三坐标机测量齿轮齿廓的不确定度评价

三坐标机测量齿轮齿廓的不确定度评价
三坐标机测量齿轮齿廓的不确定度评价

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

关于三坐标测量机的九个常见问题

关于三坐标测量机的九个常见问题 一、什么是三坐标测量机? 我们通常所说的三坐标测量机是指:通过探头系统与工件的相对移动,探测工件表面点三维坐标的测量系统。它的英文名称为 COORDINATE MEASURING MACHINE简称(CMM),又称三坐标测量仪或三次元。 二、环境温度对三坐标测量仪的测量结果影响大吗? 三坐标测量机是集光、机、电、计算机及控制技术于一身的复杂的测量系统,因此影响其测量结果不确定的因素较多,但对于中、小型坐标来说,环境温度偏离标准测量温度(20℃)是影响其测量结果不确定度的主要因素。为了使三坐标能够测出准确的结果,应将环境温度严格地控制在坐标机说明书要求的范围内。 二、三坐标测量仪需要进行哪些项目的校准?复校间隔多长? 目前三坐标的校准依据是JJF1064-2000《坐标测量机校准规范》,规范中规定校准项目是:长度测量示值误差和探测误差。建议复校间隔一年。 三、三坐标测量仪需要进行哪些项目的校准?复校间隔多长? 目前三坐标的校准依据是JJF1064-2000《坐标测量机校准规范》,规范中规定校准项目是:长度测量示值误差和探测误差。建议复校间隔一年。 四、三坐标测量仪何时需要校准21项误差? 21项误差是三坐标坐标机准确度的基础,其校准是比较复杂的。规范中虽未列入,但在以下情况,21项误差的校准是必要的:新机验收时;长度测量误差校准结果超差时;坐标机搬动后;坐标机修理后。 五、校准三坐标测量机需要哪些设备? 校准三坐标需要的标准器有:相应等级的尺寸至1000mm量块;激光干涉仪;电子水平仪;方角尺;标准球等

六、什么是5D激光干涉仪? 5D激光干涉仪是美国API公司专为数控机床和坐标机的检测而设计生产的激光干涉仪。与其它激光干涉仪相比,它突出的特点是:一次安装调整可同时测量定位误差、两个方向的直线度误差和两个方面和角度误差。通过转向棱镜,还可测量三个轴相互之间的垂直度。配上电子水平仪就可以测量滚摆。从而轻松完成21项误差的测量 七、什么是三坐标测量仪的21项误差? 三坐标有三个可运动的轴,每个轴都有1项定位误差、5项几何误差。几何误差包括:两个方向的直线度误差、两个方向的角度误差。三个轴共有18项,加上三个轴相互之间的垂直度,共有21项误差。这21项误差是坐标机测量结果不确定度的另一主要因素 八、三坐标测量机的探测系统对测量结果有影响吗? 我们知道,三坐标在测量时,是由探头接触被测工件后发出信号,再由控制系统和计算机把测头此时的坐标位置采集下来,而后进行必要的计算,得出我们所需要的测量结果。目前大部分坐标机的探头都是开关型的,其设计原理导致其在不同位置进行探测时开关接触点不同,由此带入了探测误差。这项误差对坐标机测量结果不确定度有直接影响。因此,希望这项误差越小越好。 九、有关三坐标的计量检定? 依据JJF1064-2000,建议客户进行长度测量示值误差、探测误差和工作台平面度的校准长度测量示值误差在沿X、Y、Z三个轴的方向上四个空间对角线方向上,共105点。客户也可选择用5D激光干涉仪进行单轴示值误差校准,用量块进行空间对角线示值误差校准。 用三坐标的探头对标准球进行不同方位的25点测量,记录25点的坐标。用全部25个测量值计算出最小二乘球的中心,25个测量点到球心坐标的距离差的最大值即为探测误差 用坐标机的平面测量程序测量坐标机自身工作台的平面度,测量点 25-49点。 当客户需要进行21项误差校准时,需事先声明,将在上述方案的基础上加测21项误差。 以上由三坐标测量机博客总结自互联网,更多三坐标故障分析资料点这里。

