201x版七年级数学下册 第6章 实数 6.2 立方根(1)学案 新人教版
七年级数学下册第六章实数立方根课件新人教版
知识管理
1 .立方根的概念
定 义:一般地,如果一个数的立方等于 a,那么这个数叫做 a 的_立___方__根___ 或__三___次__方__根___.这就是说,如果 x3=a,那么 x 叫做 a 的_立__方__根___.
3 .立方根的性质
性 质:(1)正数的立方根是正数; (2)负数的立方根是负数;
(3)0的立方根是 0,即3 0=0. 注 意:任何实数都有立方根,且只有一个立方根.
4 .一个数的立方根与它的相反数的立方根的关系
关 系:互为相反数的两个数的立方根也互为相反数,用符号表示为 3 -a
=- 3 a. 注 意:(1)这个关系式对于任意实数 a 都成立; (2)求负数的立方根,运用这一关系可以先求出这个负数的绝对值的立方根,
2019年春人教版数学七年级下册课件
6.2 立方根
第六章 实数
6.2 立方根
学习指南 知识管理 归类探究 当堂测评 分层作业
学习指南
[ 教用专有]
教学目标
1 .理解立方根的概念,会求一个数的立方根 . 2 .能运用计算器求一个数的立方根 . 3 .能用开立方运算求某些数的立方根,了解开立方与立方运算互为逆运算 .
D.3 27与|-3|
4.[2018·济宁]3 -1的值是( B )
A.1
B.-1
C.3
5.[2016·宁波]-27 的立方根是_-___3__.
D.-3
分层作业
1.下列判断:①负数没有立方根;②一个数的立方根有两个,它们互为相
反数;③若 x3=(-2)3,则 x=-2;④18 的立方根是 3 18;⑤任何有理数都有立
南江县第二中学七年级数学下册 第六章 实数 6.2 立方根教案 新人教版
[答案]烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.
[教学说明]引导学生完成上述问题后 , 指导学生用计算器求立方根 , 并用实际训练形成应用能力.
例1.计算以下各题
例2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.
A.开启计算器 B.关闭计算器
C.清除全部内容或清除刚输入的内容 D.计算乘方
知能点2 输入方法
8.输入-3的方法是先输入_____, 然后按_____ 键; 或先按______ 键, 后输入_______.
9.用计算器计算26,按键顺序是________,结果是________.
10.用计算器计算38-546,按键顺序是_________,结果是________.
解 : (1)-8;(2) ;(3)-0.2;(4)6.
[教学说明]以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.
例3 求以下各式中的x.
分析 :
可根据立方根的定义求得x的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.
17.将本金22 250元存三年期,三年后的本息和是多少元?(年利率为2.88%)
【开放探索创新】
18.利用计算器探索规律:任选1,2,3,…,9中的一个数字,将这个数字乘以7, 再将结果乘以15 873,你发现了什么规律?能解释一下理由吗?
19.(1)用计算器计算下列各式:
人教版 七年级下册 数学第六章 6.2立方根 同步教案
【题型一、化简求值】 例2. 求下列各式的值:①3125- ② 31000 ③310001-例3.求下列各式的值:(1)327102--(3)336418-⋅ (4)23327(3)1-+---【题型三、利用立方根解方程】 例4. 求下列各式中的x 值.(1)3278x =;(2)3(2)10x -+=;(3)31000(1)27x +=-;(4)31(23)544x -=.巩固训练一.填空1.8的立方根是 ( )2.0.125的立方根是( )3.0的立方根是 ( )4.-8的立方根是 ( )5.278-的立方根是( )6.当x 时,4x 有意义;当x 时,34x 有意义7.64-的立方根是 ,()238-的平方根是 ,3512-的立方根是 8.-8的立方根与81的一个平方根的和等于9.一个自然数的算术平方根是a ,那么与这个自然数相邻的下一个自然数的平方根是 ,立方根是 10.若,则____________.11.若一个实数的算术平方根等于它的立方根,则这个数是_________; 12.若3,x x x ==则 ,若2,x x x =-=则 。
13.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 :学科网ZXXK] 二.选择题1.下列结论正确的是( )A .2764的立方根是34± B .1125-没有立方根 C .有理数一定有立方根D .()61-的立方根是-12.如果-b 是a 的立方根,则下列结论正确的是( )A .-3b =aB .-b =3aC .b =3aD .3b =a3.下列说法中正确的有( )个. ① 负数没有平方根,但负数有立方根.②49的平方根是28,327±的立方根是23±⋅ ③如果()322x =-,那么x =-2. ④算术平方根等于立方根的数只有1. A .1 B .2 C .3 D .4 4.x 是()29-的平方根,y 是64的立方根,则x y +=( )A. 3B. 7C.3,7D. 1,75. 下列各式中,正确的是( ) A.164=± B.()255-=- C.22-=- D.331010-=-二.求下列各数的立方根(1)-27 (2)0.216 (3)0.008三.求下列各式的值3271-(2)-33)5(- (3))13(33-(4)3235411+⨯ (5)10033)1(412)2(-+÷--四.解下列方程(1) ()31216x -=- (2)3512x = (3) 3641250x -=(4) 8)12(3-=-x (5) 4(x+1)2=8 (6) 2(23)2512x x -=-五.将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________。
2024年人教版七年数学下册教案(全册)第6章 实数
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“实数”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,学生将了解无理数和实数,知道实数是由有理数和无理数组成的,感悟数的扩充;初步认识实数与数轴上的点具有一一对应的关系,能用数轴上的点表示一些具体的实数,能比较实数的大小;能借助数轴理解相反数和绝对值的意义,会求实数的相反数、绝对值;知道平方根、算术平方根、立方根的概念,会用根号表示平方根、算术平方根、立方根;知道乘方与开方互为逆运算,会用乘方运算求百以内完全平方数的平方根和千以内完全立方数的立方根(及对应的负整数),会用计算器计算平方根和立方根;能用有理数估计一个无理数的大致范围;初步认识近似数,在解决实际问题中,能用计算器进行近似计算,会按要求进行简单的近似计算,会对结果取近似值;会用二次根式(根号下仅限于数)的加、减、乘、除运算法则进行简单的四则运算.在中学阶段,实数的知识贯穿于中学数学学习的始终,多数数学问题是在实数范围内研究的.实数不仅是初中阶段学习二次根式、一元二次方程以及解三角形等知识的基础,也是学习高中数学内容的基础.2.本单元教学内容分析人教版教材七年级下册第六章“实数”,本章包括三个小节:6.1平方根;6.2 立方根;6.3实数.本单元内容属于“数与代数”领域,很多内容是有理数相关内容的延续和推广.类比有理数,引入实数的绝对值和相反数的概念,实数的运算法则和运算性质,实数与数轴上的点的一一对应关系,平方与开平方、立方与开立方互为逆运算的关系等都是在有理数的基础上展开的.为了使学生更好地体会到数的扩充过程中表现出的概念、运算等的一致性和发展变化.本章前两节“平方根”“立方根”在内容和展开方式上是基本平行的,因此充分利用类比的方法,通过类比“平方根”展开“立方根”的内容,这样有助于加强知识间的相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移.通过学生合作探究,揭示出像√2这种无限不循环小数的存在,从而引入无理数的概念,使学生把数的概念从有理数扩展到实数.这不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,这样才能更好地促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量.三、单元学情分析本单元内容是人教版教材数学七年级下册第六章实数,是在有理数的基础上学习实数的初步知识.学生在前面已经系统地学习了有理数,对有理数的概念和运算等有了较深刻的认识,初步积累了一定的“数学化”的活动经验.运用类比的数学思想,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化,会降低学生学习的难度.根据学生的最近发展区创设典型的问题情境,会使学生更加主动地去探索用根号形式表示的无理数的相关知识,培养学生良好的数学探究意识.而让学生了解算术平方根、平方根的概念和求法以及实数的概念、运算和实数在数轴上的表示是学习本章内容的主要目标,平方根和实数的概念对学生来说是一个难点.学生虽然积累了一定的有理数的数学活动经验,但对于实数理论知识的理解还不够深刻,所以学生在正数开平方时往往会忽略一个结果,容易将算术平方根和平方根混淆.对于负数没有平方根,学生接受起来也有一定的难度.实数的概念是一个构造性的定义,比较抽象,学生真正理解这个概念也有一定的困难.四、单元学习目标1.体验从具体情境中抽象出数学符号的过程,了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根.发展学生的抽象能力.2.了解开方与乘方互为逆运算,会用平方运算求百以内完全平方数的平方根,会用立方运算求千以内完全立方数(及对应的负整数)的立方根,会用计算器求平方根和立方根.综合利用各种途径培养学生的运算能力.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值,并初步认识“数形结合”思想方法的作用.4.能用有理数估计一个无理数的大致范围.培养学生估算的能力.五、单元学习内容及学习方法概览续表六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获的思想.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
最新人教版七年级下册数学辅导班同步培优课件11-第六章6.2立方根
3.计算:(1)- 3 1 =
3
;(2) 3 3 =
;
64
8
(3) 3 -0.027 =
;(4) 3 (-2)3 =
.
