 D 与 P 不重合,则由题设知 AP 是Rt △ADP 的斜边,故| DQ |= 1 | AP |= 2 2.2 3若 D 与 P 重合,则| DQ |= 1| AP | .2综上,存在点 4 1 3 3,使得| DQ | 为定值.【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线 MN经过定点,并求得定点的坐标,属综合题,难度较大.8. 【2020 年新高考全国Ⅱ卷】已知椭圆 C : xa 2y 2+ = 1(a > b > 0) 过点 M (2,3),点 A 为其左顶点,且b 2AM 的斜率为 1,2(1) 求 C 的方程;(2) 点 N 为椭圆上任意一点,求△AMN 的面积的最大值.【解析】(1)由题意可知直线 AM 的方程为: y - 3 = 1(x - 2) ,即 x - 2 y = -4 .2当 y =0 时,解得 x = -4 ,所以 a =4,x2y24 + 9= 1椭圆C :+ a2b 2 = 1(a > b > 0 ) 过点 M (2,3),可得16 b 2,21+412 55 2 解得 b 2=12.2所以 C 的方程: x + y = 1.16 12(2)设与直线 AM 平行的直线方程为: x - 2 y = m ,如图所示,当直线与椭圆相切时,与 AM 距离比较远的直线与椭圆的切点为 N ,此时△AMN 的面积取得最大值.联立直线方程 x - 2 y = m 与椭圆方程 x y 2+ = 1,可得: 3(m + 2 y )2+ 4 y 2 = 48 ,16 12化简可得:16 y 2 +12my + 3m 2 - 48 = 0 ,所以∆ = 144m 2 - 4 ⨯16 (3m 2 - 48)= 0 ,即 m 2=64,解得 m =±8,与 AM 距离比较远的直线方程: x - 2 y = 8 , 直线 AM 方程为: x - 2 y = -4 ,点 N 到直线 AM 的距离即两平行线之间的距离,8 + 4利用平行线之间的距离公式可得: d == ,5由两点之间距离公式可得| AM |== 3 .所以△AMN 的面积的最大值: 1⨯ 3 5 ⨯12 5= 18 . 25(2 + 4)2 + 32 2y += ⎝ ⎭⎝ ⎭22 + =3 【点睛】解决直线与椭圆的综合问题时,要注意:(1) 注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2) 强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、 三角形的面积等问题.x 2 9. 【2020 年高考天津】已知椭圆 a 2 2+ = 1(a > b > 0) 的一个顶点为 A (0, -3) ,右焦点为 F ,且b 2| OA |=| OF | ,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC = OF ,点 B 在椭圆上( B 异于椭圆的顶点),直线 AB 与以C 为圆心的圆相切于点 P ,且 P 为线段 AB 的中点.求直线 AB 的方程.【解析】(Ⅰ)由已知可得b = 3 .记半焦距为c ,由| OF |=| OA | 可得c = b = 3 .又由 a 2 = b 2 + c 2 ,可得 a 2 = 18 .所以,椭圆的方程为x y 1.189(Ⅱ)因为直线 AB 与以C 为圆心的圆相切于点 P ,所以 AB ⊥ CP .依题意,直线 AB 和直线CP 的⎧ y = kx - 3, ⎪斜率均存在.设直线 AB 的方程为 y = kx - 3 .由方程组⎨ x 2 y 2 ⎩18 9 1,消去 y ,可得2 212k ⎛ 12k 6k 2 - 3 ⎫(2k +1) x -12kx = 0 ,解得 x = 0 ,或 x = 2k 2 +1 .依题意,可得点 B 的坐标为 2k 2 , 1 2k 2+1 ⎪ .因为 P 为线段 AB 的中点,点 A 的坐标为(0, -3) ,所以点 P 的坐标为⎛ 6k, -3.由3OC = OF ,2k 2 +1 2k 2+1⎪ -3 - 0得点C 的坐标为(1, 0) ,故直线CP 的斜率为 2k 2+1 6k -1 2k 2 +13,即 2k 2- 6k +1.又因为 AB ⊥ CP ,所以 k ⋅ 2k 2- 6k +1 = -1,整理得2k 2- 3k +1 = 0 ,解得 k = 1 ,或 k = 1. 2所以,直线 AB 的方程为 y = 1x - 3 ,或 y = x - 3 .210. 【2019 年高考全国Ⅰ卷文数】已知点 A ,B 关于坐标原点 O 对称,│AB │=4,⊙M 过点 A ,B 且与直线⎪ + ⎫x+2=0 相切.(1)若A 在直线x+y=0 上,求⊙M 的半径;(2)是否存在定点P,使得当A 运动时,│MA│−│MP│为定值?并说明理由.【答案】(1) M的半径r=2或r=6 ;(2)存在,理由见解析.【解析】(1)因为 M 过点A, B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线x+y=0 上,且A, B 关于坐标原点O 对称,所以M 在直线y =x 上,故可设M (a, a) .因为 M 与直线x+2=0相切,所以 M 的半径为r =| a + 2 | .由已知得|AO|=2 ,又MO ⊥AO ,故可得2a2 + 4 = (a + 2)2 ,解得a=0 或a=4 .故 M 的半径r=2 或r=6 .(2)存在定点P(1, 0) ,使得| MA | - | MP | 为定值.理由如下:设M (x, y) ,由已知得 M 的半径为r=|x+2|,|AO|=2 .由于MO ⊥AO ,故可得x2 +y2 + 4 = (x + 2)2 ,化简得M的轨迹方程为y2 = 4x .因为曲线C : y2 = 4x 是以点P(1, 0) 为焦点,以直线x =-1 为准线的抛物线,所以|MP|=x+1.因为|MA|-|MP|=r-|MP|=x+2 - (x+1)=1 ,所以存在满足条件的定点P.【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.1.【2019 年高考全国Ⅱ卷文数】已知F , F 是椭圆C : x2+y2=>>的两个焦点,P 为C 上一点,1 2 a 21(a b 0) b2O 为坐标原点.(1)若△POF2 为等边三角形,求C 的离心率;(2)如果存在点P,使得PF1 ⊥PF2 ,且△F1PF2 的面积等于16,求b 的值和a 的取值范围.【答案】(1)-1;(2)b = 4 ,a的取值范围为[42,+∞).【解析】(1)连结PF1 ,由△POF2 为等边三角形可知在△F1PF2 中,∠F1PF2 = 90︒,PF2=c ,33 2 = 1PF 1 = 3c ,于是 2a = PF 1 + PF 2= ( 3 +1)c ,故C 的离心率是e = c= -1 . a(2)由题意可知,满足条件的点 P (x , y ) 存在.当且仅当 1 | y | ⋅2c = 16 , y ⋅ y 2 = -1 x 2 y 2, + = 1,x + c x - c a b即c |y | = 16 ,①x 2 + y 2 = c 2 ,②x 2 y 2 + = 1,③a 2b2由②③及a 2 = b 2 + c 2 得 y 2b 4 = ,又由①知 y 2c 2 162 = ,故b 4 . c22a 2222222由②③得 x=2(c - b ) ,所以c ≥ b ,从而 a2 2= b + c ≥ 2b = 32, 故 a ≥ 4 .当b = 4 , a ≥ 4时,存在满足条件的点P .所以b = 4 , a 的取值范围为[4 2, +∞) .【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.x 2- 1 12.【2019 年高考全国Ⅲ卷文数】已知曲线 C :y = 2,D 为直线 y = 上的动点,过 D 作 C 的两条切线,2切点分别为 A ,B .(1) 证明:直线 AB 过定点;5(2) 若以 E (0, 2)为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求该圆的方程.【答案】(1)见解析;(2) x 2+ ⎛ y - ⎝ 5 ⎫2⎪ ⎭ = 4 或 x 2+ ⎛ y - ⎝ 5 ⎫2⎪ ⎭= 2 .【解析】(1)设 D ⎛ t , - 1 ⎫ , A ( x , y ) ,则 x 2 = 2 y . 2 ⎪ 1 1 1 1 ⎝ ⎭y + 1由于 y' = x ,所以切线DA 的斜率为 x ,故 1 2 = x . x 1 - t整理得2 tx 1 - 2 y 1 +1=0.2 22 2 2 c12设 B (x 2, y 2 ) ,同理可得 2tx 2 - 2 y 2 +1=0 . 故直线AB 的方程为 2tx - 2 y +1 = 0 .1所以直线AB 过定点(0, ) .2(2)由(1)得直线AB 的方程为 y = tx + 1.2⎧y = tx + 1 ⎪ 由⎨ 2 ⎪ y = x ⎩ 2 2 ,可得 x 2 - 2tx -1 = 0 . 于是 x + x = 2t , y + y = t ( x + x ) +1 = 2t 2+1 .121212设M 为线段AB 的中点,则 M ⎛t , t 2+ 1 ⎫ .2 ⎪ ⎝⎭由于 EM ⊥ AB ,而EM = (t , t 2- 2),AB 与向量(1, t ) 平行,所以t + (t 2- 2)t = 0 .解得t =0或t = ±1.当t =0时, | EM | =2,所求圆的方程为 x 2+ ⎛ y - ⎝ 5 ⎫2⎪ ⎭⎛ = 4 ;5 ⎫2 当t = ±1时, | EM |= ,所求圆的方程为 x 2+ y - ⎝ ⎪ = 2 .⎭【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.x 2 y 2(1, 0)A (0,1)13.【2019 年高考北京卷文数】已知椭圆C : a 2 + = 1 的右焦点为 b2 ,且经过点 .(1) 求椭圆 C 的方程;(2) 设 O 为原点,直线l : y = kx + t (t ≠ ±1) 与椭圆 C 交于两个不同点 P ,Q ,直线 AP 与 x 轴交于点M ,直线 AQ 与 x 轴交于点 N ,若|OM |·|ON |=2,求证:直线 l 经过定点.x 22【答案】(1)+ y 2= 1;(2)见解析.【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.⎪ 2 2y ⋅ + - ⋅ - + -所以椭圆C 的方程为 x 2 + 22= 1.(2)设P (x 1,y 1),Q (x 2,y 2),则直线AP 的方程为 y =y 1 -1 x +1.x 1令y =0,得点M 的横坐标 x M = - x 1. y -1又 y = kx 1+ t ,从而| OM |= x = |x 1 | .11同理,| ON |= |⎧ y = kx + t , Mx 2 |.kx 2 + t -1kx 1 + t -1⎪由⎨ x 2 + y 2 = 1 得(1+ 2k 2 ) x 2 + 4ktx + 2t 2 - 2 = 0 . ⎪⎩ 2x + x = -4kt2t 2 - 2则 121+ 2k 2, x 1x 2 =1+ 2k 2 .