人教版初中数学八年级上册《19.2.1 正比例函数》教案

合集下载

八年级数学上册《正比例函数》教案、教学设计

八年级数学上册《正比例函数》教案、教学设计
2.利用多媒体课件,直观展示正比例函数的图像特点。通过动态演示,帮助学生理解正比例函数的图像是一条通过原点的直线,并引导学生探究其性质。
3.设计具有梯度的问题,引导学生逐步深入理解正比例函数。从简单的判断题、选择题到综合应用题,让学生在解决问题的过程中,掌握正比例函数的知识。
4.创设小组合作交流的机会,让学生在讨论中互相启发,共同进步。教师适时给予指导,帮助学生突破难点。
-目的:培养学生团队协作、共同解决问题的能力,提高学生的沟通表达能力。
5.课后反思:要求学生撰写ቤተ መጻሕፍቲ ባይዱ后反思,总结自己在学习正比例函数过程中的收获和不足。
-反思内容:可以包括对本节课知识点的理解、解题方法的掌握、学习过程中的困惑等。
6.家长参与:鼓励家长参与学生的作业过程,了解学生的学习情况,为学生提供必要的帮助和支持。
-提问:“那么,我们如何用数学公式来表示这种关系呢?”
(二)讲授新知
1.正比例函数的定义:教师给出正比例函数的定义,并解释相关概念。
-解释:“正比例函数是指一个函数,当自变量x的值增大或减小时,其对应的函数值y也按照相同的比例增大或减小。”
2.正比例函数的表达式:引导学生根据定义推导正比例函数的表达式y=kx(k≠0)。
-提示:在解决提高题时,鼓励学生运用图像分析、逻辑推理等方法,提高问题解决能力。
3.创新实践:设计具有挑战性的创新题目,要求学生结合生活实际,运用正比例函数模型解决实际问题。
-要求:学生需将问题解决过程和结果以书面形式呈现,注重解题思路和方法的创新。
4.小组合作:布置小组合作作业,让学生在组内共同探讨、解决一个综合性的正比例函数问题。
-提问:“根据正比例函数的定义,我们可以得出什么样的数学表达式?”

八年级数学正比例函数说课(附教案)

八年级数学正比例函数说课(附教案)

