汽车外覆盖件DL设计-13
汽车覆盖件模具制图规范
目录序号内容页次1 模具编号方法 22 图纸图幅、图线及比例 33 模具技术要求 64 装配图图面画法85 冲压工艺过程图126 工序图241. 模具编号方法———1.1. 产品图号按技术研究院提供的产品图号。
1.2. 工序号➢ 例如:4/5表示该零件共需5套模具完成,该模具为第4序。
➢ 若存在工序借用模具时,工序号的编排时不考虑该借用模具。
例如:某零件共需3套模具完成,但其中有一套使用借用模具,则其工序号应编排为1/2、2/2,其它依次类推。
➢ 同一产品件的改进模具,其编号依次在其工序号后面缀加—A 、—B 、—C ……。
➢ 若工艺方案调整增加模具,则在工序号后加-Zn 。
例如:某零件原有4套模具,因工艺方案改进,在第2序后需要增加1套模具,在第4序后面需要增加2套模具,其新增模具的工序号分别是2/4-Z1、4/4-Z1、4/4-Z2。
1.3. 模具零件序号 ➢ 装配图统一编写为00。
➢ 零件图序号的编写以主视图为主,以顺时针方向整齐排列为01,02,03,……。
➢ 对于工作组件,在装配图中只标注组件的顺序号,组件中各零件的顺序号在单独的组件图中编号。
如:在02号组件下的零件编号02-1,02-2,……,依次类推。
➢ 组件下的零件明细表在总明细表中体现。
2.图纸图幅、图线及比例2.1.图纸幅面的选用图纸幅面优先选用A0、A1,允许选用A0加长,A1加长,A2、A3、A4,如下图所示:2.2.图框格式的选用图框格式采用留装订边的图纸,格式和尺寸按GB10609.1-93的规定,如下图所示:2.3.图线型式及应用2.4.制图比例执行GB/T14690-93)制图比例优先采用1:1,1:2,2:1,5:1;允许采用1:2.5,1:3,10:12.5.字体(执行GB/T14691-93)➢书写字体必须做到:字体工整,笔画清楚,间隔均匀,排列整齐。
➢汉字应写成长仿宋体,字高选用14号、10号、7号、5号字体。
基于CAE技术驱动的汽车前门外板覆盖件拉延模设计
d r a w i n g o f a n a u t o m o b i l e f r o n t d o o r p a n e l a s r e s e a r c h o b j e c t , i m p o r t i n g D y n a f o r m a n d U G s o f t w re a f o r
i t a fe c t s t he q u a l i t y o f t he mo l d i f t h e r e i s a l a c k o f ne c e s s a r y d e s i n g s o f t wa r e f o r t h e d r a wi ng p r o c e s s a —
GO NG Yu n x i ①
,
L U Yi n g qi u①
,
MA J i e ②
( (  ̄ ) G u a n g x i U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y , L i u z h o u 5 4 5 0 0 6 , C H N ;  ̄L i u z h o u Wu s h u n A u t o m o b i l e D i e C o . , L t d . , L i u z h o u 5 4 5 0 0 3 , C H N )
汽车外覆盖件DL设计方法-4
述两种措施,仍然不能使骄车车身发动机盖覆盖件的型面得到充分地塑性变形,塑性变形占有总变形量的比例也会较小,弹性变形就会显示影响,产生变形回弹现象,丧失覆盖件变形尺寸精度。
此时,就得选用(图四十三)所示的过突起的概念来改变骄车车身发动机盖覆盖件的型面,图中:实线所绘制的曲面为骄车车身发动机盖覆盖件的型面,虚线所绘制的曲面为拉延制件所建立的拉延凸模型面,待拉延制件修边冲孔之后,修边冲孔件就会发生回弹变形,变形至与骄车车身发动机盖覆盖件的型面完全一样,大大提高了覆盖件变形尺寸精度。
(图四十三)中的实例,其技术参数为:B=1350,H=100,h1=2,h2=h3=h4=1,四角为0。
这些成形经验参数也是可以使用相似性的方法应用于决定其它顶盖冲压成形工艺的技术参数。
7,对拉延制件工序为之后的修边冲孔工序和翻边成形工序可行性所采取的措施:(1)关于为修边冲孔工序可行性所采取的措施:修边冲孔工序要求考虑三个要点:其一,是修边冲孔件板材剪切断面的剪切质量要有一个好的效果,即修边刀口的冲剪方向最好是修边件型面的正法向;其二,是修边模的凸模和凹模刃口要有足够的强度,使修边模具有较好的使用寿命;其三,是修边冲孔剪切过程中,不要使修边制件的形状再发生意外变形。
因此,在设计拉延制件工法型面时,就要考虑实现修边工法良好的剪切措施,具体有以下几种方法:[1]如(图四十四)所示,当覆盖件的修边线l,位于修边型面是垂直面时(在修边冲压方位的状态下),又允许它在拉延时将修边线附近的垂直型面变换成水平型面,修边(图四十四)修边模刀口示意图之后又事后有翻边整形工序顺便将其压回至原来的垂直型面,由此而来获得准确的修边尺寸。
因此,我们可以在设计拉延制件时,就要将其设计成(图四十四)所示的一个台阶。
台阶的高低位置是由h值所决定的,构成台阶的曲面形状是由修边线l的形状走向所决定的:当l是一条空间直线时,h值没有什么限制,只要它是这个空间平面上在修边后发生纯弯曲变形就能灰复原来的型面形状;当l是一条空间曲线时,h值最好为5mm,顶多不要超过8mm,以减少事后翻边时产生过大的拉伸或压缩变形量,防备意外变形牵扯覆盖件已成形好的主型面的尺寸精度。
