图论和网络分析算法及Matlab实现(Graph_and_Network_Analysis)

合集下载

如何使用MATLAB进行网络分析与建模

如何使用MATLAB进行网络分析与建模

如何使用MATLAB进行网络分析与建模网络分析与建模是数据科学领域中的重要研究方法之一,它涉及到了计算机科学、数学、统计学等多个学科领域。

而在现代信息爆炸的时代,网络数据的规模和复杂性不断增加,对于分析和建模工具的要求也越来越高。

MATLAB作为一个强大的数学计算软件,提供了丰富的功能和工具,可以帮助我们进行网络分析与建模。

本文将介绍如何使用MATLAB进行网络分析与建模。

第一部分:网络分析基础网络分析是研究网络结构、功能和演化规律的一种方法。

在网络分析中,我们通常需要描述网络的拓扑结构、节点与边的关系、节点的属性等信息。

而MATLAB提供了一些常用的工具和函数,可以方便地进行网络分析。

首先,我们需要将网络数据导入到MATLAB中。

MATLAB支持导入各种格式的网络数据,如邻接矩阵、边列表、节点属性等。

使用MATLAB的数据导入和读取函数,我们可以将网络数据转换成MATLAB中的矩阵或表格,方便后续的分析和建模。

其次,我们可以使用MATLAB提供的函数和工具来计算网络的基本属性,如网络的度分布、聚类系数、平均路径长度等。

这些属性可以帮助我们了解网络的结构和功能,并进行比较和分类。

MATLAB还提供了可视化工具,可以直观地展示网络的拓扑结构和属性分布。

第二部分:网络建模与预测网络建模是研究网络演化和行为规律的关键内容。

借助MATLAB的数学建模和机器学习工具,我们可以构建各种网络模型,并使用这些模型来预测网络的演化和行为。

常用的网络建模方法包括随机网络模型、小世界网络模型、无标度网络模型等。

我们可以使用MATLAB的随机数生成函数和图论工具,生成各种类型的网络模型,并进行参数调节和性能评估。

此外,MATLAB还提供了机器学习和深度学习工具箱,可以用于网络模型的训练和预测。

网络预测是网络分析与建模的重要应用之一。

通过分析网络的演化规律和行为模式,我们可以预测网络的未来走向和趋势。

MATLAB提供了一些预测模型和函数,如时间序列分析、回归分析、神经网络等。

matlab图论程序算法大全

matlab图论程序算法大全

图论算法m a t l a b实现求最小费用最大流算法的 MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;endfor(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;e ndif(pd)break;end;end %求最短路的Ford 算法结束if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif(pd)break;end%如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用f %显示最小费用最大流图 6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束__Kruskal 避圈法:Kruskal 避圈法的MATLAB 程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x 记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end %排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x 中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T 中所有的元素赋值为0q=0; %记录加入到树T 中的边数for(s=1:k)if(q==n)break;end %获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T 中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT 中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end %寻找TT 中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end %砍掉TT 中的树枝if(pd)break;end;end %已砍掉了TT 中所有的树枝pd=0; %判断TT 中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0; %假如TT 中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束用Warshall-Floyd 算法求任意两点间的最短路.n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end %赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<D(i,j))D(i,j)=D(i,k)+D(k,j); %更新dijR(i,j)=k;end;end;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end %存在一条含有顶点vi 的负回路if(pd)break;end %存在一条负回路, 终止程序end %程序结束利用 Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流for(i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图 6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs 标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj 为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi 为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt 得到标号或者无法标号, 终止标号过程if(pd)break;end %vt 未得到标号, f 已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt 表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end %后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end %当t 的标号为vs 时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end %计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束图论程序大全程序一:关联矩阵和邻接矩阵互换算法function W=incandadf(F,f)if f==0m=sum(sum(F))/2;n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1; W(j,k)=1; k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);W(a(1),a(2))=1;W(a(2),a(1))=1;endelsefprint('Please imput the right value of f'); endW;程序二:可达矩阵算法function P=dgraf(A)n=size(A,1);P=A;for i=2:nP=P+A^i;endP(P~=0)=1;P;程序三:有向图关联矩阵和邻接矩阵互换算法function W=mattransf(F,f)if f==0m=sum(sum(F));n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=-1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);if F(a(1),i)==1W(a(1),a(2))=1;elseW(a(2),a(1))=1;endendelsefprint('Please imput the right value of f');endW;第二讲:最短路问题程序一:Dijkstra算法(计算两点间的最短路)function [l,z]=Dijkstra(W)n = size (W,1);for i = 1 :nl(i)=W(1,i);z(i)=0;endi=1;while i<=nfor j =1 :nif l(i)>l(j)+W(j,i)l(i)=l(j)+W(j,i);z(i)=j-1;i=j-1;endendendi=i+1;end程序二:floyd算法(计算任意两点间的最短距离)function [d,r]=floyd(a)n=size(a,1);d=a;for i=1:nfor j=1:nr(i,j)=j;endendfor k=1:nfor i=1:nfor j=1:nif d(i,k)+d(k,j)<d(i,j) d(i,j)=d(i,k)+d(k,j); r(i,j)=r(i,k);endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short(W,k1,k2)n=length(W);U=W;m=1;for i=1:nfor j=1:nif U(i,j)>U(i,m)+U(m,j) U(i,j)=U(i,m)+U(m,j);endendendm=m+1;endu=U(k1,k2);P1=zeros(1,n);k=1;P1(k)=k2;V=ones(1,n)*inf;kk=k2;for i=1:nV(1,i)=U(k1,kk)-W(i,kk);if V(1,i)==U(k1,i)P1(k+1)=i;kk=i;k=k+1;endendendk=1;wrow=find(P1~=0);for j=length(wrow):-1:1P(k)=P1(wrow(j));k=k+1;endP;程序四、n1short.m(计算某点到其它所有点的最短距离) function[Pm D]=n1short(W,k)n=size(W,1);D=zeros(1,n);for i=1:n[P d]=n2short(W,k,i);Pm{i}=P;D(i)=d;end程序五:pass2short.m(计算经过某两点的最短距离) function [P d]=pass2short(W,k1,k2,t1,t2)[p1 d1]=n2short(W,k1,t1);[p2 d2]=n2short(W,t1,t2);[p3 d3]=n2short(W,t2,k2);dt1=d1+d2+d3;[p4 d4]=n2short(W,k1,t2);[p5 d5]=n2short(W,t2,t1);[p6 d6]=n2short(W,t1,k2);dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2(2:length(p2)) p3(2:length(p3))]; elsed=dt1;p=[p4 p5(2:length(p5)) p6(2:length(p6))]; endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf(d,flag)if nargin==1n=size(d,2);m=sum(sum(d~=0))/2;b=zeros(3,m);k=1;for i=1:nfor j=(i+1):nif d(i,j)~=0b(1,k)=i;b(2,k)=j; b(3,k)=d(i,j);k=k+1;endendendelseb=d;endn=max(max(b(1:2,:)));m=size(b,2);[B,i]=sortrows(b',3);B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t(B(1,i))~=t(B(2,i))T(1:2,k)=B(1:2,i);c=c+B(3,i);k=k+1;tmin=min(t(B(1,i)),t(B(2,i))); tmax=max(t(B(1,i)),t(B(2,i)));for j=1:nif t(j)==tmaxt(j)=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf(a)l=length(a);a(a==0)=inf;k=1:l;listV(k)=0;listV(1)=1;e=1;while (e<l)min=inf;for i=1:lif listV(i)==1for j=1:lif listV(j)==0 & min>a(i,j) min=a(i,j);b=a(i,j);s=i;d=j;endendendendlistV(d)=1;distance(e)=b;source(e)=s;destination(e)=d;e=e+1;endT=[source;destination];for g=1:e-1c(g)=a(T(1,g),T(2,g));endc;另外两种程序最小生成树程序1(prim 算法构造最小生成树)a=[inf 50 60 inf inf inf inf;50 inf inf 65 40 inf inf;60 inf inf 52 inf inf 45;... inf 65 52 inf 50 30 42;inf 40 inf 50 inf 70 inf;inf inf inf 30 70 inf inf;... inf inf 45 42 inf inf inf];result=[];p=1;tb=2:length(a);while length(result)~=length(a)-1temp=a(p,tb);temp=temp(:);d=min(temp);[jb,kb]=find(a(p,tb)==d);j=p(jb(1));k=tb(kb(1));result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];endresult最小生成树程序2(Kruskal 算法构造最小生成树)clc;clear;a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40;a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;a(4,7)=42; a(5,6)=70;[i,j,b]=find(a);data=[i';j';b'];index=data(1:2,:);loop=max(size(a))-1;result=[];while length(result)<looptemp=min(data(3,:));flag=find(data(3,:)==temp);flag=flag(1);v1=data(1,flag);v2=data(2,flag);if index(1,flag)~=index(2,flag)result=[result,data(:,flag)];endindex(find(index==v2))=v1;data(:,flag)=[];index(:,flag)=[];endresult第四讲:Euler图和Hamilton图程序一:Fleury算法(在一个Euler图中找出Euler环游)注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1(d)%注:必须保证是Euler环游,否则输出T=0,c=0 n=length(d);b=d;b(b==inf)=0;b(b~=0)=1;m=0;a=sum(b);eds=sum(a)/2;ed=zeros(2,eds);vexs=zeros(1,eds+1);matr=b;for i=1:nif mod(a(i),2)==1m=m+1;endendif m~=0fprintf('there is not exit Euler path.\n')T=0;c=0;endif m==0vet=1;flag=0;t1=find(matr(vet,:)==1);for ii=1:length(t1)ed(:,1)=[vet,t1(ii)];vexs(1,1)=vet;vexs(1,2)=t1(ii);matr(vexs(1,2),vexs(1,1))=0;flagg=1;tem=1;while flagg[flagg ed]=edf(matr,eds,vexs,ed,tem);tem=tem+1;if ed(1,eds)~=0 & ed(2,eds)~=0 T=ed;T(2,eds)=1;c=0;for g=1:edsc=c+d(T(1,g),T(2,g));endflagg=0;break;endendendendfunction[flag ed]=edf(matr,eds,vexs,ed,tem) flag=1;for i=2:eds[dvex f]=flecvexf(matr,i,vexs,eds,ed,tem);if f==1flag=0;break;endif dvex~=0ed(:,i)=[vexs(1,i) dvex];vexs(1,i+1)=dvex;matr(vexs(1,i+1),vexs(1,i))=0;elsebreak;endendfunction [dvex f]=flecvexf(matr,i,vexs,eds,ed,temp) f=0;edd=find(matr(vexs(1,i),:)==1); dvex=0;dvex1=[];ded=[];if length(edd)==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length(edd)m1=find(vexs==edd(kk));if sum(m1)==0dvex1(dd)=edd(kk); dd=dd+1;dd1=1;elsekkk=kkk+1;endif kkk==length(edd)tem=vexs(1,i)*ones(1,kkk);edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1(1:2,l1)==ed(1:2,l2) lt=lt+1;endendif lt==0ded(ddd)=edd(l1);ddd=ddd+1;endendif temp<=length(dvex1)dvex=dvex1(temp);elseif temp>length(dvex1) & temp<=length(ded)dvex=ded(temp);elsef=1;endend程序二:Hamilton改良圈算法(找出比较好的Hamilton路)function [C d1]= hamiltonglf(v)%d表示权值矩阵%C表示算法最终找到的Hamilton圈。