答案 (1)- 1 (2) 3 (3)-0.3 (4)-2
4
2
解析
(1)∵
1 4
3
=
1 64
,∴-
3
1 64
=- 1
4
.
(2) 3
33 8
=3
27 8
=3
3 3 2
=3.
2
(3)∵(-0.3)3=-0.027,∴ 3 -0.027 =-0.3.
6.2 立方根
5.若一个数的平方根与它的立方根完全相同,则这个数是 (
栏目索引
)
A.1 B.-1 C.0 D.±1,0
答案 C 根据平方根与立方根的性质,一个数的平方根与它的立方根完 全相同,则这个数是0.故选C.
6.(-6)3的立方根是
.
答案 -6
解析 易知 3 a3 =a,∴ 3 (-6)3 =-6.
知识点二 立方根的性质
6.2 立方根
栏目索引
7.下列式子不正确的是 ( )
A. 3 -a =- 3 a
B. 3 a3 =a
C.( 3 a )3=a D.(- 3 a )3=a
答案 D 由立方根的性质知(- 3 a )3=-a,故选项D中式子不正确.
8.下列语句正确的是 (
6.2 立方根
)
栏目索引
答案 A 设棱长为x cm,则x3=100,∴x= 3 100 ,∵64<100<125,∴4< 3 100 <5, 故选A.
人教版七年级下册第六章实数平方根、立方根(教案)
1.理论介绍:首先,我们要了解平方根和立方根的基本概念。平方根是一个数的平方等于给定数的非负数解,立方根则是一个数的立方等于给定数的解。它们在解决实际问题,如面积、体积计算中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算一个边长为2的正方形的面积,这时我们就需要用到平方根的概念,即√(2^2)=2。
2.探索与问题解决:引导学生自主探究平方根、立方根的性质和求法,培养他们发现、分析和解决问题的能力。
3.空间观念与几何直观:将平方根、立方根与图形结合,培养学生的空间观念,提高几何直观能力。
4.数据观念与推理能力:通过实际问题的解决,让学生掌握数据处理方法,培养合情推理和演绎推理的能力。
5.数学交流与反思:鼓励学生在学习过程中积极与他人交流,分享解题思路,培养反思和总结的学习习惯。
五、教学反思
今天我们在课堂上探讨了实数平方根和立方根的概念及其应用。整体来看,学生们对这两个概念的理解有了明显的提升,但在教学过程中我也注意到了一些需要改进的地方。
首先,我发现部分学生在理解平方根和立方根的定义时存在困难。在今后的教学中,我需要更加注重从直观和生活实例出发,让学生们更好地感受到这两个概念的实际意义。例如,可以多举一些与面积、体积相关的例子,让学生在实际问题中体会平方根和立方根的应用。
-立方根的求法:学会计算简单实数的立方根。
举例:讲解平方根时,强调正数平方根的互为相反数性质,如√9=3和√9=-3,但通常情况下我们默认平方根为正数。在立方根方面,举例计算∛8,得出∛8=2,强调立方根的结果唯一性。
2.教学难点
-平方根的理解:学生容易混淆平方根与算术平方根的概念,难以理解负数没有平方根。
3.重点难点解析:在讲授过程中,我会特别强调平方根和立方根的概念及其求法这两个重点。对于难点部分,我会通过具体例子和图形来帮助大家理解。
人教版七年级下册 6.2-6.3 立方根与实数 复习讲义(无答案)
6、开立方的性质:①被开方数每扩大1000倍,其结果就扩大
②被开方数每缩小1000倍,其结果就缩小________
练习:
一、单选题
12、实数和数轴上的点一一对应。
例:在数轴上表示2
13、实数的大小比较:
(1)正数大于零,负数小于零,正数大于负数;
D
f
--(2)3(
2、平面直角坐标系:在平面内画两条互相垂直的数轴构成平面直角坐标系。
3、象限:逆时针方向依次为一、二、三、四象限。
4、每个象限的符号:一(+,+)、二(-,+)三(,-)注意:坐标轴上的点不属于任何一个象限。
轴的负半轴上(,)
)
0,0)G(5,0)H(-6,-4) M (0,-3)
确的是
-
a
1
1
a
017
.把下列各数分别填入相应的数集里.
f
5|.
3 -
容积为
1 c m。
人教版七年级数学下册精品教学课件 第六章 实数 立方根
学习目标:
1.了解立方根的概念,会用开立方运算求一个数的立方根. 2.了解立方根的性质,并学会用计算器计算一个数的立方根或立 方根的近似值.
重点难点:
1.掌握立方根的概念. 2.了解立方根与平方根的区别与联系.
情景导入
某化工厂使用半径为1米的一种球形储气罐储藏气体,现 在要造一个新的球形储气罐,如果要求它的体积必须是原来 体积的8倍,那么它的半径应是原来储气罐半径的多少倍?
(2)因为 ( 3 3)3 = 3
( 3)3 27 28
所以 3 < 27
8
所以 3 3
<
3 2
5.若 3 x =2,y2 =4,求 x 2y 的值.
解:∵ 3 x =2, y2 =4. ∴x = 23,y2 = 16, ∴x = 8,y = ±4. ∴x + 2y = 8 + 2×4 = 16 或 x + 2y = 8 – 2×4 = 0. ∴ x 2 y = 16 = 4 或 x 2 y = 0 = 0.
课堂小结
定义 正数的立方根是正数,
立
负数的立方根是负数;
方
性质 0的立方根是0.
根
3 -a 3 a
用计算 被开方数的小数点向左或向右移动 器计算
3n位时立方根的小数点就相应的向
左或向右移动n位(n为正整数).
知识精讲
知识点一 立方根的概念及性质 问题:要制作一种容积为 27 m³的正方体形状的包装箱, 这种包装箱的棱长应该是多少? 设这种包装箱的棱长为 x m,则 x³= 27. 这就是要求一个数,使它的立方等于 27. 因为 3³= 27,所以 x = 3. 因此这种包装箱的棱长应为 3 m.
