高中数学简单的几何体的结构考点及例题讲解
(完整版)高中数学空间几何体知识点总结
![(完整版)高中数学空间几何体知识点总结](https://img.taocdn.com/s3/m/1cb4252365ce050877321364.png)
空间几何体知识点总结一、空间几何体的结构特征1.柱、锥、台、球的结构特征由若干个平面多边形围成的几何体称之为多面体。
围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。
(1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。
棱柱与圆柱统称为柱体;(2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
注:棱锥的性质:①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;②正棱锥各侧棱相等,各侧面是全等的等腰三角形;③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。
(人教版)高中数学必修二-知识点、考点及典型例题解析(全)
![(人教版)高中数学必修二-知识点、考点及典型例题解析(全)](https://img.taocdn.com/s3/m/2c4a4d100622192e453610661ed9ad51f01d54c5.png)
必修(bìxiū)二第一章空间(kōngjiān)几何体知识点:1、空间(kōngjiān)几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥(yuánzhuī)、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些(zhèxiē)面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长;正方体的对角线长3、球的体积公式:,球的表面积公式:4、柱体,锥体,锥体截面积比:5、空间几何体的表面积与体积⑴圆柱侧面积;⑵圆锥(yuánzhuī)侧面积:典型(diǎnxíng)例题:★例1:下列命题(mìng tí)正确的是( )A.棱柱(léngzhù)的底面一定是平行四边形B.棱锥(léngzhuī)的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A 倍B 倍C 2倍D 倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是()A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱正视侧视俯视★★例4:一个(yīɡè)体积为的正方体的顶点(dǐngdiǎn)都在球面上,则球的表面积是A.B. C. D.二、填空题★例1:若圆锥(yuánzhuī)的表面积为平方米,且它的侧面展开图是一个半圆,则这个(zhè ge)圆锥的底面的直径为_______________.★例2:球的半径(bànjìng)扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.第二章点、直线、平面之间的位置关系知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
空间几何体的结构特征例题和知识点总结
![空间几何体的结构特征例题和知识点总结](https://img.taocdn.com/s3/m/1c13414158eef8c75fbfc77da26925c52cc5919f.png)
空间几何体的结构特征例题和知识点总结在我们的日常生活中,各种各样的物体形状各异,而在数学的世界里,我们把这些物体抽象成空间几何体来进行研究。
接下来,让我们一起深入探讨空间几何体的结构特征,并通过一些例题来加深理解。
一、空间几何体的分类空间几何体主要分为多面体和旋转体两大类。
多面体是由若干个平面多边形围成的几何体。
常见的多面体有棱柱、棱锥、棱台等。
棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
旋转体是由一个平面图形绕着一条直线旋转所形成的几何体。
常见的旋转体有圆柱、圆锥、圆台、球等。
圆柱:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
球:以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
二、空间几何体的结构特征1、棱柱的结构特征侧棱都平行且相等。
两个底面与平行于底面的截面是全等的多边形。
2、棱锥的结构特征侧面都是三角形。
只有一个顶点。
3、棱台的结构特征上下底面是相似多边形。
各侧棱延长后交于一点。
4、圆柱的结构特征母线平行且相等,都垂直于底面。
两个底面是全等的圆。
5、圆锥的结构特征母线交于顶点。
轴截面是等腰三角形。
6、圆台的结构特征母线延长后交于一点。
上下底面是两个半径不同的圆。
7、球的结构特征球面上任意一点到球心的距离都相等。
三、例题解析例 1:判断下列几何体是否为棱柱。
(1)一个长方体;(2)一个有两个面互相平行,其余各面都是平行四边形的几何体。
解:(1)长方体符合棱柱的定义,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,所以是棱柱。
(2)不一定是棱柱。
高考立体几何知识点与题型精讲
![高考立体几何知识点与题型精讲](https://img.taocdn.com/s3/m/41b474f3dbef5ef7ba0d4a7302768e9951e76ef6.png)
高考立体几何知识点与题型精讲在高考数学中,立体几何是一个重要的板块,它不仅考查学生的空间想象能力,还对逻辑推理和数学运算能力有较高要求。
接下来,咱们就一起深入探讨一下高考立体几何的知识点和常见题型。
一、知识点梳理1、空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
(2)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2、空间几何体的表面积和体积(1)圆柱的表面积:S =2πr² +2πrl (r 为底面半径,l 为母线长)。
体积:V =πr²h (h 为高)。
(2)圆锥的表面积:S =πr² +πrl 。
体积:V =1/3πr²h 。
(3)球的表面积:S =4πR² 。
体积:V =4/3πR³ 。
3、空间点、直线、平面之间的位置关系(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
5、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
6、直线与平面垂直的判定与性质(1)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(2)性质定理:垂直于同一个平面的两条直线平行。
7、平面与平面垂直的判定与性质(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
高中数学空间几何体知识点归纳与常考题型专题练习(附解析)
![高中数学空间几何体知识点归纳与常考题型专题练习(附解析)](https://img.taocdn.com/s3/m/7b4df1d987c24028905fc3ae.png)
( 7)球体:定义: 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征: ①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影) 俯视图(从上向下)
;侧视图(从左向右) 、
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
B.