汽车覆盖件冲压工艺及模具设计技术研究
汽车覆盖件冲压工艺及模具设计技术研究摘要:汽车覆盖件是我国汽车车身设计中不可缺少的组成部分。
随着我国汽车制造业的快速发展和人们生活质量的不断提高,人们对家用汽车车身设计的基本要求也越来越高。
如何追求高品质、低成本、实用的智能汽车已逐渐成为直接影响我国汽车产品选择的重要因素之一。
高度重视我国汽车整体覆盖件冲压制造工艺、模具设计等新技术的深入研究,可以大大提高我国汽车车身的整体设计质量,增强我国汽车加工产品的市场实力和竞争力,促进加工企业汽车产品的不断升级,为汽车企业的发展创造更大的社会效益和经济效益。
关键词:汽车覆盖件;汽车覆盖件冲压工艺;模具设计技术1.汽车覆盖件概述所谓汽车覆盖件,是指构成车身或驾驶室,覆盖发动机和底盘的异形表面和汽车零部件。
由于车内部及其覆盖件不仅需要具有较强的车身整体性和装饰性,还需要能够同时承受一定的地面力和冲击力,因此车内部及其覆盖件的整体结构和功能非常复杂。
除了我们经常直接看到的一些车外板,如车门外板、侧壁外板、发动机罩等,车上的内盖件也可能包括一些小型车内板,例如一些可以隐藏在车内的车辆地板和左右两侧的异形纵梁。
2.覆盖件冲压工艺特点在车身的设计中,需要从整体形状和结构功能两个方面进行设计,而汽车罩是完成汽车形状和结构功能的重要部件,所以汽车设计师往往十分重视它。
然而,尽管面板是汽车的重要组成部分,但由于设计师专业知识的限制,一些制造工艺可能没有得到充分考虑,导致了面板制造过程中的一些问题。
盖板件的冲压工艺对盖板件的制造具有重要意义,必须给予足够的重视。
设计面板时必须考虑冲压工艺。
3汽车覆盖件冲压工艺与设计方案本文主要以某汽车生产公司的一辆小型货车的后门为分析对象。
后门内板尺寸大,形状多样,是典型的汽车覆盖件。
3.1汽车覆盖件冲压工艺分析汽车后门内板分为后窗内板和后门外板。
后车门的内板和外板通过内板的焊接边缘和冲压工艺相互连接,形成汽车的后车门,后车门直接安装在汽车的行李箱上。
汽车覆盖件冲压模具dl工艺数模设计规范
汽车覆盖件冲压模具dl工艺数模设计规范随着汽车工艺的不断进步,汽车的外观设计对于汽车厂商来说越来越重要。
在汽车外观的设计中,汽车覆盖件变成了一个至关重要的部分。
汽车覆盖件指的是汽车的罩子、侧翼板、车门、车顶等外层部件。
由于这些部件直接影响汽车的外观和功能,因此汽车覆盖件的设计非常重要。
而汽车覆盖件的冲压模具的设计是这些部件制造的核心之一。
汽车覆盖件制造的核心在于冲压模具,而冲压模具的数模设计规范是保证冲压制品质量的重要手段之一。
使用数模设计技术可以大大提高汽车覆盖件制造的精度和效率。
下面,我们将重点介绍汽车覆盖件冲压模具的数模设计规范。
1. 模具材料的选取模具的材料对于模具的性能和寿命有很大的影响,因此在模具的设计中,需要选择合适的材料。
模具材料应该具有高硬度、高温度和抗腐蚀等性能。
目前主要的模具材料有高速钢、合金钢、固态合金等。
在选择模具材料时还需要考虑到制造成本、加工难度等因素。
2. 模具结构设计模具的结构设计应该具有合理性和可靠性。
模具结构应该简单化,以提高模具的强度和稳定性。
同时需要考虑模具的拆卸、安装、加工和维修等方面的设计。
模具还应该具有清晰的冲顶顺序和所有的变形情况,这将有助于提高制造精度和减少排错时间。
3. 模具加工在模具加工过程中,应该注意规范加工操作。
需要根据模具设计中的零件尺寸和公差精度列出加工工序。
在加工中应该注意防止误差的出现,加工零件前应该将工艺过程和顺序确定下来,并通过仿真软件检测一下。
同时,在模具加工过程中需要注意模具表面的修整和防腐蚀处理。
4. 模具装配在模具装配过程中,需要注重安全和质量。
装配工作应该进行认真的规划,应该先对各个零件进行清洗和整理工作,然后按照设计图的要求,将散件装配起来。
在装配的时候也应该注意模具位置的清洁和检查。
5. 模具试模和修整模具的试模是保证产品质量的重要环节。
试模之前需要对模具进行全面检查和调整,检查各个零件是否卡死,确定冲压顺序并制作出合理的切折角。
覆盖件概述
汽车覆盖件模具基础知识
发动机盖外板
右翼子板
奇瑞S11轿车部分覆盖件示意图
汽车覆盖件模具基础知识
后背门外板
后底板中横梁托板
奇瑞S11轿车部分覆盖件示意图
汽车覆盖件模具基础知识
后底板本体
右底梁加强板前部本体
汽车覆盖件模具基础知识
一、覆盖件概述 二、汽车覆盖件模具的生产过程 三、 DL图简介 四、拉延模的结构及其特点 五、 修边模的结构及其特点 六、翻边模结构
四、拉延模的结构及其特点
汽车覆盖件模具基础知识
(三)平衡块 1.提高拉延稳定性。
2.调节进料阻力和进料量
(四)通气孔及排气管(设置原则) 1.通气孔须设置在成形无影响且钻孔方便的部位,标准孔径φ6。 2.设计时需注意不要在通气孔的位置上设加强筋。 3.凸模形状为倾斜面时,通气孔垂直于水平方向钻出。 4.外表面的凸模制造时,不钻通气孔,待调整时研究决定,此 时通气孔缩小为φ 4,并增加数量.为了防止灰尘通过通气孔 进入凸模、凹模工作表面,拉延时损伤工作表面,通气孔上 需加排气管(仅上模的通气孔上加排气管),
汽车覆盖件模具基础知识
六、翻边模结构 3.斜楔开花翻边模(1)穿桥式翻边凸模的扩张结构
1-斜楔 2-强制返楔 3导板 4-斜楔块 5-摆动压料板 6-压料板 7-氮气弹簧 8-上底板 9-斜楔块 10-斜楔 11-导板12-下底板 13-限位块 14-斜楔块 15-滑块 16-凸模 17-弹簧 18-凸模镶块 19-凹模镶块 20-弹簧 21-滑块 22限位块
