组合图形表面积与体积PPT课件
高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A
=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.
8.3.1棱柱、棱锥、棱台的表面积与体积课件(人教版)
(
)
2.几何体的表面积就是其侧面面积与底面面积的和.
(
)
3.棱锥的体积等于底面面积与高之积.
(
)
4.等底、等高的棱柱的体积是棱锥的体积的3倍.
(
)
答案:√,√,×,√.
练习
题型一:棱柱、棱锥、棱台的表面积
例1.已知正四棱台(正四棱锥被平行于底面的平面所截,截面与底面间的部分)上
底面边长为4,侧棱和下底面边长都是8,求它的侧面面积.
解:由题意知, 长方体−’ ’ ’’ = 1 × 1 × 0.5 = 0.5(3 ) ,
1
1
棱锥− = × 1 × 1 × 0.5 = (3 ).
3
6
所以这个漏斗的容积 =
1
2
1
+
6
2
3
= ≈ 0.67(3 ).
新知探索
辨析1:判断正误.
1.几何体的侧面积是指各个侧面的面积之和.
解:(2)设三棱锥 − 1 的高为ℎ,则
三棱锥−
1
1
1 1
3
3 2
2
= ∙ ∆1 ∙ ℎ = × ×
× ( 2) ℎ =
ℎ.
3
3 2 2
6
1
∵三棱锥− = 三棱锥 − = 3 ,
6
1
1
= 3 ,解得ℎ =
3
.
3
∴三棱锥 − 1 的高为
’ =
= ℎ
上底缩小
1 ’
= ( + ’ + )ℎ
3
’ = 0
1
= ℎ
3
例析
例2.如图,一个漏斗的上面部分是一个长方体,下面部分是一个四棱锥,两部
第三单元:长方体和正方体(单元复习课件)-人教版五年级数学下册
(1)一个长方体有6个面,一般情况下六个面都是长方形。 特殊情况时有两个面是正方形,其他四个面都是长方形,并且 这四个面完全相同。原题说法正确。
【例1】辨一辨。 (对的画“√”,错的画“×”) (2)把一个长方体截成两个小长方体后,截面不可能 是正方形。( × )
正方体的棱长=棱长总和÷12
正方体的体积=棱长×棱长×棱长
42÷12=3.5(厘米)
3.5×3.5×3.5
正方体的表面积=棱长×棱长×6 =12.25×3.5
3.5×3.5×6
=42.875(立方厘米)
=12.25×6
=73.5(平方厘米)
【例19】将一个棱长是10cm的正方体 石块放入右图的长方体鱼缸中,石9cm 块 完全浸入水中。此时水面高多少厘米?
【例12】要制作一个长5分米,宽4分米,高3分米的无盖
玻璃鱼缸,需要( 74 )平方分米的玻璃。
玻璃鱼缸的表面积=(15+20+12)×2-20
=94-20 =74(平方分米)
3分米 4分米 5分米
正方体的表面积
【例13】已知一个正方体的所有棱长之和是60分米,则它的表 面积是( 150 )平方分米。
3、如果把一个长方体的长、宽、高分别扩大到原来的3 倍,那么这个长方体的体积扩大到原来的( C )倍。 A、3 B、9 C、27
(2)如果一个长方体有两个面是正 方形,其他四个面都是长方形。这 样的长方体截成两个小长方体,截 面就是正方形,所以原题说法错误。
【例1】辨一辨。 (对的画“√”,错的画“×”) (3)有6个面、12条棱、8个顶点的立体图形都是长方 体。( × )
(3)有6个面、12条棱、8个顶点 的立体图形不都是长方体,也可能 是其他立体图形,如棱台,所以原 题说法错误。
柱体、锥体、台体的表面积与体积 课件
故B1F= 82-22=2 15, 所以S梯形BB1C1C=12×(8+4)×2 15=12 15, 故四棱台的侧面积S侧=4×12 15=48 15, 所以S表=48 15+4×4+8×8=80+48 15.]
[规律方法] 空间几何体表面积的求法技巧 (1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展 开为平面图形计算,而表面积是侧面积与底面圆的面积之和.
柱体、棱体、台体的表面积与侧面积
(1)已知圆柱的上、下底面的中心分别为 O1,O2,过直线 O1O2 的
平面截该圆柱所得的截面是面积为 8 的正方形,则该圆柱的表面积为( )
A.12 2π
B.12π
C.8 2π
D.10π
(2)已知某圆锥的底面半径为 8,高为 6,则该圆锥的表面积为________.