C. D.
29.如图是某几何体的三视图,则该几何体的体积为(
)
A. 1 B. C. D. 30.某几何体的三视图如图所示,且该几何体的体积是 是( )
,则正视图中的 x 的值
A. 2 B. C. D.3
31.将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D﹣ ABC 的体积为( )
设三棱锥 F﹣ADE 的体积为 V 1,三棱柱 A 1B1C1﹣ ABC 的体积为 V 2,则 V 1:
V2=
.
39.如图,在圆柱 O1O2 内有一个球 O,该球与圆柱的上、下底面及母线均相切,
记圆柱 O1O2 的体积为 V 1,球 O 的体积为 V 2,则 的值是
.
40.若某几何体的三视图(单位: cm3.
( 1)要使倾斜后容器内的溶液不会溢出,角 α的最大值是多少; ( 2)现需要倒出不少于 3000cm3 的溶液,当 α=60°时,能实现要求吗?请说明 理由. 47.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC 的长为 10 cm,容器Ⅱ的两底面对角线 EG, E1G1 的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、 玻璃棒粗细均忽略不计) ( 1)将 l 放在容器Ⅰ中, l 的一端置于点 A 处,另一端置于侧棱 CC1 上,求 l
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
![高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/899f4b8ed4d8d15abe234eae.png)
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
超实用高考数学:空间几何体知识点解析(含历年真题专项练习)
![超实用高考数学:空间几何体知识点解析(含历年真题专项练习)](https://img.taocdn.com/s3/m/047c7b7c8f9951e79b89680203d8ce2f00666548.png)
空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式 V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高);V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r .在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎫33,1时,V ′<0.∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面P AB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面P AB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面P AB 上, 即球心就是△P AB 的外心,根据正弦定理ABsin ∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知P A ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵P A ⊥平面ADE ,∴R 1=⎝⎛⎭⎫P A 22+r 21, 可得P A 2=R 21-r 21=102,∴P A =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵P A ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝⎛⎭⎫P A 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π. 专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+(3)2=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18 答案 C 解析 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形, 设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元 答案 B解析 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A.32π3 B .3π C.4π3 D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36 B.12 C.13 D.32答案 C解析 ∵在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等, ∴此三棱锥的外接球即以P A ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即P A =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △P AB ×PC =13×12×⎝⎛⎭⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确.12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱P A ,PB ,PC ,PD 的中点,则P A =2AA 1=4,OA =2,所以OO 1=12PO =12P A 2-OA 2=3,故该四棱台的高为3,故A 正确;由P A =PC=4,AC =4,得△P AC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×(23)2+(2)2=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r·l=2.