三坐标测量技术基础

金工实习讲稿 三座标测量技术基础 三坐标测量技术基础 、教学目标 1、了解三坐标测量机基本结构 2、了解三坐标测量机基本原理 3、了解三坐标测量机维护保养方法 4、了解测量软件的基本使用 5、掌握运用测量软件进行孔和轴的测量

6、掌握运用测量软件输出检验报告、教学安排

双驱动等技术,提高精度。 从理论上讲,三坐标测量机的特点是:高精度、高效率、万能性。因而多用于工业质量保证,如产品测绘、检验,复杂型面检测,工夹具测量,研制过程中间测量,CNC机床或柔性生产线在线测量等方面。一台坐标测量机综合应用了电子技术、计算机技术、数控技术、光栅测量技术(激光技术)、精密机械(包括新工艺、新材料和气浮技术) 第一章三坐标测量机的结构简介 三坐标测量机的主要结构为工作台、桥架、测头、计算机控制系统等组成 图1.1三坐标测量机结构图 航空、航天、造船行龙门桥式测量机适合于大型 业的大型零件或大型模具的测量。一般都采用双光栅、

图1.2龙门式三坐标测量机 1.2、桥式 桥式测量机是使用最为广泛的一种机构形式。特点是开敞性比较好,视野开阔,上下零件方便。运动速度快,精度比较高。用于复杂零部件的质量检测、产品开发。 图1.3桥式三坐标测量机 1.3、悬臂式 悬臂式测量机开敞性好,测量范围大,可以由两台机器共同组成双臂测量机,尤其适合汽车工业钣金件的测量。主要用于车间划线、简单零件的测量,精

度比较低 图1.4悬臂式三坐标测量机 二、按驱动方式,三坐标测量机可分为以下几种: 手动型一一手工使其三轴运动来实现采点,价格低廉,但测量精度差; 机动型通过电机驱动来实现采点,但不能实现编程自动测量;自动型由计算机控制测量机自动采点,通过编程实现零件自动测量, 且精度咼。

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

机械制造基础实验3三坐标测量机

实验三三坐标测量机测量几何误差 一、目的与要求 1、了解并熟悉手动复合型三坐标测量机的主要结构; 2、掌握手动复合型三坐标测量机基本操作方法; 3、熟练掌握三种或三种以上形状误差或位置误差的测量方法; 4、初步了解手动复合型三坐标测量机影像系统的测量原理。 二、实验仪器设备 本实验用仪器及设备包括:手动复合型三坐标测量机、工件 三、实验方法及步骤 (一)测量的基本原理: 1 坐标测量部分 仪器的花岗岩工作台用以支撑被测工件,利用工作台上的螺孔及装夹工具,可将工件位置固定。三轴光栅尺作为侧量基准,在Z轴下端装有触发式探头。由于X、Y、Z三轴都采用气浮导向,因此可以手持Z轴下端的测头连接座,轻便地移动测头,对工件进行接触测量。 测头触发后,被测工件各测量点的坐标位置被读取,根据这些点的空间坐标值,由坐标测量软件进行处理,可求出被测工件的几何尺寸、形状及位置公差。本仪器有丰富的测量程序,不需要对工件做精确找准便可进行测量。由于用户界面直观、友好,因此,没有计算机操作经验的人员,也可迅速掌握仪器的操作。 2影像测量部分 被测工件置于工作台上,手持Z轴下端的测头连接座带动影像系统实现快速移动,然后通过旋转X、Y轴微动手轮实现微调,即可对被测工件进行瞄准,此时彩色CCD摄像机通过LED表面光照明后,就可摄取被测工件的影像,最后由M2D专业软件自动进行数据处理,。 注:LED表面光的开关及强弱可根据测量的需要由微动开关控制板右侧的调光旋钮来调节;根据被测工件的尺寸,旋转Z轴微动手轮进行调焦,可以得到清晰的图像,从而实现对被测工件的测量。