八年级数学正比例函数说课(附教案)一、教学目标:1. 让学生理解正比例函数的定义,掌握正比例函数的性质。

2. 培养学生运用正比例函数解决实际问题的能力。

3. 提高学生的数学思维能力和团队协作能力。

二、教学内容:1. 正比例函数的定义2. 正比例函数的性质3. 正比例函数在实际问题中的应用三、教学重点与难点:1. 重点:正比例函数的定义和性质。

2. 难点:正比例函数在实际问题中的应用。

四、教学方法:1. 采用自主学习、合作学习、探究学习相结合的方法。

2. 利用多媒体课件辅助教学,提高学生的学习兴趣。

3. 通过实例分析,引导学生运用正比例函数解决实际问题。

五、教学过程:1. 引入新课:通过生活实例,引导学生思考正比例关系。

2. 讲解正比例函数的定义:引导学生通过自主学习,理解正比例函数的定义。

3. 讲解正比例函数的性质:通过合作学习,让学生掌握正比例函数的性质。

4. 应用练习:让学生运用正比例函数解决实际问题,巩固所学知识。

教案内容待完善,请根据实际教学需求进行调整。

六、教学评价1. 通过课堂提问、作业批改和课堂表现,评价学生对正比例函数定义和性质的理解程度。

2. 通过课后练习和实际问题解决,评价学生运用正比例函数的能力。

3. 通过小组讨论和课堂互动,评价学生的团队协作和数学思维能力。

七、教学资源1. 多媒体课件:用于展示正比例函数的图像和实际问题情境。

2. 练习题集:用于巩固学生对正比例函数的理解和应用。

3. 实际问题案例:用于引导学生将数学知识应用于实际情境中。

八、教学进度安排1. 第一课时:介绍正比例函数的定义和性质。

2. 第二课时:讲解正比例函数在实际问题中的应用。

3. 第三课时:进行实际问题解决练习和课堂小结。

九、课后作业2. 完成练习题集,巩固对正比例函数的理解。

十、教学反思1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高教学效果。

2. 分析学生的学习反馈,了解学生在正比例函数学习中的难点和问题,调整教学策略。

八年级数学19.2.1 正比例函数教案

八年级数学19.2.1  正比例函数教案

§19.2.1 正比例函数教学目标1.认识正比例函数的意义.2.掌握正比例函数解析式特点.3.理解正比例函数图象性质及特点.4.能利用所学知识解决相关实际问题.教学重点1.理解正比例函数意义及解析式特点.2.掌握正比例函数图象的性质特点.3.能根据要求完成转化,解决问题.教学难点:正比例函数图象性质特点的掌握.教学过程:Ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即y=200×45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.Ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长L随半径r的大小变化而变化.2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.答:1.根据圆的周长公式可得:L=2 r.2.依据密度公式p=mV可得:m=7.8V.3.据题意可知: h=0.5n.4.据题意可知:T=-2t.我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x 的形式一样.一般地,•形如y=•kx•(k•是常数,•k•≠0•)的函数,•叫做正比例函数(proportional func-tion ),其中k 叫做比例系数.我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢? [活动一]画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.1.y=2x 2.y=-2x结论:1.函数y=2x 中自变量x 可以是任意实数.列表表示几组对应值:画出图象如图(1).2.y=-2x 的自变量取值范围可以是全体实数,列表表示几组对应值:x -3 -2 -1 0 1 2 3 y642-2-4-6画出图象如图(2).3.两个图象的共同点:都是经过原点的直线. 不同点:函数y=2x 的图象从左向右呈上升状态,即随着x 的增大y 也增大;经过第一、三象限.函数y=-2x 的图象从左向右呈下降状态,即随x 增大y 反而减小;•经过第二、四象限.让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线.•当x>0时,图象经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•图象经过二、四象限,从左向右下降,即随x 增大y 反而减小.正是由于正比例函数y=kx (k 是常数,k ≠0)的图象是一条直线,•我们可以称它为直线y=kx . [活动二]经过原点与点(1,k )的直线是哪个函数的图象?画正比例函数的图象时,•怎样画最简单?为什么?经过原点与点(1,k )的直线是函数y=kx 的图象.画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k ).因为两点可以确定一条直线.Ⅲ.随堂练习用你认为最简单的方法画出下列函数图象:1.y=32x 2.y=-3xⅣ.课时小结本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.x -3 -2 -1 0 1 2 3y -6 -4 -2 0 2 4 6§19.2.2 一次函数(一)教学目标:1、掌握一次函数解析式的特点及意义2、知道一次函数与正比例函数的关系3、理解一次函数图象特点与解析式的联系规律教学重点:一次函数解析式特点 2.一次函数图象特征与解析式的联系规律 教学难点1、一次函数与正比例函数关系 2、根据已知信息写出一次函数的表达式。

八年级数学正比例函数说课(附教案)

八年级数学正比例函数说课(附教案)

八年级数学正比例函数说课(附教案)第一章:正比例函数的定义与性质1.1 教学目标了解正比例函数的定义掌握正比例函数的性质能够运用正比例函数解决实际问题1.2 教学内容正比例函数的定义正比例函数的性质正比例函数的图像1.3 教学步骤1. 引入正比例函数的概念,引导学生思考实际生活中的正比例关系。

2. 给出正比例函数的定义,解释自变量与因变量之间的关系。

4. 讲解正比例函数的图像特点,让学生掌握正比例函数的图像特征。

1.4 教学评价通过课堂讲解和实例分析,评价学生对正比例函数的理解程度。

学生能够正确描述正比例函数的性质和图像特征。

第二章:正比例函数的图像与解析式2.1 教学目标了解正比例函数的图像特点掌握正比例函数的解析式能够通过解析式确定正比例函数的图像2.2 教学内容正比例函数的图像特点正比例函数的解析式通过解析式确定正比例函数的图像2.3 教学步骤1. 回顾正比例函数的定义和性质,引导学生思考正比例函数的图像特点。

2. 讲解正比例函数的图像特点,如通过原点、斜率为常数等。

3. 引导学生通过解析式来确定正比例函数的图像,解释k的取值对图像的影响。

2.4 教学评价通过课堂讲解和图像分析,评价学生对正比例函数图像的理解程度。

学生能够正确写出正比例函数的解析式,并能够通过解析式确定函数的图像。

第三章:正比例函数的应用3.1 教学目标掌握正比例函数在实际问题中的应用能够解决涉及正比例函数的问题培养学生的实际问题解决能力3.2 教学内容正比例函数在实际问题中的应用解决涉及正比例函数的问题的方法3.3 教学步骤1. 通过实例引入正比例函数在实际问题中的应用,如速度与时间的关系。