S 圆柱侧=2πrl
r′=r ←――――
S
圆台侧=π(r′+r)l
r′=0 ――――→
S 圆锥侧=πrl.
(2)柱体、锥体、台体的体积公式之间有什么关系? [提示] 柱体、锥体、台体的体积公式之间的关系: V=Sh←S′――=――S V=13(S′+ S′S+S)h―S′――=―→0 V=13Sh.
(3)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8 的等腰梯形,则该四棱台的表面积为________cm2.
(1)B (2)144π (3)80+48 15 [(1)因为过直线O1O2的平面截该圆柱所得 的截面是面积为8的正方形,所以圆柱的高为2 2 ,底面圆的直径为2 2 ,所 以该圆柱的表面积为2×π×( 2)2+2π× 2×2 2=12π.
新教材人教版高中数学必修第二册 8.3.1 棱柱、棱锥、棱台的表面积和体积 教学课件
(4)求棱台的体积可转化为求棱锥的体积. 根据棱台 的定义进行“补形”,还原为棱锥,采用“大棱锥”减去 “小棱锥”的方法求棱台的体积.
第九页,共十九页。
知识点一 棱柱、棱锥、棱台的侧面积与表面积 [例1] 现有一个底面是菱形的直四棱柱,它的体对角线
长为9和15,高是5,求该直四棱柱的侧面积. [ 解] 如图,设底面对角线 AC=a,BD=b,交点为 O,
第十二页,共十九页。
知识点二 棱柱、棱锥、棱台的体积 [例 2] (1)如图所示,正方体 ABCD-A1B1C1D1 的棱长为 1,E 为线段 B1C 上的一点,则三棱锥 A-DED1 的体积为________.
第(1)题图
第(2)题图
第十三页,共十九页。
(2)如图,某几何体下面部分为正方体ABCD-A′B′C′D′, 上面部分为正四棱锥S -ABCD,若几何体的高为5,棱AB=2,则该 几何体的体积为________.
[思考发现]
1.棱长为 3 的正方体的表面积为
()
A.27
B.64
C.54
D.36
解析:根据表面积的定义,组成正方体的表面共 6 个,且每
个都是边长为 3 的正方形.从而,其表面积为 6×32=54.故
选 C.
答案:C
第三页,共十九页。
2.正方体的表面积为 96,则正方体的体积为
A.48 6
B.64
[变式训练]
1.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积 等于________ cm3.
第十七页,共十九页。
解析:由三视图可知原几何体如图所示. 所以 V=VABC-A′B′C′-VM -ABC =S△ABC·5-13S△ABC·3 =12×3×4×5-13×12×3×4×3=30-6=24.
苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件
栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.
圆柱圆锥圆台体积和表面积.ppt
1
1
A.4
B.2
3 C. 6
3 D. 4
[答案] D
[解析]
三棱锥B1-ABC的高h=3,底面积S=S△ABC=
3 4
×12= 43,
则VB1-ABC=13Sh=13×
43×3=
3 4.
5.若一圆柱与圆锥的高相等,且轴截面面积也相等,那
么圆柱与圆锥的体积之比为( )
A.1
1 B.2
3
3
C. 2
D.4
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
命题方向 多面体的体积
[例 2] 长方体相邻三个面的面积分别为 2、3、6 求它的
体积.
[解析] 设长方体的长、宽、高分别为a、b、c则有
据条件得到
1 2
πl2=2π,解得母线长l=2,2πr=πl=2π,r=1所以
该圆锥的体积为:V圆锥=13Sh=13×
22-12π=
3 3 π.
[点评] 本题主要考查空间几何体的体积公式和侧面展开 图.审清题意,所求的为体积,不是其他的量,分清图形在 展开前后的变化;其次,对空间几何体的体积公式要记准记 牢,属于中低档题.
[解析]
三棱台ABC-A1B1C1的上、下底面积之比为4:9.连接 A1B、BC1和AC1,把棱台分为三个棱锥B-A1B1C1,C1- ABC,A1-ABC1.则这三个棱锥体积之比为________.