所以| OM | ⋅ | ON |= |x 1 kx 1 + t -1 |⋅| x 2 |kx 2 + t -1 = | k 2x x x 1x 2+ k (t -1) (x + x ) + (t -1)2 | 1 2122t 2 - 2 = |1+ 2k 2|22t 2- 2 4kt 2k 1+ 2k 2 k (t 1) ( 1+ 2k 2 ) (t 1) = 2|1+ t | .1- t又| OM | ⋅ | ON |= 2 ,所以 2|1+ t| = 2 .1- t解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:3 3 1 2 2 ⎪ 2 (1) 注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2) 强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、 三角形的面积等问题.14.【2019 年高考天津卷文数】设椭圆 x a 2 y 2+ = 1(a > b > 0) 的左焦点为 F ,左顶点为 A ,上顶点为 B .已b 2知 | OA |= 2 | OB | (O 为原点).(1) 求椭圆的离心率;3 (2) 设经过点 F 且斜率为 4的直线 l 与椭圆在 x 轴上方的交点为 P ,圆 C 同时与 x 轴和直线 l 相切,圆心 C 在直线 x =4 上,且OC ∥AP ,求椭圆的方程.1 x2 【答案】(1) ;(2) 2 y 2+ = 1. 16 12⎛⎫2【解析】(1)设椭圆的半焦距为 c ,由已知有 3a = 2b ,又由 a 2 = b 2 + c 2,消去b 得 a 2 = a ⎝ 2 ⎭+ c 2 , 解得 c = 1 .a 21所以,椭圆的离心率为 .2x 2 y 2(2)由(1)知, a = 2c , b = 3c ,故椭圆方程为 4c 2 + = 1 .3c 2由题意, F ( - c , 0) ,则直线l 的方程为 y = 3(x + c ) ,4 ⎧ x 2 + y 2=⎪ 4c 2 点 P 的坐标满足⎨ 3c 21, 消去 y 并化简,得到7x 2 + 6cx -13c 2 = 0 ,解得 x = c , x = - 13c . ⎪ y = 3 (x + c ), 7⎩⎪ 4代入到l 的方程,解得 y 1 = 3 c , y 2 2= - 9 c . 14 x ⎛ 3 ⎫因为点 P 在 轴上方,所以 P c , c ⎪ .⎝ ⎭由圆心C 在直线 x = 4 上,可设C (4, t ) .因为OC ∥AP ,且由(1)知 A ( - 2 c , 0) ,故 t 43 c= c + 2c,解得t = 2 .24 2 因为圆C与 x 轴相切,所以圆的半径长为 2,3(4 + c ) - 2 又由圆C 与l 相切,得 4= 2 ,可得c =2 . ⎛ 3 ⎫21+ ⎪ ⎝ ⎭2 所以,椭圆的方程为 x + y= 1.16 12【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.15.【2019 年高考江苏卷】如图,在平面直角坐标系 xOy 中,椭圆 C : xa 2 y 2+ = 1(a > b > 0) 的焦点为 F 1b2(–1、0),F 2(1,0).过 F 2 作 x 轴的垂线 l ,在 x 轴的上方,l 与圆 F 2: (x -1)2 + y 2 = 4a 2 交于点 A , 与椭圆 C 交于点 D .连结 AF 1 并延长交圆 F 2 于点 B ,连结 BF 2 交椭圆 C 于点 E ,连结 DF 1. 5已知 DF 1= .2(1) 求椭圆 C 的标准方程;(2) 求点 E 的坐标.【答案】(1) x 2 + y 2= ;(2)E (-1, - 3) . 4312【解析】(1)设椭圆 C 的焦距为 2c . 因为 F 1(−1,0),F 2(1,0),所以 F 1F 2=2,c =1. 5又因为 DF 1= 2所以 DF 2= ,AF 2⊥x 轴,== 3 , 2DF 2- F F 21 12 ( 5)2 - 22 2 2⎩ 2 2 ⎨ 1因此 2a =DF 1+DF 2=4,从而 a =2.由 b 2=a 2−c 2,得 b 2=3.2因此,椭圆 C 的标准方程为 x + y = 1.4 3(2)解法一:2由(1)知,椭圆 C : x + y = 1,a =2,4 3因为 AF 2⊥x 轴,所以点 A 的横坐标为 1.将 x =1 代入圆 F 2 的方程(x −1) 2+y 2=16,解得 y =±4. 因为点 A 在 x 轴上方,所以 A (1,4). 又 F 1(−1,0),所以直线 AF 1:y =2x +2.⎧ y = 2x + 2由⎨(x -1)2 + y 2= 16,得5x 2 + 6x -11 = 0 , 解得 x = 1 或 x = - 11.5将 x = - 11 代入 y = 2x + 2 ,得 y = - 12,5 5 因此 B (- 11 , - 12) .又 F 2(1,0),所以直线 BF 2: y = 3(x -1) .5 5 4 ⎧ y = 3(x -1) 由⎪ 4 ,得7x 2 - 6x -13 = 0 ,解得 x = -1 或x = 13. ⎪ x 2 + y 2= 7 ⎪⎩ 4 3又因为 E 是线段 BF 2 与椭圆的交点,所以 x = -1 . 将 x = -1 代入 y = 3 (x -1) ,得 y = - 3. 4 2因此 E (-1, - 3) .22解法二:2由(1)知,椭圆C:x+y= 1.如图,连结EF1.4 3因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x 轴,所以EF1⊥x 轴.⎧x =-1⎪ 3因为F1(−1,0),由⎨x2 y2⎪⎩4+3,得y =±.=1 2又因为E 是线段BF2 与椭圆的交点,所以y =-3.2因此E(-1, -3) .2【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.16.【2019年高考浙江卷】如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点,过点F的直线交抛物线于A、B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q,且Q 在点F 的右侧.记△AFG,△CQG 的面积分别为S1, S2 .(1)求p 的值及抛物线的准线方程;S1(2)求的最小值及此时点G 的坐标.2S【答案】(1)p=2,准线方程为x=−1;(2)最小值为1+【解析】(1)由题意得p= 1,即p=2. 2所以,抛物线的准线方程为x=−1.3,此时G(2,0).2(2)设A(x, y ), B (x, y ),C (x, y ),重心G (x, y ).令y = 2t, t ≠ 0 ,则x=t 2 .A AB B c c G G A A由于直线AB过F,故直线AB方程为x =2 (t 2 -1) t 2 -12ty +1,代入y2= 4x ,得y2 -ty - 4 = 0 ,故2ty =-4 ,即y =-2,所以B⎛1, -2 ⎫.B B t t 2 t ⎪⎝⎭又由于x =1 (x +x +x ), y =1 (y +y +y )及重心G 在x 轴上,故2t -2+y= 0 ,得G 3 A B c G 3 A B c t c ⎛⎛1⎫2 ⎛1⎫⎫⎛2t 4 - 2t 2 + 2 ⎫Ct -t ⎪ , 2t-t ⎪⎪, G 3t 2, 0 ⎪.⎝⎝⎭⎝⎭⎭⎝⎭所以,直线AC方程为y - 2t = 2t (x-t 2 ),得Q (t 2 -1, 0).由于Q在焦点F的右侧,故t 2 > 2 .从而1 2 m ⋅ 3 + 4m3 S y 1S | FG | ⋅ y A 2t 4 - t 2 t 2 - 2 1 = 2 = S 2 1 | QG | ⋅ y 22t 4 - 2t 2 + 2 2= = t 4 -1 2- t 4 -1 . 2c | t -1- 3t 2 | ⋅ | - 2t | t令 m = t 2 - 2 ,则m >0,S 1= 2 -S 2 m m 2 + 4m + 3 S 1= 2 - 1 m + 3 + 4 m32 - = 1+3 2 . 当 m = 时, 取得最小值1+ 2 ,此时G (2,0).2【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.17.【2018 年高考全国Ⅰ文数】设抛物线C :y 2 = 2x ,点 A (2 ,0) , B (-2 ,0) ,过点 A 的直线l 与C 交于M , N 两点.(1) 当l 与 x 轴垂直时,求直线 BM 的方程; (2) 证明:∠ABM =∠ABN .【答案】(1)y = 1 x +1 或 y = - 1x -1 ;(2)见解析.22【解析】(1)当 l 与 x 轴垂直时,l 的方程为 x =2,可得 M 的坐标为(2,2)或(2,–2). 所以直线 BM 的方程为 y = 1x +1 或 y = - 1x -1 .22(2)当 l 与 x 轴垂直时,AB 为 MN 的垂直平分线,所以∠ABM =∠ABN .当 l 与 x 轴不垂直时,设 l 的方程为 y = k (x - 2)(k ≠ 0) ,M (x 1,y 1),N (x 2,y 2),则 x 1>0,x 2>0.⎧ y = k (x - 2) 2 由⎨ 2⎩ = 2x得 ky 2–2y –4k =0,可知 y 1+y 2= k ,y 1y 2=–4. 直线 BM ,BN 的斜率之和为k + k= y 1 + y 2 = x 2 y 1 + x 1 y 2 + 2( y 1 + y 2 ) .①BMBNx + 2 x + 2 (x + 2)(x + 2) 1 2 1 2将 x = y 1 + 2 , x = y2 + 2 及 y 1+y 2,y 1y 2 的表达式代入①式分子,可得1k2kx y + x y + 2( y + y ) = 2 y 1 y 2 + 4k ( y 1 + y 2 ) = -8 + 8 = 0 . 2 1 1 2 1 2k k2t 4 - 2t 2 + 2 - 3t 2 1 ⋅ | 2t |⎩ 所以 k BM +k BN =0,可知 BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .【名师点睛】本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是直观想象与数学运算.在设直线的方程时,一定要注意所设方程的适用范围,如用点斜式时,要考虑到直线的斜率不存在的情况,以免解答不严密或漏解.(1) 求出直线 l 与抛物线的交点,利用两点式写出直线 BM 的方程;(2) 由(1)知,当直线 l 与 x 轴垂直时,结论显然成立,当直线 l 与 x 轴不垂直时,设出斜率 k ,联立直线 l 与 C 的方程,求出 M ,N 两点坐标之间的关系,再表示出 BM 与 BN 的斜率,得其和为 0,从而说明 BM 与 BN 两条直线的斜率互为相反数,进而可知两角相等.18.【2018 年高考全国Ⅱ卷文数】设抛物线C :y 2= 4x 的焦点为 F ,过 F 且斜率为k(k > 0) 的直线l 与C 交于 A , B 两点, | AB | = 8 .(1) 求l 的方程;(2) 求过点 A , B 且与C 的准线相切的圆的方程.【答案】(1)y =x –1;(2) (x - 3)2 + ( y - 2)2 = 16 或(x -11)2 + ( y + 6)2= 144 .