数列方法总结
数列之方法归纳总结
数列之方法归纳总结数列是由一系列按照一定规律排列的数所组成的序列。
在数学中,研究数列的性质和规律,对于解决各种数学问题以及应用于实际生活中的各种情境具有重要意义。
在实际应用中,数列的归纳总结方法有助于我们找到数列中的规律,从而更好地理解和运用数列。
一、等差数列等差数列是指数列中,任意两个相邻的数之间的差等于一个常数,这个常数称为公差。
等差数列的一般形式为an=a1+(n-1)d,其中an表示第n个数,a1为第一个数,d为公差,n为项数。
等差数列的求和公式为Sn=n(a1+an)/2,其中Sn表示数列的前n项和。
等差数列的归纳总结方法:1.找到首项a1和公差d;2. 利用数列的递推关系式an=a1+(n-1)d,找到第n个数;3. 利用求和公式Sn=n(a1+an)/2,求出前n项和Sn。
二、等比数列等比数列是指数列中,任意两个相邻的数之间的比等于一个常数,这个常数称为公比。
等比数列的一般形式为an=a1*r^(n-1),其中an表示第n个数,a1为第一个数,r为公比,n为项数。
等比数列的求和公式为Sn=a1*(1-r^n)/(1-r),其中Sn表示数列的前n项和。
等比数列的归纳总结方法:1.找到首项a1和公比r;2. 利用数列的递推关系式an=a1*r^(n-1),找到第n个数;3.利用求和公式Sn=a1*(1-r^n)/(1-r),求出前n项和Sn。
三、斐波那契数列斐波那契数列是一个特殊的数列,前两项为1,后续的每一项都是前两项之和。
斐波那契数列的一般形式为an=an-1+an-2,其中an表示第n 个数,n>=3斐波那契数列的归纳总结方法:1.找到前两项a1和a2;2. 利用数列的递推关系式an=an-1+an-2,找到第n个数;3.可以使用递归法求解斐波那契数列,也可以使用循环遍历的方法求解。
四、特殊数列除了上述常见的数列,还存在一些特殊的数列,例如等差数列的等差为0的情况,即数列中的每一项都相等;等比数列的公比为1的情况,即数列中的每一项都相等;等差数列和等比数列的公差或公比为0的情况。
数列求通项公式归纳总结
数列求通项公式归纳总结数列是数学中常见的概念,在各个领域都有着广泛的应用。
通过观察数列的规律并找出通项公式,可以使我们更好地理解数列的性质,进而解决更复杂的问题。
本文将对数列求通项公式的方法进行归纳总结。
一、等差数列求通项公式等差数列是指数列中相邻两项之间的差值都相等的数列。
设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式可以表示为:an = a1 + (n - 1)d其中,n为正整数。
二、等比数列求通项公式等比数列是指数列中相邻两项之间的比值都相等的数列。
设等比数列的首项为a1,公比为r,第n项为an,则等比数列的通项公式可以表示为:an = a1 * r^(n-1)其中,n为正整数。
三、斐波那契数列求通项公式斐波那契数列是指数列中第一项为1,第二项为1,之后每一项都等于前两项之和的数列。
设斐波那契数列的第n项为Fn,则斐波那契数列的通项公式可以表示为:Fn = ( (1 + sqrt(5))^n - (1 - sqrt(5))^n ) / (2^n * sqrt(5))其中,sqrt(5)表示5的开平方。
四、完全平方数列求通项公式完全平方数列是指数列中每一项都是一个完全平方数的数列。
设完全平方数列的第n项为an,则完全平方数列的通项公式可以表示为:an = n^2其中,n为正整数。
五、特殊数列求通项公式除了常见的等差数列、等比数列、斐波那契数列和完全平方数列,还有许多特殊的数列。
对于这些特殊的数列,求通项公式的方法也不尽相同,需要根据具体的规律进行归纳总结。
总结:数列求通项公式是数学中的一个重要内容,有着广泛的应用价值。
通过观察数列的规律并应用相应的方法,可以找到数列的通项公式,从而解决更加复杂的问题。
本文对等差数列、等比数列、斐波那契数列、完全平方数列以及特殊数列的求通项公式进行了归纳总结。
希望读者能够通过本文的介绍,掌握数列求通项公式的方法,并能够运用于实际问题的解决中。
数列求和及求通项方法总结
数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。
例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。
二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。
数列求和各种方法总结归纳
故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.