(二)手动复合型三坐标测量机的结构 现有的三坐标测量机分自动和手动两种。本实验采用的CMS-685MV是一种手动复合型测量机。该测量机集光、机、电、算于一体,广泛地用于机械制造、电子、汽车和航空航天等工业中,它能实现空间坐标点位的测量,可以对箱体、导轨、缸体、机架等零件的尺寸、形状及相互位置进行检测,如图1所示。 图1 仪器整体结构图 1. 空气过滤组件 2.电磁阀电源开关 3.Y轴微动手轮 4. 标准球 5. 触发式测头 6.Y向滑架组 7. Z轴导轨 8. 微动开关控制板 9. X轴导轨10.影像系统11.X向滑架组12.X轴微动手轮13. Z轴微动手轮14.锁紧螺杆15.平台(含Y轴导轨)16.底支架17.计算机主机18. 显示器19. 打印机20.计算机桌图中15所示花岗岩工作台被安装在底支架上,除了在平台左侧有Y轴导轨外,其上表面还有标准球以及用于工件装夹固定的螺孔。底支架左侧有空气过滤组件,用于测量机气源的清洁干燥;以及用来控制仪器运行的电磁阀电源开关。X向滑架组及Y向滑架组分别用于X轴及Y轴的测量,Z轴上除了有用于读取数据的触发式探头外,还有一影像系统,可以对工件进行影像测量。在X、Y、Z向都有一个微动手轮(3、12、13),当结构图上8所示的微动开关控制板选择

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

三坐标角度示值的不确定度评定报告(47BQD-01-2017)

测 量 不 确 定 度 报 告 47BQD-01-2017 1目的 为了验证产品角度尺寸与设计值的符合性,需要对产品的角度尺寸进行测量,三坐标测量机测量分辨率高是一种有效的测量设备。根据JJF1059.1-2012《测量不确定度评定与表示》对三坐标测量机的角度测量进行测量不确定度评定。 2依据 GB/T3177-2009 产品几何技术规范(GPS)光滑工件尺寸的检验 3适用范围 用单一材料或层积材料制成的有一定刚性的产品,产品尺寸在设备测量范围以内。 4方法概要 采用三坐标测量机对任意工件(本例中采用二级角度40°量块)在标准环境(温度20±2℃,湿度<65%)中,进行测量,在直角坐标系空间的有效量程上,记录三坐标测量机示值,各机器平面测量三次,得到9组读数,将读数作为测量结果。 5数学模型 由测量的方式,建立数学模型如下:(采用40°的量块) i i T M = (i =1,2…9) 式中:i M ——测量结果,i T ——三坐标测量机的读数 6使用的计量器具、标准物质和仪器设备 ① 三坐标测量机,该设备的分辨率为0.5μm ,假定三角分布,k =61/2 ② 三坐标测量机,该设备的校准证书指出最大允许示值误差(MPE E )为 8.0+7.5L/1000 (μm ) ,在本例中L ≤70mm ,得MPE E =8.525μm ,假定均匀分布,k =31/2; ③ 三坐标测量机,该设备的校准证书指出最大允许探测误差(MPE P )为

8.0μm,假定均匀分布,k=31/2。 ④三坐标测量机,该设备说明中设备轴间垂直度允差为0.0005°,假定 为均匀分布,k=31/2。 7测量结果M及典型值 用40°角度量块进行9次测量结果如下: XY面YZ面ZX面 读数1 读数2 读数3 读数4 读数5 读数6 读数7 读数8 读数9 40.0014 39.9987 40.0025 39.9995 40.0009 39.9971 39.9988 39.9980 39.9991 平均值: 39.9996° 8不确定度分量的识别、分析和量化 按照数学模型及方法概要,其不确定度来源有5方面: ① M的测量重复性u1 (M)(8.1) ②三坐标测量机的分辨率引入的标准不确定度u2 (M)(8.2) ③三坐标测量机的最大允许示值误差引入的标准不确定度u3 (M)(8.3) ④三坐标测量机的最大允许探测误差引入的标准不确定度u4(M)(8.4) ⑤三坐标测量机的轴间垂直度允差引入的标准不确定度u (M) (8.5) 5 8.1 测量重复性u1(M) 用40°角度量块进行9次测量重复性,贝塞尔公式计算单次测量标准差 s(M)=[∑M i2/(n-1)]1/2= 0.001726° u1(M)=s(M)/ 91/2= 0.0005754° 8.2 设备的分辨率引入的标准不确定度u2(M) 考虑设备在根据测点构造矢量时,因设备的示值误差±0.5μm会发生角度偏差,在L=70的长度内,设测点间距为60mm,角误差即为±0.0009549°,双矢量则为:±0.001910°,假定为三角分布,k=61/2, u2(M)=0.001910°/61/2=0.0007797° 8.3 设备的最大允许示值误差引入的标准不确定度u3(M) 设备的最大允许示值误差是MPE E=8.525μm, 同样在L=70的长度内,设测点间距为60mm,角误差即为:0.01628°,双矢量则为:0.03256°,