【解析】(1)由题意得 F (1,0),l 的方程为 y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2). ⎧ y = k (x -1)由⎨ y 2 = 4x得 k 2 x 2 - (2k 2 + 4)x + k 2= 0 .2k 2 + 4∆ = 16k 2+16 = 0 ,故x + x = .12k2所以 AB = AF + BF = (x 1 + 1) + (x 2 + 1) =4k 2+ 4.k2由题设知 4k 2 + 4k2= 8 ,解得 k =–1(舍去),k =1.因此 l 的方程为 y =x –1.(2)由(1)得 AB 的中点坐标为(3,2),所以 AB 的垂直平分线方程为y - 2 = -(x - 3) ,即 y = -x + 5 .设所求圆的圆心坐标为(x0,y0),则⎧y0 =-x0 + 5,⎪⎧x0= 3,⎧x= 11,⎨( y -x +1)2解得⎨或⎨⎪(x +1)2 =0 0 +16. ⎩y0 = 2 ⎩y0 =-6.⎩0 2因此所求圆的方程为(x - 3)2 + ( y - 2)2 = 16 或(x -11)2 + ( y + 6)2 = 144 .【名师点睛】本题主要考查抛物线与直线和圆的综合,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.(1)利用点斜式写出直线l 的方程,代入抛物线方程,得到关于x 的一元二次方程,利用根与系数的关系以及抛物线的定义加以求解;(2)由题意写出线段AB 的垂直平分线所在直线的方程,设出圆心的坐标,由题意列出方程组,解得圆心的坐标,即可求解.x2 19.【2018 年高考全国Ⅲ卷文数】已知斜率为k 的直线l 与椭圆C:y2+= 1 交于A ,B 两点.线段AB4 3 的中点为M (1, m)(m > 0) .(1)证明:k <-1 ;2(2)设F 为C 的右焦点,P 为C 上一点,且FP +FA +FB =0 .证明:2 | FP |=| FA | + | FB | .【答案】(1)见解析;(2)见解析.x2 y2 x2 y2【解析】(1)设A(x1 ,y1 ) ,B(x2 ,y2 ) ,则1+1= 1,2 +2= 1.4 3 4 3两式相减,并由y1-y2 =k 得x1 +x2 +y1 +y2 ⋅k = 0 .x1-x24 3由题设知x1+x2 = 1,y1+y2 =m ,于是k =-3.2 2 4m由题设得0 <m <3,故k <-1.2 2(2)由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3 = 3 - (x1 +x2 ) = 1 ,y3 =-( y1 +y2 ) =-2m < 0 .(x -1)2 + y 2 1 1 2 2 3 |FP |=, ) y y 又点 P 在 C 上,所以 m = 3 ,从而 P (1,- 3) , 3 .于是4 2 2x |FA |= = x 同理|FB |=2 - 2.21= 2 - 1 . 2所以 FA + FB = 4 - 2 (x 1 + x 2 ) =3 . 故2|FP |=|FA |+|FB |.【名师点睛】本题主要考查椭圆的方程及简单几何性质、直线的斜率公式、直线与椭圆的位置关系、向量的坐标运算与向量的模等,考查运算求解能力、数形结合思想,考查的数学核心素养是数学抽象、 数学运算.圆维曲线中与中点弦有关的问题常用点差法,建立弦所在直线的斜率与中点坐标间的关系, 也可以通过联立直线方程与圆锥曲线方程,消元,根据根与系数的关系求解.x 2 y 2 6 20.【2018 年高考北京卷文数】已知椭圆 M : + a 2 b 2 = 1(a > b > 0) 的离心率为 3,焦距为2 .斜率为k 的直线 l 与椭圆 M 有两个不同的交点 A ,B .(1) 求椭圆 M 的方程;(2) 若 k = 1,求|AB |的最大值;(3) 设 P (-2, 0) ,直线 PA 与椭圆 M 的另一个交点为 C ,直线 PB 与椭圆 M 的另一个交点为 D .若 C ,D和点Q (- 7 1 4 4共线,求 k .【答案】(1) x 2 + 23= 1;(2);(3)1.【解析】(1)由题意得2c = 2 ,所以c = ,又e = c =a6 ,所以 a = ,3所以b 2 = a 2 - c 2 = 1 ,所以椭圆 M 的标准方程为 x 2 + 23= 1.(2)设直线 AB 的方程为 y = x + m ,(x -1) + 3(1 - 2x 2 14 1 ) 2 61+ k 2 6 6 x + 21 12 2 1 1 11 1 ⎧ y = x + m ⎪ 由⎨2 ⎪⎩ 3y = 1 消去 y 可得 4x 2 + 6mx + 3m 2 - 3 = 0 ,则∆= 36m 2 - 4⨯ 4(3m 2 - 3) = 48 -12m 2 > 0 ,即 m 2 < 4 ,设 A (x , y ) , B (x , y ) ,则 x + x = -3m, x x 3m 2- 3 = ,11则| AB |= 221221 2| x 1 - x 2 |= ⋅ 4=6 ⨯4 - m 2 2易得当 m 2 = 0 时, | AB |max = ,故| AB | 的最大值为 . (3)设 A (x 1 , y 1 ) , B (x 2 , y 2 ) , C (x 3 , y 3 ) , D (x 4 , y 4 ) ,则 x 2 + 3y 2 = 3 ①, x 2 + 3y 2 = 3 ②,又 P (-2, 0) ,所以可设 k 1⎧ y = k 1 (x + 2) = k PA =y 1x 1 + 2,直线 PA 的方程为 y = k 1 (x + 2) , ⎪由⎨ x 2 + y 2 = 1 消去 y 可得(1+ 3k 2 )x 2 +12k 2 x +12k 2 - 3 = 0 ,⎪⎩ 312k 212k 2则 x 1 + x 3 = - 1,即 x 3 = - 1- x 1 ,又 k = 1+ 3k 2 y 1,代入①式可得 x 1+ 3k 2= -7x 1 -12 ,所以 y = y 1 , x 1 + 2 4x 1 + 7 4x 1 + 7所以C ( -7x 1 -12 , y 1 ) ,4x 1 + 7 4x 1 + 7同理可得D ( -7x 2 -12 , y 2 ) .4x 2 + 7 4x 2 + 77 1 7 1 故QC = (x 3 + 4 , y 3 - 4) , QD = (x 4 + 4 , y 4 - 4) ,因为Q , C , D 三点共线,所以(x + 7 )( y - 1 ) - (x + 7 )( y - 1) = 0 ,3 4 4 4 44 3 4将点C , D 的坐标代入化简可得y 1 - y 2= 1,即 k = 1. x 1 - x 2 1+ k 2 (x + x )2 - 4x x 1 2 1 2 ,13 313 13 2 【名师点睛】本题主要考查椭圆的方程及几何性质、直线与椭圆的位置关系,考查考生的逻辑思维能力、运算求解能力,考查数形结合思想,考查的数学核心素养是直观想象、逻辑推理、数学运算.解决椭圆的方程问题,常用基本量法,同时注意椭圆的几何量的关系;弦长的计算,通常要将直线与椭圆方程联立,利用根与系数的关系求解.21.【2018 年高考天津卷文数】设椭圆xa 2率为 5, | AB |= .3y 2+ = 1(a > b > 0) 的右顶点为 A ,上顶点为 B .已知椭圆的离心b 2(1) 求椭圆的方程;(2) 设直线l : y = kx (k < 0) 与椭圆交于P , Q 两点,l 与直线 AB 交于点 M ,且点 P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的 2 倍,求 k 的值.【答案】(1) x9 + y 2 4= 1;(2) - 1 . 2【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分 14 分.(1) 设椭圆的焦距为 2c ,由已知得 c a 2又由 a 2 = b 2 + c 2 ,可得2a = 3b .= 5,9由| AB |= = ,从而 a = 3, b = 2 .2 所以,椭圆的方程为 x+ y = 1.9 4(2) 设点 P 的坐标为(x 1, y 1) ,点 M 的坐标为(x 2 , y 2 ) ,由题意, x 2 > x 1 > 0 ,点Q 的坐标为(-x 1, - y 1) .由△BPM 的面积是△BPQ 面积的 2 倍,可得|PM |=2|PQ | , 从而 x 2 - x 1 = 2[x 1 - (-x 1)] ,即 x 2 = 5x 1 . 易知直线 AB 的方程为 2x + 3y = 6 ,a 2 +b 2 2 2 29k 2 + 4 9k 2+ 42 ⎩ +y ⎧2x + 3y = 6, 6 由方程组 消去 y ,可得 x = . ⎨ y = kx , ⎧ x 2 y 2 ⎪ 由方程组⎨ 9 4 ⎪⎩ y = kx ,2= 1, 消去 y ,可得 x 1 3k + 2= 6 . 由 x = 5x ,可得= 5(3k + 2) ,两边平方,整理得18k 2 + 25k + 8 = 0 ,解得 k = - 8 ,或 219k = - 1 .2 当 k = - 8 时, x = -9 < 0 ,不合题意,舍去;当 k = - 1 时, x = 12 , x = 12,符合题意.9 2 2 2 15所以, k 的值为- 1.2【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,涉及轨迹方程问题、定值问题、最值问题、参数的取值或取值范围问题等,其中考查较多的圆锥曲线是椭圆与抛物线,解决此类 问题要重视化归与转化思想及设而不求法的应用.22.【2018 年高考江苏卷】如图,在平面直角坐标系 xOy 中,椭圆C 过点( 3, 1) ,焦点 F(-3, 0), F ( 3, 0) ,圆 O 的直径为 F 1F 2 . (1) 求椭圆 C 及圆 O 的方程;(2) 设直线 l 与圆 O 相切于第一象限内的点 P .①若直线 l 与椭圆 C 有且只有一个公共点,求点 P 的坐标;②直线 l 与椭圆 C 交于 A , B 两点.若△OAB 的面积为212,求直线 l 的方程.【】1)椭圆 C 的方程为x 2 + 24 = 1,圆 O 的方程为 x 2 + y 2 =(2)① ( 2,1) ;② y = -5x + 3 .【解析】(1)因为椭圆 C 的焦点为 F 1 (- 3, 0), F 2 ( 3, 0) ,2 6748 y 2 (x 2 -2)0 0y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0y 可设椭圆 C 的方程为 x a 2 y 2+ = 1(a > b > 0) .b 21 ⎧ 3 + 1= 1, ⎧a 2 = 4, 又点( 3, ) 在椭圆 C 上,所以⎪ a 2 4b 2⎪ ,解得2因此椭圆 C 的方程为x 2 + 24⎨⎪⎩a 2 -b 2 = 3,= 1.⎨ ⎪⎩b 2 = 1,因为圆 O 的直径为 F 1F 2 ,所以其方程为 x 2+ y 2= 3 .(2)①设直线 l 与圆 O 相切于 P (x , y )(x > 0, y > 0) ,则 x 2 + y 2= 3 ,所以直线 l 的方程为 y = - x 0 (x - x ) + y ,即 y = - x 0x +3.⎧ x 2 + 2⎪ 4 0 0= 1, y 0 y 0由⎨ ⎪ x 0消去 y ,得(4x 2 + y 2 )x 2 - 24x x + 36 - 4 y 2= 0 .(*) 3⎪⎩y = - y x + ,y 0因为直线 l 与椭圆 C 有且只有一个公共点,所以∆= (-24x )2 - 4(4x 2 + y 2 )(36 - 4 y 2 ) = 48 y 2(x 2 - 2) = 0 .