(完整版)数列公式总结
数列公式总结一、 数列的概念与简单的表示法数列前n 项和: 对于任何一个数列,它的前n 项和Sn 与通项an 都有这样的关系:an=二、 等差数列1.等差数列的概念(1)等差中项:若三数a A b 、、成等差数列2a b A +⇔=(2)通项公式:1(1)()n m a a n d a n m d=+-=+-(3).前n 项和公式:()()11122n n n n n a a S na d -+=+=2等差数列的.常用性质(1)若()+∈ +=+N q p n m q p n m ,,,,则qp n m a a a a +=+;(2)单调性:{}n a 的公差为d ,则:ⅰ)⇔>0d {}n a 为递增数列; ⅱ)⇔<0d {}n a 为递减数列; ⅲ)⇔=0d {}n a 为常数列;(3)若等差数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-… 是等差数列。
三 、 等比数列1.等比数列的概念(1)等比中项: 若三数a b 、G 、成等比数列2,G ab ⇒=(ab 同号)。
反之不一定成立。
(2).通项公式:11n n mn m a a q a q --==(3).前n 项和公式:()11111n n n a q a a qS qq --==--2.等比数列的常用性质(1)若()+∈ +=+N q p n m q p n m ,,,,则m n p qa a a a ⋅=⋅;(2)单调性:110,10,01a q a q >><<<或{}n a ⇒为递增数列; {}110,010,1n a q a q a ><<<>⇒或为递减数列; {}1n q a =⇒为常数列;{}0n q a <⇒为摆动数列;(3)若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-… 是等比数列.四、非等差、等比数列前n 项和公式的求法常见的拆项公式有: ①111(1)1n n n n =-++;②1111();(21)(21)22121n n n n =--+-+有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组.一、 等差数列公式及其变形题型分析:1.设S n 是等差数列{a n }的前n 项和,若63S S =13,则126S S =( ).A .310B .13C .18D .192.在等差数列{a n }中,若a 1 003+a 1 004+a 1 005+a 1 006=18,则该数列的前2 008项的和为( ).A .18 072B .3 012C .9 036D .12 0483.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ). A .15B .30C .31D .644.在等差数列{a n }中,3(a 2+a 6)+2(a 5+a 10+a 15)=24,则此数列前13项之和为( ).A .26B .13C .52D .1565.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( ).A .160B .180C .200D .220二、 等比数列公式及其变形题型分析:1.已知{a n }是等比数列,a 2=2,a 5=41,则a 1a 2+a 2a 3+…+a n a n +1=( ). A .16(1-4-n ) B .16(1-2-n ) C .332(1-4-n )D .332(1-2-n ) 2.已知等比数列{a n }的前10项和为32,前20项和为56,则它的前30项和为 . 3.在等比数列{a n }中,若a 1+a 2+a 3=8,a 4+a 5+a 6=-4,则a 13+a 14+a 15= ,该数列的前15项的和S 15= .4.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .1925.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .216.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项 A .2 B .4 C .6 D .87.在等比数列{}n a 中, 若,75,393==a a 则10a =___________. 三、数列求和及正负项的解题思路 1.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a=___________.2.求和:)0(),(...)2()1(2≠-++-+-a n a a a n3.求和:12...321-++++n nx x x4.已知数列{}n a 的通项公式112+-=n a n ,如果)(N n a b n n ∈=, 求数列{}n b 的前n 项和。
数列常用解题方法归纳总结
数列常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。
a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。
a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
完整版)数列知识点归纳
完整版)数列知识点归纳数列一、等差数列性质总结1.等差数列的定义式为:$a_n-a_{n-1}=d$(其中$d$为常数,$n\geq2$);2.等差数列通项公式为:$a_n=a_1+(n-1)d$(其中$a_1$为首项,$d$为公差)推广公式为:$a_n=a_m+(n-m)d$。
因此,$d=\frac{a_n-a_m}{n-m}$;3.等差数列中,如果$a$、$A$、$b$成等差数列,那么$A$叫做$a$与$b$的等差中项,即$A=\frac{a+b}{2}$;4.等差数列的前$n$项和公式为:$S_n=\frac{n(a_1+a_n)}{2}=na_1+\frac{n(n-1)d}{2}=\frac{n[2a_1+(n-1)d]}{2}$。