5
6
气孔
78
9 10
汽车覆盖件模具基础知识
四、拉延模的结构及其特点
3.多动拉延模
7 65 8 9 10
汽车覆盖件冲压模具dl工艺数模设计规范
拉延工序A.概要1)拉延工序一般是压机加工的基本工序,是确保制品形象的工序。
一般冲压线生产是从拉延开始通过修边,切断,翻边,整形等的工序完成最终板件。
2)直接成型产品因很难对准拉延的基本条件,所以大不分不可能。
跟着考虑成型性在产品形象外增加与同拉延条件的形象,使一部分制品形象能在后工序加工(在拉延中最终形象的成型不可能的情况),有必要变更一部分形象。
像这样在制品以外增加做形象的必需定义数值才能正确做出形象。
为了做数模作业,赋予正确的数值才能最终做出设计者意图的形象。
3)拉延的基本条件是压边圈和凸模的形象。
压边圈是为了做出凸模内形象,控制被拉进去的材料的褶皱,压住材料自体的带有平面的构造物。
压边圈选定不好的话就会发生划痕,裂痕及褶皱。
凸模是带有制品凸出来的形象的构造物。
此些现象是根据相互关系及压边圈的影响下产生各种小变形,也产生各种不良,为了调解此些事项要变更一些形象或增加调解。
4)因为事实上在拉延上发生的褶皱在后工序无法去除,所以大部分DL图设计者尽可能在拉延中使制品裂开设计。
但是这样在模具制作后调整模具时投入很多工数所以不理想。
最近出来了成型性CAE分析程序可提前检证,可以提前做更正确的形象。
但是还没有完全的成型性CAE分析程序,所以还是要有一定的余量设计为好。
5)若产品形象深或有突起形象时很难一次性拉延。
此种情况要做2工序以上的拉延。
再者因大型压机的缓冲行程为300mm,所以拉延工序的成型高度超过300mm的情况事实上不可能成型,一般情况超过200mm的情况成型也相当困难,量产时也出现很多问题,所以分为2工序以上成型的情况很多。
图24. 各种拉延板件B.拉延工序的种类1)根据压力源的分类■双动拉延-主要使用在大型冲压板件的形态,滑块为内外的2种,外滑块固定压边圈,内滑块固定凸模。
根据情况外滑块也有可能设置在下型。
-因压边圈的压力大,能有一定量的力,容易成型,所以适合复杂形象的拉延上,但后工序要反过来投入,且有比单动式速度慢的弱点,所以现在还不使用。
汽车覆盖件模具工艺前期流程的优化设计策略分析
MANUFACTURING AND PROCESS | 制造与工艺时代汽车 汽车覆盖件模具工艺前期流程的优化设计策略分析刘勇重庆元创汽车整线集成有限公司 重庆市 401120摘 要: 在我国,汽车工业在国民经济的支柱产业中占有非常重要的位置,近年来,发展速度正在逐步提高。
但是,我国对汽车制造技术的发展水平有一定的限制,并且汽车的年产量仍然较低。
中国汽车工业的大发展至关重要。
汽车冲压件是汽车制造中非常重要的零件,例如车身,车架和车架,全部由钢冲压件制成。
车身面板是汽车冲压件的关键组件。
本文主要对汽车车身板件冲压生产工艺的发展进行具体的研究和分析,希望为相关人员提供具体的理论支持和实用参考材料。
关键词:车身 面板 冲压 生产工艺 开发 摘要冲压件的制造工艺水平和质量与汽车制造质量和制造成本密切相关。
冲压生产厂的生产过程及其技术在实际应用过程中有很高的要求,在实际生产中,经常需要计数过于繁琐以及需要相应工具的设备,且制造时间长。
如何利用一定的资金和先进的科学技术逐步降低现代冲压厂的制造成本,同时在一定程度上保证产品质量。
这个问题是所有企业家现在都应该关注的主题,工厂设计部门也需要进行一些关键研究。
因此,正确使用新材料,新工艺,扩展比例等是工厂设计部门的主要任务,以使技术水平有所提高,不断提高零件质量并实现合理的设计。
1 冲压工艺和产品的经济性分析目前我国汽车产品开发等方面具有在实际应用过程中开发相关卡车的能力,汽车产品开发处于开发的初期,并且仍处于开发阶段。
无论是哪种车身冲压件,在实际应用和开发过程中都必须具有良好的加工技能和经济效益。
冲压零件中的工序数量在测量冲压工序的水平方面起着非常重要的作用。
机体和介质中压力零件的处理数量与压力机数量,工具数量,输送设备数量,占地面积,人力和动能消耗密切相关。
因此,冲压工序的数目对冲压厂的投资规模及相关的制造成本有一定的影响我国汽车冲压零件的加工技术数目不是任意制定的,主要是冲压技术人员使用中压零件。
汽车外覆盖件DL设计-13
a)骄车后侧围外板拉延制件工艺补充面放大图(图一百一十六)骄车后侧围外板拉延制件成形工艺分析图延制件工艺补充面放大图。
图中显示了凸模工艺补充面上的凸包和凹坑,也显示了它们的凸模圆角半径和凹模圆角半径的变化规律,其变化规律与(图一百一十四)和(图一百一十五)所阐述的变化规律相同。
设置凸模工艺补充面上的凸包和凹坑都是为了增加该处附近板材的塑性变形程度,以求遵守“拉延制件塑性变形应遵守的准则”。
选择它们的凸模圆角半径和凹模圆角半径数值大小,可以改变该处变形程度的大小,因为该处的塑性变形內容与(图十七)所阐述的塑性变形內容相同,大的凸模圆角半径和凹模圆角半径显示了较小的变形程度;小的凸模圆角半径和凹模圆角半径显示了较大的变形程度。
8,完善DL图或工法图或加工要领图的可视化内容:拉延制件三维数模的建立,只是完成了车身覆盖件各道冲压工序件的三维数模形状和尺寸,还没有把DL图或工法图或加工要领图应该表达的【27】项内容用可视化的方式表达出来,特别是必要的文字说明。
如何使得DL图或工法图或加工要领图的使用人能够一目了然地领悟图中的内容,有以下三种方法:(1)将拉延制件三维数模通过计算机绘图软件转换成二维三向视图,通过制图的方法完善DL图或工法图或加工要领图,如(图八十五)所示。