人教版初中数学七年级下册《第6章 实数:6.2 立方根》同步练习卷2020.2
人教新版七年级下学期《6.2 立方根》2020年同步练习卷一.解答题(共14小题)1.已知实数x的两个平方根分别为2a+1和3﹣4a,实数y的立方根为﹣a,求的值.2.已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.3.已知A=是m+n+3的算术平方根,B=是m+2n的立方根,求B﹣A的值.4.若A=为a+3b的算术平方根,B=为1﹣a2的立方根,求A+B 的值.5.求下列各式中的x值.(1)x2=36(2)x3﹣27=0(3)16x2=49.6.求符合下列各条件中的x的值①2x2﹣=0②③(x﹣4)2=4④(x+3)3﹣9=0.7.解方程(1)4(x﹣1)2﹣9=0(2)﹣27(x+1)3﹣125=0.8.一个长方体水池,长、宽、高的比为1:2:3,体积为162立方米.现将这个长方体水池的底面改成正方形,高不变,体积变为原来的3倍,则改过后的长方体底面的边长多少米?9.如图,这是由8个同样大小的立方体组成的魔方,体积为8cm3.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形,求出阴影部分的面积及其边长.10.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.11.如图所示的圆柱形容器的容积为81升,它的底面直径是高的2倍.(π取3)(1)这个圆柱形容器的底面直径为多少分米?(2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计损耗)12.已知:一个正方体的棱长是5cm,要再做一个正方体,它的体积是原正方体积的8倍,求新的正方体的棱长.13.小明不小心把一块橡皮掉入一个带刻度的圆柱形水杯中,拿出橡皮时,小明发现水杯中的水面下降了1 cm.小明量得水杯的直径是6cm,于是小明就算出橡皮的体积.你知道橡皮的体积是多少吗(结果精确到0.1 cm)?你能用类似的方法测量一把汤匙的体积吗?请试一试.14.(1)利用计算器计算:=;(2)利用计算器计算:=;(3)利用计算器计算:=;(4)利用计算器计算:=.人教新版七年级下学期《6.2 立方根》2020年同步练习卷参考答案与试题解析一.解答题(共14小题)1.已知实数x的两个平方根分别为2a+1和3﹣4a,实数y的立方根为﹣a,求的值.【分析】利用平方根、立方根定义求出x与y的值,即可确定出原式的值.【解答】解:根据题意得:2a+1+3﹣4a=0,解得:a=2,所以x=25,y=﹣8,则原式=3.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.2.已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.【分析】根据平方根、立方根的定义求出x、y即可解决问题.【解答】解:∵x﹣2的平方根是±2,2x+y+7的立方根是3,∴x﹣2=4,2x+y+7=27,∴x=6,y=8,∴x2+y2=100,∴100的平方根为±10.【点评】本题考查平方根、立方根的定义,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.已知A=是m+n+3的算术平方根,B=是m+2n的立方根,求B﹣A的值.【分析】根据题意确定出关于m与n的方程组,求出方程组的解得到m与n的值,进而求出A与B,即可求出B﹣A的值.【解答】解:根据题意得:,解得:,∴A=,B=﹣1,则B﹣A=﹣1﹣.【点评】此题考查了立方根,以及算术平方根,熟练掌握运算法则是解本题的关键.4.若A=为a+3b的算术平方根,B=为1﹣a2的立方根,求A+B 的值.【分析】根据算术平方根与立方根的定义列出二元一次方程组,求出a、b的值,再得出A、B的值,计算即可解答.【解答】解:∵A=为a+3b的算术平方根,B=为1﹣a2的立方根,∴,∴a=3,b=2,∴A===3,B==﹣2.∴A+B=3﹣2=1.【点评】本题主要考查算术平方根与立方根的定义,根据算术平方根与立方根的定义列方程组求出a、b的值是解答本题的关键.5.求下列各式中的x值.(1)x2=36(2)x3﹣27=0(3)16x2=49.【分析】(1)根据平方根的定义,直接开方即可;(2)根据立方根的定义直接求解即可;(3)先系数化为1,再直接开方即可.【解答】解:(1)∵x2=36,∴x=±6,∴x1=6,x2=﹣6;(2)∵x3﹣27=0,∴x3=27,∴x=3;(3)∵16x2=49,∴x2=,∴x=±,∴x1=,x2=﹣.【点评】本题考查了立方根、平方根,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.6.求符合下列各条件中的x的值①2x2﹣=0②③(x﹣4)2=4④(x+3)3﹣9=0.【分析】各项方程利用平方根及立方根定义计算即可求出x的值.【解答】解:①方程整理得:x2=,开方得:x=±;②方程整理得:x3=﹣8,开立方得:x=﹣2;③开方得:x﹣4=2或x﹣4=﹣2,解得:x=6或x=2;④方程整理得:(x+3)3=27,开立方得:x+3=3,解得:x=0.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.7.解方程(1)4(x﹣1)2﹣9=0(2)﹣27(x+1)3﹣125=0.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】解:(1)方程整理得:(x﹣1)2=,开方得:x﹣1=±,解得:x1=,x2=﹣;(2)方程整理得:(x+1)3=﹣,开立方得:x+1=﹣,解得:x=﹣.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.8.一个长方体水池,长、宽、高的比为1:2:3,体积为162立方米.现将这个长方体水池的底面改成正方形,高不变,体积变为原来的3倍,则改过后的长方体底面的边长多少米?【分析】设长方体的长为a、宽为2a、高为3a,根据体积列出关于a的方程,解之求得a的值,即可得长方体的高,再设改正后长方体的底面边长为x,根据“底面改成正方形,高不变,体积变为原来的3倍”列出关于x的方程,解之可得.【解答】解:设长方体的长为a、宽为2a、高为3a,则a•2a•3a=162,解得:a=3,则长方体的高为9,设改正后长方体的底面边长为x,则x•x•9=162×3,即x2=54,所以x=3,答:改过后的长方体底面的边长3米.【点评】本题主要考查立方根和平方根,解题的关键是熟练掌握平方根和立方根的定义.9.如图,这是由8个同样大小的立方体组成的魔方,体积为8cm3.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形,求出阴影部分的面积及其边长.【分析】(1)立方体的体积等于棱长的3次方,开立方即可得出棱长;(2)根据魔方的棱长为2,所以小立方体的棱长为1,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.【解答】解:(1)=2(cm).故这个魔方的棱长是2cm.(2)∵魔方的棱长为2cm,∴小立方体的棱长为1cm,∴阴影部分面积为:×1×1×4=2(cm2),边长为:(cm).【点评】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.10.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【解答】解:(1)依题意得:=18(cm),即:正方形纸板的边长为18厘米;(2)依题意得:=7(cm),则剪切纸板的面积=7×7×6=294(cm2),剩余纸板的面积=324﹣194=30(cm2)即剩余的正方形纸板的面积为30平方厘米.【点评】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.11.如图所示的圆柱形容器的容积为81升,它的底面直径是高的2倍.(π取3)(1)这个圆柱形容器的底面直径为多少分米?(2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计损耗)【分析】(1)设这个圆柱形容器的高为x分米,由圆柱的容积公式列方程求解.(2)圆柱形容器的表面积包含两个底面与侧面,据此进行计算即可.【解答】解:(1)设这个圆柱形容器的高为x分米,则它的底面直径是2x分米,依题意得πx2×x=81,解得x=3,∴2x=6,答:这个圆柱形容器的底面直径为6分米;(2)2π×32+2π×3×3=108(平方分米).答:制作这个圆柱形容器需要铁皮108平方分米.【点评】本题主要考查了立方根及圆柱的容积公式的运用,解题的关键是根据题意正确列出方程.12.已知:一个正方体的棱长是5cm,要再做一个正方体,它的体积是原正方体积的8倍,求新的正方体的棱长.【分析】由于新正方体的体积等于原正方体积的8倍,设新正方形的棱长为xcm,根据体积公式列关系式求解即可.【解答】解:设新正方形的棱长为xcm,则新正方体体积为x3cm3,依题意得:x3=8×53=(2×5)3,∴x=10(cm).答:新正方体的棱长为10cm.【点评】本题考查正方体的体积公式求法和依题意列代数式求值的能力.13.小明不小心把一块橡皮掉入一个带刻度的圆柱形水杯中,拿出橡皮时,小明发现水杯中的水面下降了1 cm.小明量得水杯的直径是6cm,于是小明就算出橡皮的体积.你知道橡皮的体积是多少吗(结果精确到0.1 cm)?你能用类似的方法测量一把汤匙的体积吗?请试一试.【分析】由于橡皮的体积=水面下降的体积,根据圆柱体的体积公式列式计算即可求解.【解答】解:依题意得橡皮的体积为π×1×(6÷2)2≈28.3cm3.【点评】本题主要考查了立方根在实际问题中的应用,用到的知识点为:圆柱体积=πr2h,得到等量关系是解决本题的关键.14.(1)利用计算器计算:=10;(2)利用计算器计算:=100;(3)利用计算器计算:=1000;(4)利用计算器计算:=1000000…(后面n个0).【分析】(1)(2))(3)利用计算器计算出结果,再开方即可得出答案;(4)根据(1)(2)(3)的结果总结出规律,再把结果表示出来即可.【解答】解:(1)==10;(2)===100;(3)===1000;(4)=1000000…(后面n个0);故答案为:10;100;1000;1000000…(后面n个0).【点评】此题考查了数的开方,掌握被开方数的变化规律是本题的关键,是一道基础题.。