[答案] 4:9:6
[解析] 如图,设三棱锥B-A1B1C1,C1-ABC,A1- ABC1体积分别为V1、V2、V3,又设棱台的高为h,上、下底面 积分别为S1、S2.依题意,得
8.3.2 圆柱、圆锥、圆台、球的表面积和体积(课件)【大单元教学】2022-2023学年高一数学同
1
2
所以( )2 +3 = 2 ,解得 = 2,
4
3
因此球的体积 = ⋅ 3 =
故选:.
32
,
3
解题技巧
与球有关问题的注意事项
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径
为r1= ,过在一个平面上的四个切点作截面如图(1).
2.球与正方体的各条棱相切
水.现在容器上口放置一个铁球,若球体没入水中部分的深
度恰为四分之一直径,则球的体积为(
A.
B.
C.
D.
)
【解答】根据题意可得该正三棱柱的底面正三角形的内切
圆的半径为 3,
设该球体的半径为,因为球体没入水中部分的深度恰为
四分之一直径,
1
2
所以球心到水平面的距离ℎ = ,
22 + 22 + (4 2)2 = 2 10,即为球的直径,
∴球的半径为 10,∴球的表面积为4 × ( 10)2 = 40,故选.
变式训练
2
3
3
1.某圆锥的侧面展开图是一个圆心角为 ,面积为 的扇形,
则该圆锥的外接球的表面积为(
A.
27 2
64
B.
27
16
C.
9
8
)
D.
3
2
【解答】设圆锥的母线长为,底面半径为,
2.球的表面积公式S= .
典例分析
题型一 圆柱、圆锥、圆台的表面积
例1.面积为的正方形,绕其一边旋转一周,则所得旋转体的表面积为(
A.
球的体积和表面积-课件
解:由图可知,半球的半径为4 cm,
圆锥的高为12 cm.
∴V半球 1443128cm3,
23
3
V圆锥 1 π·42·12=64π cm3, 3
64 128
3
∴冰激凌化了,不会溢出杯子.
题型三 综合问题
例3:正方体、等边圆柱(即底面直径与母线长相等的圆柱)、球 的体积相等时,哪一个表面积最小?
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏
•
15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/42021/3/42021/3/43/4/2021
•
16、业余生活要有意义,不要越轨。2021/3/42021/3/4Marc h 4, 2021
C . 4
D . 6
解析:设正方体的棱长为a,依题意知,内切球的直径为a,∴
球的表面积S球=4π =6a2.
(a )2 a2
2
,正方体的表面积S正
∴S球:S正 . 6
答案:D
3.一个正方体的顶点都在球面上,它的棱长为2 cm,则球的表 面积是( ) A.8π cm2B.12 πcm2 C.16 πcm2D.20 π cm2
10.如图,有一倒放着的轴截面为正三角形的圆锥形容器,内盛 有高为h的水,放入一个铁球后,上升后的水平面恰好和球相切, 求球面上的点到圆锥顶点的最小距离.
解:如图,作轴截面,设球半径为R,水面上升后锥体顶点到水面 的高度为x,则x=3R.由题意:V水+V球=V锥.
11.如下图,某几何体的正视图与侧视图都是边长为1的正方 形,且体积为,则该几何体的俯视图可以是( )
解:设正方体的棱长为a.
(1)正方体的内切球球心是正方体的中心,切点是六个面的中
2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形
球
半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.
组合图形表面积与体积
3
表面积=正方体表面积+长方体表面积?