图论和网络分析算法及Matlab实现(Graph_and_Network_Analysis)资料共7

图论和网络分析算法及Matlab实现(Graph_and_Network_Analysis)资料共7
图论和网络分析算法及Matlab实现 (Graph_and_Network_Analysis)资

6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

如何利用Matlab进行社交网络分析

如何利用Matlab进行社交网络分析

如何利用Matlab进行社交网络分析在当今信息时代,社交网络已成为人们交流、分享和获取信息的重要平台。

社交网络的广泛使用为研究者提供了丰富的数据资源,也促使了社交网络分析的兴起。

社交网络分析旨在揭示网络中的关键节点、社群结构以及信息传播模式,为我们理解人际关系、信息扩散等问题提供了有力的工具。

而在社交网络分析领域,Matlab作为一款强大而灵活的编程工具,为我们提供了丰富的分析功能和研究方法。

本文将探讨如何利用Matlab进行社交网络分析。

一、数据预处理要进行社交网络分析,首先需要获取和预处理数据。

通常情况下,我们可以从公开可用的数据集中或自己收集的数据中获得社交网络数据。

数据可以是以节点和边(也称为链接)的形式表示,节点代表个体,边代表个体之间的关系。

在Matlab中,可以使用graph对象来表示和操作社交网络。

首先,我们需要根据节点和边的数据创建一个graph对象。

节点数据可以是一个向量或一个单元格数组,存储了节点的信息。

边数据可以是一个矩阵或一个二元组,表示节点之间的连接关系。

创建graph对象的代码如下:```MatlabG = graph(edges(:,1), edges(:,2));```其中,edges是边数据的矩阵或二元组。

在数据预处理阶段,我们还需要对数据进行清洗和处理。

这包括去除重复节点和边,处理缺失数据,以及对节点和边的属性进行适当的编码和映射。

二、度分析度(degree)是衡量节点在社交网络中的重要性的指标,代表了节点的连接数量。

在社交网络分析中,度分析是最基础也是最常用的分析方法之一。

在Matlab中,可以使用degree函数计算节点的度。

例如,要计算节点i的度,可以使用以下命令:```Matlabdegree_i = degree(G, i);```我们还可以使用histogram函数绘制节点度的分布图,以了解网络的结构特征。

例如,要绘制节点度的直方图,可以使用以下命令:```Matlabhistogram(degree(G));```直方图可以帮助我们观察节点度的分布情况,例如是否存在度为零的孤立节点,或者是否存在度较高的核心节点。

图论与网络优化课程设计_Matlab实现

图论与网络优化课程设计_Matlab实现
关键字:最近邻耦合网络;ER 随机网络;WS 小世界网络;BA 无标度网络;Matlab;NodeXL。
1
四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较
1. 概述
1. 网络科学的概述 网络科学(Network Science)是专门研究复杂网络系统的定性和定量规律的一门崭新 的交叉科学,研究涉及到复杂网络的各种拓扑结构及其性质,与动力学特性(或功能)之间 相互关系,包括时空斑图的涌现、动力学同步及其产生机制,网络上各种动力学行为和信息 的传播、预测(搜索)与控制,以及工程实际所需的网络设计原理及其应用研究,其交叉研 究内容十分广泛而丰富。网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最 近邻耦合网络 (Nearest-neighbor coupled network) ,本文中简称 NCN; ER 随机网络 G(N,p); WS 小世界网络;BA 无标度网络。本文着重研究这几种网络的构造算法程序。计算各种规模 下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、 平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 2. 最近邻耦合网络的概述 如果在一个网络中, 每一个节点只和它周围的邻居节点相连, 那么就称该网络为最近邻 耦合网络。这是一个得到大量研究的稀疏的规则网络模型。 常见的一种具有周期边界条件的最近邻耦合网络包含围成一个环的 N 个节点,其中每 个节点都与它左右各 K / 2 个邻居节点相连,这里 K 是一个偶数。这类网络的一个重要特征 就是网络的拓扑结构是由节点之间的相对位置决定的, 随着节点位置的变化网络拓扑结构也 可能发生切换。 NCN 的 Matlab 实现: %function b = ncn(N,K) %此函数生成一个有 N 个节点,每个节点与它左右各 K/2 个节点都相连的最近邻耦合网络 %返回结果 b 为该最近邻耦合网络对应的邻接矩阵 function b = ncn(N,K) b=zeros(N); for i = 1:N for j = (i+1):(i+K/2) if j<=N b(i,j)=1; b(j,i)=1; else b(i,j-N)=1;