由于侧面展开图为半圆,可知12πl2=2π,可得l=2,因此r=1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm,母线长最短50 cm,最长80 cm,则斜截圆柱的侧面面积S=________cm2.答案 2 600π解析将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(π×40)×(50+80)=2 600π(cm2).15.已知球O与棱长为4的正四面体的各棱相切,则球O的体积为________.答案82 3π解析将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O与正四面体的各棱都相切,所以球O为正方体的内切球,即球O的直径2R=22,则球O的体积V=43πR3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.答案2π2解析如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1E,EP,EQ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5, ∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
立体几何高考考点梳理及真题分类解析
![立体几何高考考点梳理及真题分类解析](https://img.taocdn.com/s3/m/9023662684868762cbaed50c.png)
第九章立体几何(2021年文科数学高考备考版)第一节空间几何体的三视图和直观图一、高考考点梳理(一)、空间几何体的结构特征1.多面体①棱柱:两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成(一)、简单几何体的结构特征的几何体叫作棱柱.②棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.③棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.2.旋转体①圆锥可以由直角三角形绕其任一直角边旋转得到.②圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.③球可以由半圆或圆绕直径旋转得到.(二)、三视图1.三视图的名称:几何体的三视图包括主视图、左视图、俯视图.2.三视图的画法①画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图.③观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,特别是它们的交线位置.(三)、直观图简单几何体的直观图常用斜二测画法来画,其规则是:1.在已知图形中建立直角坐标系xOy.画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使∠x′O′y′=45°,它们确定的平面表示水平平面;2.已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴和y′轴的线段;3.已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的1 2.二、历年高考真题题型分类突破题型一空间几何体的三视图【例1】(2020全国Ⅲ卷)右图为某几何体的三视图,则该几何体的表面积是()A.B.C.D. D.解析:由三视图可知几何体的直观图如图:几何体是正方体的一个角,,、、两两垂直,故,几何体的表面积为:,故选:C.【例2】(2018全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:所求最短路径MN为四份之一圆柱侧面展开图对角线的长.故选B.【例3】(2017全国Ⅱ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 1=π×32×4=36π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积V 2=12×(π×32×6)=27π,∴该组合体的体积V =V 1+V 2=63π.故选B .题型二 与球有关的几何体【例4】(2020全国Ⅰ卷)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为∆ABC 的外接圆,若⊙O 1的面积为4π,AB=BC=AC=OO 1,则球O 的表面积为( ) A .64πB .48πC .36πD .32π解析:设球O 半径为R ,⊙O 1的半径为r ,依题πr 2=4π,∴r =2。