(图八十四)的二维三向视图也是(图八十三)的三维立体数模通过计算机绘图软件转换而成,再通过制图的方法完善说明和表达。
这种方法是把车身覆盖件各道冲压工序件要说明的事都表达在一张二维三向视图上,故称综合工序图。
它的优点是对照查看比较方便,但是,需要说明的事不是很多。
适合于单冲压工序模具在压力机生产线上排序冲压的情况。
(2)将拉延、修边、翻边、斜契冲孔等各道冲压工序件的三维数模通过计算机绘图软件分别转换成各道冲压工序件的二维三向视图,通过制图的方法完善每一道冲压工序件及其模具设计需要说明的事,包括模具型面精细设计及加工需要说明的事等等。
例如(图一百)拉延件的二维三向视图就是(图九十九)拉延件的三维立体数模通过计算机绘图软件转换而来;(图九十六)修边件的二维三向视图就是(图九十五)修边件的三维立体数模通过计算机绘图软件转换而来;(图八十四)翻边件的二维三向视图就是(图八十三)翻边件的三维立体数模通过计算机绘图软件转换而来。
汽车外覆盖件DL设计方法-6
—48—行程最短和最适宜退出的方向,不一定都是(图五十九)所示的水平方向。
(图五十九)汽车车身顶盖翻倒钩边模示意图其二:起伏式开花凸模:例如(图六十)是骄车前侧车门外护板的翻边模,它的任務是在前侧车门外护板修边冲孔工序之后,将其上半部外缘翻垂直边和窗口下部翻45°倒钩边。
(图六十)a)是该翻边模的三维立体结构图,(图六十)b)是该翻边模的起伏式开花凸模和斜契翻边凹模的三维立体结构图。
上模向下冲压时,起伏式开花凸模斜契首先接触起伏式开花凸模水平传动滑块,并驱动起伏式开花凸模上下浮动滑块向上到位。
然后上模继续向下冲压,起伏式开花凸模上下浮动滑块不动,上模翻倒钩边凹模滑块接触下模斜契,并被驱动翻窗口下部45°倒钩边;与此同时,上模翻外缘垂直边凹模翻前侧车门外护板a)翻边模的三维立体结构图(图六十)骄车前侧车门外护板一次翻边模b)翻边模的起伏式开花凸模和斜契翻边凹模的三维立体结构图。
(图六十)骄车前侧车门外护板一次翻边模上半部外缘垂直边。
成形完毕之后,上模向上回程时,上模翻外缘垂直边凹模和上模翻窗口下部倒钩边凹模滑块首先退回到位,然后开花凸模上下浮动滑块向下到位。
此时,我们即可把翻好边的前侧车门外护板从模具中顺利取出。
这种结构也有不如人意之处,即当压力机滑块行程较小时,开花斜契可能干涉冲压件的送入或送出。
又例如(图六十一)是骄车前侧车门外护板的二次翻边模,它的任務是在前侧车门外a)二次翻边模的三维立体结构图(图六十一)骄车前侧车门外护板二次翻边模图例:A—下模座;B—上模座.外缘翻边凹模.浮动开花凸模斜契.向上压死边凸模驱动斜契;C—导板:D—窗口內缘翻边凹模;E—窗口內缘翻边凸模;F—凹模压件板及顶出器;G—斜契外缘翻边凹模;H-—外缘翻边凹模斜契;I—浮动开花凸模水平传动斜契;J—.向上压死边凸模水平传动斜契;K—向上压死边凸模传动滑块;L—导板;M—.外缘翻边凸模;N-—浮动开花凸模传动滑块;O—导板;P—导板;Q—导板。
ansys冲压毕业设计论文
摘要盒形件被广泛应用于生产中。
小到微型马达外壳,大到汽车覆盖件,盒形件在各领域起到不同的作用,如防护、防磁漏、固定等。
盒形件是非旋转体零件,其几何形状是由4个圆角和4条直边组成。
拉深变形时,圆角部分相当于圆筒形件拉深,而直边部分相当于弯曲变形。
与旋转体零件的拉深相比,其拉深变形要复杂些。
借助ANSYS/LS-DYNA非线性有限元分析软件,对制板料成形性能仿真,大幅度的减少设计和实验的量,降低成本费用,提高材料的成形质量。
从而探讨盒形件的成形工艺目前人们对于盒形件拉深的变形特点将有助于指导生产、缩短产品生产周期,提高盒形件的产品质量。
模拟结果表明,变压边力控制技术可以显著改善盒形件成形性能。
关键词:盒形件;ANSYS/LS-DYNA;变压边力ABSTRACTThe box-shaped pieces are widely used in production. To the micro-motor casing, large car cover, box shaped part plays a different role in various fields, such as protection, anti-magnetic leakage, fixed. The box-shaped non-rotating body parts, and its geometry is represented by four rounded corners and four straight edge. Deformation of the drawing, the rounded part of the equivalent of a cylindrical drawing the straight edge part equivalent to the bending deformation. Compared with the rotating body parts drawing, deep drawing deformation is more complicated. With the ANSYS / LS-DYNA non-linear finite element analysis software, the system of sheet metal formability simulation, substantially reduce the amount of design and experiment, to reduce