人教版七年级数学下册教案第6章 实 数1 平方根(3课时)
第六章实数教材简析本章的内容包括:平方根、立方根、实数.在学习了有理数的基础上,加强与实际的联系,从现实世界中抽象出一种不同于有理数的数,即无理数,开平方运算与开立方运算也是实际中经常用到的两种运算;注意将新旧知识进行联系与类比,数的范围由有理数扩充到实数,与有理数有关的运算法则、运算律、运算顺序在实数范围内都仍然适用.在中考中,本章的考点有平方根、立方根的定义及运算,实数的运算及大小比较等,考查基本概念及基本计算.教学指导【本章重点】平方根、算术平方根、立方根、无理数、实数的有关概念和运算.【本章难点】对无理数意义的理解、用有理数估计无理数的方法及实数与数轴上点的对应关系.【本章思想方法】1.体会分类的数学思想,如:对实数进行分类.2.掌握分类讨论思想,如:由于一个正数的平方根有两个,且这两个数互为相反数,因此与平方根有关的题目往往需要进行分类讨论.3.掌握转化思想,如:学习了平方根和立方根后,运用转化思想将某些二次方程、三次方程转化为求平方根、立方根的问题求解.4.体会数形结合思想,如:数的范围由有理数扩充到实数,实数与数轴上的点建立了一一对应关系,这样可以通过观察“形”的特点,解答一些关于实数的比较抽象的问题.课时计划6.1平方根3课时6.2立方根1课时6.3实数1课时6.1 平方根第1课时算术平方根教学目标一、基本目标【知识与技能】1.了解算术平方根的概念,会用根号表示一个数的算术平方根. 2.根据算术平方根的概念求出非负数的算术平方根. 3.了解算术平方根的性质. 【过程与方法】加强概念形成过程的教学,提高学生的思维水平,鼓励学生进行探索和交流,培养他们的创新意识和合作精神.【情感态度与价值观】通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣.二、重难点目标 【教学重点】 算术平方根的概念. 【教学难点】根据算术平方根的概念正确求出非负数的算术平方根. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P40的内容,完成下面练习. 【3 min 反馈】1.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.2.规定:0的算术平方根是0.3.算术平方根具有双重非负性:(1)a ≥0;(2)a ≥0. 4.求下列各数的算术平方根: (1)81; (2)0.25; (3)23. 解:(1)9. (2)0.5. (3)23. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各数的算术平方根: (1)64; (2)0.36; (3)214; (4)412-402.【互动探索】(引发学生思考)如何根据算术平方根的定义求非负数的算术平方根?【解答】(1)∵82=64,∴64的算术平方根是8. (2)∵0.62=0.36,∴0.36的算术平方根是0.6. (3)∵⎝⎛⎭⎫322=94=214,∴214的算术平方根是32. (4)∵412-402=81,92=81,∴81=9. ∵32=9,∴412-402的算术平方根是3.【互动总结】(学生总结,老师点评)(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.活动2 巩固练习(学生独学) 1.5的算术平方根为( A ) A.5 B .25 C .±25D .±52.一个数的算术平方根是34,这个数是( C )A.32 B .34C.916D .不能确定3.要切一块面积为0.81 m 2的正方形钢板,它的边长是0.9m. 4.4的算术平方根是 2.5.已知3+a 的算术平方根是5,求a 的值.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 活动3 拓展延伸(学生对学)【例2】已知x 、y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.【互动探索】算术平方根和平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得出什么结论?【解答】由题意,得x -1=0,y -2=0, 所以x =1,y =2. 所以x -y =1-2=-1.【互动总结】(学生总结,老师点评)算术平方根、绝对值和平方式都具有非负性,即a ≥0,|a |≥0,a 2≥0,当几个非负数的和为0时,各数均为0.环节3 课堂小结,当堂达标 (学生总结,老师点评)算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a性质:双重非负性⎩⎨⎧a ≥0a ≥0练习设计请完成本课时对应练习!第2课时 估算算术平方根教学目标 一、基本目标 【知识与技能】1.会比较两个数的算术平方根的大小.2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识. 3.会用计算器求一个数的算术平方根. 【过程与方法】体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数. 【情感态度与价值观】培养学生的探究能力和归纳问题的能力. 二、重难点目标 【教学重点】夹值法及估计一个(无理)数的大小. 【教学难点】夹值法及估计一个(无理)数的大小的思想. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P41~P44的内容,完成下面练习. 【3 min 反馈】1.无限不循环小数是指小数位数无限,且小数部分不循环的小数.实际上,许多正有理数的算术平方根(例如3,5,7)都是无限不循环小数.2.被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律:当被开方数扩大(或缩小)到原来的100倍⎝⎛⎭⎫1100,10000倍⎝⎛⎭⎫110000…时,其算术平方根相应地扩大(或缩小)到原来的10倍⎝⎛⎭⎫110,100倍⎝⎛⎭⎫1100…3.用计算器求一个正有理数的算术平方根的方法:大多数计算器都有键,用它可以求出任意一个正有理数的算术平方根(或其近似值).先按ON键开机,再按键、“被开方数”、=,即可显示“算术平方根”.4.与37最接近的整数是(B)A.5B.6C.7D.8环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】通过估算比较下列各组数的大小:(1)5与1.9;(2)6+12与1.5.【互动探索】(引发学生思考)(1)估算5的大小,或先求1.9的平方,再比较5与1.92的大小;(2)先估算6的大小,再比较6与2的大小,从而进一步比较6+12与1.5的大小.【解答】(1)(方法一)因为5>4,所以5>4,即5>2,所以5>1.9. (方法二)因为1.92=3.61,3.61<5,所以5>1.9.(2)因为6>4,所以6>4,所以6>2,所以6+12>2+12=1.5,即6+12>1.5.【互动总结】(学生总结,老师点评)比较两个数的大小常用方法有:①作差比较法;②作商比较法;③移因数于根号内,再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值,再比较它与有理数的大小.活动2巩固练习(学生独学)1.估计5+1的值,应在(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.估算19-2的值(B)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间3.计算:(1)1225;(2)36.42(精确到0.001);(3)13(精确到0.001).解:(1)1225=35.(2)36.42≈6.035.(3)13≈3.606.活动3拓展延伸(学生对学)【例2】全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,则冰川约是在多少年前消失的?【互动探索】(1)根据题意可知是求当t=16时d的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时t的值,直接把对应数值代入关系式即可求解.【解答】(1)当t=16时,d=7×16-12=7×2=14.即冰川消失16年后苔藓的直径是14厘米.(2)当d=35时,即7×t-12=35,所以t-12=25,解得t=37.即冰川约是在37年前消失的.【互动总结】(学生总结,老师点评)本题考查算术平方根的实际应用,注意实际问题中涉及开平方通常取算术平方根.环节3课堂小结,当堂达标(学生总结,老师点评)1.夹值法及估计一个(无理)数的大小.2.用计算器求一个正数的算术平方根.练习设计请完成本课时对应练习!第3课时平方根教学目标一、基本目标【知识与技能】掌握数的开方的意义、平方根的意义、平方根的表示方法.【过程与方法】通过带领学生探究一个数的平方根,使学生理解数的开方、平方根的概念.【情感态度与价值观】培养学生的探究能力和归纳问题的能力.二、重难点目标 【教学重点】 平方根的概念. 【教学难点】 求一个数的平方根. 教学过程环节1 自学提纲、生成问题 【5 min 阅读】阅读教材P44~P46的内容,完成下面练习. 【3 min 反馈】1.一般地,如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根或叫二次方根.也就是说,如果x 2=a ,那么x 叫做a 的平方根.2.一个正数有两个平方根,且它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.3.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. 4.下列说法不正确的是( C ) A .-2是2的平方根 B.2是2的平方根 C .2的平方根是 2 D .2的算术平方根是 2 5.求下列各数的平方根: 16,0,49,242.