3
3
体积=上面图形的体积+下面图形的体积
3 4 10
1、先做出正方体其他棱长的辅助线 2、要求表面积,要分别观察正方体和长方体露在外面有哪些面? 先观察正方体的表面,正方体露在外面的只有5个面。面积=棱长×棱长×5 再观察长方体的表面,长方体露在外面有6个面,但是长方体上面这个面不是完整的一个面, 缺少了正方体下面这么大的一个面。面积=长方体六个面面积-正方体底面积 那么: 表面积=正方体五个面的面积 +(长方体6个面面积-正方体底面积)
2 2 2
5 3 12
2 2
2
8
5 10
一、展开图求表面积和体积 求下列图形表面积和体积。(单位:cm) 在展开图中,标出拼合后长方体的长宽高,再根据公式求出表面积和体 积。
5
2 7
二、组合图形表面积和体积
求下列图形表面积和体积。(单位:cm)
1、求组合图形表面积:表面积就是组合图形露在外面所有面的总和, 往往采用割补法来求表面积。 2、求组合图形体积:与露几个面没有关系,求出组合图形中每部分图 形的体积,再把所有体积相加。或者有时采用割补法来求体积。
3 3
总之: 一个图形切去另一个图形表面积 =原来完整图形的表面积 体积=图形的体积-切去图形的体积
3
6
5
1、求表面积和体积,不规则图形,可以采用割补法变成规则图形来求。 先做出缺的正方体棱长的辅助线 既然棱长都是3,那么凹进去的是一个小正方体。组合图形体积=大长方体体积-小正方体体积 2、求表面积 因为凹进去的是一个小正方体,正方体所有的面面积都相等。 那么,把凹进去的面进行移动,组合图形的表面积是不变的。后面移动到前 面,左面移动到右面,下面移动到上面。 此时,组合图形可以看成一个完整的大长方体,根据长方体的公式来求就可以了。
简单几何体的表面积和体积(1)课件-高一下学期数学人教A版(2019)必修第二册
知识点一 棱柱、棱锥、棱台的体积
问题4:由祖暅原理可知,底面面积相等,高相等的两个棱锥,体 积相等.那么如果棱锥的底面积是S,高为h,则棱锥的体积公式 是什么?
因为棱锥2、3的底面积相等,即: SBBC SBCC 高也相等,即:点 到平面B 所以棱锥2、3的体积相等.
分析:正四棱台的上底面和下底面均为正方形,侧面是由四个等腰梯形组成的.
小结与反思
要计算棱台的体积关键是要弄清楚棱台的五个基本量(上、下 底面边长、高、斜高、侧棱),然后将基本量转化到直角三角形中 求解,最后再代入体积公式求出体积.
课堂检测
5-1、(金太阳P1141题)已知高为3的三棱柱ABC-A1B1C1的底面边长为1 的正三角形,如图所示,则三棱锥B1-ABC求它的体积.
多面体的表面积就是围成多面体的各个面的面积之和. 棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.
知识点一 棱柱、棱锥、棱台的表面积
问题2:在初中已经学过了正方体和长方体的表面积,你知道正方体 和长方体的展开图与其表面积的关系吗?
几何体表面积
展开图
空间问题
平面图形面积 平面问题
知识点一 棱柱、棱锥、棱台的表面积
棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧 面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面 积和底面面积之和.
这样,求它们的表面积的问题就可转化为求平行四边形、三角形、梯 形的面积问题.
2
PART TWO
例题精讲
例1.(教材P114)四面体P-ABC的各棱长均为a,求它的表面积 .
=
组合图形表面积与体积(共7张PPT)
后二面、移 组动合到图前形面表,面左积面和移体动积到右面,下面移动到上面。
2
2 2 8
5
10
2、求表面积 因为凹进去的是一个小正方体,正方体所有的面面积都相等。
那么,把凹进去的面进行移动,组合图形的表面积是不变的。后面移动到前面, 左面移动到右面,下面移动到上面。
此时,组合图形可以看成一个完整的大长方体,根据长方体的公式来求就可以了。
2
2
2
求二下、列 组图合形图表形面表积面和积体和积体。积 一缺个少图 了形正切方去体另下一面个这图么形大表的面一积个面。
求2、下要列求图表形面表积面,积要和分体别积观。察正方体和长方体露在外面有哪些面?
=2、原求来组完合整图形体的积表:面与积露几个面没有关系,求出组合图形中每部分图形的体积,再把所有体积相加。
求表下面列 积图=正形方表体面表积面和积体+积长。方体表面积?