因为 x 0 , y 0 > 0 ,所以 x 0 = 2, y 0 = 1 .因此点 P 的坐标为( 2,1) .②因为三角形 OAB 的面积为2 6 ,所以 1 AB ⋅ OP =2 6 ,从而 AB =4 2 .727724x ± 设 A (x 1 , y 1 ), B (x 2 , y 2 ) ,由(*)得 x 1,2 =,2(4x 2 + y 2 )2 y2 0x 2 48y 2 (x 2 - 2) 所 以 AB 2 = (x - x )2 + ( y - y )2 = (1+ 0 ) ⋅ 0 0.1 2 1 2 y 2 (4x 2 + y 2 )216(x 2- 2) 32 因为 x 2+ y 2= 3 ,所以 AB 2= 0= ,即2x 4 - 45x 2 +100 = 0 , 0 0 (x 2 +1)249 0 0解得 x 2 = 5 (x 2 = 20 舍去),则 y 2 = 1 , 0 2 0 02因此 P 的坐标为( 10 , 2 ) .2 2综上,直线 l 的方程为 y = - 5x + 3 .【名师点睛】本题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.(1) 利用椭圆的几何性质求圆的方程和椭圆的方程.(2) ①利用直线与圆、椭圆的位置关系建立方程求解;②结合①,利用弦长公式、三角形的面积公式求解.23.【2018 年高考浙江卷】如图,已知点 P 是 y 轴左侧(不含 y 轴)一点,抛物线 C :y 2=4x 上存在不同的两点 A ,B 满足 PA ,PB 的中点均在 C 上.(1) 设 AB 中点为 M ,证明:PM 垂直于 y 轴;y2(2) 若 P 是半椭圆 x 2+ =1(x <0)上的动点,求△PAB 面积的取值范围. 4【答案】(1)见解析;(2)[6 2,15 10]. 4【解析】本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.满分 15 分.(1)设P (x , y ) , 1 2,1 2.0 0A ( 4 y 1 , y 1 )B ( 4 y 2 , y 2 ) 因为 PA , PB 的中点在抛物线上,1 y2 + x所以 y , y 为方程 y + y 2 0即 y 2 - 2 y y + 8x - y 2= 0 的两个不同的实数根.1 2( 0 ) = 4 ⋅ 40 0 02 2所以 y 1 + y 2 = 2 y 0 .因此, PM 垂直于 y 轴.⎧⎪ y 1 + y 2 = 2 y 0 , (2)由(1)可知⎨ y y = 8x - y 2,⎩⎪ 1 2 0 0所以| PM |= 1 ( y 2 + y 2 ) - x = 3 y 2- 3x ,| y - y 8 |= 2 12 0.4 0 0 1 2因此, △PAB 的面积 S= 1 | PM | ⋅ | y - y |= 3( y 2 - 4x )2 . △PAB 2 1 2 4 0y 2因 为 x 2 +0 = 1(x < 0) ,所以 y 2- 4x = -4x 2- 4x + 4 ∈[4, 5] . 04因此, △PAB 面积的取值范围是[6 2,15 10 ].4【名师点睛】圆锥曲线问题是高考重点考查内容之一,也是难点之一.椭圆、抛物线是其中常考内容, 需要熟练地掌握椭圆和拋物线的定义、基本性质、标准方程等,对于处理有关问题有很大的帮助.同时还要注意运算能力的培养和提高.2( y 2 - 4x ) 0 0 3 2 0 0 0 0。
高中解析几何试题及答案
高中解析几何试题及答案一、选择题(每题4分,共40分)1. 若点P(2,3)在直线l上,则直线l的方程不可能是()A. 2x-y+1=0B. x+2y-7=0C. 3x-2y+4=0D. 4x+3y-5=02. 已知圆C的方程为(x-1)^2+(y-2)^2=25,圆心C的坐标为()A. (1,2)B. (-1,-2)C. (3,-2)D. (-3,2)3. 直线2x+y-3=0与x轴的交点坐标为()A. (3/2, 0)B. (0, 3)C. (3, 0)D. (0, -3)4. 若直线l的倾斜角为45°,则直线l的斜率k为()A. 1B. -1C. 0D. 无法确定5. 已知点A(1,2),B(4,6),则线段AB的中点坐标为()A. (2,4)B. (3,4)C. (2.5,4)D. (3,3)6. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,若双曲线C的渐近线方程为y=±(b/a)x,则双曲线C的离心率为()A. √(1+(b/a)^2)B. √(1-(b/a)^2)C. √(a^2+b^2)D. √(a^2-b^2)7. 已知抛物线C的方程为y^2=4x,若点P(1,2)在抛物线C上,则抛物线C的焦点坐标为()A. (1,0)B. (0,1)C. (1,1)D. (0,2)8. 已知椭圆C的方程为x^2/a^2 + y^2/b^2 = 1,若椭圆C的离心率为e=√3/2,则椭圆C的长轴与短轴之比为()A. 2:1B. 1:2C. √3:1D. 1:√39. 若直线l的方程为y=kx+b,且直线l过点(1,2)和(2,3),则直线l的斜率k为()A. 1/2B. 1C. 3/2D. 210. 已知直线l1: x+y-1=0与直线l2: 2x-y+3=0平行,则直线l1与l2之间的距离为()A. √5B. 2√5C. √10D. 2√10二、填空题(每题4分,共20分)11. 已知直线l的方程为3x-4y+5=0,若点P(2,-1)在直线l上,则直线l与x轴的交点坐标为________。
高考数学-平面解析几何(含22年真题讲解)
高考数学-平面解析几何(含22年真题讲解)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1 C .x 23+y 22=1 D .x 22+y 2=1【答案】B 【解析】 【分析】根据离心率及BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1,解得关于a 2,b 2的等量关系式,即可得解.【详解】解:因为离心率e =c a =√1−b 2a 2=13,解得b 2a 2=89,b 2=89a 2,A 1,A 2分别为C 的左右顶点,则A 1(−a,0),A 2(a,0),B 为上顶点,所以B(0,b).所以BA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−b),BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−b),因为BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1 所以−a 2+b 2=−1,将b 2=89a 2代入,解得a 2=9,b 2=8, 故椭圆的方程为x 29+y 28=1.故选:B.2.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .13【答案】A 【解析】 【分析】设P (x 1,y 1),则Q (−x 1,y 1),根据斜率公式结合题意可得y 12−x 12+a 2=14,再根据x 12a 2+y 12b 2=1,将y 1用x 1表示,整理,再结合离心率公式即可得解. 【详解】解:A(−a,0),设P(x1,y1),则Q(−x1,y1),则k AP=y1x1+a ,k AQ=y1−x1+a,故k AP⋅k AQ=y1x1+a ⋅y1−x1+a=y12−x12+a2=14,又x12a2+y12b2=1,则y12=b2(a2−x12)a2,所以b2(a2−x12)a2−x12+a2=14,即b2a2=14,所以椭圆C的离心率e=ca =√1−b2a2=√32.故选:A.3.【2022年全国乙卷】设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.2√2C.3 D.3√2【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,F(1,0),则|AF|=|BF|=2,即点A到准线x=−1的距离为2,所以点A的横坐标为−1+2=1,不妨设点A在x轴上方,代入得,A(1,2),所以|AB|=√(3−1)2+(0−2)2=2√2.故选:B4.【2022年全国乙卷】(多选)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√172【答案】AC 【解析】【分析】依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,利用正弦定理结合三角变换、双曲线的定义得到2b=3a或a=2b,即可得解,注意就M,N在双支上还是在单支上分类讨论.【详解】解:依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,若M,N分别在左右支,因为OG⊥NF1,且cos∠F1NF2=35>0,所以N在双曲线的右支,又|OG|=a,|OF1|=c,|GF1|=b,设∠F1NF2=α,∠F2F1N=β,在△F1NF2中,有|NF2|sinβ=|NF1|sin(α+β)=2csinα,故|NF1|−|NF2|sin(α+β)−sinβ=2csinα即asin(α+β)−sinβ=csinα,所以asinαcosβ+cosαsinβ−sinβ=csinα,而cosα=35,sinβ=ac,cosβ=bc,故sinα=45,代入整理得到2b=3a,即ba =32,所以双曲线的离心率e=ca =√1+b2a2=√132若M,N均在左支上,同理有|NF 2|sinβ=|NF 1|sin (α+β)=2c sinα,其中β为钝角,故cosβ=−bc ,故|NF 2|−|NF 1|sinβ−sin (α+β)=2c sinα即a sinβ−sinαcosβ−cosαsinβ=csinα, 代入cosα=35,sinβ=ac ,sinα=45,整理得到:a4b+2a =14, 故a =2b ,故e =√1+(b a)2=√52,故选:AC.5.【2022年北京】若直线2x +y −1=0是圆(x −a)2+y 2=1的一条对称轴,则a =( ) A .12 B .−12C .1D .−1【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a +0−1=0,解得a =12. 故选:A .6.【2022年新高考1卷】(多选)已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1B .直线AB 与C 相切C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|2【答案】BCD 【解析】 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得1=2p ,所以抛物线方程为x 2=y ,故准线方程为y =−14,A 错误; k AB =1−(−1)1−0=2,所以直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为y =kx −1,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx −1x 2=y,得x 2−kx +1=0,所以{Δ=k 2−4>0x 1+x 2=k x 1x 2=1,所以k >2或k <−2,y 1y 2=(x 1x 2)2=1,又|OP|=√x 12+y 12=√y 1+y 12,|OQ|=√x 22+y 22=√y 2+y 22, 所以|OP|⋅|OQ|=√y 1y 2(1+y 1)(1+y 2)=√kx 1×kx 2=|k|>2=|OA|2,故C 正确; 因为|BP|=√1+k 2|x 1|,|BQ|=√1+k 2|x 2|,所以|BP|⋅|BQ|=(1+k 2)|x 1x 2|=1+k 2>5,而|BA|2=5,故D 正确. 