解:16的平方根是±4. 0的平方根是0. 49的平方根是±23. 242的平方根是±24. 环节2 合作探究,解决问题 活动1 小组讨论(师生对学) 【例1】求下列各数的平方根: (1)12425; (2)0.0001;(3)(-4)2; (4)81.【互动探索】(引发学生思考)把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.【解答】(1)∵12425=4925,⎝⎛⎭⎫±752=4925,∴12425的平方根是±75,即±12425=±75. (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01. (3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4. (4)∵(±3)2=9=81,∴81的平方根是±3.【互动总结】(学生总结,老师点评)正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根.【例2】已知一个正数的两个平方根分别是2a +1和a -4,求这个数.【互动探索】(引发学生思考)一个正数的平方根有两个,它们之间有什么关系呢? 【解答】由于一个正数的两个平方根分别是2a +1和a -4,则有2a +1+a -4=0. 即3a -3=0,解得a =1.所以这个数为(2a +1)2=(2+1)2=9.【互动总结】(学生总结,老师点评)一个正数的平方根有两个,它们互为相反数,即它们的和为零.活动2 巩固练习(学生独学)1.关于平方根,下列说法正确的是( B ) A .任何一个数有两个平方根,并且它们互为相反数 B .负数没有平方根C .任何一个数只有一个算术平方根D .以上都不对2.如果a 、b 分别是16的两个平方根,那么ab =-16. 3.若25x 2=16,则x 的值为±45.4.求下列各数的平方根:(1)196; (2)10-4; (3)144169; (4)3625.解:(1)±14. (2)±10-2. (3)±1213. (4)±95.活动3 拓展延伸(学生对学) 【例3】求下列各式中x 的值. (1)x 2=361; (2)81x 2-49=0; (3)(3x -1)2=(-5)2.【互动探索】上述方程都可以化成一个数或代数式的平方的形式,结合平方根的定义,你能算出x 的值吗?【解答】(1)∵x 2=361,∴开平方,得x =±361=±19. (2)整理,得x 2=4981,∴开平方,得x =±4981=±79. (3)∵(3x -1)2=(-5)2,∴开平方,得3x -1=±5. 当3x -1=5时,x =2;当3x -1=-5时,x =-43.综上所述,x =2或-43.【互动总结】(学生总结,老师点评)利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.环节3 课堂小结,当堂达标 (学生总结,老师点评) 平方根⎩⎪⎨⎪⎧平方根的概念平方根的性质开平方及相关运算练习设计请完成本课时对应练习!。
人教版数学七年级下册6.2.2《用计算器求立方根、用有理数估计一个数立方根的大小》教案设计
6.2 立方根第二课时教学设计一、教材分析:这节课的内容是人教版数学七年级下册第六章实数中6.2立方根的第2课时。
由于本章的前两节“平方根”“立方根”在内容上基本是平行的,知识的展开顺序基本相同,因此可以充分利用类比的方法:在第一课时类比得出立方根的概念、开立方运算、立方与开立方运算的互逆关系等的基础上。
类比平方根估算方法研究立方根的估算方法,类比平方根计算器的使用研究立方根计算器的使用,类比平方根的小数点的移动研究立方根的小数点的移动等。
通过类比旧知识学习新知识,使学生的学习形成正迁移。
二、学情分析:本节课需要面向七年级学生进行教学,由于七年级学生年龄低、好表现、具有形象思维等特征,所以这节课我主要采用情境教学法、动手操作法、探究交流法。
通过创设生动有趣的情境,本着结论让学生得,疑难让学生议,思路让学生想,错误让学生析,规律让学生找,小结让学生讲的原则,在方法的设计上,把重点放在了逐步展示知识的形成过程上,激发学生对数学学习的兴趣。
三、学习目标:1.知识与技能:熟练掌握求一个数立方根的方法。
会用计算器求一个数的立方根。
2.过程与方法:经历探究被开方数与立方根的关系,能够运用规律解决实际问题。
3.情感、态度与价值观:学生经历观察、动手操作、发现讨论等数学活动,感受数学活动充满探索性与创造性。
并通过小组互助学习培养学生的合作意识和解决问题的能力。
教学重点:探究被开方数与立方根的关系的过程。
教学难点:运用探索的规律解决实际问题。
四、教学方法:归纳和类比的方法。
五、教学过程:活动一、自主学习,探究规律预习课本第50~51页,自学完成下列问题。
问题1:如果一个正方体的体积是2㎝³,则这个正方体的棱长是多少呢?解:设这个正方体的棱长为xcm,则有 x3 =2解得:。
归纳:1.实际上,很多有理数的立方根是无限不循环小数,如,等都是无限不循环小数。
我们可以用有理数近似的表示它们。
2.要求一个数的立方根(或近似值),我们可以利用计算器中的键来计算。
人教版七年级数学下册第六章《实数》同步练习(含答案)
)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )
人教版七年级下册 第六章 实数 第二讲 立方根 讲义(解析版)
实数第二讲立方根知识讲解一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a补充:一个数a a是被开方数,3是根指数. 开立方和立方互为逆运算.二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.补充:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.三、立方根的性质==a=;3a补充:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.0.060.6660.五、平方根与立方根的联系典例讲解例1、下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根C .立方根等于本身的数只有0和1D =【答案】D ;【解析】64的立方根是4;12-是18-的立方根;立方根等于本身的数只有0和±1.课堂巩固1.下列说法正确的是( )A .一个数的立方根有两个B .一个非零数与它的立方根同号C .若一个数有立方根,则它就有平方根D .一个数的立方根是非负数 【答案】B ;提示:任何数都有立方根,但是负数没有平方根.2.下列说法正确的是( ) A .﹣4的立方是64 B . 0.1的立方根是0.001 C . 4的算术平方根是16 D . 9的平方根是±3 【答案】D.例2.(1)下列运算中错误的有( )4±4=4=-4=;⑤4=A .1个B .2个C .3个D .4个【答案】C 【详解】44=没有意义,③符合题4=,④不符合题意,⑤2=±,⑤符合题意,(2)64的立方根是( ) A .4 B .8 C .8± D .2【答案】A【详解】∵4的立方是64,∴64的立方根是4课堂巩固1.求下列各式的值:(1)327102-- (2)3235411+⨯(3)336418-⋅ (4(5)10033)1(412)2(-+÷-- 【答案】解:(1)(2(3)43===9 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)=331=1-++(5)3=21247=1=33÷++2的平方根为_____. 【答案】±2【详解】∵4的立方等于64,∵64的立方根等于4.4的平方根是±2,故答案为±2.例3 比计较下列各数的大小(1(2)-3.4 (3与43【答案】(1(2)<-3.4 (3<43【详解】(1)32=82<=>>(2)342 3.476 3.4, 3.4≈>-(3)()3334646442=2=,2,327273⎛⎫<< ⎪⎝⎭,课堂巩固1.估算31的立方根在 两个整数之间. 【答案】4和52. 比较2的大小2<<3.比较【答案】<【答案】例4 求下列各式中x 的值(1)()318x -= (2)8(x -1)3=-1258 (3)33388x -= . 【答案】(1)3x =; (2)x =-14;(2)x=3. 【详解】(1)()318x -=;12x -=;3x =; (2)()3125164x -=-;514x -=- ;514x =- ;14x =-(3)x 3﹣24=3; x 3=27;∴x =3课堂巩固1.求满足下列条件的x 的值:(1)()3231250x -+= (2)32(1)540x --= (3)(x ﹣1)3=﹣125.(4)2(x ﹣1)3+16=0 (5)327640x += (6)12(x+3)3=4 【答案】(1)1x =-;(2)x=4;(3)x=﹣4;(4)x =﹣1;(5)43x =-;(6)x =﹣1.【详解】(1)∵()3231250x -+=,∴()323125x -=-,∴235x -=-;解得:x =−1.(2)32(1)540x --=;32(1)=54x -;3(1)=27x -;1=3x -;=4x .(3)x ﹣1=﹣5,x=﹣4.(4)2(x ﹣1)3+16=0;则(x ﹣1)3=﹣8;故x ﹣1=﹣2;解得:x =﹣1. (5)327640x +=;32764x =-;364x =-;36427x =-;43x =- (6)方程的两边都乘以2,得(x+3)3=8,∴x+3=2.∴x =﹣1.例5 1.已知x+12的算术平方根是 2x+y ﹣6的立方根是2.(1)求x ,y 的值; (2)求3xy 的平方根.【答案】(1)x =1,y =12;(2)±6.【详解】(1)∵x+12的算术平方根是2x+y ﹣6的立方根是2.∴x+12= 2=13,2x+y ﹣6=23=8,∴x=1,y=12(2)解:当x=1,y=12时,3xy=3×1×12=36, ∵36的平方根是±6,∴3xy 的平方根±6.2.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 的整数部分,求a +b +c 的平方根. 