特别地,当项数为奇数$2n-1$时,$a_n$是项数为$2n-1$的等差数列的中间项,且$S_{2n-1}=n\cdot a_n$;5.等差数列的判定方法:1)定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;2)等差中项:数列$\{a_n\}$是等差数列,当且仅当$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^*$);3)数列$\{a_n\}$是等差数列,当且仅当$a_n=kn+b$(其中$k$、$b$为常数);4)数列$\{a_n\}$是等差数列,当且仅当$S_n=An^2+Bn$(其中$A$、$B$为常数);6.等差数列的证明方法:定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;等差中项性质法:$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^+$)。
7.提醒:1)等差数列的通项公式及前$n$项和公式中,涉及到5个元素:$a_1$、$d$、$n$、$a_n$及$S_n$,其中$a_1$、$d$称作为基本元素。
求数列通项公式方法总结
求数列通项公式的方法总结:1)观察法。
例如1、3、5、7、9……2)公式法。
对于等差数列:a n=a1+(n-1)d;对于等比数列:a n=a1·q n-1。
3)形如a n+1=pa n+q,变形为(a n+1+k)=p(a n+k),其中k=q/(p-1)构造数列{a n+k}是以a1+k为首项,p为公比的等比数列。
4)形如a n+2=pa n+1+qa n,,变形为a n+2+ma n+1=n(a n+1+ma n),自行解出m和n构造数列{a n+1+ma n}是以a2+ma1为首项,n为公比的等比试列。
5)形如a n+1=pa n+q n,变形为a n+1/q n=p/q·a n/q n-1+1,再利用3)的步骤即可求出通项公式。
6)形如a n+1=pa n+q n+t n,变形为a n+1/q n=p/q·a n/q n-1+(t/q)n+1,则先忽略(t/q)n这一项,利用3)的方法配出3)的形式,然后再同时除以(t/q)n,再利用3)的步骤即可求出通项公式。
7)a n+1=ta n/(p+qa n)变形为1/a n+1=p/t·1/a n+q/t, 再利用3)的步骤即可求出通项公式。
8)利用s n-s n-1=a n的关系求出通项公式。
利用以上方法求通项公式时,要用到数列求和的方法,下面予以归纳:1)公式法。
对于等差数列s n=na1+n·(n-1)d或s n=n(a1+a n)/2,对于等比数列s n=a1·q n-I。
2)常用的几个基本求和公式a)1+2+3+……+n=n·(n+1)/2b)12+22+32+……+n2=n·(n+1)·(2n+1)/6c)13+23+33+……+n3=n2·(n+1)2/4d)1+3+5+……+(2n-1)=n23)倒序相加法。
主要用于等差数列或组合数列。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。
下面对等差数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
二、等比数列等比数列是指数列中的相邻项之比都相等的数列。
下面对等比数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。
4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。
(完整版)数列题型及解题方法归纳总结
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
数列求和方法总结_2
数列求和方法总结一、直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:=n S =(2)等比数列的求和公式⎪⎪⎪⎩⎪⎪⎪⎨⎧=n S (切记:公比含字母时一定要讨论) 例1.求和(1)1+2+3+…+n=(2)=++++n x x x x 32(3)()()121613212222++=++++n n n n 二、分组求和法例2.求和:()()()()n S n n -++-+-+-=2322212321 解:三、错位相减法例3. 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 解:由题可知,⎭⎬⎫⎩⎨⎧n n 22的通项是等差数列{2n}的通项与等比数列⎭⎬⎫⎩⎨⎧n 21的通项之积 n n n S 2226242232+⋅⋅⋅+++=…………………………………① (乘公比) 14322226242221++⋅⋅⋅+++=n n n S ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n n S (错位相减)1122212+---=n n n ∴ 1224-+-=n n n S练习:1、求数列()13231,,35,34,33,2-⨯+⨯⨯⨯n n 的前n S n 项和.n n n S 2)12(...252321232⨯-++⨯+⨯+⨯=、求和:四、裂项相消法把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:(1)111)1(1+-=+n n n n (2) 1111()(2)22n n n n =-++ (3) )121121(21)12)(12(1+--=+-n n n n (4)n n n n -+=++111例4. 已知数列{}()11+=n n a a n n 中,,求前n S n 项和.练习:1、在数列{}n a 中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{}nb 的前n S n 项和.2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.。