故选:BCD7.【2022年新高考2卷】(多选)已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°【答案】ACD 【解析】 【分析】由|AF |=|AM |及抛物线方程求得A(3p 4,√6p2),再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得B(p 3,−√6p3),即可求出|OB |判断B 选项;由抛物线的定义求出|AB |=25p 12即可判断C 选项;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ <0,MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ <0求得∠AOB ,∠AMB 为钝角即可判断D 选项. 【详解】对于A ,易得F(p2,0),由|AF |=|AM |可得点A 在FM 的垂直平分线上,则A 点横坐标为p2+p2=3p 4,代入抛物线可得y 2=2p ⋅3p 4=32p2,则A(3p 4,√6p2),则直线AB 的斜率为√6p23p 4−p2=2√6,A 正确; 对于B ,由斜率为2√6可得直线AB 的方程为x =2√6+p2,联立抛物线方程得y 2−√6−p 2=0,设B(x 1,y 1),则√62p +y 1=√66p ,则y 1=−√6p3,代入抛物线得(−√6p 3)2=2p ⋅x 1,解得x 1=p3,则B(p 3,−√6p3),则|OB |=√(p 3)2+(−√6p 3)2=√7p 3≠|OF |=p 2,B 错误; 对于C ,由抛物线定义知:|AB |=3p 4+p 3+p =25p 12>2p =4|OF |,C 正确;对于D ,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =(3p 4,√6p 2)⋅(p 3,−√6p 3)=3p 4⋅p 3+√6p 2⋅(−√6p 3)=−3p 24<0,则∠AOB 为钝角, 又MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ =(−p 4,√6p 2)⋅(−2p 3,−√6p 3)=−p 4⋅(−2p 3)+√6p 2⋅(−√6p 3)=−5p 26<0,则∠AMB 为钝角,又∠AOB +∠AMB +∠OAM +∠OBM =360∘,则∠OAM +∠OBM <180∘,D 正确. 故选:ACD.8.【2022年全国甲卷】设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M 的方程为______________.【答案】(x−1)2+(y+1)2=5【解析】【分析】设出点M的坐标,利用(3,0)和(0,1)均在⊙M上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=59.【2022年全国甲卷】记双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值______________.【答案】2(满足1<e≤√5皆可)【解析】【分析】根据题干信息,只需双曲线渐近线y=±ba x中0<ba≤2即可求得满足要求的e值.【详解】解:C:x2a2−y2b2=1(a>0,b>0),所以C的渐近线方程为y=±bax,结合渐近线的特点,只需0<ba ≤2,即b2a2≤4,可满足条件“直线y=2x与C无公共点”所以e=ca =√1+b2a2≤√1+4=√5,又因为e>1,所以1<e≤√5,故答案为:2(满足1<e≤√5皆可)10.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.【答案】√33【解析】 【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可. 【详解】解:双曲线y 2−x 2m2=1(m >0)的渐近线为y =±xm ,即x ±my =0,不妨取x +my =0,圆x 2+y 2−4y +3=0,即x 2+(y −2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =√1+m 2=1,解得m =√33或m =−√33(舍去).故答案为:√33.11.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【答案】(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x−85)2+(y −1)2=16925;【解析】 【分析】设圆的方程为x 2+y 2+Dx +Ey +F =0,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,若过(0,0),(4,0),(−1,1),则{F =016+4D +F =01+1−D +E +F =0 ,解得{F =0D =−4E =−6 ,所以圆的方程为x 2+y 2−4x −6y =0,即(x −2)2+(y −3)2=13;若过(0,0),(4,0),(4,2),则{F =016+4D +F =016+4+4D +2E +F =0 ,解得{F =0D =−4E =−2 , 所以圆的方程为x 2+y 2−4x −2y =0,即(x −2)2+(y −1)2=5; 若过(0,0),(4,2),(−1,1),则{F =01+1−D +E +F =016+4+4D +2E +F =0 ,解得{F =0D =−83E =−143 ,所以圆的方程为x 2+y 2−83x −143y =0,即(x −43)2+(y −73)2=659;若过(−1,1),(4,0),(4,2),则{1+1−D +E +F =016+4D +F =016+4+4D +2E +F =0,解得{F =−165D =−165E =−2 , 所以圆的方程为x 2+y 2−165x −2y −165=0,即(x −85)2+(y −1)2=16925;故答案为:(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x −85)2+(y −1)2=16925;12.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________.【答案】y =−34x +54或y =724x −2524或x =−1 【解析】 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】圆x 2+y 2=1的圆心为O (0,0),半径为1,圆(x −3)2+(y −4)2=16的圆心O 1为(3,4),半径为4,两圆圆心距为√32+42=5,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为k OO 1=43,所以k l =−34,设方程为y =−34x +t(t >0)O 到l 的距离d =√1+916=1,解得t =54,所以l 的方程为y =−34x +54,当切线为m 时,设直线方程为kx +y +p =0,其中p >0,k <0,由题意{√1+k 2=1√1+k2=4 ,解得{k =−724p =2524,y =724x −2524 当切线为n 时,易知切线方程为x =−1, 故答案为:y =−34x +54或y =724x −2524或x =−1.13.【2022年新高考1卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________. 【答案】13 【解析】 【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13. 【详解】∵椭圆的离心率为e =ca =12,∴a =2c ,∴b 2=a 2−c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为√33,斜率倒数为√3, 直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,判别式∆=(6√3c)2+4×13×9c 2=62×16×c 2, ∴|CD |=√1+(√3)2|y 1−y 2|=2×√∆13=2×6×4×c 13=6,∴ c =138, 得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为|DF 2|+|EF 2|+|DE|=|DF 2|+|EF 2|+|DF 1|+|EF 1|=|DF 1|+|DF 2|+|EF 1|+|EF 2|=2a +2a =4a =13. 故答案为:13.14.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 【答案】[13,32] 【解析】 【分析】首先求出点A 关于y =a 对称点A ′的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可; 【详解】解:A (−2,3)关于y =a 对称的点的坐标为A ′(−2,2a −3),B (0,a )在直线y =a 上, 所以A ′B 所在直线即为直线l ,所以直线l 为y =a−3−2x +a ,即(a −3)x +2y −2a =0;圆C:(x +3)2+(y +2)2=1,圆心C (−3,−2),半径r =1, 依题意圆心到直线l 的距离d =√(a−3)2+22≤1,即(5−5a )2≤(a −3)2+22,解得13≤a ≤32,即a ∈[13,32]; 故答案为:[13,32]15.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 【答案】x +√2y −2√2=0 【解析】 【分析】令AB 的中点为E ,设A (x 1,y 1),B (x 2,y 2),利用点差法得到k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据|MN |求出k 、m ,即可得解; 【详解】解:令AB 的中点为E ,因为|MA |=|NB |,所以|ME |=|NE |, 设A (x 1,y 1),B (x 2,y 2),则x 126+y 123=1,x 226+y 223=1,所以x 126−x 226+y 123−y 223=0,即(x 1−x 2)(x 1+x 2)6+(y 1+y 2)(y 1−y 2)3=0所以(y 1+y 2)(y 1−y 2)(x 1−x 2)(x 1+x 2)=−12,即k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =−m k ,即M (−m k ,0),N (0,m ),所以E (−m 2k ,m2), 即k ×m2−m 2k=−12,解得k =−√22或k =√22(舍去),又|MN |=2√3,即|MN |=√m 2+(√2m)2=2√3,解得m =2或m =−2(舍去), 所以直线AB:y =−√22x +2,即x +√2y −2√2=0;故答案为:x+√2y−2√2=016.