图论算法及matlab程序的三个案例

图论算法及matlab程序的三个案例

图论实验三个案例单源最短路径问题 1.1 Dijkstra 算法Dijkstra 算法是解单源最短路径问题的一个贪心算法。

其基本思想是,设置 一个顶点集合S 并不断地作贪心选择来扩充这个集合。

一个顶点属于集合S 当且 仅当从源到该顶点的最短路径长度已知。

设 v 是图中的一个顶点,记l(v)为顶点 v 到源点V 1的最短距离,V i,V jV ,若(V i,V j)E ,记“到百的权w 。

Dijkstra 算法:① S {V J I(V J 0 ; V V {可 1(V ) i i S V {V J ;J7JJJ7②S,停止,否则转③;l(v) min{ l(v) , d(V j ,v)}V j S④ 存在Vi 1,使l (V i l) min{l(V)},V S ;⑤SSU{v i 1}S S {v i 1}i i 1实际上,Dijkstra 算法也是最优化原理的应用:如果V 1V 2LV n1Vn是从V1到Vn的最短路径,贝UV 1V 2L Vn1也必然是从V1到Vn 1的最优路径。

在下面的MATLA 实现代码中,我们用到了距离矩阵,矩阵第 i 行第j 行元 素表示顶点Vi到Vj的权Wj,若v 到V j无边,则W ijrealmax,其中realmax 是 MATLA 常量,表示最大的实数(1.7977e+308)function re=Dijkstra(ma)%用Dijkstra 算法求单源最短路径%俞入参量ma是距离矩阵%输出参量是一个三行n 列矩阵,每列表示顶点号及顶点到源的最短距离和前顶点n=size(ma,1);% 得到距离矩阵的维数s=ones(1,n);s(1)=0;% 标记集合S和S 的补r=zeros(3,n);r(1,:)=1:n;r(2,2:end)=realmax;% 初始化for i=2:n;% 控制循环次数mm=realmax;for j=find(s==0);% 集合S中的顶点for k=find(s==1);% 集合S补中的顶点if(r(2,j)+ma(j,k)<r(2,k))r(2,k)=r(2,j)+ma(j,k);r(3,k)=j;endif(mm>r(2,k))mm=r(2,k);t=k;endendends(1,t)=0;%找到最小的顶点加入集合Send re=r;1.2动态规划求解最短路径动态规划是美国数学家 Richard Bellman 在1951年提出来的分析一类多阶 段决策过程的最优化方法,在工程技术、工业生产、经济管理、军事及现代化控 制工程等方面均有着广泛的应用。

matlab图论程序算法大全解读

matlab图论程序算法大全解读

f % 显示最小费用最大流
图 6-22
wf %显示最小费用最大流量
zwf % 显示最小费用 , 程序结束 __
Kruskal 避圈法:
Kruskal 避圈法的 MATLAB程序代码如下:
n=8;A=[0 2 8 1 0 0 0 0
20601000
86075120
10700090
01500308
00103046
k=k+kk; end; end; end
k=k-1 %显示 A中所有不同正数的个数
for (i=1:k-1) for (j=i+1:k) %将 x 中不同的正数从小到大排序
if (x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;
end; end; end
T(n,n)=0; %将矩阵 T 中所有的元素赋值为 0
elseif (C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);
elseif (C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);
end; end; end
for (i=2:n)p(i)=Inf;s(i)=i;
end %用Ford 算法求最短路 , 赋初值
t=n; while (1) %调整过程
if (a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; elseif (a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;
%前向弧调整 end %后向弧调整
if (s(t)==1) break ; end %当 t 的标号为 vs 时 , 终止调整过程

在Matlab中使用网络分析工具箱进行社交网络分析

在Matlab中使用网络分析工具箱进行社交网络分析

在Matlab中使用网络分析工具箱进行社交网络分析在Matlab中使用网络分析工具进行社交网络分析社交网络是指由各种社会关系构成的网状结构,它主要通过人们之间的联系和互动来传播信息、分享资源和建立社会关系。

而随着信息技术的迅速发展,人们对于社交网络的研究越来越重要。

在这个时候,使用网络分析工具箱就成为了进行社交网络分析的一种重要手段。

Matlab是一种强大的科学计算与数据分析工具,它不仅拥有丰富的数学计算函数库,而且还提供了一系列用于网络分析的工具箱。

在Matlab中,我们可以使用network对象来表示和操作网络结构。

这个对象可以通过添加节点和边的方式来构建网络。

而对于实际的社交网络,可以通过抓取社交媒体上的数据或者通过人工调查的方式来获取。

首先,我们需要导入网络数据。

在Matlab中,我们可以将网络数据以邻接矩阵的形式读入,并使用network对象的createFromAdjacencyMatrix方法将其转换为network对象。