2. 引导学生分析实际问题中的正比例关系,确定自变量和因变量。

3. 讲解解决涉及正比例函数问题的方法,如设置方程、求解等。

3.4 教学评价通过实例分析和问题解决,评价学生对正比例函数应用的理解程度。

学生能够正确解决涉及正比例函数的实际问题。

人教版八年级数学19.2.1 正比例函数教学设计

人教版八年级数学19.2.1 正比例函数教学设计

人教版八年级数学19.2.1 正比例函数教学设计一、教材分析1、教材的地位和作用《正比例函数》是九年制义务教育新课程标准八年级第一学期第十九章的内容。

从比例中的两个量的比值是一个定值,得出两个量成正比例的概念。

学生已经学习了比例的意义与性质,在这个基础上,学生能很容易接受正比例概念。

再从正比例关系到正比例函数,从互相联系的两个变量在变化过程中有互相依从,互相制约的关系,初步引出函数的概念。

因此,本节课具有承上启下的重要作用,函数思想是一种重要的数学思想,它体现了运动变化和对立统一的观点,体现了数学的建模思想和数形结合思想,对于初次接触到函数的学生而言,理解函数的意义是个难点。

因此本节课在教学中力图向学生展示常见问题中的变量,和变量之间的关系,使学生对以后函数的定义有一定的了解2教学目标根据上述教材结构与分析,考虑到学生已有的认知结构和心理特征,我制定如下目标:知识与技能:⑴理解正比例函数及正比例的意义;⑵根据正比例的意义判定两个变量之间是否成正比例关系;⑶识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。

过程与方法:⑴通过现实生活中的具体事例引入正比例关系通过画图像的操作实践,体验“描点法”;⑵经历利用正比例函数图像直观分析正比例函数基本性质的过程,体会数形结合的思想方法和研究函数的方法情感态度与价值观: 积极参与数学活动,对其产生好奇心和求知欲.形成合作交流、独立思考的学习习惯.3、教学重点:理解正比例和正比例函数的意义4、教学难点:判定两个变量之间是否存在正比例的关系二.学生情况分析在这节课之前,学生已经掌握了比例的意义和性质,对正比例的定义的掌握没有什么问题。

对根据给出的实际问题,列代数式或是列方程都有一定的训练。

三.教学方法本节课的难点是理解现实问题中是否存在变量,并能判定两个变量之间是否存在正比例的关系,通过教师的引导,启发调动学生的积极性,让学生在课堂上多观察,多练习,主动参与到整个教学活动中来,通过观察能发现正比例函数的特点,教师的主导作用与学生主体地位达到了相互统一。

19.2.1正比例函数图像及其性质

19.2.1正比例函数图像及其性质
思考1 在k<0 的情况下,图象是左低右高还是左高右低? 思考2 对应地,当自变量的值增大时,对应的 函数值是随着增大还是减小? 当k<0时,图像是一条经过原点和第二、四象限的直线 从左向右下降 随着x的增大y反而减小
归函数的图像和性质
一般地,正比例函数y=kx(k是常数,k≠0)的图像是一 条经过原点的直线,我们称之为直线y=kx。 当k>0时,直线y=kx经过第三、第一象限,从左向右上 升,即随着x的增大y也增大; 当k<0时,直线y=kx经过第二、第四象限,从左向右下 降,即随着x的增大y反而减小。
画正比例函数的图像时,只需 描两个点,然后过这两个点画一条 直线
归纳函数的图像和性质
一般地,正比例函数y=kx(k是常数,k≠0)的图像是一 条经过原点的直线,我们称之为直线y=kx。 当k>0时,直线y=kx经过第三、第一象限,从左向右上 升,即随着x的增大y也增大; 当k<0时,直线y=kx经过第二、第四象限,从左向右下 降,即随着x的增大y反而减小。
学习重点:

用数形结合的思想方法,通过画图观察,概括正比 例函数的图象特征及性质.