costs and improve the quality of the material forming. The box-shaped pieces forming process so as to explore the box drawing deep deformation characteristics will help guide the production, shorten the production cycle, to improve the box-shaped product quality. The simulation results show that the blank holder force control technology can significantly improve the box-shaped forming properties.Keywords: box-shaped parts; the ANSYS / LS-DYNA; blank holder force.目录第一章绪论在现代工业生产中,60%~90%的工业产品需要使用模具加工,模具工业已成为工业发展的基础,而模具作为一种高附加值的技术密集型产品直接为高新技术产业化服务,又大量采用高新技术,因此模具已是高新技术产业的重要组成部分。
汽车覆盖件工艺及拉延模设计烟台大学毕业论文
目录第1章概论1.1 课题背景及意义1.1.1 课题的来源1.1.1 课题的意义1.2 国内汽车覆盖件模具的现状及发展1.2.1 汽车覆盖件简介1.2.2 模具CAD三维参数设计第2章产品结构分析及工艺方案的确定2.1 产品的结构分析2.2 工艺分析2.2.1 工艺方案的确定2.2.2 工序流程图(DL图)的设计2.3 拉延件的设计2.3.1 拉延件的冲压方向2.3.2 工艺补充部分的设计2.3.3 压料面的设计2.3.4 拉延筋的设计第3章工艺计算及主要参数的确定3.1 毛坯确定3.1.1 毛坯的尺寸3.1.2 毛坯的材质3.1.3 材料利用率3.2拉延力的计算3.2.1 拉延凸模压力的计算3.2.2 拉深压边力的计算3.3压边圈压力的计算3.4卸料力的计算3.5凸、凹模间隙的确定3.6拉延模具的行程计算3.6.1 拉延工作行程3.6.2压边圈行程3.6.3顶杆行程3.6.4导板行程3.7压力机的确定3.8模具闭合高度的确定第4章拉延模结构设计4.1拉延模介绍4.1.1拉延模类型4.1.2拉延模压边形式4.1.3拉延模材料4.1.4拉延模铸件结构4.2拉延模的导向方式4.2.1凸模与压边圈4.2.3导板4.2.2压边圈与凹模4.3下模结构设计4.3.1凸模结构4.3.2下模座及组件4.4上模结构设计4.5压边圈设计4.5.1压边圈强度4.5.2压边圈尺寸4.6排气孔的设计4.7 其他组件的设计4.8拉延模总装配设计4.8.1总装配图4.8.2爆炸图第5章拉延件质量分析5.1制件的质量分析5.2基于Autoform的模拟仿真第6章基于UG的模具参数化建模6.1 分模设计6.2 其他组件的详细设计6.3 模具的工作原理致谢参考文献第1章概论1.1课题背景及意义1.1.1课题背景此次设计产品依托于所在烟台泰利汽车模具制造有限公司A130项目,产品名称:左/右侧围内板后侧延伸板;产品编号:5401657/58-0EU。
汽车外覆盖件DL设计方法-9DOC
E—骄车前侧车门內板;F—骄车前侧车门外板;G—骄车前侧车门外板夹紧器;H—压缩弹簧;I —压缩弹簧;J—骄车前侧车门內板夹紧器;K—压死边凸模;L—上模座;M—预包边转动斜契驱动器。
图中虚线所示,按(图七十七)a)包边(扣合)机的包边(扣合)模块分块原则而分块的预包边转动斜契是张开的,待预包边转动斜契受到预包边转动斜契驱动器传动之后,正如图中实线所示,预包边转动斜契向模具中间转动,接触骄车前侧车门外板垂直边,将其予包边(扣合)成形为450的倒钩边。
然后预包边转动斜契在预包边转动斜契驱动器的继续传动下,沿四周向外张开,压死边凸模下来将其予包边(扣合)成形为450的倒钩边包边(扣合)成形为死边,如(图八十一)右侧所见。
压力机滑块向上,将按以上所叙述的程序之倒程序返回,我们即可在下模座上把包边(扣合)成形好的骄车前侧车门总成从包边(扣合)成形模中取出。
包边(扣合)模是要借用压力机来工作的,它适合于小批量多品种汽车生产的情况。
它可以是在焊接装配生产线上来工作,也可以是在冲压生产线上来工作,将根据生产厂的具体情况而定。
三,拉延制件工艺补充压料面型面的建立程序与要点冲压工法是汽车车身覆盖冲压变形成败的保证,是获取冲压件装配尺寸精度的技术措施,是得到良好经济效果的手段,是模具结构设计的指导书。
DL图或工法图或加工要领图应该表达如下一些內容:【1】汽车车身覆盖件是由那几道冲压工序成形出来的,以及每道冲压工序要完成的工程內容;【2】每道冲压工序的基准座标(或是模具心)与汽车车身覆盖件基准座标(或是白车身基准座标)的尺寸关系,即两个基准座标的X、Y、Z差值和旋转的角度;【3】每道冲压工序的冲压方向,即是顺冲压工序基准座标的方向还是逆冲压工序基准座标的方向;【4】每道冲压工序的冲压件送入模具的方向和从模具中取出的方向及方法;【5】冲压件展开料的尺寸,以及获得展开料的方式,即是用剪床剪裁还是用模具冲裁得到;【6】修边及冲孔废料的剪裁方式和修边及冲孔废料的排除方向和方法;【7】采用斜契工作的冲压工序,其斜契工作的方式和斜契工作的方向,以及每个斜契承担的工程內容;【8】拉延工艺压料面的型面尺寸,含拉延工艺筋的布置,以及工艺压料面各部位不均匀间隙的处置等