邻接矩阵描述了网络中节点之间的连接关系,其中的每一个元素代表了两个节点之间的连接强度。

在社交网络中,通常使用1表示两个节点之间存在联系,0表示不存在。

除了邻接矩阵,我们还可以使用边表和节点表来描述网络结构。

接下来,我们可以使用network对象提供的各种方法来分析网络结构。

例如,我们可以使用degree函数计算网络中每个节点的度数,即与该节点相连的边的数量。

度数反映了节点在网络中的重要性,度数越高,说明节点的连接越多,影响力也就越大。

我们也可以使用betweennessCentrality函数来计算每个节点的介数中心性。

介数中心性反映了节点在网络中的中介程度,介于节点之间流通的信息越多,说明该节点在信息传播中具有更重要的角色。

除了节点分析,我们还可以进行网络的整体分析。

例如,我们可以使用clusterCoefficiency函数计算网络的聚类系数。

聚类系数是网络中节点之间形成闭合三角形的概率,聚类系数越高,说明网络中的节点之间联系更加紧密。

Matlab中的复杂网络与图论分析方法

Matlab中的复杂网络与图论分析方法

Matlab中的复杂网络与图论分析方法在当今数字时代,数据网络正在成为各行各业的核心,这就给研究网络结构和分析网络行为提供了前所未有的机会。

而复杂网络和图论分析方法则成为了研究数据网络的一种重要手段。

本文将介绍在Matlab中应用的复杂网络和图论分析方法,探讨其原理和应用。

一、复杂网络:拓扑结构的研究复杂网络是指由大量节点和链接组成的网络,其中节点代表实体,链接代表实体之间的关系。

通过研究复杂网络的拓扑结构,我们可以揭示数据网络中的规律和性质,了解网络中节点的连接模式和信息传播机制。

1.1 网络拓扑结构的描述在复杂网络研究中,一种常用的描述方法是邻接矩阵和度矩阵。

邻接矩阵是一个由0和1组成的矩阵,其中的元素表示节点之间的连接关系,1表示连接,0表示未连接。

度矩阵是一个对角矩阵,用于描述每个节点的度数,即与该节点相连的链接数。

1.2 网络节点的度分布节点的度数是指与该节点相连的链接数,而节点的度分布则是指不同度数的节点在网络中的分布情况。

在复杂网络中,节点的度分布往往符合幂律分布,即少数节点的度数非常大,而大部分节点的度数相对较小。

通过分析节点的度分布,可以了解网络中的核心节点和边缘节点,以及网络的鲁棒性和可靠性。

1.3 网络中的社区结构社区结构是指网络中节点的聚集现象,即节点之间的连接更密集,而与其他社区的联系较弱。

通过识别和研究网络中的社区结构,可以帮助我们揭示网络中的隐含规律、发现重要节点和子网络,并理解网络的分层结构和功能。

二、图论分析:探索网络行为的机制图论是研究网络结构和图形模型的数学理论,主要关注网络中节点和链接之间的关系。

通过图论分析,我们可以量化和描述网络中的节点和链接的特性,揭示网络的演化机制和行为规律。

2.1 网络中的中心性度量中心性是衡量网络中节点重要性的指标,可以帮助我们识别重要节点和影响网络动态行为的因素。

在复杂网络中,常用的中心性度量包括度中心性、接近中心性和介数中心性等。

图与网络分析(GraphTheoryandNetworkAnalysis)

图与网络分析(GraphTheoryandNetworkAnalysis)

e9
e5 {v1 , v3 } e6 {v3 , v5 }
e7 {v3 , v5 } e8 {v5 , v6 }
e9 {v6 , v6 } e10 {v1 , v6 }
e1
e2
v2
e5 e3 e4 v4
e8
e6
v5 e7 v3
图1
2、如果一个图是由点和边所构成的,则称其为无向图,记作
X={1}, w1=0
p1=0
2
6
1
2
3
1
10
p4=1
5
9
3
4
7
5
6
5
2
3
4
6
7
4
8 8
min {c12,c14,c16}=min {0+2,0+1,0+3}=min {2,1,3}=1 X={1,4}, p4=1
(9) T (v6 ) min[ T (v6 ), P(v5 ) l56 ] min[ , 5 2] 7 (10) P(v6 ) 7
反向追踪得v1到v6的最短路为:v1 v2 v5 v6
求从1到8的最短路径
2
6
1
2
3
1
10
5
9
3
4
7
5
6
5
2
3
4
6
7
4
8 8
v2
v5
v2
v4
v3
v4
v3
一个图G 有生成树的充要条件是G 是连通图。
用破圈法求出下图的一个生成树。
v2
e1 v1
e4 e7 e3 v4 e8

应用篇-第14章-图论算法及其MATLAB实现

应用篇-第14章-图论算法及其MATLAB实现
定理14.3握手定理)

对每个图G=(V,E),均有
d(v)=2|E|
vV

证明:根据顶点度的定义,在计算点度时每条边对于它所关联的顶点被计 算了两次。因此,图G 中点度的总和恰为边数|V|的2倍。证毕。 推论14.1 在任何图G=(V,E)中,奇点的个数为偶数。

定理14.4对任意有向图D=(V,A)均有

14.8 Dijkstra 算法及其MATLAB实现
14.8.1 问题描述与算法思想
Dijkstra算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置 一个顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当 且仅当从源到该顶点的最短路径长度已知。设v是图中的一个顶点,记L(v) 为顶点v到源点v1的最短距离, vi , v j V 若 (vi , v j ) E ,记vi到vj的权。
① A(G)为对称矩阵;
② 若G 为无环图,则A(G)中第i行(列)的元素之和等于顶点vi的度; ③ 两图G 和H 同构的充分必要条件是存在置换矩阵P 使得A(G)=PTA(H)P。
类似地,有向图D 的邻接矩阵A(D)=(aij)n×n的元素aij定义为:元素aij表示从始点vi到 终点vj的有向边的条,,其中vi和vj为D 的顶点。
14.3.2 关联矩=(V,E),其中顶点集V={v1,v2,…,vn},边集E={e1,e2,…,eε}。 用 mij表示顶点vi与边ej关联的次数,可能取值为0,1,2,称所得矩阵M(G)=(mij)n×ε为 图G 的关联矩阵。 类似地,有向图D 的关联矩阵M(D)=(mij)n×ε的元素mij定义为:
14.2.4 路

在图论理论中,路具有特殊的重要性,古往今来,许多学者均对它进行过深入研究。本 节主要介绍简单图G=(V,E)中有关路和连通性的简单性质。 定理14.1 若图G 中有一条(u,v)途径,则G 中也存在一条(u,v)路。

Matlab技术网络数据分析方法总结

Matlab技术网络数据分析方法总结

Matlab技术网络数据分析方法总结一、引言随着互联网的快速发展和物联网应用的普及,海量的网络数据不断涌现。

如何从海量的网络数据中提取有效信息并进行深入分析,成为了现代数据科学领域的重点研究。

而Matlab作为一种简单易用且功能强大的数据分析工具,被广泛应用于网络数据分析领域。

本文将总结和介绍一些常用的Matlab技术在网络数据分析方面的应用方法。

二、数据获取与预处理在网络数据分析的开始阶段,首先需要获取并预处理原始数据。

Matlab提供了多种获取网络数据的方法,如通过HTTP协议获取API数据,使用网络爬虫获取网页数据等。

通过网络爬虫获取网页数据是常见的方法之一。

Matlab中可以使用爬虫工具包进行网页数据获取,然后利用正则表达式等技术对数据进行清洗和提取,以便后续分析。

另外,在数据预处理过程中,我们经常需要利用Matlab进行数据清洗、去重、填充缺失值等操作。

Matlab提供了丰富的数据处理函数和工具箱,可以方便地进行数据处理。

例如,可以使用dataclean函数对数据进行清洗处理,使用fillmissing函数填充缺失值等。

三、数据可视化分析数据可视化是网络数据分析不可或缺的一环。

通过数据可视化,我们可以更直观地了解数据的规律和特点。

Matlab提供了丰富的数据可视化函数和工具箱,可以满足各种可视化需求。

1. 折线图折线图是常用的数据可视化方式之一。

Matlab中的plot函数可以绘制折线图,我们可以利用该函数来展示网络数据的变化趋势。

例如,我们可以将时间作为横轴,网络流量作为纵轴,绘制出网络流量随时间的变化折线图,以便进行流量分析和预测。

2. 散点图散点图可以用于展示数据的分布情况和相关性。

Matlab中的scatter函数可以绘制散点图,我们可以将网络节点的属性作为横纵轴,展示节点之间的关系。

例如,我们可以将节点的度中心性作为横轴,介数中心性作为纵轴,绘制出节点度中心性和介数中心性的散点图,以便分析网络的核心节点。

图论和网络分析算法及Matlab实现(Graph_and_Network_Analysis)

图论和网络分析算法及Matlab实现(Graph_and_Network_Analysis)