问题一:什么是正比例函数?请你举出两个例子。 问题一:画函数图像的一般步骤?
分三步走:1.列表 2.描点 3.连线 问题二:画函数图像的注意事项? 1.建立正确的平面直角坐标系,标记正确的方向,变量字 母,原点,单位长度 2.列表时选取的值最好均匀,当自变量的取值是任意实 数时,尽量正值,0,负值 要选取,一般五点定形,同 时注意省略号 3.连线时要用平滑的曲线连接个点,注意图像是一段还是 无限延伸,从而确定图像有无端点
m、n的值;⑶点E(-1,4)在这个图像上吗?试 说明理由;⑷若-2≤x≤5,则y的取值范围是什么; ⑸若点A在这个函数图像上,AB⊥y轴,垂足B的坐

19.2.1正比例函数(共2课时)教案 【新人教版八年级下册数学】

19.2.1正比例函数(共2课时)教案  【新人教版八年级下册数学】

八年级数学(下)导学练案 总第 课时学习反思课题:19.2.1正比例函数(1)编写:湖北省郧县城关一中 熊勇【学习目标】1.经历从实际问题抽象得出正比例函数的过程,正确理解正比例函数的概念;2.会根据已知条件求正比例函数的解析式.【前置学习】一、基础回顾:写出下列每个问题中的两个变量之间的函数关系式:1.京沪高铁列车的平均速度为300km/h ,列车的行程y(km)随时间t(h)的变化而变化;2.圆的周长 随半径的大小变化而变化;l r 3.铁的密度为7.8,铁块的质量(单位:)随它的体积V (单位:)的3/cm g m g 2cm 大小变化而变化;4.每个练习本的厚度为0.5,一些练习本摞在一起的总厚度(单位:)随这cm h cm 些练习本的本数的变化而变化;n 5.冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度(单位:℃)随冷冻时间T t (单位:分)的变化而变化.解:1. ;2. ;3. ;4. ;5. .二、自主探究请认真学习课本至页“练习”以前的内容后,思考:86P 87P 1.观察上面五个函数的解析式,他们有什么共同特点?2.这五个函数解析式用一个一般形式如何表达呢?归纳:一般地,形如 的函数叫做正比例函数,其中k 叫做 . 3.下列函数:① ② ③ ④ ⑤ ⑥中,x y -=3x y =x y 8=23+=x y x y 2=2x y =属于正比例函数的是 .三.疑难摘要.【学习探究】一、合作交流、解决困惑(一)小组交流:通过自学你学会了什么?还有什么问题不明白?在小组内讨论并解决疑难.(二)班级展示与教师点拔:展示一:1.正比例函数的一般形式是什么?比例系数k 必须满足什么条件?自变量的指数是几?2.若y =5x是正比例函数,则m = ;若是关于x 的正比例函数,则3m-2(4)y m x =-m.3.已知当m = 时,y 是x 的正比例函数. 82)3(--=m x m y八年级数学(上)导学练案总第 课时学习反思展示二:(教师结合学生情况自主生成)二、应用新知,解决问题例题 已知y 与x 成正比例,且x =2时,y =-6.(1)求出y 与x 之间的函数解析式;(2)若点在这个函数的图象上,求a 的值.)2,(-a三、巩固新知,当堂训练课本P 87练习 第1、2题.四、反思小结本节课你学到了什么知识和方法?还有什么困惑?【自我检测】 1.一列火车以120km/h 的速度匀速前进,那么它行驶的路程s (km )随行驶时间t (h )变化的函数解析式为 ;此函数是 函数.2.下列函数关系中,属于正比例函数关系的是( )(A)圆的面积s 与它的半径r ; (B)面积一定时,长方形的长y 与宽x .(C)路程是常数s 时,行驶的速度v 与时间t.(D)三角形的底边是常数a 时,它的面积s 与这条边上的高h3.若函数是正比例函数,则常数a 的值为( )ax a y )1(-=(A )0 (B )±1 (C )1 (D )-14.已知y 与x 成正比例,且x =3时,y =-6.(1)写出y 与x 之间的函数解析式; (2)当y =-2时,求x 的值;(3)若点P (-6,m +4)在该函数图象上,求m 的值.【应用拓展】5. 已知y -2与x +1成正比例,当x =8时,y =6,写出y 与x 之间的函数关系式,并分别求出x =4和x =-3时y 的值.八年级数学(下)导学练案 总第 课时学习反思课题:19.2.1正比例函数(2)编写:湖北省郧县城关一中 熊勇【学习目标】1.会画正比例函数图象,能结合图象说出正比例函数性质;2.渗透数形结合的思想,培养学生多途经解决问题的思维方法.【前置学习】一、基础回顾:1.下列函数中哪些是正比例函数?哪些不是?为什么?① ② ③ ④ ⑤ x y 2=23x y =x y 4-= 1.5y x =-13-=x y2.用描点法画函数图象的步骤是. 二、自主学习请自学课本P 87“例1”至P 89“练习”以前的内容后,解答下列问题:1.用描点法画出下列正比例函数的图象(1) (2)x y 2= 1.5y x =-2.观察图象回答:正比例函数y =2x 与y =-1.5x 的图象是什么图形?是否经过原点?分别经过哪些象限?自左向右上升还是下降?2.对照课本P 88页中的图象,说一说函数与y =-4x 的图象各有什么特征? 13y x =3.总结规律:(1)正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过 的 ;我们称它为直线y=kx .(2)当0时,直线y=kx 经过第 象限,从左向右 ,y 随x 增大而 ;k <当0时,直线y=kx 经过第 象限,从左向右 ,y 随x 增大而 .k <四、 疑难摘要【学习探究】一、合作交流、解决困惑(一)小组交流:通过自学你学会了什么?还有什么问题不明白?在小组内讨论并解决疑难.(二)班级展示与教师点拔:展示一: 1.说一说正比例函数的图象特征及其性质.八年级数学(上)导学练案 总第 课时学习反思 2.点(0,0)、(1,k )、(2,2k )、(3,3k )是否都在正比例函数y=kx 的图象上?既然正比例函数的图象是一条直线,画正比例函数图象时,怎样画最简单?展示二:(教师结合学生情况自主生成)二、应用新知,解决问题1.直线经过第 象限,y 随x 增大而 ;5y x =直线经过第象限,y 随x 增大而 . x a y )1(2+-=2.若直线经过二、四象限,则k 的取值范围是 . x k y )32(-=3.若直线经过一、三象限,则m = . 32)1(-+=mx m y 三、巩固新知,当堂训练课本P 89练习.四、反思小结 本节课你学到了什么知识和方法?还有什么困惑?(小组交流,互助解决)【自我检测】1.画函数的图象,你认为过 与 两点画直线最简单.0.6y x =-2.若函数y =k x 的图象经过点(2,-3),则k = ,y 随x 的增大而 .3.关于函数,下列说法正确的是( )x y 3-=(A) 图象必经过点(0,0)和(-1,-3) (B) 图象经过一、三象限(C) y 随x 的增大而减小 (D) 不论x 为何值,总有0<y 4.已知点P 1(-2,y 1)、P 2(1,y 2)是正比例函数()图象上的两点,则y 1ax y -=0<a 与y 2的大小关系是 .5.已知关于x 的正比例函数的图象经过第二、四象限,则m = .4)92(--=m x m y 6.一个函数的图象是经过原点的直线,并且这条直线过第四象限及点(2,-3a )与 点(a ,-6),求这个函数的解析式.【应用拓展】7.已知y 与x 成正比例,且当x =-2时y =-4(1)写出y 与x 的函数关系式; (2)用两点法画出函数图象;(3)如果x 的取值范围是0≤x ≤5,利用图象求y 的取值范围.。