数列知识点归纳总结笔记
数列知识点归纳总结笔记一、数列的概念1. 数列的定义数列是由一系列有序的数按照一定的规律排列而成的。
我们通常用{n}来表示一个数列,其中n为自然数。
2. 数列的常见表示方式(1)通项公式表示:数列的一般形式为a₁,a₂,a₃,......,aₙ,其中aₙ是第n项的值。
数列的通项公式通常是一种算式,可以用来表示数列的第n项。
(2)递推关系表示:数列的第n项与它的前几项之间存在某种关系,这种关系称为数列的递推关系,通常用递归的方式表示。
3. 数列的分类(1)等差数列:数列中任意两项之间的差是常数,这种数列称为等差数列。
(2)等比数列:数列中任意两项之间的比是常数,这种数列称为等比数列。
(3)等差-等比混合数列:数列中既存在等差关系,又存在等比关系,这种数列称为等差-等比混合数列。
(4)等差-等比-等比差混合数列:数列中既存在等差关系,又存在等比关系,同时等差项间的差也构成等差数列,这种数列称为等差-等比-等比差混合数列。
二、数列的性质1. 数列的有界性(1)有界数列:如果一个数列存在一个上界和一个下界,那么该数列称为有界数列。
(2)无界数列:如果一个数列不存在上界或下界,那么该数列称为无界数列。
2. 数列的单调性(1)单调递增数列:如果数列的每一项都大于等于前一项,那么该数列称为单调递增数列。
(2)单调递减数列:如果数列的每一项都小于等于前一项,那么该数列称为单调递减数列。
3. 数列的极限(1)数列的极限定义:对于一个数列{aₙ},如果对于任意给定的ε>0,存在N∈N,对于所有n>N,有|aₙ-L|<ε成立,则称数列{aₙ}的极限为L,记为lim(n→∞) aₙ=L。
(2)数列的极限存在性:一个数列未必存在极限,但只要该数列有上界和下界,则该数列一定存在极限。
4. 数列的和(1)数列的部分和:对于数列{aₙ},它的前n项的和称为数列的部分和,用Sₙ表示。
(2)数列的无穷和:如果lim(n→∞) Sₙ=L,那么L称为数列{aₙ}的无穷和,即∑ aₙ=L。
数列常考通项公式的方法总结
数列通项公式常考方法总结1、公式法:① 等差数列 ()11n a a n d =+-② 等比数列 111n n n a a a q q q -==(q ≠1)2、累差法:1()n n a a f n +-=(2)n ≥,若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。
3、累乘法: 1()n na f n a += 若1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 求通项公式。
高中数学数列公式总结
高中数学数列公式总结
高中数学有很多不同的数列,他们有不同的应用和用处。
本文将总结几个高中数学数列公式,供读者参考。
一、等差数列公式
等差数列是等间距分布的数字。
由等差数列公式得到的第n个数字为Sn = a1+(n-1)d。
其中,a1 为等差数列的首项,d为公差,n为项数。
二、等比数列公式
等比数列是以近似比例分布的数字。
由等比数列公式得到的第n个数字为 Sn = a1 * q^( n - 1 )。
其中,a1 为等比数列的首项,q为公比,n为项数。
三、等比级数公式
等比级数是以共同比例等比递增或递减组成的数列。
由等比级数公式
得到的第n项等比级数和为 Sn = a1 * ( 1 - q ^ n)/( 1 - q )。
其中,a1 为等比级数的首项,q为公比,n为项数。
四、平行四边形公式
平行四边形是边平行的四个角组成的图形,任意两条对面的边一样长。
由平行四边形公式得到的面积为 S = ab*sinA / 2 。
其中,a和b是平行四边形的两边,A为其中两个相邻的角的夹角的度数。
五、圆的周长和面积公式
圆是一种特殊的平行四边形,它有着特殊的周长和面积公式。
其中,
周长公式:C = 2*π*r;面积公式:S = π*r^2 。
其中,r 为圆的半径,π 为圆周率,C 为圆的周长, S为圆的面积。
以上就是有关高中数学数列公式总结的内容,几个高中数学数列公式中,每一种公式都有着不同的作用和应用。
学习者要根据自己的特点和了解,灵活运用。
希望本文能对读者有所帮助,让他们有所收获。
数列常见方法总结
数列常见方法总结一、考点、热点回顾1 数列通项公式的求法1.1. 累加法 1.2. 累乘法 1.3. 取倒数法 1.4. 待定系数法1.5. 构造等差、等比数列法 2 数列求和的基本方法和技巧2.1 错位相减法求和 2.2 倒序相加法求和 2.3 分组法求和 2.4 裂项法求和二、典型例题1. 数列通项公式的求法 1.1. 公式法①;②{}n a 等差、等比数列{}n a 公式.例 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
1.2. 累加法例 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。
例 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出⎩⎨⎧≥-==-)2()111n S S n S a n nn (11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L ,即得数列{}n a 的通项公式。
1.3. 累乘法例 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
数列总结几种有效方法
一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n 例1、已知等差数列{}n a 前n 项和为n s ,公差d=2,n=15,10-=n a ,求n s a 和1。
例2、在等比数列{}n a 中,前n 项和为n s ,81=a ,q=21,21=n a ,求n s 。