【2022年北京】已知双曲线y2+x2m =1的渐近线方程为y=±√33x,则m=__________.【答案】−3【解析】【分析】首先可得m<0,即可得到双曲线的标准方程,从而得到a、b,再跟渐近线方程得到方程,解得即可;【详解】解:对于双曲线y2+x2m =1,所以m<0,即双曲线的标准方程为y2−x2−m=1,则a=1,b=√−m,又双曲线y2+x2m =1的渐近线方程为y=±√33x,所以ab =√33,即√−m=√33,解得m=−3;故答案为:−317.【2022年浙江】已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A(x1,y1),交双曲线的渐近线于点B(x2,y2)且x1<0<x2.若|FB|=3|FA |,则双曲线的离心率是_________.【答案】3√64【解析】【分析】联立直线AB 和渐近线l 2:y =ba x 方程,可求出点B ,再根据|FB|=3|FA|可求得点A ,最后根据点A 在双曲线上,即可解出离心率. 【详解】过F 且斜率为b4a 的直线AB:y =b4a (x +c),渐近线l 2:y =ba x , 联立{y =b4a (x +c)y =b a x,得B (c 3,bc 3a ),由|FB|=3|FA|,得A (−5c 9,bc 9a), 而点A 在双曲线上,于是25c 281a 2−b 2c 281a 2b 2=1,解得:c 2a 2=8124,所以离心率e =3√64. 故答案为:3√64.18.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2)设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.19.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点.(1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程:y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2). 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4 ,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4 , 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y−y2=y1−y23y1+6−x1−x2(x−x2),将(0,−2),代入整理得2(x1+x2)−6(y1+y2)+x1y2+x2y1−3y1y2−12=0,将(∗)代入,得24k+12k2+96+48k−24k−48−48k+24k2−36k2−48=0,显然成立,综上,可得直线HN过定点(0,−2).【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.【2022年新高考1卷】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】(1)−1;(2)16√29.【解析】【分析】(1)由点A(2,1)在双曲线上可求出a,易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q (x2,y2),再根据k AP+k BP=0,即可解出l的斜率;(2)根据直线AP,AQ的斜率之和为0可知直线AP,AQ的倾斜角互补,再根据tan∠PAQ=2√2即可求出直线AP,AQ的斜率,再分别联立直线AP,AQ与双曲线方程求出点P,Q的坐标,即可得到直线PQ的方程以及PQ的长,由点到直线的距离公式求出点A到直线PQ的距离,即可得出△PAQ的面积.(1)因为点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,所以4a2−1a2−1=1,解得a2=2,即双曲线C:x22−y2=1易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q(x2,y2),联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0,即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0,因为方程有一个根为2,所以x P =10−4√23,y P = 4√2−53,同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.21.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1> x2>0,y1>0.过P且斜率为−√3的直线与过Q且斜率为√3的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.=1【答案】(1)x2−y23(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到x0+ky0=8k2;由直线PM和QM的斜率得到直线方程,结合双曲线的方k2−3,由②PQ//AB等价转化为ky0=3x0,由程,两点间距离公式得到直线PQ的斜率m=3x0y①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)=√3,∴b=√3a,∴c2=a2+右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴bab2=4a2=4,∴a=1,∴b=√3.=1;∴C的方程为:x2−y23(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x3−x4)[2x0−(x3+x4)]+(y3−y4)[2y0−(y3+y4)]=0,[2x0−(x3+x4)]+y3−y4x3−x4[2y0−(y3+y4)]=0,即x−x N+k(y0−y N)=0,即x0+ky0=8k2k2−3;由题意知直线PM的斜率为−√3, 直线QM的斜率为√3, ∴由y1−y0=−√3(x1−x0),y2−y0=√3(x2−x0), ∴y1−y2=−√3(x1+x2−2x0),所以直线PQ的斜率m=y1−y2x1−x2=−√3(x1+x2−2x0)x1−x2,直线PM:y=−√3(x−x0)+y0,即y=y0+√3x0−√3x,代入双曲线的方程3x2−y2−3=0,即(√3x+y)(√3x−y)=3中,得:(y0+√3x0)[2√3x−(y0+√3x0)]=3,解得P的横坐标:x1=2√3(y+√3x+y0+√3x0),同理:x2=2√3(y−√3xy0−√3x0),∴x1−x2=√3(3y0y02−3x02+y0),x1+x2−2x0=−3x0y02−3x02−x0,∴m=3x0y,∴条件②PQ//AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上,等价于ky0=k2(x0−2);条件②PQ//AB等价于ky0=3x0;条件③|AM|=|BM|等价于x0+ky0=8k2k2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立. 22.【2022年北京】已知椭圆:E:x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A(0,1),焦距为2√3. (1)求椭圆E 的方程;(2)过点P(−2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN|=2时,求k 的值. 【答案】(1)x 24+y 2=1(2)k =−4 【解析】 【分析】(1)依题意可得{b =12c =2√3c 2=a 2−b 2,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设B (x 1,y 1)、C (x 2,y 2),联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出x M 、x N ,根据|MN |=|x N −x M |得到方程,解得即可; (1)解:依题意可得b =1,2c =2√3,又c 2=a 2−b 2, 所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P (−2,1)的直线为y −1=k (x +2),设B (x 1,y 1)、C (x 2,y 2),不妨令−2≤x 1<x 2≤2,由{y −1=k (x +2)x 24+y 2=1 ,消去y 整理得(1+4k 2)x 2+(16k 2+8k )x +16k 2+16k =0, 所以Δ=(16k 2+8k )2−4(1+4k 2)(16k 2+16k )>0,解得k <0,所以x 1+x 2=−16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k 1+4k 2,直线AB 的方程为y −1=y 1−1x 1x ,令y =0,解得x M =x11−y 1, 直线AC 的方程为y −1=y 2−1x 2x ,令y =0,解得x N =x21−y 2, 所以|MN |=|x N −x M |=|x21−y 2−x11−y 1|=|x 21−[k (x 2+2)+1]−x 11−[k (x 1+2)+1]| =|x 2−k (x 2+2)+x 1k (x 1+2)| =|(x 2+2)x 1−x 2(x 1+2)k (x 2+2)(x 1+2)|=2|x 1−x 2||k |(x 2+2)(x 1+2)=2,所以|x 1−x 2|=|k |(x 2+2)(x 1+2),即√(x 1+x 2)2−4x 1x 2=|k |[x 2x 1+2(x 2+x 1)+4] 即√(−16k 2+8k1+4k 2)2−4×16k 2+16k 1+4k 2=|k |[16k 2+16k 1+4k 2+2(−16k 2+8k 1+4k 2)+4]即81+4k 2√(2k 2+k )2−(1+4k 2)(k 2+k )=|k |1+4k2[16k 2+16k −2(16k 2+8k )+4(1+4k 2)]整理得8√−k =4|k |,解得k =−4 23.【2022年浙江】如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P(0,1)的两点,且点Q (0,12)在线段AB 上,直线PA,PB 分别交直线y =−12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD|的最小值.【答案】(1)12√1111;(2)6√55.【解析】 【分析】(1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,再根据两点间的距离公式求出|PQ|2,再根据二次函数的性质即可求出;(2)设直线AB:y =kx +12与椭圆方程联立可得x 1x 2,x 1+x 2,再将直线y =−12x +3方程与PA 、PB 的方程分别联立,可解得点C,D 的坐标,再根据两点间的距离公式求出|CD |,最后代入化简可得|CD |=3√52⋅√16k 2+1|3k+1|,由柯西不等式即可求出最小值. (1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,P(0,1),则|PQ|2=12cos 2θ+(1−sinθ)2=13−11sin 2θ−2sinθ=−11(sinθ+111)2+14411≤14411,当且仅当sinθ=−111时取等号,故|PQ|的最大值是12√1111.