2后、面求移组动合到图前形面体,积左:面与移露动几到个右面面没,有下关面系移,动求到出上组面合。图形中每部分图形的体积,再把所有体积相加。
一、展开图求表面积和体积
求下列图形表面积和体积。(单位:cm) 在展开图中,标出拼合后长方体的长宽高,再根据公式求出表面积和体积。
5
2 7
二、组合图形表面积和体积
求下列图形表面积和体积。(单位:cm)
1、求组合图形表面积:表面积就是组合图形露在外面所有面的总和,往往采用割补法来 求表面积。
2、求组合图形体积:与露几个面没有关系,求出组合图形中每部分图形的体积,再 把所有体积相加。或者有时采用割补法来求体积。
5
在缺1体、展少积求开 了 =组上图正合面中方图图,体形形标下表的出面面体拼这积积合么:+后大下表长的面面方一图积体个形就的面的是长。体组宽积合高图,形再露根在据外公面式所求有出面表的面3总积和和,体往积往。采用割补法来求表面积。
第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册
19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=
sh
(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积
空间几何体的表面积与体积讲义
空间几何体的表面积与体积讲义一、知识梳理1.多面体的表面积、侧面积 因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱 圆锥 圆台侧面展开图侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r 1+r 2)l3.名称几何体表面积 体积 柱体(棱柱和圆柱)S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底 V =13Sh 台体(棱台和圆台)S 表面积=S 侧+S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2 V =43πR 3 注意:1(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.( )(2)锥体的体积等于底面积与高之积.( )(3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( )(5)长方体既有外接球又有内切球.( )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( )题组二:教材改编2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cm D.32cm 3.[]如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.题组三:易错自纠4.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+45.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8π D .4π 6.如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.二、典型例题题型一:求空间几何体的表面积1.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π2.已知某几何体的三视图如图所示,则该几何体的表面积为( )A.73B.172 C .13 D.17+3102思维升华:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.题型二:求空间几何体的体积命题点1:以三视图为背景的几何体的体积典例 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 命题点2:求简单几何体的体积 典例已知E ,F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱AA 1,CC 1的中点,则四棱锥C 1—B 1EDF 的体积为________.思维升华:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.跟踪训练 (1)已知一个几何体的三视图如图所示,则该几何体的体积为( )A.323B.163C.83D.43 (2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32题型三:与球有关的切、接问题典例 在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2 C .6π D.32π3引申探究:1.若将本例中的条件变为“直三棱柱ABC —A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.2.若将本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.思维升华:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.跟踪训练如图所示,在平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.3π2 B .3π C.2π3 D .2π四、反馈练习1.某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 2.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .303.已知A ,B ,C 三点都在以O 为球心的球面上,OA ,OB ,OC 两两垂直,三棱锥O —ABC 的体积为43,则球O 的表面积为( )A.16π3B .16π C.32π3 D .32π4.如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .24πB .30πC .42πD .60π5.如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+2 3B .8+42C .6+6 2D .6+22+436.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P —ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P —ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π7.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.8.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.9.如图所示,在直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为______.10.如图所示,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则R r =________.11.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积. 12如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值.2=4-x 2,即x =2时取等号,∴当x =2时,体积有最大值33. 13.如图,四棱锥P —ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N —P AC 与三棱锥D —P AC 的体积比为( )A .1∶2B .1∶8C .1∶6D .1∶314.在三棱锥P —ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( )A.4π3B .4πC .8πD .20π15.已知三棱锥O —ABC 的顶点A ,B ,C 都在半径为2的球面上,O 是球心,∠AOB =120°,当△AOC 与△BOC 的面积之和最大时,三棱锥O —ABC 的体积为( )A.32B.233C.23D.13 16.如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体P —BCD 的体积的最大值是________.。
【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册
例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆
)
2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).
)
新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =
2025届高考一轮复习《基本立体图形、简单几何体的表面积与体积》课件
高考一轮总复习•数学
第27页
即 12=A0O.61, 解得 AO1=0.6 2, 根据对称性可知圆柱的高为 3-2×0.6 2≈1.732-1.2×1.414=0.035 2>0.01, 所以能够被整体放入正方体内,故 D 符合题意. 故选 ABD.
高考一轮总复习•数学
第26页
设 OE∩AC=E,可知 AC= 2,CC1=1,AC1= 3,OA= 23,
那么
tan∠CAC1=CACC1=OAOE,即
1 =OE, 23
2
解得 OE= 46,且 462=38=294>295=0.62,
即 46>0.6,
所以以 AC1 为轴可能对称放置底面直径为 1.2 m 圆柱,若底面直径为 1.2 m 的圆柱与正 方体的上下底面均相切,设圆柱的底面圆心为 O1,与正方体的下底面的切点为 M,
圆台
体积 V= Sh =πr2h
V=
1 3Sh
=13πr2h=13πr2
l2-r2
V=13(S 上+S 下+ S上S下)h
=13π(r21+r22+r1r2)h
第11页
高考一轮总复习•数学
名称 棱柱 棱锥 棱台 球
体积 V= Sh
1 V= 3Sh V=13(S 上+S 下+ S上S下)h V=43πR3
= 直观图
2 4S
原图形.