二、倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.{}n a 为等差数列,则12121a a a a S a a a S n n n n n ++++=+++=- 且)()()()(211121n n n n n a a n a a a a a a S +=+++++++=∴- 2)(1n n a a n S +=∴ 例: 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值已知函数(1)证明:;(2)求的值练:1.已知244)(+=x xx f 时,(1)121=+x x 时,求)()(21x f x f + (2))1001(nf a n =,则=1000S ?2 求值:三、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例:{}n a 为等差数列,{}n b 为等比数列,求{}n n b a +的前n 项和n S已知{}n a 的通项n n n a 21+=,求前n 项和n S 。
(完整版)数列总结经典
数列知识点梳理(一)数列的相关概念一.数列的概念1.数列是按一定顺序排列的一列数,记作简记.,,,,321 n a a a a {}n a 2.数列的第项与项数的关系若用一个公式给出,则这个公式叫做{}n a n n a n )(n f a n =这个数列的通项公式。
3.数列可以看做定义域为(或其子集)的函数,当自变量由小到大依次取值时对应的*N 一列函数值,它的图像是一群孤立的点。
二、数列的表示方法数列的表示方法有:列举法、解析法(用通项公式表示)和递推法(用递推关系表示)。
三、数列的分类1.按照数列的项数分:有穷数列、无穷数列。
2.按照任何一项的绝对值是否不超过某一正数分:有界数列、无界数列。
3.从函数角度考虑分:递增数列、递减数列、常数列、摆动数列。
递增数列的判断:比较f(n+1)与f(n)的大小(作差或作商)四、数列通项与前项和的关系n a n n S 1. 2.∑==++++=ni i n n a a a a a S 1321 ⎩⎨⎧≥-==-2111n S S n S a n n n(二)等差数列的相关知识点1.定义:。
)2()()()(11≥∈=-∈=-∙-∙+n N n d a a N n d a a n n n n 且常数或常数当d>0时,递增数列,d<0时,递减数列,d=0时,常数数列。
2.通项公式:d n a a n )1(1-+=d m n a m )(-+=qpn d a dn +=-+=)(1 d =,d = 是点列(n ,a n )所在直线的斜率.11--n a a n m n a a m n --3.前n 项的和:d n n na a a n S n n 2)1(2)(11-+=+=21()22d d n a n =+-Bn An +=2 {}是等差数列。
nS n4.等差中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c 5、等差数列的判定方法(n∈N*)(1)定义法: a n+1-a n =d 是常数 (2)等差中项法:212+++=n n n a a a (3)通项法: (4)前n 项和法:q pn a n +=BnAn S n +=26.性质:设{a n }是等差数列,公差为d,则(1)m+n=p+q ,则a m +a n =a p +a q 特别地,当时,则有2m n p +=2m n p a a a +=(2) a n ,a n+m ,a n+2m……组成公差为md 的等差数列.(3) S n , S 2n -S n , S 3n -S 2n……组成公差为n 2d 的等差数列.(4)若、是等差数列,则、(、是非零常数)、{}n a {}n b {}n ka {}n n ka pb +k p 均是等差数列,公差分别为:*{}(,)p nq a p q N +∈(5)若等差数列、的前和分别为、,且,则 {}n a {}n b n n A n B ()nnA f nB =.如设{}与{}是两个等差数列,它们的前项和2121(21)(21)(21)n n n n n n a n a A f n b n b B ---===--n a n b n 分 别为和,若,那么___________,__________n S n T 3413-+=n n T S n n =n n b a =77b a (6)n S 的最值:法1、可求二次函数2n S an bn =+的最值;法2、求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组10n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.例:若是等差数列,首项,,则使前n 项和{}n a 10,a >200320040a a +>200320040a a ⋅<成立的最大正整数n 是(答:4006)0n S >7.知三求二, 可考虑统一转化为两个基本量;或利用数列性质,n n S a n d a ,,,,1d a ,18、巧设元:三数:, 四数:d a a d a +-,,da d a d a d a 3,,,3-+--9、项数为偶数的等差数列{}n a ,有 ,n 2nd S S =-奇偶1+=n n a aS S 偶奇项数为奇数的等差数列{}n a ,有,12-n )()12(12为中间项n n n a a n S -=-,.n a S S =-偶奇1-=n n S S 偶奇例:项数为奇数的等差数列中,奇数项和为80,偶数项和为75,求此数列的中{}n a 间项与项数(答:5;31).10、如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究.n m a b = (三)等比数列的相关知识点(类比等差数列)1、定义:1n na q a +=(q 为常数,0q ≠)或 +∈≠N n a n ,0,时,常数数列当时,摆动数列当时,递减数列且;且当时,递增数列且;且当1q 0q 10100100101111=<><<<><<<>>q a q a q a q