(2)设直线AB:y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得(k 2+112)x 2+kx −34=0,设A (x 1,y 1),B (x 2,y 2),所以{x 1+x 2=−kk 2+112x 1x 2=−34(k 2+112), 因为直线PA:y =y 1−1x 1x +1与直线y =−12x +3交于C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1,同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1.则|CD|=√1+14|x C −x D |=√52|4x 1(2k +1)x 1−1−4x 2(2k +1)x 2−1|=2√5|x 1−x 2[(2k +1)x 1−1][(2k +1)x 2−1]|=2√5|x 1−x 2(2k +1)2x 1x 2−(2k +1)(x 1+x 2)+1|=3√52⋅√16k 2+1|3k+1|=6√55⋅√16k 2+1√916+1|3k+1|≥6√55×√(4k×34+1×1)2|3k+1|=6√55, 当且仅当k =316时取等号,故|CD |的最小值为6√55.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.1.(2022·全国·模拟预测)设M 是椭圆C :()222210x y a b a b+=>>的上顶点,P 是C 上的一个动点,当P 运动到下顶点时,PM 取得最大值,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】设()00,P x y ,由()0,M b ,求出()2220PM x y b =+-消元可得,22342220222c b b PM y a b b c c⎛⎫=-++++ ⎪⎝⎭,再根据0b y b -≤≤以及二次函数的性质可知,32b bc -≤-,即可解出. 【详解】设()00,P x y ,()0,M b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PM x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,0b y b -≤≤,由题意知当0y b =-时,2PM 取得最大值,所以32b b c -≤-,可得222a c ≥,即0e 2<≤故选:C .2.(2022·福建·三明一中模拟预测)已知圆229:4O x y +=,圆22:()(1)1M x a y -+-=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得π3APB ∠=,则实数a的取值范围是( )A .[B .[C .D .[[3,15]【答案】D【解析】 【分析】由题意求出OP 的距离,得到 P 的轨迹,再由圆与圆的位置关系求得答案. 【详解】由题可知圆O 的半径为32,圆M 上存在点P ,过点P 作圆 O 的两条切线,切点分别为A ,B ,使得60APB ∠=︒,则30APO ∠=︒, 在Rt PAO △中,3PO =, 所以点 P 在圆229x y +=上,由于点 P 也在圆 M 上,故两圆有公共点. 又圆 M 的半径等于1,圆心坐标(),1M a , 3131OM -≤≤+∴,∴24≤≤,∴a ∈[[3,15]. 故选:D.3.(2022·全国·模拟预测(文))已知双曲线22221x y a b-=(0a >,0b >)一个虚轴的顶点为()0,B b ,右焦点为F ,分别以B ,F 为圆心作圆与双曲线的一条斜率为正值的渐近线相切于M ,N 两点,若ON =,则该渐近线的斜率为( )A .12 B .1 C D 【答案】A 【解析】 【分析】根据渐近线倾斜角的正切值表达出ON =,再化简得到4224200b a b a --=求解即可 【详解】由题意,如图,设NOF θ∠=,则因为该渐近线的斜率为ba ,故tanb aθ=,cos acθ==,sin bcθ==,又因为圆与渐近线相切,故BM OM ⊥,FN ON ⊥,故2cos sin 2b OM OB OB c π-θθ⎛⎫=== ⎪⎝⎭,cos ON OF a θ==,所以a =,即2,所以4224200b a b a --=,即()()2222450b a b a -+=,故2240b a -=,即2a b =,故该渐近线的斜率为12b k a ==故选:A4.(2022·河南·开封市东信学校模拟预测(理))已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F △的内切圆半径为1r ,12BF F △的内切圆半径为2r ,若12r r >,且直线l 的倾斜角为60︒,则12r r 的值为( ) A .2 B .3CD.【答案】B 【解析】 【分析】根据内切圆的性质及双曲线的定义求出两内切圆圆心的横坐标,由正切函数求解即可. 【详解】记12AF F △的内切圆圆心为C ,边1212,,AF AF F F 上的切点分别为M ,N ,E ,则C ,E 横坐标相等,则1122||||,,AM AN F M F E F N F E ===,由122AF AF a -=,即()12||||2AM MF AN NF a +-+=,得122MF NF a -=,即122F E F E a -=,记C 的横坐标为0x ,则()0,0E x ,于是()002x c c x a +--=,得0x a =,同理12BF F △的内心D 的横坐标也为a , 则有CD x ⊥轴,由直线的倾斜角为60︒,则230OF D ∠=︒,260CF O ∠=︒, 在2CEF △中,122tan tan 60r CF O EF ∠=︒=,可得12r =, 在2DEF △中,222tan tan 30r DF O EF ∠=︒=,可得22r =,可得123r r ==.故选:B5.(2022·贵州·贵阳一中模拟预测(文))已知双曲线22214x y b-=的左、右焦点分别为12,,F F 过左焦点1F 作斜率为2的直线与双曲线交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则b 的值是( )A .2 BC .32D【答案】D 【解析】 【分析】利用点差法设()11,A x y 、()22,B x y ,作差即可得到2121212124y y y y b x x x x -+⋅=-+,再根据斜率公式,从而得到2124b =,即可得解;【详解】解:设()11,A x y 、()22,B x y ,则2211214x y b -=,2222214x y b-=, 两式相减可得()()()()1212121221104x x x x y y y y b-+--+=,P 为线段AB 的中点,122p x x x ∴=+,122p y y y =+, 2121212124y y y y b x x x x -+∴⋅=-+,又12122AB y y k x x -==-,121214y y x x +=+, 2124b ∴=,即22b =,b ∴= 故选:D.6.(2022·全国·模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、有焦点分别为1F ,2F ,实轴长为4,离心率2e =,点Q 为双曲线右支上的一点,点(0,4)P .当1||QF PQ +取最小值时,2QF 的值为( ) A.1) B.1) C.1 D.1【答案】B 【解析】 【分析】由题意求得a,b,c ,即可得双曲线的方程,结合双曲线的定义确定当1||QF PQ +取最小值时Q 点的位置,利用方程组求得Q 点坐标,再利用两点间的距离公式求得答案. 【详解】由题意可得24,2a a == ,又2e =,故4c = , 所以22212b c a =-= ,则双曲线方程为221412x y -= ,结合双曲线定义可得221||4||||4QF PQ QF PQ QF PQ +=++=++, 如图示,连接2PF ,交双曲线右支于点M ,即当2,,P Q F 三点共线, 即Q 在M 位置时,1||QF PQ +取最小值,此时直线2PF 方程为4y x =-+ ,联立221412x y-=,解得点Q的坐标为2,6-,( Q 为双曲线右支上的一点),故21)QF =, 故选:B7.(2022·上海市七宝中学模拟预测)若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线222222222:1(0,0)x y C a b a b -=>>的焦点相同,且12a a >给出下列四个结论:①22221221a a b b -=-;②1221a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2112a a b b +>+;其中所有正确的结论序号是( ) A .①② B .①③C .②③D .①④【答案】B 【解析】 【分析】对于①,根据双曲线的焦点相同,可知焦距相同,可判断22221221a a b b -=-;对于②,举反例可说明1122a b a b <;对于③,根据120a a >>可推得12<b b ,继而推得1212b ba a <,可判断双曲线1C 与双曲线2C 一定没有公共点;对于④,举反例可判断.【详解】对于①:∵两双曲线的焦点相同,∴焦距相同,∴22221122a b a b +=+,即22221221a a b b -=-,故①正确;对于②:若1a =,2a =11b =,2b 1122a b a b <,故②错误; 对于③:∵120a a >>,∴22221221a a b b -=->0,∴2221b b > ,即12<b b ,即1212b b a a <,双曲线1C 与双曲线2C 一定没有公共点,故③正确; 对于④:∵22221221a a b b -=-,∴12121221()()()()a a a a b b b b +-=+-,∵12a a >且12<b b ,∴12211212a ab b b b a a +-=+- , 若12a =,21a =,11b =,22b =,则1212a a b b +=+,故④错误. 故选:B8.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M 为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦【答案】D 【解析】 【分析】由12MF MF ⊥可得1212sin MF c MF F =∠、2212cos MF c MF F =∠,由双曲线定义可构造方程得到2114caMF F π=⎛⎫∠- ⎪⎝⎭;由正弦型函数值域的求法可求得离心率的取值范围.