【答案】±3【详解】解:根据题意,可得2a ﹣1=9,3a +b ﹣9=8;故a =5,b =2;又∵2<3,∴c =2,∴a +b +c =5+2+2=9,∴9的平方根为±3.点睛:此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.课堂巩固12的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10 B .0或﹣10C .±10D .0【答案】A【详解】2=25,∴25的平方根是±5,﹣125的立方根是﹣5,∴a =±5,b =﹣5,当a =5时,原式=5﹣(﹣5)=10,当a =﹣5时,原式=﹣5﹣(﹣5)=0,20+=,则m+n=________.【答案】10+=;∴37340m-+n +=;∴1m+n= 【点睛】立方根的值互为相反数,被开方数互为相反数.3.若x y +是4的平方根,x y -的立方根是2-,则22x y -=___________ 【答案】16或16- 【详解】x y +是4的平方根,2x y ∴+=或2,x y +=-x y -的立方根是2-,∴ 8,x y -=- 当2,8x y x y +=⎧⎨-=-⎩ 22()()16,x y x y x y ∴-=+-=- 当2,8x y x y +=-⎧⎨-=-⎩22()()16,x y x y x y ∴-=+-=综上:2216.x y -=±故答案为:16或16-.4.已知一个数的平方根是3a +1和a +11,求这个数的立方根是______. 【答案】4【详解】由已知得,3a+1+a+11=0,解得a=-3, 所以3a+1=-8,a+11=8, 所以,这个数是64, 它的立方根是4.故答案是:4. 5.已知某正数的两个平方根分别是a +3和5﹣3a , (1)求这个正数;(2)若b 的立方根是2,求b ﹣a 的算术平方根. 【答案】(1)49;(2)2.【详解】(1)根据题意知a +3+5﹣3a =0,解得:a =4,所以这个数为(a +3)2=72=49;(2)根据题意知b =8=2.例6 据说我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题: 一个数是 59319,希望求出它的立方根.华罗庚脱口而出:39. 邻座的乘客十分惊奇,忙问计算的奥妙. 你知道华罗庚是怎样计算的吗?请按照下面的问题试一试:(1)由33101000,1001000000==是 __________位数;(2)由 19683 个位数是 3个位数是 ________________;(3)如果划去 19683 后面的三位数 683 得到数 19 ,而3328,327== ,由此你能确的数字是___________ ;(4)用上述方法确定110592 的立方根是_______________ .【答案】两7 2 48【分析】(1)由19683大于1000而小于1000000,即可确定59319的立方根是2位数;(2)根据一个数的立方的个位数就是这个数的个位数的立方的个位数,据此即可确定;,即可确定答案;(3)运用数立方的计算方法计算即可;(4)首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然再确定十位数即可解答.【详解】解:(1)∵1000<19683<1000000,∴故答案为:两;(2)∵一个数的立方的个位数就是这个数的个位数的立方的个位数7;故答案为7;(3)∵8<19<27,∴2,故答案为2;(4)∵观察发现:只有8的立方的个位数为28又∵64<110<1254;故答案为48.【点睛】当被开方数的小数点向右或向左每移动3位,立方根的小数点就向右或向左移动一位课堂巩固1________.【答案】7.94故答案为:7.94.≈≈≈________________2 1.507【答案】0.069931.507≈≈≈0.06993, 故答案为:0.06993.3.观察下列计算过程,猜想立方根.31=1 32=8 33=27 34=64 35=125 36=216 37=343 38=512 39=729(1)小明是这样试求出19683的立方根的,先估计19683的立方根的个位数, 猜想它的个位数为 , 又由320<19000< 330,猜想19683的立方根十位数为 ,验证得19683的立方根是 .(2)请你根据(1)中小明的方法,完成如下填空:①; ;③= .【答案】(1)7,2,27;(2)49,-72,0.81【详解】(1)先估计19683的立方根的个位数,猜想它的个位数为7,又由203<19000<303,猜想19683的立方根十位数为2,验证得19683的立方根是27(2)①估计117649的立方根的个位数为9,又由403<117649<503=49;②估计373248的立方根的个位数为2,又由603<373248<703;③估计0.531441的立方根的个位数为,又由0.83<0.531441<0.93=0.81 .4.阅读下列材料:331059319100,<<39729,=333594<<39=.请根=________. 【答案】54 【详解】3310157464100,<<3464,=3351576<<54=,故答案为54.课后提升 一、单选题1.下列说法:①负数和0没有平方根;②所有的实数都存在立方根;③正数的绝对值等于它本身;④相反数等于本身的数有无数个.正确的个数是( ) A .0 B .1 C .2 D .3【答案】C【详解】①0有平方根,故错误;②所有的实数都存在立方根,故正确; ③正数的绝对值等于它本身,故正确;④相反数等于本身的数有1个,故错误; 2.下列结论正确的是( )A .1535-÷=B 3=±C 2=-D .()()2233-=+【答案】D3.下列说法错误的是( )A .2±B .64的算术平方根是4C 0D 0≥,则x =1【答案】B 二、填空题4.计算()03π-=__________. 【答案】2-5.若x <0____________. 【答案】0【详解】∵x <00x x =-+=,故答案为:0.635.12=0.3512=-,则x =_____________. 【答案】-0.0433【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-” ∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-” 7.已知368.8=4.098,,则______________.【答案】19.028 1.463≈ 4.626≈0.5981≈.289≈,若46.26≈,则x =_______ 5.981≈-,则y =_______.【答案】2140 -214 三、解答题9.已知2a -1的平方根是±3,b -1的立方根是2,求a -b 的值. 【答案】4a b -=-.【详解】因为9的平方根是3±,8的立方根是2 所以21918a b -=⎧⎨-=⎩;解得59a b =⎧⎨=⎩;则594a b -=-=-.10.已知 2a ﹣1 的平方根是±3,b ﹣3 的立方根是 2 【答案】6.【详解】解:∵2a ﹣1的平方根是±3,∴2a ﹣1=9,∴a=5,∵b ﹣3的立方根是2,∴b ﹣3=8,∴b=11.故答案为:6. 11.已知2a -1的算术平方根是3,3a +b +4的立方根是2,求a -b 的平方根. 【答案】a -b 的平方根是±4.【详解】∵2a -1的算术平方根是3,3a +b +4的立方根是2,∴2a -1=9,3a +b +4=8,解得a =5,b =-11,∴a -b =16,∴a -b 的平方根是±4. 12.解方程(1)2(x-1)2= 128 (2)(x-4)3 = -216 (3)225640-=x ;(4)3343(3)270x ++= (5)24810x -= (6)()3164x -=【答案】(1)x=9或x=-7; ( 2 ) x= -2;(3)85x =±;(4)337x =-;(5)92x =或92x =-;(6)5x =【详解】(1)22(1)1?28x -=,2(1)64x -=,18x -=±, 18x -=或18x -=-, 9x =或7x =-;(2)3(4)? 216x -=-, 4? 6x -=- , 2x =-.(3)225640-=x ;解: 225=64x ,264=25x ,85x =±; (4)3343(3)270x ++=.解: 3343(3)27x +=-,327(3)343x -+=,337x +=-,337x =-. (5)解:2481x =;2814x =;解得92x =或92x =- (6)解:()3164x -= ;14x -=;解得5x =13a b 的值. 【答案】320,2a -1=3b -1, 2a =3b , ∴a b =32.1448的立方根,求1mn +的平方根.【答案】±4【详解】由题意得24228n m m -+=⎧⎨+=⎩解得:35m n =⎧⎨=⎩∴1mn +=3×5+1=16 ∴1mn +的平方根是±4;故答案为:±415.(1)已知,图1正方体的棱长为a ,体积是50,求正方体的棱长a ;(2)已知,图2是由16个边长为1的小正方形组成的大正方形,图中阴影部分也是一个正方形,求阴影部分正方形的边长b .【答案】(1(2【详解】解:(1)350a =,a ∴=(2)由題意可知,大正方形的面积是由阴影部分的面积和四个真角三角形的面积组成的,4416S =⨯=大正方形,133122S =⨯⨯=小三角形,∴=4S S S -阴影大正方形小三角形 23=16410=2b -⨯=,b ∴= 16.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与1-重合,点E与1重合,点F与点D关于E点对称,那么D在数轴上表示的数为__________;点F在数轴上表示的数为__________.【答案】(1)4;(2)8,(3)1--3+【详解】(14=,∴这个魔方棱长为4.(2)∵魔方棱长为4,∴小立方体棱长为2,∴阴影部分面积为:122482⨯⨯⨯=,边=8,边长是(3)D在数轴上表示的数是1--F表示为123++=+。
最新人教版七年级下册数学第6章实数第2节目标二 求立方根
其中他做对了的题目有( C )
A.1 道
B.2 道
C.3 道
D.4 道
认知基础练
【点拨】
3
81=9,而 81并不等于 9,所以②是错误的,其他 3 道正确.