三坐标测量机技术规格书1

“三坐标测量仪”技术规格书 一、设备需求 1.设备名称:三坐标测量仪 2.技术要求: 2.1 技术参数: *2.1.1 测量范围: x≥1200mm, y≥600mm, z≥500mm *2.1.2 探测球精度MPEp ≤2.5μm *2.1.3 长度精度MPEe ≤2.2+L/400 (μm) *2.1.4 3D移动速度≥560mm/sec 2.1.5 3D加速度≥1700mm/ sec2 *2.1.6工作台承重≥700Kg 2.1.7 扫描精度≤+/-1μm 2.2 测量功能: 2.2.1 进行完整的几何元素测量; 2.2.2 形位公差测量; 2.2.3 金属钣金和塑料薄壁件测量; 2.2.4 曲线曲面测量; 2.2.5 模具测量; 2.2.6 激光扫描; 2.2.7 模型自动拼接; 2.2.8 可快速、完整、反复测量结构复杂的工件。 2.3 软件功能: 2.3.1 支持完整的几何元素测量; 2.3.2 尺寸和公差报告; 2.3.3 自动校正测头并自动生成测头路径; 2.3.4 CAD数模的导入导出;; 2.3.6 完整的扫描与数字化逆向功能; 2.3.7 支持测针自动更换; 2.3.8 PTB完全认证。 2.4 控制系统: 2.4.1能够实现真正的实时控制; 2.4.2 获欧洲CE认证或美国UL认证。 2.5 其它: 2.5.1 减震结构; 2.5.2 防碰撞装置; * 2.5.3气压调节阀数量≥8个和空气轴承数量≥25个。 3. 主机、附件详细清单 3. 1 标准配置: 3.1.1主机1套; 3.1.2计算机系统1套; ●P4处理器≥3GHz ●内存DDR≥1G

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

三坐标测量机不确定度

三坐标测量机示值校准结果不确定度的评定 1. 测量方法(依据JJF1064-2004《坐标测量机校准规范》) 尺寸测量校准方法的原理,是通过比较5个不同长度的尺寸实物标准器的校准值和指示值,评价测量尺寸的坐标测量机是否符合规定的最大允许示值误差MPE E 。5个尺寸实物标准器放在测量空间的7个不同的方向或位置,各测量3次,共进行105次测量。大值与最小值的。 2. 数学模型 对标准器进行测量,得到的测量长度值为 E L L L t L L L S S S +?-?-?-?+=321α 其中S L 标准器的校准长度,1L ?为标准器形状误差等因素引起的误差,2L ?为长度稳定性引起的误差,3L ?为测量重复性引起的误差,S α为标准器的热膨胀系数,t ?为标准器温度对20℃的偏差,E 为坐标测量机的示值L 的误差。 3. 灵敏度系数 11/1≈?+=??=t L L c S S α t L L L c S S ?=??=/2 S S L t L c α=???=)(/3 1)(/14-=???=L L c 1)(/25-=???=L L c 1)(/36-=???=L L c 1/7=??=E L c 4. 标准不确定度 1u 为标准器校准值S L 的标准不确定度,2u 为标准器热膨胀系数s α的标准不确定度,根据标准器的校准证书确定标准不确定度值。 3u 为标准器温度测量的标准不确定度,由于标准器的温度测量是坐标测量机上的功能,测量误差是坐标测量机示值误差的一部分,与校准方法无关,不予单独考虑。 4u 为标准器的长度变动量引入的标准不确定度。 5u 为标准器的长度稳定度引入的标准不确定度。 6u 为测量重复性引入的标准不确定度。 7u 为坐标测量机示值误差的标准不确定度,也是坐标测量机的测量示值误差的组成部分,与校准方法无关,不予单独考虑。 5. 合成标准不确定度 []2/12625242221)(u u u tu L u u S c +++?+=。 取两个长度,确定不确定度的系数,以bL a u c +=的形式给出。 6. 扩展不确定度