a 2、通项公式:11-=n n q a a =(0,1≠q a )m n m n q a a -==3、前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意q 的讨论)(q 1)A Aq n-=≠4、等比中项:x G y 、、成等比数列2G xy ⇒=,或G =只有同号两数才存在等比),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S中项,且有两个,如已知两个正数的等差中项为A ,等比中项为B ,则A 与B ,()a b a b ≠的大小关系为______5、等比数列的判定方法(n∈N*)(1)定义法: a n+1/a n =q 是常数 (2)等比中项法:221++∙=n n n a a a (3)通项法: n n cq a =(q c ,为非零常数). (4)前n 项和法: A Aq S nn -=6、性质:{}n a 是等比数列(1)若m n p q +=+,则m n p qa a a a =··特别地,当时,则有2m n p +=2.pn m a a a = 例:在等比数列中,,公比q 是整数,则=___(答:{}n a 3847124,512a a a a +==-10a 512);各项均为正数的等比数列中,若,则 {}n a 569a a ⋅=3132310log log log a a a +++= (答:10)。
(完整)数列题型及解题方法归纳总结,推荐文档
1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
数列方法总结
数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}na 的通项公式。
解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解. 例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n nn n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列. 类型1 递推公式为)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解.(2004全国卷I 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}na 是递增数列,前n 项和为nS,且931,,a a a 成等比数列,255a S =.求数列{}na 的通项公式.解:设数列{}na 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =, 即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n an5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、公式法若已知数列的前n 项和nS 与na 的关系,求数列{}na 的通项na 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S an n n求解。
例2.已知数列{}na 的前n 项和nS 满足1,)1(2≥-+=n a S nnn.求数列{}na 的通项公式。
解:由1121111=⇒-==a a S a当时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=--1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-L].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n Λ经验证11=a 也满足上式,所以])1(2[3212---+=n n na点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
类型1 递推公式为)(1n f a a nn +=+解法:把原递推公式转化为)(1n f a a nn =-+,利用累加法(逐差相加法)求解。
(2004全国卷已知数列{}na 中,12211,(1),k k k a a -==+-且a 2123kk ka a +=+,其中1,2,3,k =……,求数列{}na 的通项公式。
P24(styyj )例3. 已知数列{}n a 满足211=a ,nn a a nn ++=+211,求na 。
解:由条件知:111)1(1121+-=+=+=-+n n n n n n a an n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n na a a a a a a a )111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以na an111-=-211=a Θ,nn an1231121-=-+=∴类型2 (1)递推公式为nn a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
(2004全国卷已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥P24(styyj )例4. 已知数列{}na 满足321=a ,nn a n na11+=+,求na 。
解:由条件知11+=+n n aa nn ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n na a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n11=⇒ 又321=aΘ,nan32=∴(2).由nn a n f a )(1=+和1a 确定的递推数列{}na 的通项可如下求得:由已知递推式有1)1(--=n na n f a , 21)2(---=n n a n f a ,•••,12)1(a f a =依次向前代入,得 1)1()2()1(a f n f n f a n ⋅⋅⋅--=,简记为111))((a k f a n k n-=∏= )1)(,1(01=∏≥=k f n k ,这就是叠(迭)代法的基本模式。