认知基础练
3
3
3 【教材 P50 探究变式】如果 a=- b,那么 a 与 b 的关
系是( B )
A.a=b
B.a=-b
C.a=±b
D.不能确定
认知基础练
3
4 (-1)3的值是( A ) A.-1 B.0 C.1 D.±1
认知基础练
3
5 若 x2=(-5)2,( y)3=-5,则 x+y 的值为( C ) A.0 B.-10 C.0 或-10 D.0 或-10 或 10
认知基础练
3
6 若 x<0,则 x2- x3等于( D ) A.x B.2x C.0 D.-2x
思维发散练
(1)求该魔方的棱长; 解:设该魔方的棱长为x cm, 则x3=216,解得x=6. 答:该魔方的棱长为6 cm.
思维发散练
(2)求该长方体纸盒的长. 解:设该长方体纸盒的长为y cm, 则6y2=600, 解得y=10(负值已舍去). 答:该长方体纸盒的长为10 cm.
3
12 000=n,求 m,n 的值(用 b 表示).
3
3
3
解:由 12=b 得 m= 0.012=0.1b,n= 12 000=10b.
认知基础练
【点拨】 本题利用了从特殊到一般的思想,先求出表格中
特殊数的立方根,探究小数点的移位规律,然后利用 规律进行计算.
认知基础练
9 请根据图所示的对话内容回答下列问题.
人教版七年级下册 第六章 实数 第二讲 立方根 讲义(解析版)
【答案】B;
提示:任何数都有立方根,但是负数没有平方根.
2.下列说法正确的是( )
A.﹣4的立方是64B.0.1的立方根是0.001
C.4的算术平方根是16D.9的平方根是±3
【答案】D.
例2.(1)下列运算中错误的有()
① = ;② ;③ ;④ ;⑤
(2)
(3)
课堂巩固
1.估算31的立方根在两个整数之间.
【答案】4和5
2.比较 的大小
【答案】
3.比较3
【答案】<
【答案】
例4求下列各式中x的值
(1) (2)8(x-1)3=- (3) .
【答案】(1) ; (2)x=- ;(2)x=3.
【详解】
(1) ; ; ;
(2) ; ; ;
(3)x3﹣24=3;x3=27;∴x=3
实数
第二讲立方根
知识讲解
一、立方根的定义
如果一个数的立方等于 ,那么这个数叫做 的立方根或三次方根.这就是说,如果 ,那么 叫做 的立方根.求一个数的立方根的运算,叫做开立方.
补充:一个数 的立方根,用 表示,其中 是被开方数,3是根指数. 开立方和立方互为逆运算.
二、立方根的特征
立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.
五、平方根与立方根的联系
典例讲解
例1、下列结论正确的是( )
A.64的立方根是±4B. 是 的立方根
C.立方根等于本身的数只有0和1D.
【答案】D;
【解析】64的立方根是4; 是 的立方根;立方根等于本身的数只有0和±1.
课堂巩固
1.下列说法正确的是( )
新人教版数学七年级下册第六章《实数》全章教案
5.144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考1、2答案,提出疑难问题。
给学生充足的时间和空间,理解和感知算术平方根概念,通过讨论、交流,提出问题
师
生
互
动
归
纳
新
知
问题1:你能叙述算术平方根的概念吗?
一般地:如果一个正数 的平方等于a,即 =a,那么这个正数 叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。
年级
七年级
课题
6.1平方根(2)
课型
新授
教
学
目
标
知识
技能
1.用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.
2.用计算器求一个非负数的算术平方根.
过程
方法
通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
情感
态度
通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习的兴趣。
问题(四)
两种运算有什么不同?
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数a的平方根的运算,叫开平方,其中a叫被开方数.。
学生思考,小组讨论,个别回答
问题是知识能力生长点,通过富有实际意义的问题,激发学生原有认知,促使学生主动地进行探索和思考,让他们体会数学的韵味.。
尝
试
应
用
问题(五)
(2)0的平方根和算术平方根都是0。
区别
(1)定义不同:
“如果一个数 的平方等于a,那么这个数 叫做a的平方根”,
“如果一个正数x的平方等于a,即 ,那么这个正数x叫做a的算术平方根”。
人教版七年级下数学6.2立方根(2用计算器求立方根、用有理数估计一个数立方根的大小)教案
《§6.2立方根(2)》一、教材分析:1、说教材的地位和作用这一节课是人教版(2012年版)义务教育教科书数学七年级下册第六章《实数》§6.2立方根,本节共两课时,这节课的内容为第二课时。
本章内容是在前面学习有理数的基础上,把有理数的范围进行扩大,也可以看成是其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此本章内容起着承上启下的作用,在中学数学中占有重要的地位。
通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。
在此之前,学生已学习了数的平方根内容和研究方法,这为过渡到本节的学习起着铺垫作用。
通过本节课的学习,学生可以更深入的了解无理数,为后面学习实数奠定基础。
2、说教学目标知识与技能:(1)会正确使用计算器求一个数的立方根。
(2)能用有理数估计一个立方根的大致范围,使学生形成估算的意识,培养估算能力。
过程与方法:经历运用计算器探求数学规律的过程,发展合情推理能力。
情感态度与价值观:培养学生严谨的数学学习态度,科学的探索精神。
4、说教学重点和难点(1)重点:计算器的使用方法和用有理数估计一个立方根的大致范围。
(2)难点:探索立方根的变化规律及应用。
二、学情分析七年级具有学生年龄低、好奇心强、发言积极、爱好表现,有话就说,小组合作初步形成,兼有一定的形象思维和初步的逻辑思维能力,知识经验不够丰富的特点,因此探索的结论还需要同学公认和老师把关。
三、教法分析针对以上学生基础知识薄弱,主动参与学习的积极性高,学习探究能力较差的这种情况及本节课的特点,我采用“类比探究----验证结论-----归纳概括----巩固应用”为主线的教学程序。
通过创设生动有趣的情境,本着结论让学生得,疑难让学生议,思路让学生想,错误让学生析,规律让学生找,小结让学生讲的原则,在方法的设计上,把重点放在了逐步展示知识的形成过程上,激发学生对数学学习的兴趣。
人教版七年级数学下册《六章 实数 6.2 立方根 用计算器求立方根、用有理数估计一个数立方根的大小》课件_24
例1.用计算器求27的立方根.
解:用计算器求 27的立方根的 步骤如下:
按键
3
27
显示 2ndF 0.
27.
=
3.
说明:用计算器求27的立方根的过程也就是求 的值的过程.
3 27
练习:用计算器求下列各式的值.
(1)3 256; (2)3 1369; (3)3 343;(4)3 85270; (5)3 5218; (6)3 37250.
2
8
4.一个数的立方根是 3 ,则这个数是 27 ;
2
5. 3
m 3
2 3
,则m的值为
3
;
6.已知 3 4a 3 3 ,则a= -6 ,a-2的立方根为 -2 .
思考:如何求867、7590、0.759的立方根?
分析:这几个数通过观察很难发现哪个数的立 方与它们相等,只有求助计算器. 常见的计算器如下:
第十三章 实 数
13.2 立方根 (第2课时)
复习
1.什么是立方根? 若一个数的立方等于a,那么这个数叫做a的立方根 或三次方根。
2.正数的立方根是一个_正__数___,负数的立方根是一 个_负__数____,0 的立方根是__0__;立方根是它本身的数 是_1_、__-_1_、__0_.平方根是它本身的数是__0__.算术平方根 是它本身的数是_0_、__1__.