2017/11/5
问题的两个共同特点
(1)目的都是从若干可能的安排或方案中寻求 某种意义下的最优安排或方案,数学问题称 为最优化或优化问题。 (2)它们都可用图形形式直观描述,数学上把这 种与图相关的结构称为网络。图和网络相关 的最优化问题就是网络最优化。 网络优化问题是以网络流为研究的对象,常 常被称为网络流或网络流规划等。
v2
2
v1 3 5 1
v3
2
7 5 3 5 v5
v6 1 7
5
v7
v4
• 2. 方法:Dijkstra算法(Dijkstra,1959)
Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271.
2017/11/5
5 、旅行商问题 Traveling salesman problem
一名推销员准备前往若干城市推销产 品。如何为他设计一条最短的旅行 路线? (从驻地出发,经过每个城 市恰好一次,最后返回驻地)
2017/11/5
6、运输问题 Transportation problem
某种原材料有 M个产地,现在需要将原材料从产 地运往 N个使用这些原材料的工厂。假定 M个产 地的产量和 N家工厂的需要量已知,单位产品从 任一产地到任一工厂的运费已知,那么如何安排 运输方案可以使总运输成本最低?
wij,i能一步到达j d ij j ,i不能一步到达
2017/11/5
Dijkstra 算法
由图G建立一步可达距离阵D=(dij)n×n
给V1(Vs)括号(l1,Vk)=(0,s)给出已标号集合 I和未标号集合J的元素

graph在matlab的用法

graph在matlab的用法

graph在matlab的用法在MATLAB中,graph表示无向图或有向图,它可以由节点集合和边集合组成。

要创建一个graph对象,可以使用graph函数。

例如,以下代码将创建一个有5个节点和7条边的graph对象:```matlabG = graph([1 1 2 2 2 3 4],[2 3 3 4 5 4 5]);```其中的第一个参数是边的起点节点索引的向量,第二个参数是边的终点节点索引的向量。

在这个例子中,[1 1 2 2 2 3 4]表示起点节点索引,[2 3 3 4 5 4 5]表示终点节点索引。

可以使用plot函数来绘制graph对象。

以下代码将绘制上述graph对象:```matlabplot(G);```除了基本的绘图功能外,MATLAB还提供了其他功能来操作graph 对象。

例如:-可以使用numnodes函数获取graph对象中节点的数量:```matlabnum_nodes = numnodes(G);```-可以使用numedges函数获取graph对象中边的数量:```matlabnum_edges = numedges(G);```-可以使用neighbors函数获取某个节点的邻居节点:```matlabnode_neighbors = neighbors(G, node_index);```-可以使用distances函数计算两个节点之间的最短路径:```matlabshortest_path_length = distances(G, node1, node2); ```-可以使用bfs函数进行广度优先搜索:```matlab[dist, path, pred] = bfs(G, start_node);```-可以使用dfs函数进行深度优先搜索:```matlab[dist, pred] = dfs(G, start_node);```除了以上这些功能,还有许多其他用于操作graph对象的函数,例如计算连通性、生成最小生成树、计算最短路径等等。

Matlab技术复杂网络分析与建模

Matlab技术复杂网络分析与建模

MatIab技术复杂网络分析与建模在当今信息爆炸的时代,我们生活在一个高度互联的世界中。

互联网连接着世界各地的人和机器,形成了复杂的网络系统。

这些网络系统包括社交媒体、云计算、交通网络等等。

理解和分析这些复杂网络是非常重要的,因为它们对我们的日常生活和社会发展产生了巨大的影响。

在这篇文章中,我将向大家介绍利用MaHab技术进行复杂网络分析与建模的方法与应用。

首先,让我们了解一下什么是复杂网络。

复杂网络是由大量的节点和连接组成的系统,这些节点和连接之间的关系是非线性和非随机的。

节点可以是个体、公司、城市等等,连接可以表示关系、交流或者交易。

复杂网络的特点是拥有高度的连通性和小世界现象,这意味着通过几条较短的路径就可以连接到网络中的任意两个节点。

此外,复杂网络还具有模块化和尺度无关性的特征。

接下来,我们将讨论如何使用Mat1ab进行复杂网络分析。

MatIab是一款功能强大的科学计算软件,它提供了丰富的工具箱和函数,用于网络分析和建模。

其中,GraPh和NeIWork工具箱是Mat1ab中常用的网络分析工具箱。

Mat1ab的Graph工具箱提供了用于图和网络分析的函数和类。

使用这些函数和类,我们可以方便地构建和操作网络,进行基本的网络分析,例如节点和边的计数、网络密度的计算、连通性分析等等。

此外,GraPh工具箱还提供了用于可视化网络的函数,使我们可以直观地展示网络的结构和连接关系。

另一个常用的工具箱是Mat1ab的NetWOrk工具箱。

NetWork工具箱提供了更高级的网络分析和模型建立的功能。

使用NetWork工具箱,我们可以进行复杂网络的聚类分析、社团检测、节点中心度计算等等。

此外,NetWOrk工具箱还支持基于随机图模型的网络建模,例如随机图、ER模型、BA模型等等,使我们能够生成和研究特定类型的网络。

通过使用Mat1ab的Graph和Network工具箱,我们可以对复杂网络进行深入的分析和建模。

matlab图论方法

matlab图论方法
能否从某个城市出发在十二面体上依次经过每个 城市恰好一次最后回到出发点?
哈密顿圈(环球旅行游戏)
问题3(四色问题): 对任何一张地图进行着色,两个共同边界的
国家染不同的颜色,则只需要四种颜色就够了.
问题4(关键路径问题): 一项工程任务,大到建造一座大坝,一座体育
中心,小至组装一台机床,一架电视机, 都要包括 许多工序.这些工序相互约束,只有在某些工序完 成之后, 一个工序才能开始. 即它们之间存在完 成的先后次序关系,一般认为这些关系是预知的, 而且也能够预计完成每个工序所需要的时间.
V = {v1 , v2 , v3 , v4}, E = { v1v2 , v1v3 , v1v4 , v2v3 , v2v4 , v3v4}.
今后将不计较这种外形上的差别,而用一个容 易理解的、确定的图解去表示一个图.
有边联结的两个点称为相邻的点, 有一个公共 端点的边称为相邻边. 边和它的端点称为互相关联. 常用d(v)表示图G中与顶点v关联的边的数目, d(v) 称为顶点v的度数. 用N(v)表示图G中所有与顶点v相 邻的顶点的集合.
这时工程领导人员迫切希望了解最少需要多 少时间才能够完成整个工程项目, 影响工程进度 的要害工序是哪几个?
6.1 图论的基本概念
图论中的“图”并不是通常意义下的几何图 形或物体的形状图, 而是以一种抽象的形式来表 达一些确定的事物之间的联系的一个数学系统.
定义1 一个有序二元组(V, E ) 称为一个图, 记 为G = (V, E ), 其中
(0,1,0,1) (0,1,0,0) (0,0,1,0) (0,0,0,1) (0,0,0,0) (1,0,1,0) (1,0,1,1) (1,1,0,1) (1,1,1,0) (1,1,1,1)