(1) 递推式:()n f pa a nn +=+1解法:只需构造数列{}nb ,消去()n f 带来的差异.例5.设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求na .解:设BAn b a B ,An a b nnnn--=++=则,将1,-n n a a 代入递推式,得[]12)1(31-+---=---n B n A b B An b n n )133()23(31+----=-A B n A b n⇒⎪⎩⎪⎨⎧+-=-=∴13323A B B A A ⎩⎨⎧==11B A1++=∴n a b n n 取…(1)则13-=n nb b ,又61=b ,故nn nb 32361⨯=⨯=-代入(1)得132--⨯=n a nn说明:(1)若)(n f 为n 的二次式,则可设C Bn An a b nn +++=2;(2)本题也可由1231-+=-n a a n n ,1)1(2321--+=--n a a n n (3≥n )两式相减得2)(3211+-=----n n n n a a a a 转化为q pb b n n +=-1求之.例6.已知31=a ,n n a n n a23131+-=+ )1(≥n ,求na 。
解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---L 。
类型3 递推公式为q pa a nn +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法:把原递推公式转化为:)(1t a p t a nn -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。
(2006.重庆.14)在数列{}na 中,若111,23(1)n na a a n +==+≥,则该数列的通项na = P24(styyj )例7. 已知数列{}n a 中,11=a ,321+=+n n a a ,求na . 解:设递推公式321+=+n n a a 可以转化为)(21t a t a nn -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++nn a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++nn nn a a b b .所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=⨯=n n nb ,所以321-=+n na .类型4 递推公式为nnn q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。
(或1nn na pa rq +=+,其中p ,q, r 均为常数)(2006全国)(本小题满分12分) 设数列{}na 的前n 项的和14122333n nn Sa +=-⨯+,1,2,3,n =g g g(Ⅰ)求首项1a 与通项na ; P25(styyj ) 解法:该类型较类型3要复杂一些。
一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p qa nn n n 111+•=++ 引入辅助数列{}nb (其中nnnq a b=),得:qb q p bn n 11+=+再应用类型3的方法解决。
例8. 已知数列{}na 中,651=a ,11)21(31+++=n n n a a,求na 。
解:在11)21(31+++=n n n a a 两边乘以12+n 得:1)2(32211+•=•++n n n n a a令nn na b•=2,则1321+=+n n b b,应用例7解法得:nnb )32(23-= 所以nn nn nb a)31(2)21(32-==类型5 递推公式为nn n qa pa a +=++12(其中p ,q 均为常数)。
解法:先把原递推公式转化为)(112nn n n sa a t sa a -=-+++其中s ,t 满足⎩⎨⎧-==+qst pt s ,再应用前面类型3的方法求解。
(2006.福建.理.22)(本小题满分14分)已知数列{}n a 满足*111,21().n na a a n N +==+∈(I )求数列{}na 的通项公式; P26(styyj )例9. 已知数列{}n a 中,11=a ,22=a ,nn n a a a 313212+=++,求na 。
解:由n n n a a a313212+=++可转化为)(112n n n n sa a t sa a -=-+++即n n n sta a t s a-+=++12)(⎪⎪⎩⎪⎪⎨⎧-==+⇒3132st t s ⎪⎩⎪⎨⎧-==⇒311t s 或⎪⎩⎪⎨⎧=-=131t s这里不妨选用⎪⎩⎪⎨⎧-==311t s (当然也可选用⎪⎩⎪⎨⎧=-=131t s ,大家可以试一试),则)(31112n n n n a a a a --=-+++{}n n a a -⇒+1是以首项为112=-a a,公比为31-的等比数列,所以11)31(-+-=-n n n a a ,应用类型1的方法,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即2101)31()31()31(--+⋅⋅⋅⋅⋅⋅+-+-=-n na a311)31(11+--=-n又11=a Θ,所以1)31(4347---=n na。
类型 6 递推公式为nS 与na 的关系式。
(或()nnS f a =)解法:利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n进行求解。