;【9】拉延工艺补充面的型面尺寸,含拉延凸模沿周侧面的型面尺寸及各部位不同的拉延倾斜角度,小曲率凸模沿周侧面许可拉延系数和许可翻边系数的确认,以及必须设立的封闭的工艺凸包、工艺反包、或工艺切口等;【10】拉延凸、凹模圆角半径的设定,以及过拉延和过翻边的必要处置;【11】冲压件大曲率曲面延伸变形量大于3﹪的计算和确认;【12】在工艺面上修边线和翻边线形状及尺寸的注明,标明修边和翻边是否造成已拉延成形好的型面发生意外变形而采取的措施,说明翻边变形程度的许可值;【13】对于汽车车身活动件的外覆盖件,其沿周900翻边轮廓线应分别放大的尺寸范围;【14】拉延凸模与压边圈的分界标记,含分界间隙;【15】修边凹模与顶出器的分界标记,含分界间隙;【16】翻边凹模与顶出器的分界标记,含分界间隙;【17】斜契修边凹模块与修边凹模块的分界标记,含分界间隙;【18】斜契翻边凹模块与翻边凹模块的分界标记,含分界间隙;【19】整行轮廓线的标明;【20】拉延模成形到位标识记号的位置认定;【21】冲压件装配面和焊接接合面的注明,以及相关工序模具型面的凸、凹模间隙尺寸的注明;【22】各冲压工序定位基准孔的设立,以及公差尺寸的标明;【23】模具使用机床的工艺尺寸的说明,例如模具高度、托钉孔位置等;【24】是否有左右件,及其处置方法;【25】为防止回弹所采取的措施;【26】多工位模具中冲压件抓取部位和抓取方式;【27】模具型面精细设计需要说明的其它尚未说明的问题。
汽车外覆盖件DL设计方法-3
(7)各个截面延伸变薄成形之变形程度的均匀化:对于主要由大曲率曲面组成的汽车车身覆盖件,例如前侧车门外板、轿车顶盖等,它们都是浅拉延成形的冲压件,其覆盖件主曲面主要的变形方式不是塑流变形,而是延伸变薄成形。
塑流变形程度的均匀化不能有效解决其覆盖件主曲面变形程度均匀化的问题,因此,要求处理好其汽车车身覆盖件的拉延成形制件各个截面延伸变薄成形之变形程度的均匀化,只有这样才能得到其汽车车身覆盖件的光洁外表曲面。
(图三十七A)是左右后侧门外板合起来拉伸的拉延制件图,它是一个浅拉延成形的冲压件,其覆盖件主曲面主要的变形方式不是塑流变形,而是延伸变薄成形。
从光洁拉延变形必需遵守的规则,我们首先对凸模底部沿周的工艺补充面要作如(图一百零四)b)所示形状的更正。
然后,我们再按(图九十七)和(图九十九)所陈述的原则建立拉延制件的工艺压料面和工艺补充面。
此时,我们只在工艺压料面上设立一圈宽为8至10mm高为4至5mm 的方形拉延筋,其目的是阻止工艺压料面上的变形板材流入凹模內部型面。
最后,我们将凹模口园角半径设立为10至15mm,其目的是有利于凸模底部的变形板材发生延伸变薄成形。
(图三十七A)左右后侧门外板合起来拉伸的拉延制件图在拉延制件的各个方向的横截面上,其工艺补充面的形状和尺寸B、H的选择,除了决定工艺压料面的合理形状之外,还决定了这个横截面的延伸变薄成形的变形量K,即:Lx1 – Lx10Kx1 = ————————× 100%Lx10(图三十七A)注明了拉延制件的各个方向主要横截面上的延伸变薄成形的变形量K x1、K x2、K x3、Kz1、Kz2和Kz3,各个方向主要横截面上的延伸变薄成形的变形量K应该是比较接近,这就是各个截面延伸变薄成形之变形程度的均匀化,是为了得到光洁拉延变形的结果。
同时,各个方向主要横截面上的延伸变薄成形的变形量K最好是5%左右,以便拉延制件中间大曲率曲面能够得到充分的塑性变形,保证了汽车车身覆盖件应具有的尺寸精度和刚性。
汽车车身制造工艺学期末考试复习题
一.名词解释1、冲压成形性能: 板料对冲压成形工艺(各种冲压加工方法)的适应能力。
2、冲裁:利用冲裁模在压力机上使板料的一部分与另一部分分离的冲压分离工序.3、冲模的闭合高度H:指行程终了时,上模上表面与下模下表面之间的距离。
冲模的闭合高度应与压力机的装模高度相适应。
4、回弹现象:弯曲件从模具里取出后,中性层附近的纯弹性变形以及内外侧区域总变形中弹性变形部分的恢复,使其弯曲件的形状和尺寸都发生与加载时变形方向相反的变化,这种现象称之为弯曲件的回弹.5、拉深:是利用拉深模将已冲裁好的平面毛坯压制成各种形状的开口空心零件,或将已压制的开口空心毛坯进一步制成其他形状、尺寸的冲压成形工序,也称拉延或压延。
6、拉深系数m:拉深后圆筒形零件直径d与拉深前毛坯直径D的比值,即m=d/D。
7、局部成形:用各种不同变形性质的局部变形来改变毛坯的形状和尺寸的冲压形成工序.8、胀形:利用模具强迫板料厚度减薄和表面积增大,获得所需几何形状和尺寸的零件的冲压成形方法9、翻边:利用模具把板料上的孔缘或外缘翻成竖边(侧壁)的冲压方法10、压料面:凹模圆角外,被压料圈压紧的毛坯部分11、冲压工艺过程图(DL图):DL图设计法即冲压工艺过程图法,在模具制造过程中,应采用先进的DL图设计法,用于汽车覆盖件产品的冲压工艺性分析和模具设计结构分析,指导模具设计和制造。
12、焊接性能:指被焊材料在采用一定的焊接工艺和结构形式下,能后获得较好焊接结构的接头的难易程度。
13、车身结构分离面:相邻装配单元的结合面称为分离面14、定位焊:为装配和固定焊件接头的位置而进行的焊接15、电阻焊:工件结合后施加电压,利用电流流经工件接触区域产生的电阻热将其加16、缝焊:通过滚盘电极与工件的相对运动产生密封焊缝。
缝焊分为:连续缝焊、断续缝焊、步进缝焊。