A.4㎝~5㎝之间
B.5cm~6cm之间
C.6㎝~7㎝之间
D.7㎝~8㎝之间
练习
3.用你发现的规律填空:
(1)已知3 216 = 6,则3 216000 = _6_0__,3 0.216 = _0_._6_; (2)已知3 1331 = 11,则3 1.331 = _1_._1_,3 1331000 = 1_1__0_;
2020最新人教版数学七年级下册6.2 立方根 课时练(解析版)
人教版数学七年级下册6.2 立方根课时练一、选择题1.下列说法中错误的是()a可以是正数、负数或零.中的a不可能是负数.C. 数a的平方根有两个.D. 数a的立方根有一个.【答案】C【解析】【分析】根据实数的定义进行分析即可.【详解】中的a可以是正数、负数、零,故选项正确;中的a不可能是负数,故选项正确;C.如果a为0,则不互为相反数,故选项错误;D.数a的立方根只有一个,故选项正确.故选C.【点睛】考核知识点:实数的定义.2.﹣27的立方根与4的平方根的和是()A. ﹣1B. ﹣5C. ﹣1或﹣5D. ±5或±1【答案】C【解析】【分析】直接利用立方根以及平方根的定义分析得出答案.【详解】解:∵-27的立方根是-3,4的平方根是±2,∴-27的立方根与4的平方根的和是:-1或-5.故选C.【点睛】本题考查立方根以及平方根的定义,正确把握相关定义是解题关键.3.的值约为( )A. 3.049B. 3.050C 3.051 D. 3.052【答案】B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出328.36≈3.050. 故选B .4.如果一个数的平方根和它的立方根相等,则这个数是( ) A. 0 B. 01,C. 1±D. 01±,【答案】A 【解析】 【分析】分别求出0、1、-1的平方根和立方根,再判断即可.【详解】∵0的平方根是0,0的立方根是0,1的平方根是±1,1的立方根是1,-1没有平方根,-1的立方根是-1,∴如果一个数的平方根和它的立方根相等,则这个数是0, 故选A .【点睛】本题考查了平方根和立方根定义的应用,注意:a 的立方根是3a ,a (a≥0)的平方根是±a . 5.估计96的立方根的大小在( ) A. 2与3之间 B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】试题解析:334645125==Q ,,且6496125<<, 3336496125.∴<< 即3496 5.<<故选C.6.如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果应为( ) A.12B.132C.172D.252【答案】C 【解析】 分析】根据2ndf 键是功能转换键列式算式,然后解答即可.【详解】解:根据题意得:(-3)2]÷2=172. 故选C .【点睛】本题考查利用计算器进行数的开方,是基础题,要注意2ndf 键的功能.)A. 2B. ±2D.【答案】C 【解析】 【分析】,而2,, 故选C .【点睛】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.8.若x =( )A. 32x =-B. 32x =-C. (-x)3=-2D. x=(-2)3【答案】B 【解析】 【分析】利用立方根的定义分析得出答案.【详解】解:∵, ∴x 3=-2, 故选B .【点睛】本题考查立方根的定义,正确把握定义是解题关键. 9.下列各式正确的是( )A. 0.6=± 3=±3= 2=-【答案】A 【解析】3=,则B 3=-,则C 2,则D 错,故选A .10.正方体A 的体积是正方体B 的体积的27倍,那么正方体A 的棱长是正方体B 的棱长的( ) A. 2倍 B. 3倍 C. 4倍 D. 5倍【答案】B 【解析】试题解析:设正方体A 的棱长是a ,正方体B 的棱长是b , 依题意得:3327a b =, ∴a =3b ,即正方体A 的棱长是正方体B 的棱长的3倍. 故选B.二、填空题11.已知(x ﹣1)3=64,则x 的值为__. 【答案】5 【解析】 由(x ﹣1)3=64, 得:x ﹣1=4, 解得:x=5. 故答案为5.12.小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→12,则x 为 ; 【答案】±8 【解析】 解:反向递推:12的平方=14,14的倒数为4,4的立方为64,64的平方根为±8.故答案为±8. 点睛:解答本题的关键是反向递推.13.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大_____;(3)根据你发现的规律填空:1.442____________;0.076 97=______.【答案】(2)被开方数扩大1000倍,则立方根扩大10倍;(3)①14.42,0.1442;②7.697.【解析】【分析】(2)由于被开方数的小数点的每移动三位,相应的立方根的小数点的相应移动一位,由此即可解决问题.(3)被开方数每移动3位,立方根就移动1位.利用此规律即可求解.【详解】(2)被开方数的小数点每向右(或向左)移动3位,立方根的小数点就相应的向右(或向左)移动1位.所以:被开方数扩大1000倍,则立方根扩大10倍;(3)①14.42,0.1442,②7.697.【点睛】本题考查立方根定义和性质,本题用到的知识点为:被开方数的小数点每向右(或向左)移动3位,立方根的小数点就相应的向右(或向左)移动1位.14.已知(x﹣1)3=64,则x的值为__.【答案】5【解析】由(x﹣1)3=64,得:x﹣1=4,解得:x=5.故答案为5.三、解答题15..求下列各式的值:(1【答案】(1)75-;(2)2.3-【解析】【分析】(1)利用立方根定义计算即可得到结果;(2) 根据立方根定义求出即可.【详解】(175 =-(2)2.3 ==-【点睛】本题考查了立方根,熟练掌握立方根的定义是解题的关键.16.解下列各式中的x(1)(x﹣1)3=27.(2)12(2x﹣1)3=﹣4.【答案】(1)x=4.(2)x=﹣1 2【解析】【分析】(1)直接开立方解方程即可;(2)先整理成x3=a的形式,再直接开立方解方程即可;【详解】解:(1)(x﹣1)3=27,∴x﹣1=3,解得x=4.(2)(2x﹣1)3=﹣8.开立方得: 2x﹣1=﹣2,解得:x=﹣1 2【点睛】本题考查利用立方根的性质解方程.解题关键是灵活运用使计算简便.17.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米(球的体积V=43πr3,π取3.14,结果精确到0.1米)?【答案】这个球罐的半径r约为1.5米.【解析】试题分析:利用球体体积公式和立方根的定义计算即可.试题解析:解:根据球的体积公式,得:343rπ=13.5,解得:r≈1.5.答:这个球罐的半径r为1.5米.点睛:本题主要考查了立方根在实际生活中的应用,要求学生掌握球的体积公式,熟练进行开立方.18.已知2a一1的平方根是531a b±+-,的立方根是4,求210a b++的平方根.【答案】±【解析】试题分析:由平方根的定义和列方程的定义可求得2a-1=25,3a+b-1=64,从而可求得a、b的值,然后可求得代数式a+2b+10的值,最后再求其平方根即可.试题解析:∵2a一1平方根是±5,3a+b﹣1的立方根是4,∴2a﹣1=25,3a+b﹣1=64.解得:a=13,b=26.∴a+2b+10=13+52+10=75.∴a+2b+10(或±)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版七年级数学下册第6章实数 6.2 立方根(1)学案新人教
版
一、学习目标:
1、了解立方根的概念,初步学会用根号表示一个数的立方根.
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。
二、重点难点
重点:立方根的概念和求法。
难点:立方根与平方根的区别。
三、合作探究
1.平方根是如何定义的? 平方根有哪些性质?
2、问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是
3、思考:(1) 的立方等于-8?
(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是
4、立方根的概念:
如果一个数的立方等于a,这个数就叫做a的.(也叫做数a的).换句话说,如果,那么x叫做a的立方根或三次方根. 记作:.读作“”,
其中a是,3是,且根指数3 省略(填能或不能),否则与平方根混淆.
5、开立方
求一个数的的运算叫做开立方,与开立方互为逆运算
(小组合作学习)
6、立方根的性质
(1)教科书探究
(2)总结归纳:
正数的立方根是数,负数的立方根是数,0的立方根是.
(3)思考:每一个数都有立方根吗?一个数有几个立方根呢?
被开方数平方根立方根
正数
负数 零
四、精讲精练
例1、 求下列各式的值:
(1)364; (2)
327102
例2、求满足下列各式的未知数x :
(1)3
x 0.008=
练习
1. 判断正误:
(1)、25的立方根是 5 ;( )
(2)、互为相反数的两个数,它们的立方根也互为相反数;( )
(3)、任何数的立方根只有一个;( )
(4)、如果一个数的平方根与其立方根相同,则 这个数是1;( )
(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( )
(6)、一个数的立方根不是正数就是负数.( )
(7)、–64没有立方根.( )
2、(1) 64的平方根是________立方根是________.
(2) 的立方根是________. (3) 37-是_______的立方根. (4) 若 ,则 x=_______, 若 ,则 x=________. (5) 若 , 则x 的取值范围是__________, 若 有意义,则x 的取值范围是_______________.
3、计算:(1)38
321+ 4、已知x-2的平方根是4±,2x y 12-+的立方根是4,求()
x y x y ++的值.
五、课堂小结:正数、负数、0都有立方根
六、作业 : 2、4
如有侵权请联系告知删除,感谢你们的配合!
327()92
=-x ()93=-x x x -=23x -。