数学必修2一二章知识点整理(含习题)
![数学必修2一二章知识点整理(含习题)](https://img.taocdn.com/s3/m/690a302bf5335a8102d22077.png)
高中数学必修2第一章空间几何体知识点梳理(一)空间几何体的结构1. 多面体与旋转体:多面体:棱柱、棱锥、棱台;旋转体:圆柱、圆锥、圆台、球;另一种分类方式:①柱体:棱柱、圆柱;②椎体:棱锥、圆锥;③台体:棱台、圆台;④球简单组合体:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。
2. 棱柱:①直棱柱斜棱柱正棱柱②三棱柱、四棱柱、五棱柱、六棱柱等等。
棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。
3. 棱锥:三棱锥、四棱锥、五棱锥、六棱锥等等(1)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(2)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。
②正棱锥的高,斜高和斜高在底面上的射影组成一个直角三角形,正棱锥的高,侧棱,侧棱在底面内的射影也组成一个直角三角形。
③正棱锥的侧棱与底面所成的角都相等。
④正棱锥的侧面与底面所成的二面角都相等。
4. 圆柱与圆锥:圆柱的轴圆柱的底面圆柱的侧面圆柱侧面的母线5. 棱台与圆台:统称为台体(1)棱台的性质:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.(2)圆台的性质:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.6. 球:球体球的半径球的直径. 球心(二)空间几何体的三视图和直观图1.中心投影平行投影正投影2.三视图的画法:长对正、高平齐、宽相等。
3.直观图:斜二测画法,直观图中斜坐标系'''x o y,两轴夹角为45︒;平行于x轴长度不变,平行于y轴长度减半。
(三)空间几何体的表面积和体积1.柱体、锥体、台体表面积求法:利用展开图第二章 直线与平面的位置关系基础梳理一、空间中直线与直线之间的位置关系1 平面含义:①没有大小之分,②没有厚度,③平面是平的且可以无限延展的 2.平面的基本性质 (1)那么这条直线上所有的点都在这个平面内.符号表示为,,A l B l l A B ααα∈∈⎧⇒⊂⎨∈∈⎩(2)若A ,B ,C 不共线,则A ,B ,C 确定平面α推论1:经过一条直线和这条直线外一点,有且只有一个平面. 若A l ∉,则点A 和l 确定平面α推论2:经过两条相交直线,有且只有一个平面.若m n A =I ,则,m n 确定平面α推论3:经过两条平行直线,有且只有一个平面. 若m n P ,则,m n 确定平面α (3)公理3:如果两个平面(不重合的两个平面)有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条 过这个公共点的直线.,P P l P l αβαβ∈∈⇒=∈I 且(4)公理4:(平行公理):平行于同一条直线的两条直线互相平行。
【精品】高中数学 必修2 _空间几何体的结构_讲义 知识点讲解+巩固练习(含答案)提高
![【精品】高中数学 必修2 _空间几何体的结构_讲义 知识点讲解+巩固练习(含答案)提高](https://img.taocdn.com/s3/m/590185e3a26925c52dc5bf59.png)
空间几何体的结构【学习目标】1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球的结构特征;2.认识由柱、锥、台、球组成的几何组合体的结构特征;3.能用上述结构特征描绘现实生活中简单物体的结构.【要点梳理】【高清课堂:空间几何体的结构394899 棱柱的结构特征】要点一、棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.2、棱柱的分类:底面是三角形、四边形、五边形、……的棱柱分别叫做三棱柱、四棱柱、五棱柱……3、棱柱的表示方法:①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为1111ABCD A B C D -、11111ABCDE A B C D E -、111111ABCDEF A B C D E F -;②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱1A C 或棱柱1D B 等;五棱柱可表示为棱柱1AC 、棱柱1AD 等;六棱柱可表示为棱柱1AC 、棱柱1AD 、棱柱1AE 等.4、棱柱的性质:棱柱的侧棱相互平行.要点诠释:有两个面互相平行,其余各个面都是平行四边形,这些面围成的几何体不一定是棱柱.如下图所示的几何体满足“有两个面互相平行,其余各个面都是平行四边形”这一条件,但它不是棱柱.判定一个几何体是否是棱柱时,除了看它是否满足:“有两个面互相平行,其余各个面都是平行四边形”这两个条件外,还要看其余平行四边形中“每两个相邻的四边形的公共边都互相平行”即“侧棱互相平行”这一条件,不具备这一条件的几何体不是棱柱.【高清课堂:空间几何体的结构394899 棱锥的结构特征】要点二、棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥 ……;3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥S ABCD .