图论算法及其MATLAB程序代码

图论算法及其MATLAB程序代码

图论算法及其MATLAB程序代码图论算法及其MATLAB程序代码求赋权图G = (V, E , F )中任意两点间的最短路的Warshall-Floyd 算法:设A = (a ij )n×n为赋权图G = (V, E , F )的矩阵, 当v i v j∈E时a ij= F (v i v j), 否则取a ii=0, a ij = +∞(i≠j ), d ij表示从v i到v j点的距离, r ij表示从v i到v j点的最短路中一个点的编号.①赋初值. 对所有i, j, d ij = a ij, r ij = j. k = 1. 转向②②更新d ij, r ij . 对所有i, j, 若d ik + d k j<d ij, 则令d ij = d ik + d k j, r ij = k, 转向③.③终止判断. 若d ii<0, 则存在一条含有顶点v i的负回路, 终止; 或者k = n终止; 否则令k = k + 1, 转向②.最短路线可由r ij得到.例1求图6-4中任意两点间的最短路.图6-4解:用Warshall-Floyd算法, MA TLAB程序代码如下:n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB中, Inf表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end%赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<=""bdsfid="85" p="">R(i,j)=R(k,j);end;end;end%更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end%存在一条含有顶点vi的负回路if(pd)break;end%存在一条负回路, 终止程序end%程序结束Kruskal避圈法:将图G中的边按权数从小到大逐条考察, 按不构成圈的原则加入到T 中(若有选择时, 不同的选择可能会导致最后生成树的权数不同), 直到q (T ) = p (G ) - 1为止, 即T的边数= G的顶点数- 1为止.Kruskal避圈法的MATLAB程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end%排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x中不同的正数从小到大排序if(x(j)< bdsfid="113" p=""><>T(n,n)=0; %将矩阵T中所有的元素赋值为0q=0; %记录加入到树T中的边数for(s=1:k)if(q==n)break;end%获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end%寻找TT中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0; p d=0;end;end%砍掉TT中的树枝if(pd)break;end;end%已砍掉了TT中所有的树枝pd=0; %判断TT中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0; %假如TT中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束求二部图G的最大匹配的算法(匈牙利算法), 其基本思想是:从G 的任意匹配M开始, 对X中所有M的非饱和点, 寻找M-增广路. 若不存在M-增广路, 则M为最大匹配; 若存在M-增广路P, 则将P中M与非M的边互换得到比M多一边的匹配M1 , 再对M1重复上述过程.设G = ( X, Y, E )为二部图, 其中X = {x1, x2, … , x n }, Y = { y1,y2, … , y n}. 任取G的一初始匹配M (如任取e∈E, 则M = {e}是一个匹配).①令S = φ , T = φ , 转向②.②若M饱和X \ S的所有点, 则M是二部图G的最大匹配. 否则, 任取M的非饱和点u∈X \ S , 令S = S ∪{ u }, 转向③.③记N (S ) = {v | u∈S, uv∈E}. 若N (S ) = T, 转向②. 否则取y∈N (S ) \ T. 若y是M 的饱和点, 转向④, 否则转向⑤.④设x y∈M, 则令S = S ∪{ x }, T = T ∪{ y }, 转向③.⑤u -y路是M-增广路, 设为P, 并令M = M⊕P, 转向①. 这里M⊕P = M∪P \ M∩P, 是对称差.由于计算M-增广路P比较麻烦, 因此将迭代步骤改为:①将X中M的所有非饱和点(不是M中某条边的端点)都给以标号0和标记*, 转向②.②若X中所有有标号的点都已去掉了标记*, 则M是G的最大匹配. 否则任取X中一个既有标号又有标记*的点x i , 去掉x i的标记*, 转向③.③找出在G中所有与x i邻接的点y j (即x i y j∈E ), 若所有这样的y j都已有标号, 则转向②, 否则转向④.④对与x i邻接且尚未给标号的y j都给定标号i. 若所有的y j都是M的饱和点, 则转向⑤, 否则逆向返回. 即由其中M的任一个非饱和点y j的标号i找到x i, 再由x i的标号k找到y k , …, 最后由y t的标号s 找到标号为0的x s时结束, 获得M-增广路x s y t…x i y j, 记P = {x s y t, …, x i y j }, 重新记M为M⊕P, 转向①.⑤将y j在M中与之邻接的点x k (即x k y j∈M), 给以标号j和标记*, 转向②.例1求图6-9中所示的二部图G的最大匹配.图6-9匈牙利算法的MATLAB程序代码如下:m=5;n=5;A=[0 1 1 0 01 1 0 1 10 1 1 0 00 1 1 0 00 0 0 1 1];M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;end;end%求初始匹配Mif(M(i,j))break;end;end%获得仅含一条边的初始匹配Mwhile(1)for(i=1:m)x(i)=0;end%将记录X中点的标号和标记*for(i=1:n)y(i)=0;end%将记录Y中点的标号和标记*for(i=1:m)pd=1; %寻找X中M的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;end;end%将X中M的所有非饱和点都给以标号0和标记*, 程序中用n+1表示0标号, 标号为负数时表示标记* pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;end;end%假如X中存在一个既有标号又有标记*的点, 则任取X中一个既有标号又有标记*的点xi if(xi==0)pd=1;break;end%假如X中所有有标号的点都已去掉了标记*, 算法终止x(xi)=x(xi)*(-1); %去掉xi的标记*k=1;for(j=1:n)if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;end;end%对与xi邻接且尚未给标号的yj都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;end;end%将yj 在M中与之邻接的点xk (即xkyj∈M), 给以标号j和标记* if(pdd)break;end;endif(pdd)k=1;j=yy(j); %yj不是M的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取M的一个非饱和点yj, 逆向返回if(j==n+1)break;end%找到X中标号为0的点时结束, 获得M-增广路Pk=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配M在增广路P中出现的边去掉else M(P(i,1),P(i,2))=1;end;end%将增广路P中没有在匹配M中出现的边加入到匹配M中break;end;end;endif(pd)break;end;end%假如X中所有有标号的点都已去掉了标记*, 算法终止M %显示最大匹配M, 程序结束利用可行点标记求最佳匹配的算法步骤如下:设G = ( X , Y , E , F )为完备的二部赋权图, L 是其一个初始可行点标记, 通常取.,,0)(},|)(max{)(Y y X x y L Y y xy F x L ∈∈=∈= M 是G L 的一个匹配. ① 若X 的每个点都是M 的饱和点, 则M 是最佳匹配. 否则取M 的非饱和点u ∈X , 令S = {u }, T = φ , 转向②.② 记N L (S ) = {v | u ∈S , uv ∈E L }. 若N L ( S ) = T , 则G L 没有完美匹配, 转向③. 否则转向④.③ 调整可行点标记, 计算a L = min { L ( x ) + L ( y ) - F (x y ) | x ∈S , y ∈Y \T }.由此得新的可行顶点标记H (v ) =,,),(,)(,)(T v S v v L a v L a v L L L ∈∈??+-令L = H , G L = G H , 重新给出G L 的一个匹配M , 转向①.④ 取y ∈N L ( S ) \T , 若y 是M 的饱和点, 转向⑤. 否则, 转向⑥.⑤ 设x y ∈M , 则令S = S ∪{ x }, T = T ∪{ y }, 转向②.⑥ 在G L 中的u - y 路是M -增广路, 记为P , 并令M = M ⊕P , 转向①.