【详解】M 在以12F F 为直径的圆上,12MF MF ∴⊥,12112sin MF MF F F F ∴∠=,22112cos MF MF F F F ∠=,1212sin MF c MF F ∴=∠,2212cos MF c MF F =∠, 由双曲线定义知:122MF MF a -=,即21212sin 2cos 2c MF F c MF F a ∠-∠=,21212111sin cos 4c a MF F MF F MF F π∴==∠-∠⎛⎫∠- ⎪⎝⎭; 215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,21,4126MF F πππ⎡⎤∴∠-∈⎢⎥⎣⎦,211sin 42MF F π⎤⎛⎫∴∠-∈⎥ ⎪⎝⎭⎣⎦,214MF F π⎛⎫∠-∈ ⎪⎝⎭⎣⎦,1c a ⎤∴∈⎦,即双曲线离心率的取值范围为1⎤⎦.故选:D.9.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( ) A .3 BCD .2【答案】B 【解析】 【分析】由双曲线定义可推导得244AF a ==,求得1a =;在12BF F △中,利用余弦定理可求得12F F ,进而得到c ,由ce a=可求得离心率. 【详解】224AB BF AF ===,1212BF BF AF a ∴-==,又212AF AF a -=,244AF a ∴==,解得:1a =,16BF ∴=, 在12BF F △中,由余弦定理得:2221212122cos 283F F BF BF BF BF π=+-⋅=,解得:12F F =2c =,c ∴=∴双曲线C 的离心率ce a==故选:B.10.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】由题可知六个P 点,有两个是短轴端点,因此在四个象限各一个,设(,)P x y 是第一象限内的点,分112PF F F =或212PF F F =,列方程组求得P 点横坐标x ,由0x a <<可得离心率范围;或结合椭圆的性质列出不等关系即得. 【详解】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a +-+=, 解得22a ac x c --=(舍去)或22a acx c -+=, 由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a --+=, 解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意. 综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c == 当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008届高三文科数学第二轮复习资料——《解析几何》专题1.已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.2.如图,设1F 、2F 分别为椭圆C :22221x y a b+= (0a b >>)的左、右焦点.(Ⅰ)设椭圆C 上的点3(1,)2A 到F 1、F 2两点距离之和等于4,写出椭圆C 的方程和离心率; (Ⅱ)设点K 是(Ⅰ)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程.3.已知圆C: x 2+y 2-2x+4y-4=0,是否存在斜率为1的 直线L,使以L 被圆C 截得弦AB 为直径的圆 经过原点?若存在,写出直线的方程;若不存在,说 明理由4.已知圆C :224x y +=.(1)直线l 过点()1,2P ,且与圆C 交于A 、B两点,若||AB =l 的方程;(2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.5.如图,已知圆A的半径是2,圆外一定点N与圆A上的点的最短距离为6,过动点P作A的切线PM(M为切点),连结PN使得PM:,试建立适当的坐标系,求动点P的轨迹6.已知三点P(5,2)、1F(-6,0)、2F(6,0).(Ⅰ)求以1F、2F为焦点且过点P的椭圆的标准方程;(Ⅱ)设点P、1F、2F关于直线y=x的对称点分别为P'、'1F、'2F,求以'1F、'2F为焦点且过点P'的双曲线的标准方程.7.某运输公司接受了向抗洪抢险地区每天至少运送180吨支援物资的任务,该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B型卡车,有10名驾驶员,每辆卡车每天往返次数为A型卡车4次,B型卡车3次,每辆卡车每天往返的成本费用为A型卡车320元,B型卡车504元,请你给该公司调配车辆,使公司所花的成本费用最低.8.曲线03622=+-++y x y x 上两点P 、Q 满足:①关于直线04=+-y kx 对称;②OQ OP ⊥.求直线PQ 的方程.9.两类药片有效成分如下表若要求提供12mg 阿斯匹林,70mg 小苏打,28mg 可待因,两类药片的最小总数是多少?在最小总数情况下的两类药片怎样搭配价格最低?参考答案1.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂x =线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由 抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线,∴ 动点R 的轨迹方程为x y 42=.(2)由题可设直线l 的方程为(1)(0)x k y k =-≠,由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k =->,11k k <->或.设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =.由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去), 又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=2.解:(Ⅰ)24a =,221914a b+=. 24a =,23b =.椭圆的方程为22143x y +=, 因为2221c a b =-=. 所以离心率12e =. (Ⅱ)设1KF 的中点为(,)M x y ,则点(21,2)K x y +.又点K 在椭圆上,则1KF 中点的轨迹方程为22(21)(2)143x y ++=.3.解:设直线L 的斜率为1,且L 的方程为y=x+b,则222440y x bx y x y =+⎧⎨+-+-=⎩ 消元得方程2x 2+(2b+2)x+b 2+4b-4=0,设此方程两根为x 1,x 2,则x 1+x 2=-(b+1),y 1+y 2= x 1+x 2+2b=b-1,则AB中点为11,22b b +-⎛⎫-⎪⎝⎭,又弦长为12x -=,由题意可列式221122b b +-⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=2⎪⎝⎭解得b=1或b=-9,经检验b=-9不合题意.所以所求直线方程为y=x+1.4.解(Ⅰ)①当直线l 垂直于x 轴时,则此时直线方程为1=x ,l 与圆的两个交点坐标为()3,1和()3,1-,其距离为32,满足题意②若直线l 不垂直于x 轴,设其方程为()12-=-x k y ,即02=+--k y kx 设圆心到此直线的距离为d ,则24232d -=,得1=d ∴1|2|12++-=k k ,34k =, 故所求直线方程为3450x y -+= 综上所述,所求直线为3450x y -+=或1=x (Ⅱ)设点M 的坐标为()00,y x ,Q 点坐标为()y x ,则N 点坐标是()0,0y ∵OQ OM ON =+,∴()()00,,2x y x y = 即x x =0,20yy =又∵42020=+y x ,∴4422=+y x 由已知,直线m //ox 轴,所以,0y ≠,∴Q 点的轨迹方程是221(0)164y x y +=≠,轨迹是焦点坐标为12(0,F F -,长轴为8的椭圆,并去掉(2,0)±两点.5.解:以AN 所在直线为x 轴,AN 的中垂线为y 轴建立平面直角坐标系如图所示, 则A(-4,0),N(4,0),设P (x ,y )由|PM|:,|PM|2=|PA|2 –|MA|2得:4||||222-=PA PN代入坐标得:22222(4)(4)4x y x y ⎡⎤-+=++-⎣⎦整理得:2224200x y x +-+=即22(12)124x y -+= 所以动点P 的轨迹是以点(12,0)为圆心,以.6.解:(I )由题意,可设所求椭圆的标准方程为22a x +122=by )0(>>b a ,其半焦距6=c .||||221PF PF a +=56212112222=+++=, ∴=a 53, 93645222=-=-=c a b ,故所求椭圆的标准方程为452x +192=y ; (II )点P (5,2)、1F (-6,0)、2F (6,0)关于直线y =x 的对称点分别为: )5,2(P '、'1F (0,-6)、'2F (0,6) 设所求双曲线的标准方程为212a x -1212=b y )0,0(11>>b a ,由题意知半焦距61=c ,|''||''|2211F P F P a -=54212112222=+-+=, ∴=1a 52,162036212121=-=-=a c b ,故所求双曲线的标准方程为202y -1162=x . 点评:本题主要考查椭圆与双曲线的基本概念、标准方程、几何性质等基础知识和基本运算能力7.解:该公司调8辆A 型车,成本最低.8.解:对称,关于直线、圆上两点04=+-y kx Q P,,)(),即有,经过圆心(直线20432132104=∴=+--⋅-=+-∴k k y kx ),,(),,(,方程为设直线221121y x Q y x P t x y PQ +-=036445036212222=+-+--⎪⎩⎪⎨⎧=+-+++-=t t x t x y y x y x t x y )(得消,,由. ,)(,)(536454422121+-=-=+∴t t x x t x x0121212211=+-=⋅∴⊥y y x x x y x y OQ OP 即, . ,,t x y t x y +-=+-=22112121 021212121=+-+-+∴))((t x t x x x,)()(,)(即054421536445021452222121=+--+-⋅∴=++-t t t t t t x x t x x 化简得45230152282==∴=+-t t t t 或, 054203245212321=-+=-++-=+-=∴y x y x x y x y PQ 或即或方程为直线.9.解:设A 类药x 片,B 类药y 片,由题意⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥∈≥≥+≥+≥+,且,且N y y N x x y x y x y x 00,286,7075,122 y x 、∴满足的可行域如图两类药片的最小总数y x z +=由图象可知,最小总数应在B 点附近可行域内的整点处取得.)980,914(,980,914,7075,122B y x y x y x ⇒⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+ 在B 点附近可行域内的整点有C (1,10),D (2,9),E (3,8),F (4,8).∴两类药片的最小总数是11片.设在最小总数情况下的两类药片总价格510yx w +=,)3,2,1(11==+x y x 102251110510x x x y x w -=-+=+=∴,元时有最小值当10193=∴x ,即用A 类3片B 类8片可使价格最低.。