19.2.1正比例函数的概念导学案

19.2.1正比例函数的概念导学案

第十九章 函数19.2 一次函数19.2.1 正比例函数第1课时 正比例函数的概念学习目标:1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.重点:正比例函数的概念及其简单应用;难点:会求正比例函数的解析式.一、知识链接1.若香蕉的单价为5元/千克,则其销售额m (元)与销售量n (千克)成 比例,其比例系数为 .2.举例说明什么是函数及自变量.二、新知预习1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l 随半径r 的变化而变化.(2)铁的密度为7.8g/cm 3,铁块的质量m (单位:g )随它的体积V (单位:cm 3)的变化而变化.(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h (单位:cm )随练习本的本数n 的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体问题T (单位:℃)随冷冻时间t (单位:min )的变化而变化.(5)以上出现的四个函数解析式都是常数与自变量 的形式.2.自主归纳:一般地,形如 (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.三、自学自测1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?2(1)3;(2)21;(3);(4);(5)π ;(6).2x y x y x y y y x y x ==+=-===2. 回答下列问题:(1)若y=(m-1)x 是正比例函数,m 取值范围是 ;(2)当n 时,y=2x n 是正比例函数; (3)当k 时,y=3x+k 是正比例函数.四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点1:正比例函数的概念问题1:正比例函数的定义是什么?需要注意哪些问题?x是正比例函数,求m的值.例1:已知函数y=(m-1)2m方法总结:正比例函数满足的条件:(1)自变量的指数为1;(2)比例系数为常数,且不等于0.例2若正比例函数当自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式;(2)求当x=6时函数y的值.方法总结:求正比例函数解析式的步骤:(1)设:设函数解析式为y=kx;(2)代:将已知条件带入函数解析式;(3)求:求出比例系数k;(4)写:写出解析式.探究点3:正比例函数的简单应用问题2:2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?例3:已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间的函数关系式,并指出y是x的什么函数;(2)计算该汽车行驶220 km所需油费是多少?(2)若y=(m-1)x+m 2-1是正比例函数,则m= .2.已知y 与x 成正比例,当x 等于3时,y 等于-1.则当x=6时,y 的值为.1.下列函数关系中,属于正比例函数关系的是( )A.圆的面积S 与它的半径rB.行驶速度不变时,行驶路程s 与时间tC.正方形的面积S 与边长aD.工作总量(看作“1” )一定,工作效率w 与工作时间t2. 下列说法正确的打“√”,错误的打“×”.(1)若y=kx ,则y 是x 的正比例函数( )(2)若y=2x 2,则y 是x 的正比例函数( )(3)若y=2(x-1)+2,则y 是x 的正比例函数( )(4)若y=(2+k 2)x ,则y 是x 的正比例函数( )3.填空(1)如果y=(k-1)x ,是y 关于x 的正比例函数,则k 满足_______.(2)如果y=kx k-1,是y 关于x 的正比例函数,则k=____.(3)如果y=3x+k-4,是y 关于x 的正比例函数,则k=_____.(4)若23(2)m y m x -=-是关于x 的正比例函数,m=_____.4.已知y-3与x 成正比例,并且x=4时,y=7,求y 与x 之间的函数关系式.5.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割. (1)求收割的面积y(单位:公顷)与收割时间x(单位:时)之间的函数关系式;(2)求收割完这块麦田需用的时间.。