利用可行点标记求最佳匹配算法的MATLAB 程序代码如下:n=4;A=[4 5 5 12 2 4 64 2 3 35 0 2 1];for (i=1:n)L(i,1)=0;L(i,2)=0;endfor (i=1:n)for (j=1:n)if (L(i,1)<="" ;="" bdsfid="205" p="">M(i,j)=0;end ;endfor (i=1:n)for (j=1:n) %生成子图Glif (L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;end ;end ;endii=0;jj=0;for (i=1:n)for (j=1:n)if (Gl(i,j))ii=i;jj=j;break ;end ;endif (ii)break ;end ;end %获得仅含Gl 的一条边的初始匹配MM(ii,jj)=1;for (i=1:n)S(i)=0;T(i)=0;NlS(i)=0;endwhile (1)for (i=1:n)k=1;否则.for(j=1:n)if(M(i,j))k=0;break;end;endif(k)break;end;endif(k==0)break;end%获得最佳匹配M, 算法终止S(1)=i;jss=1;jst=0; %S={xi}, T=while(1)jsn=0;for(i=1:jss)for(j=1:n)if(Gl(S(i),j))jsn=jsn+1;NlS(jsn)=j; %NL(S) ={v|u∈S,uv∈EL}for(k=1:jsn-1)if(NlS(k)==j)jsn=jsn-1;end;end;end;end;endif(jsn==jst)pd=1; %判断NL(S)=T?for(j=1:jsn)if(NlS(j)~=T(j))pd=0;break;end;end;endif(jsn==jst&pd)al=Inf; %如果NL(S)=T, 计算al, Inf为∞for(i=1:jss)for(j=1:n)pd=1;for(k=1:jst)if(T(k)==j)pd=0;break;end;endif(pd&al>L(S(i),1)+L(j,2)-A(S(i),j))al=L(S(i),1)+L(j,2)-A(S(i),j);end;end;end for(i=1:jss)L(S(i),1)=L(S(i),1)-al;end%调整可行点标记for(j=1:jst)L(T(j),2)=L(T(j),2)+al;end%调整可行点标记for(i=1:n)for(j=1:n) %生成子图GLif(L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;endM(i,j)=0;k=0;end;endii=0;jj=0;for(i=1:n)for(j=1:n)if(Gl(i,j))ii=i;jj=j;break;end;endif(ii)break;end;end%获得仅含Gl的一条边的初始匹配MM(ii,jj)=1;breakelse %NL(S)≠Tfor(j=1:jsn)pd=1; %取y∈NL(S)\Tfor(k=1:jst)if(T(k)==NlS(j))pd=0;break;end;endif(pd)jj=j;break;end;endpd=0; %判断y是否为M的饱和点for(i=1:n)if(M(i,NlS(jj)))pd=1;ii=i;break;end;endif(pd)jss=jss+1;S(jss)=ii;jst=jst+1;T(jst)=NlS(jj); %S=S∪{x}, T=T∪{y}else %获得Gl的一条M-增广路, 调整匹配Mfor(k=1:jst)M(S(k),T(k))=1;M(S(k+1),T(k))=0;endif(jst==0)k=0;endM(S(k+1),NlS(jj))=1;break;end;end;end;endMaxZjpp=0;for(i=1:n)for(j=1:n)if(M(i,j))MaxZjpp=MaxZjpp+A(i,j);end;en d;endM %显示最佳匹配MMaxZjpp %显示最佳匹配M的权, 程序结束从一个可行流f开始, 求最大流的Ford--Fulkerson标号算法的基本步骤:⑴标号过程①给发点v s以标号(+, +∞) , δs = +∞.②选择一个已标号的点x, 对于x的所有未给标号的邻接点y, 按下列规则处理:当yx∈E, 且f yx >0时, 令δy = min { f yx , δx }, 并给y以标号( x - , δy ).当xy∈E, 且f xy<C xy时, 令δy = min {C xy - f xy , δx }, 并给y 以标号( x + , δy ).③重复②直到收点v t被标号或不再有点可标号时为止. 若v t得到标号, 说明存在一条可增广链, 转⑵调整过程; 若v t未得到标号, 标号过程已无法进行时, 说明f已经是最大流.⑵调整过程④决定调整量δ =δv t , 令u = v t.⑤若u点标号为( v +, δu ), 则以f vu + δ代替f vu ; 若u点标号为( v-, δu ), 则以f vu -δ代替f vu.⑥若v = v s, 则去掉所有标号转⑴重新标号; 否则令u = v, 转⑤.算法终止后, 令已有标号的点集为S, 则割集(S, S c )为最小割, 从而W f = C (S, S c ).例1求图6-19所示网络的最大流.图6-19利用Ford--Fulkerson标号法求最大流算法的MATLAB程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end%取初始可行流f为零流for(i=1:n)No(i)=0;d(i)=0;end%No,d记录标号while(1)No(1)=n+1;d(1)=Inf; %给发点vs标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<="">No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt得到标号或者无法标号, 终止标号过程if(pd)break;end%vt未得到标号, f已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end%后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end%当t的标号为vs时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end%计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束设网络G = ( V , E , C ), 取初始可行流 f 为零流, 求解最小费用流问题的迭代步骤:① 构造有向赋权图 G f = ( V , E f , F ), 对于任意的v i v j ∈E , E f , F 的定义如下:当f ij = 0时, v i v j ∈E f , F ( v i v j ) = b ij ;当f ij = C ij 时, v j v i ∈E f , F ( v j v i ) = -b ij ;当0< f ij <C ij 时, v i v j ∈E f , F ( v i v j ) = b ij , v j v i ∈E f , F ( v j v i ) = -b ij .转向②.② 求出有向赋权图G f = (V , E f , F )中发点v s 到收点v t 的最短路μ , 若最短路μ存在转向③; 否则f 是所求的最小费用最大流, 停止.③ 增流. 同求最大流的方法一样, 重述如下:令.,,,-+∈∈-=μμδj i j i ij ij ij ij v v v v f f C δ = min {δ ij | v i v j ∈μ}, 重新定义流f = { f ij }为 f ij =,,,,-+∈∈-+μμδδj i j i ij ij ij v v v v f f f如果W f 大于或等于预定的流量值, 则适当减少δ 值, 使W f 等于预定的流量值, 那么 f 是所求的最小费用流, 停止; 否则转向①.求解含有负权的有向赋权图G = ( V , E , F )中某一点到其它各点最短路的Ford 算法. 当v i v j ∈E 时记w ij = F (v i v j ), 否则取w ii =0, w ij = +∞(i ≠j ). v 1到v i 的最短路长记为π ( i ), v 1到v i 的最短路中v i 的前一个点记为θ ( i ). Ford 算法的迭代步骤:① 赋初值π (1) = 0, π ( i ) = +∞, θ ( i ) = i , i = 2, 3, … , n .② 更新π ( i ), θ ( i ). 对于i = 2, 3, … , n 和j = 1, 2, … , n , 如果π ( i )<π ( j ) + w ji , 则令π ( i ) = π ( j ) , θ ( i ) = j .③ 终止判断:若所有的π ( i )都无变化, 停止; 否则转向②.在算法的每一步中, π ( i )都是从v 1到v i 的最短路长度的上界. 若不存在负长回路, 则从v 1到v i 的最短路长度是π ( i )的下界, 经过n -1次迭代后π ( i )将保持不变. 若在第n 次迭代后π ( i )仍在变化时, 说明存在负长回路.其它.例2在图6-22所示运输网络上, 求s到t的最小费用最大流, 括号内为(C ij , b ij ).图6-22求最小费用最大流算法的MATLAB程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf表示最大流量, wf0表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end%取初始可行流f为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;endfor(i=2:n)p(i)=Inf;s(i)=i;end %用Ford算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs到vt的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd =0;end;end;endif(pd)break;end;end %求最短路的Ford算法结束if(p(n)==Inf)break;end %不存在vs到vt的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t的标号为vs时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end %如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t的标号为vs时, 终止调整过程t=s(t);endif(pd)break;end %如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end %计算最小费用f %显示最小费用最大流wf %显示最小费用最大流量zwf %显示最小费用, 程序结束。