17、二氧化碳保护焊:利用CO2作为保护气的气体保护电弧焊.整个焊接过程由无数个熔滴过渡过程组成.18、激光焊:是以聚焦激光束轰击焊件所产生的热量进行焊接的方法.19、焊缝夹具:20、柔性焊接生产线(WFMS):由装卸小车、主控台、随行工装、焊接站、存放台组成.21、偏差配合点焊装配:指在夹具夹紧力作用下点焊连接前零件与零件在焊接处不能完全贴合而仍有偏差时的点焊装配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a)骄车后侧围外板拉延制件工艺补充面放大图(图一百一十六)骄车后侧围外板拉延制件成形工艺分析图延制件工艺补充面放大图。
图中显示了凸模工艺补充面上的凸包和凹坑,也显示了它们的凸模圆角半径和凹模圆角半径的变化规律,其变化规律与(图一百一十四)和(图一百一十五)所阐述的变化规律相同。
设置凸模工艺补充面上的凸包和凹坑都是为了增加该处附近板材的塑性变形程度,以求遵守“拉延制件塑性变形应遵守的准则”。
选择它们的凸模圆角半径和凹模圆角半径数值大小,可以改变该处变形程度的大小,因为该处的塑性变形內容与(图十七)所阐述的塑性变形內容相同,大的凸模圆角半径和凹模圆角半径显示了较小的变形程度;小的凸模圆角半径和凹模圆角半径显示了较大的变形程度。
8,完善DL图或工法图或加工要领图的可视化内容:拉延制件三维数模的建立,只是完成了车身覆盖件各道冲压工序件的三维数模形状和尺寸,还没有把DL图或工法图或加工要领图应该表达的【27】项内容用可视化的方式表达出来,特别是必要的文字说明。
如何使得DL图或工法图或加工要领图的使用人能够一目了然地领悟图中的内容,有以下三种方法:(1)将拉延制件三维数模通过计算机绘图软件转换成二维三向视图,通过制图的方法完善DL图或工法图或加工要领图,如(图八十五)所示。
(图八十四)的二维三向视图也是(图八十三)的三维立体数模通过计算机绘图软件转换而成,再通过制图的方法完善说明和表达。
这种方法是把车身覆盖件各道冲压工序件要说明的事都表达在一张二维三向视图上,故称综合工序图。
它的优点是对照查看比较方便,但是,需要说明的事不是很多。
适合于单冲压工序模具在压力机生产线上排序冲压的情况。
(2)将拉延、修边、翻边、斜契冲孔等各道冲压工序件的三维数模通过计算机绘图软件分别转换成各道冲压工序件的二维三向视图,通过制图的方法完善每一道冲压工序件及其模具设计需要说明的事,包括模具型面精细设计及加工需要说明的事等等。
例如(图一百)拉延件的二维三向视图就是(图九十九)拉延件的三维立体数模通过计算机绘图软件转换而来;(图九十六)修边件的二维三向视图就是(图九十五)修边件的三维立体数模通过计算机绘图软件转换而来;(图八十四)翻边件的二维三向视图就是(图八十三)翻边件的三维立体数模通过计算机绘图软件转换而来。
我们在这些二维三向视图上注明该付模具使用、制作、安装、调整、保管等需要详细说明的事项,故称加工要领图。
我们再把这些二维三向视图连起来,即称冲压工法图。
这种方法是把车身覆盖件各道冲压工序件要说明的事分别表达在各自二维三向视图的冲压工序上,它的优点是能够把该冲压工序件及其模具的结构特点清清楚楚详详细细地表达出来,但是,对照查看比较繁琐。
适合于多工位全自动化冲压生产模具的情况。
(3)在拉延、修边、翻边、斜契冲孔等各道冲压工序件的三维立体数模上,直接标注基准、尺寸、允差、形位误差、文字注释、冲压生产要领、模具结构要素等等需要说明的事,如(图一百一十二)所示。
这种表达方式称为三维工法图,它的可视化效果最显著,具有很大的空间来注明需要说明的很多事。
但是,它也有不足之处:[1]它只能是电子文档资料,在具有电子文档传递条件下才尽其用,才能显示它的优越性;[2]使用一般计算机绘图软件来标注基准、尺寸、允差、形位误差、文字注释、冲压生产要领、模具结构要素等等需要说明的事,还是比较复杂,需要开发二级绘图软件支撑,才能具有好的工作效率。
附录一:供给车身覆盖件拉延制件使用的各拉延模具典型原理结构图:〖1〗安装于双动压力机上使用的双动拉延模:(图一百一十七)安装于双动压力机上使用的双动拉延模典型原理结构图(图一百一十七)是安装于双动压力机上使用的双动拉延模典型原理结构图,它适用于拉延深度比较深的车身覆盖件拉延制件,因为压边圈夹持力比较大,效果比较好。
而且适用于压料面形状中间向凹模方向凹陷的情形,因为钢板坯料放置比较稳当。
〖2〗安装于单动压力机上使用的单动拉延模:(图一百一十八)是安装于单动压力机上使用的两种单动拉延模典型原理结构图,图a)是使用氮气弹簧的单动拉延模典型原理结构图;图b)是使用单动压力机上气垫托钉的单动拉延模典型原理结构图。
安装于单动压力机上使用单动压力机上气垫托钉的单动拉延模,它适用于拉延深度比较浅的车身覆盖件拉延制件,因为压边圈夹持力比较小。
还适用于压料面形状中间向凸模方向凹陷的情形,因为钢板坯料放置比较稳当。
它还适用于在单动压力机生产线上排序冲压的情况和多工位全自动化冲压生产的情况,因为在车身覆盖件工序件冲压生产的传递过程中不需要翻转,比较方便。
安装于单动压力机上使用氮气弹簧的单动拉延模,它适用于拉延深度浅的车身覆盖件拉延制件,因为压边圈夹持力小。
还适用于压料面形状中间向凸模方向凹陷的情形,因为钢板坯料放置比较稳当。
它更适用于在单动压力机生产线上排序冲压的情况和多工位全自动化冲压生产的情况,因为在车身覆盖件工序件冲压生产的传递过程中不需要翻转,而且不受压力机上气垫托钉位置的限制,更为方便。
(图一百一十八)安装于单动压力机上使用的两种单动拉延模典型原理结构图〖3〗安装于双动压力机上使用的三动拉延模:(图一百一十九)是安装于双动压力机上使用的两种三动拉延模典型原理结构图,图a)是使用双动压力机上气垫托钉的三动拉延模典型原理结构图;图b)是使用氮气弹簧的三动拉延模典型原理结构图。