《正比例函数》教案

《正比例函数》教案

《正比例函数》教案《正比例函数》教案《正比例函数》教案1教学要求:1、使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:认识正比例关系的意义。

教学难点:掌握成正比例量的变化规律及其特征。

教学过程:一、复习铺垫1、说出下列每组数量之间的关系。

(1)速度时间路程(2)单价数量总价(3)工作效率工作时间工作总量2、引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。

当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。

今天,先认识正比例关系的意义。

(板书课题)二、教学新课1、教学例1。

出示例l。

让学生计算,在课本上填表,并思考能发现什么。

指名口答,老师板书填表。

让学生观察表里两种量变化的数据,思考:(1)表里有哪两种数量,这两种数量是怎样变化?(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?引导学生进行讨论,得出:(1)表里的两种量是所行时间和所行路程。

路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。

(2)时间扩大,路程也扩大;时间缩小,路程也缩小。

(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。

(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)2、教学例2。

出示例2和思考题。

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

学生观察思考后,指名回答。

然后再提问:这两种相关联量的变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1、6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的比值一定)3、概括。

19.2.1正比例函数的概念(教案)

19.2.1正比例函数的概念(教案)
最后,我觉得自己在教学过程中还要注意以下几点:
1.语言表达要更加简洁明了,避免使用复杂的术语和概念,让学生更容易理解。
2.课堂氛围要活跃,鼓励学生积极参与,提高他们的学习热情。
3.注重培养学生的数据分析能力,让他们在实际问题中学会运用正比例函数。
关于小组讨论,我觉得可以适当增加一些具有挑战性的问题,让学生在讨论中深入探讨正比例函数的内涵和实际应用。同时,我要关注每个小组的讨论进度,适时给予引导,帮助他们解决问题。
在总结回顾环节,我发现部分学生对正比例函数的知识点掌握不够扎实。因此,我需要在课后加强个别辅导,关注这部分学生的学习情况,确保他们能够跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调正比例函数的定义和性质这两个重点。对于难点部分,比如比例系数k的理解,我会通过实际案例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正比例函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如测量物体质量和重力之间的关系,演示正比例函数的基本原理。
4.培养学生的逻辑推理核心素养,让学生在学习过程中学会运用严密的数学逻辑进行推理,提高思维品质。
5.培养学生的数据分析核心素养,通过对正比例函数实例的分析,学会收集、整理、分析数据,提高数据解读能力。
三、教学难点与重点
1.教学重点
-正比例函数的定义:y=kx(k为常数,k≠0),这是本节课的核心内容。教师应重点讲解比例系数k的意义,以及自变量x与因变量y的关系。
(1)如果一辆自行车的速度保持不变,那么它行驶的距离与时间之间的关系可以用正比例函数表示。
(2)当物体的质量与重力的关系遵循正比例函数时,可以通过测量质量来计算重力,反之亦然。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档