图论在matlab中的实现

图论在matlab中的实现

用 index2×n 存放各边端点的信息, 当选中某一边之后,就将此边对 应的顶点序号中较大序号改记为 此边的另一序号,同时把后面边 中所有序号为的改记为。此方法 的几何意义是:将序号的这个顶 点收缩到顶点,顶点不复存在。 后面继续寻查时,发现某边的两 个顶点序号相同时,认为已被收 缩掉,失去了被选取的资格。
while length(result)<loop temp=min(data(3,:)); flag=find(data(3,:)==temp); flag=flag(1); v1=data(1,flag);v2=data(2,flag); if index(1,flag)~=index(2,flag) result=[result,data(:,flag)]; end if v1>v2 index(find(index==v1))=v2; else index(find(index==v2))=v1; end data(:,flag)=[]; index(:,flag)=[]; end result
Kruskal算法如下 Kruskal算法如下 : clc;clear; M=1000; a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40; a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;a(4,7)=42; a(5,6)=70; [i,j]=find((a~=0)&(a~=M)); b=a(find((a~=0)&(a~=M))); data=[i';j';b'];index=data(1:2,:); loop=max(size(a))loop=max(size(a))-1; result=[];

matlab 图与网络(一)

matlab 图与网络(一)

第五章 图与网络模型及方法§1 概论图论起源于18世纪。

第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。

1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。

1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。

哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。

图论中所谓的“图”是指某类具体事物和这些事物之间的联系。

如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。

图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。

哥尼斯堡七桥问题就是一个典型的例子。

在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。

当然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。

欧拉为了解决这个问题,采用了建立数学模型的方法。

他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。

问题成为从任一点出发一笔画出七条线再回到起点。

欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。

图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关 联 矩 阵 : n*m或 者 是 m*n
1 1 1 0 1 0 0
1
1
0
0
01
0
0 0 1 1 0 1 0
0
0
01
1
0
1
邻 接 矩 阵 : n1 1 0 1
1
01
1
邻接矩阵为对称阵,
简单图对角线元素为0
3 . 链与圈
链 : 由 G 中 的 某 些 点 与 边 相 间 构 成 的 序 列 v 1 e 1 v2e2Lek 1 vk,
7
1
v1
8
v5
v2 3
v3
4
2 v4
赋 权 图 在 M a t l a b 中 的 存 储 :
W=.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21;
DG=sparse61223445561,26354163435,W;
view(biograph(DG,[],'ShowWeights','on'))
A
7
问题的两个共同特点
(1)目的都是从若干可能的安排或方案中寻求 某种意义下的最优安排或方案,数学问题称 为最优化或优化问题。
(2)它们都可用图形形式直观描述,数学上把这 种与图相关的结构称为网络。图和网络相关 的最优化问题就是网络最优化。 网络优化问题是以网络流为研究的对象,常 常被称为网络流或网络流规划等。
e5
e3
e6
e7 v4
e4
v3
v4
e4
v3
简单图:无自环、无重边的图。
• |V|=n表示图G中节点个数为n,此节点个数 n也称为图G的阶
• |E|=m表示图G中边的个数为m • 任一顶点相关联的边的数目称为该顶点的

• 完全图:任意两点有边相连,用 K n 表示
完全图的边,和每点的度是多少?
2020/5/3
A
10
2 . 关联与相邻 关 联 ( 边 与 点 关 系 ) : 若 e 是 v 1 , v 2 二 点 间 的 边 ,
记 e [v 1 ,v 2 ],称 v 1 (或 v 2 )与 e 关 联 。
邻 接 ( 边 与 边 、 点 与 点 ) : 点 v 1 与 v 2 有 公 共 边 ,
称 v 1 与 v 2 相 邻 ; 边 e 1 与 e 2 有 公 共 点 , 称 e 1 与 e 2 相 邻 。 图在计算机中的表示:
3
3、 指派问题 Assignment problem
一家公司经理安排N名员工去完成N项任务,每 人一项。由于各员工的特点不同,不同的员工去 完成同一项任务时所获得的回报不同。如何分配 工作方案可以使总回报最大?
2020/5/3
A
4
4、中国邮递员问题 Chinese postman problem
2020/5/3
A
6
6、运输问题 Transportation problem
某种原材料有 M个产地,现在需要将原材料从产 地运往 N个使用这些原材料的工厂。假定 M个产 地的产量和 N家工厂的需要量已知,单位产品从 任一产地到任一工厂的运费已知,那么如何安排 运输方案可以使总运输成本最低?
2020/5/3
若 满 足 ei[vi,vi 1],则 称 此 边 点 序 列 为 G 中 的 一 条 链 。 链 在 M atlab 中 的 存 储 : 只 储 存 顶 点 标 号
圈 : 封 闭 的 链 。
连 通 图 : 图 G 中 任 二 点 间 至 少 存 在 一 条 链 。
4. 有向图与无向图
图 G (V ,E ),也 可 记 G (vk,[vi,vj]).若 点 对 [vi,vj]无 序 ,
一名邮递员负责投递某个街区的邮件。如何为 他(她)设计一条最短的投递路线(从邮局出 发,经过投递区内每条街道至少一次,最后返 回邮局)? 我国管梅谷教授1960年首先提出, 国际上称之为中国邮递员问题。
2020/5/3
A
5
5 、旅行商问题 Traveling salesman problem
一名推销员准备前往若干城市推销产 品。如何为他设计一条最短的旅行路 线? (从驻地出发,经过每个城市 恰好一次,最后返回驻地)
2020/5/3
A
2
2、最小支撑树问题
某一地区有若干个主要城市,现准备修建高速公 路把这些城市连接起来,使得从其中任何一个城 市都可以经高速公路直接或间接到达另一个城市 。假定已经知道了任意两个城市之间修建高速公 路成本,那么应如何决定在哪些城市间修建高速 公路,使得总成本最小?
2020/5/3
A
称 G 为 无 向 图 ; 否 则 称 G 为 有 向 图 。 为 区 别 起 见 , 称 有 向 图 的 边 为 弧 , 记 ( vi,vj),在 图 上 用 箭 线 表 示 。
比较:
无向图: [vi ,边 v j ],链 有向图:v弧 i ,v( j),路
,圈 ,回路
有向图的存储: 行为起点,列为终点 aij 1 存 在 弧 viv j 赋权图:边有长度
v2 v3
v5 v4
树的性质:(1)树的任2点间有且仅有1链; (2)在树中任去掉1边,则不连通; (3)在树中不相邻2点间添1边,恰成1圈; (4)若树T有n个顶点,则T有n-1条边。
图论与网络分析
(Graph Theory and Network Analysis)
一、图论的基本概念 二、网络分析算法 三、Matlab实现
涉及网络优化的数学建模问题
1、最短路问题 货柜车司机奉命在最短的时间内将一车货物 从甲地运往乙地。从甲地到乙地的公路网纵 横交错,因此有多种行车路线,这名司机应 选择哪条线路呢?假设货柜车的运行速度是 恒定的,那么这一问题相当于需要找到一条 从甲地到乙地的最短路。
2020/5/3
A
8
一、图论的基本概念
1 . 图与子图
图 G (V ,E ), 其 中 Vv1,L,vn为 顶 点 集 ,
Ee1,L,em 为 边 集 。
子 图 G 1 ( V 1 ,E 1 ) ,其 中 V 1 V ,E 1 E 。
如 G: v1
e1 e2
v2
G1: v1
e2
v2
e5
e3
e6
UG trilDGDG'
view(biograph(UG,[],'ShowWeights','on'))
5. 树
例1 已知有5个城市,要在它们之间架设电 话线网,要求任2城市都可通话(允许通过其它城 市),并且电话线的根数最少。
v1
v5
v2
v3
v4
树——无圈的连通图,记为T。 特点:连通、无圈。
v1
相关文档
最新文档