高考一轮总复习•数学
以三角形为例说明原因:
第36页
S
直观图=12B′C′·O′A′·sin
高考一轮总复习•数学
第24页
解析:(1)由圆台定义知,以直角梯形垂直于底边的腰为旋转轴,其余三边旋转一周形 成的面围成的旋转体是圆台,故 A 错误;
柱体、锥体、台体的表面积和体积 课件
[知识提炼Байду номын сангаас梳理]
1.棱柱、棱锥、棱台的表面积 棱柱、棱锥、棱台都是由多个平面图形围成的多面 体,因此它们的表面积等于各个面的面积之和,也就是 展开图的面积.
2.圆柱、圆锥、圆台的表面积
底面积:S 底=πr2 圆
侧面积:S 侧=2πrl 柱
表面积:S=2πrl+2πr2 底面积:S 底=πr2 圆 侧面积:S 侧=2πrl 锥 表面积:S=πrl+πr2
所以 r=4.则 h=4. 故圆锥的体积 V 圆锥=13πr2h=634π. 答案:A
[迁移探究 1] (变换条件,改变问法) 将典例 2 中 第(2)题的条件“侧面积是 16 2π”改为“若其体积为 3 π”,求该圆锥的侧面积.
解:设圆锥的底面半径为 r,则高 h=r,母线 l=PB
= 2r.
[变式训练] 圆台的上、下底面半径分别是 10 cm 和 20 cm,它的侧面展开图的扇环的圆心角是 180°,求圆 台的表面积.
解:如图所示,设圆台的上底面周长为 c cm,由于 扇环的圆心角是 180°,则 c=π·SA=2π×10,解得 SA= 20(cm).
同理可得 SB=40(cm), 所以 AB=SB-SA=20(cm). 所以 S 表=S 侧+S 上+S 下= π×(10+20)×20+π×102+π×202= 1 100π(cm2).
2+5 则 S 底= 2 ×4=14,高 h=4. 所以 V 四棱柱=S 底·h=56.
归纳升华 1.求解柱体体积的关键是根据条件找出相应的底面 积和高,对于旋转体要充分利用旋转体的轴截面,将待求 的量转化到轴截面内求. 2.求解锥体体积的关键是明确锥体的底面是什么图 形,特别是三棱锥,哪个三角形作为底面是解题的关键点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 33
表面积=正方体表面积+长方体表面积? 体积=上面图形的体积+下面图形的体积
3
10
4
1、先做出正方体其他棱长的辅助线
2、要求表面积,要分别观察正方体和长方体露在外面有哪些面?
先观察正方体的表面,正方体露在外面的只有5个面。面积=棱长×棱长×5
再观察长方体的表面,长方体露在外面有6个面,但是长方体上面这个面不是完整的一个面,
缺少了正方体下面这么大的一个面。面积=长方体六个面面积-正
那么: 表面积=正方体五个面的面积 +(长方体6个面面积-正方体底面积)
3
总之:
33
一个图形切去另一个图形表面积 =原来完整图形的表面积
6
体积=图形的体积-切去图形的体积
5
8
1、求表面积和体积,不规则图形,可以采用割补法变成规则图形来求。 先做出缺的正方体棱长的辅助线 既然棱长都是3,那么凹进去的是一个小正方体。组合图形体积=大长方体体积-小正方体体积
一、展开图求表面积 和体求下积列图形表面积和
体在积展。开(图单中位,:标出cm拼)合后长方体的 长宽高,再根据公式求出表面积和 体积。
5
2 7
二、组合图形表面积 和体求积下列图形表面积和 1、体求积组。合(图单形位表:面cm积):表面积就是 组合图形露在外面所有面的总和, 往2、往求采组用合割图补形法体来积求:表与面露积几。个面没 有关系,求出组合图形中每部分图 形的体积,再把所有体积相加。或 者有时采用割补法来求体积。
2、求表面积 因为凹进去的是一个小正方体,正方体所有的面面积都相等。
那么,把凹进去的面进行移动,组合图形的表面积是不变的。后面移动到前 面,左面移动到右面,下面移动到上面。
此时,组合图形可以看成一个完整的大长方体,根据长方体的公式来求就可以了。
2 22512 Nhomakorabea3
2 22 8
5 10