(图一百一十九)安装于双动压力机上使用的两种三动拉延模典型原理结构图安装于双动压力机上使用的三动拉延模,它的工作原理是双动压力机的外滑块携压边圈先下来,接触托起的托圈,夹紧板材继续向下到下死点,让外凸模(内凹模)引伸板材入外凹模(压边圈)内。
然后双动压力机的内滑块携内凸模下来到下死点,将板材继续引伸到位,最终成形完拉延制件。
(图三十九)所示汽车车身背门内板三动拉延模结构图就是使用了这个工作原理的一个例子。
安装于双动压力机上使用氮气弹簧的三动拉延模,它可以不受压力机上气垫托钉位置的限制,更方便于使用。
〖4〗安装于单动压力机上使用的三动拉延模:(图一百二十)是安装于单动压力机上使用的两种三动拉延模典型原理结构图,图a)是使用单动压力机上气垫托钉和氮气弹簧的三动拉延模典型原理结构图;图b)是全部使用氮气弹簧的三动拉延模典型原理结构图。
(图一百二十)安装于单动压力机上使用的三动拉延模典型原理结构图安装于单动压力机上使用的三动拉延模,它的工作原理是单动压力机的滑块携由氮气弹簧托起的压边圈、内凸模、和内凸模座组成的上模向下,首先氮气弹簧托起的压边圈接触托起的托圈,夹紧板材继续向下,由于托起压边圈的氮气弹簧压力大于托起托圈的氮气弹簧压力(或压力机上气垫托钉的压力),故而托起托圈的氮气弹簧(或压力机上气垫)最先受到压缩,让外凸模(内凹模)引伸板材入外凹模(压边圈)内,直至外凸模(内凹模)的型面与外凹模(压边圈)相对应的型面接触了而止。
然后单动压力机的滑块携由氮气弹簧托起的压边圈、内凸模、和内凸模座组成的上模继续向下,托起压边圈的氮气弹簧受到压缩,外凹模(压边圈)受到外凸模(内凹模)的阻止而停止不动,仅仅只是由氮气弹簧、内凸模、和内凸模座组成的上模继续向下,直到下死点,内凸模故而将板材继续引伸到位,最终成形完拉延制件。
(图三十九)所示汽车车身背门内板三动拉延模结构图也就是使用了这个工作原理的一个例子。
安装于单动压力机上全部使用氮气弹簧的三动拉延模,它可以不受压力机上气垫托钉位置的限制,更方便于使用。
三动拉延在双动压力机上使用的三动拉延模结构比在单动压力机上使用的三动拉延模结构简单,使用状态也比较合理可靠。
在相同的车身覆盖件条件下,选用三动拉延的方法比选用单动拉延和双动拉延的方法,可以减小拉延制件的变形程度,促使拉延制件各个部位变形程度均匀化。
〖5〗安装于单动压力机上使用的复动拉延模:(图一百二十一)是安装于单动压力机上使用的两种复动拉延模典型原理结构图,图a)(图一百二十一)安装于单动压力机上使用的两种复动拉延模典型原理结构图是使用单动压力机上气垫托钉和氮气弹簧的复动拉延模典型原理结构图;图b)是全部使用氮气弹簧的复动拉延模典型原理结构图。
安装于单动压力机上使用的复动拉延模,它的工作原理是压力机滑块携凹模向下,先接触压力机托钉托起的外压边圈,夹紧板材向下,由于内压边圈使用氮气弹簧的托起力大于起始拉伸的拉延力,故而内压边圈能将引伸板材拉入凹模内,直至接触凹模型面。
尔后,压力机滑块携凹模继续向下,与托起的外压边圈和内压边圈夹紧板材继续向下,直至下死点,由凸模将引伸板材拉入凹模内,直至接触凹模型面,最终成形完拉延制件。
此时,凸模引伸板材发生的塑性变形方式主要是依靠板材的延伸变薄,很少依靠板材的塑性流动变形。
这种复动拉延模典型原理结构的优点是消除了圆锥面拉延变形所发生的弊端,在拉伸变形过程中变形板材不会是悬空的,它始终都是贴敷在凸模和凹模型面上发生塑性变形,因此,比较容易得到光洁的车身覆盖件拉延制件。
安装于单动压力机上全部使用氮气弹簧的复动拉延模,它可以不受压力机上气垫托钉位置的限制,更方便于使用。
它的工作原理是压力机滑块携凹模向下,先接触满足于压边力的氮气弹簧托起的外压边圈,夹紧板材向下,由于内压边圈使用氮气弹簧的托起力大于起始拉伸的拉延力,故而内压边圈能将引伸板材拉入凹模内,直至接触凹模型面。
尔后,压力机滑块携凹模继续向下,与托起的外压边圈和内压边圈夹紧板材继续向下,直至下死点,由凸模将引伸板材拉入凹模内,直至接触凹模型面,最终成形完拉延制件。
〖6〗安装于双动压力机上使用的复动拉延模:(图一百二十二)是安装于双动压力机上使用的复动拉延模典型原理结构图。
安装于双动压力机上使用的复动拉延模,它的工作原理是压力机外滑块携外压边圈向下,先接触凹模型面夹紧板材。
尔后,压力机内滑块携凸模和氮气弹簧托起的内压边圈向下,由于氮气弹簧的压力大于板材起始的拉延力,故而能将变形板材引伸入凹模内,直至内压边圈触凹凹模型面为止。
然后,内压边圈停止不动,氮气弹簧被压缩,压力机(图一百二十二)安装于双动压力机上使用的复动拉延模典型原理结构图内滑块携凸模继续向下,将变形板材继续引伸入凹模内,直至下死点,直至接触凹模型面,最终成形完拉延制件。
此时,凸模引伸板材发生的塑性变形方式主要是依靠板材的延伸变薄,很少依靠板材的塑性流动变形。
这种复动拉延模典型原理结构的优点同样也是是消除了圆锥面拉延变形所发生的弊端,在拉伸变形过程中变形板材不会是悬空的,它始终都是贴敷在凸模和凹模型面上发生塑性变形,因此,比较容易得到光洁的车身覆盖件拉延制件。
复动拉延在双动压力机上使用的复动拉延模结构比在单动压力机上使用复的动拉延模结构简单,使用状态也比较合理可靠。
〖7〗安装于双动压力机上使用的三动反拉延模:a)全部使用氮气弹簧的三动反拉延模b)使用双动压力机上气垫托钉和氮气弹簧的三动反拉延模(图一百二十三)安装于双动压力机上使用的两种三动反拉延模典型原理结构图(图一百二十三)是安装于双动压力机上使用的两种三动反拉延模典型原理结构图,图a)是全部使用氮气弹簧的三动反拉延模典型原理结构图,图b)是使用双动压力机上气垫托钉和氮气弹簧的三动反拉延模典型原理结构图。