三坐标测量实验报告

三坐标测量实验报告 姓名:XXX 学号:XXXXXXX 指导老师:XXX 专业:XXXX 2012年11月

一、快速综合检测 利用直接测量法测量给定的被测件 一、实验目的: 1、了解三坐标测量机系统组成和功能; 2、熟悉WTUTOR测量软件; 3、掌握三坐标测量机测量几何参数的基本技能; 4、学会测量数据的处理和零件设计方法。 二、实验要求: 1、根据被测件的特点以及所需测量的几何元素确定测量方案:包括所需的测头数及其标定、零件坐标系的建立等。 2、测量各几何要素,以文件方式输出测量结果。 3、根据测量数据,用AUTOCAD绘制零件图。 4、整理实验过程,编写实验技术报告。 三、实验方案设计: 1、分析被测件的特点和需要测量的几何特征,确定零件装夹方案:被测件的外观形状是长方体, 需要测量的几何特征是位于该长方体上的通孔、阶梯圆柱孔、小孔、阶梯平面和一槽,由于该零件质量较大,故无需装夹,只需平放于测量工作台面上即可。 2、确定工件坐标系:选择零件上通孔所在的直线为Y轴,相对较平整的平面作为XZ 平面,该平面与Y轴交点作为坐标原点,选择与Y轴平行的一个面的法线方向作为X轴。 3、根据被测几何元素,确定测头(1)A:0°,B:0°;(2)A:90°,B:90°; (3)A:90°,B:180°;(4)A:90°,B:-90°;(5)A:90°,B:0°; 4、根据被测参数确定被测元素、关系计算、形位测量等。选择测头在适当的工件坐标系下进行测量,并将测量数据存储到指定文件中。 四、实验步骤: 1、启动机器: 由于三坐标测量系统是一个多机器的复杂系统,所以要注意各机器的开启顺序。首

测量不确定度的评定.

第一章入门 1、测量 1.1 什么是测量? 测量告知我们关于某物的属性。物体有多重,或有多热,或有多长。测量赋予这种属性一个数。 测量总是用某种仪器来实现。 测量结果由部分组成:数,测量单位。 1.2什么不是测量 有些过程看起来像是测量,然而并不是。两根绳子作比较,不是测量。计数通常也不认为是测量。对于只回答“是或非”的答案,或者“合格或不合格”的结果的检测(test)往往不是测量。 2、测量不确定度 1.1 什么是测量不确定度? 测量不确定度是对任何测量的结果存有怀疑。对每一次测量,即使是最仔细的,总是会有怀疑的余量。可以表述为“出入”,例如一根绳子可能2米长,有1厘米“出入”。 2.2测量不确定度表述 回答“余量有多大?”和“怀疑有多差?”定量给出不确定度,需要两个数。余量(或称区间的宽度;置信概率,说明“真值”在该余量范围内有多大把握。 比如:棍子的长度测定为20厘米加或减1厘米,有95%置信概率。写成:20cm±1cm,置信概率为95%。表明棍子长度在19厘米到21厘米之间有95%的把握。

2.3 测量不确定度度重要性 考虑测量不确定度更特殊的理由; 校准——在证书上报告测量不确定度。 检测——不确定度来确定合格与否。 允差——不确定是否符合允差以前,你需要知道不确定度。 3、关于数字集合的基本统计学 3.1操作误差 “测量再而三,只为一剪子”,两、三次核对测量,减少出错的风险。任何测量至少进行三次,防止出操作误差。 3.2基本统计计算 两项最主要的统计计算,一组数值的平均值或算术平均值,以及它们的标准偏差。 3.3获得最佳估计值——取多次读数的平均值 重复测量出不同结果的原因: 进行的测量有自然变化; 测量的器具没有工作在完全稳定状态; 重复读数时读数有变化,最好多次读数并取平均值.平均值是“真值”的估计值。 3.4多少次读数求平均 10次是普遍选择的.根据经验通常取4至10次读数就够了。 3.5分散范围—标准偏差 重复测量给出不同结果时,要了解读数分散范围有多宽.量值的分散范围告诉测量不确定度的情况.对分散范围定量的常见形式是标准偏差。

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

相关文档
最新文档