要点诠释:棱锥有两个本质特征:(1)有一个面是多边形;(2)其余各面是有一个公共顶点的三角形,二者缺一不可.【高清课堂:空间几何体的结构394899 旋转体的结构特征】 S S D DC C B B A A ECB A S要点三、圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱/OO要点诠释:(1)用一个平行于圆柱底面的平面截圆柱,截面是一个与底面全等的圆面.(2)经过圆柱的轴的截面是一个矩形,其两条邻边分别是圆柱的母线和底面直径,经过圆柱的轴的截面通常叫做轴截面.(3)圆柱的任何一条母线都平行于圆柱的轴.要点四、圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥SO.要点诠释:(1)用一个平行于圆锥底面的平面去截圆锥,截面是一个比底面小的圆面.(2)经过圆锥的轴的截面是一个等腰三角形,其底边是圆锥底面的直径,两腰是圆锥侧面的两条母线.(3)圆锥底面圆周上任意一点与圆锥顶点的连线都是圆锥侧面的母线.【高清课堂:空间几何体的结构394899 棱台的结构特征】要点五、棱台和圆台的结构特征1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.2、棱台的表示方法:用各顶点表示,如四棱台1111ABCD A B C D -;3、圆台的表示方法:用表示轴的字母表示,如圆台OO ';要点诠释:(1)棱台必须是由棱锥用平行于底面的平面截得的几何体.所以,棱台可还原为棱锥,即延长棱台的所有侧棱,它们必相交于同一点.(2)棱台的上、下底面是相似的多边形,它们的面积之比等于截去的小棱锥的高与原棱锥的高之比的平方.(3)圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.(4)圆台的上、下底面的面积比等于截去的小圆锥的高与原圆锥的高之比的平方.要点六、球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径叫做球的直径.2、球的表示方法:用表示球心的字母表示,如球O.要点诠释:(1)用一个平面去截一个球,截面是一个圆面.如果截面经过球心,则截面圆的半径等于球的半径;如果截面不经过球心,则截面圆的半径小于球的半径.(2)若半径为R 的球的一个截面圆半径为r ,球心与截面圆的圆心的距离为d ,则有22d R r =-.要点七、特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:要点八、简单组合体的结构特征1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合.①多面体与多面体的组合体由两个或两个以上的多面体组成的几何体称为多面体与多面体的组合体.如下图(1)是一个四棱柱与一个三棱柱的组合体;如图(2)是一个四棱柱与一个四棱锥的组合体;如图(3)是一个三棱柱与一个三棱台的组合体.②多面体与旋转体的组合体由一个多面体与一个旋转体组合而成的几何体称为多面体与旋转体的组合体如图(1)是一个三棱柱与一个圆柱组合而成的;如图(2)是一个圆锥与一个四棱柱组合而成的;而图(3)是一个球与一个三棱锥组合而成的.③旋转体与旋转体的组合体由两个或两个以上的旋转体组合而成的几何体称为旋转体与旋转体的组合体.如图(1)是由一个球体和一个圆柱体组合而成的;如图(2)是由一个圆台和两个圆柱组合而成的;如图(3)是由一个圆台、一个圆柱和一个圆锥组合而成的.要点九、几何体中的计算问题几何体的有关计算中要注意下列方法与技巧:(1)在正棱锥中,要掌握正棱锥的高、侧面、等腰三角形中的斜高及高与侧棱所构成的两个直角三角形,有关证明及运算往往与两者相关.(2)正四棱台中要掌握其对角面与侧面两个等腰梯形中关于上、下底及梯形高的计算,有关问题往往要转化到这两个等腰梯形中.另外要能够将正四棱台、正三棱台中的高与其斜高、侧棱在合适的平面图形中联系起来.(3)研究圆柱、圆锥、圆台等问题的主要方法是研究它们的轴截面,这是因为在轴截面中,易找到所需有关元素之间的位置、数量关系.(4)圆柱、圆锥、圆台的侧面展开是把立体几何问题转化为平面几何问题处理的重要手段之一.(5)圆台问题有时需要还原为圆锥问题来解决.(6)关于球的问题中的计算,常作球的一个大圆,化“球”为“圆”,应用平面几何的有关知识解决;关于球与多面体的切接问题,要恰当地选取截面,化“空间”为平面.【经典例题】类型一:简单几何体的结构特征例1.判断下列说法是否正确.(1)棱柱的各个侧面都是平行四边形;(2)一个n(n≥3)棱柱共有2n个顶点;(3)棱柱的两个底面是全等的多边形;(4)如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形.【答案】(1)(2)(3)正确,(4)不正确.【解析】(1)由棱柱的定义可知,棱柱的各侧棱互相平行,同一个侧面内两条底边也互相平行,所以各侧面都是平行四边形.(2)一个n棱柱的底面是一个n边形,因此每个底面都有n 个项点,两个底面的顶点数之和即为棱柱的顶点数,即2n个.(3)因为棱柱同一个侧面内的两条底边平行且相等,所以棱柱的两个底面的对应边平行且相等,故棱柱的两个底面全等.(4)如果棱柱有一个侧面是矩形,只能保证侧棱垂直于该侧面的底边,但其余侧面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩形.故(1)(2)(3)正确,(4)不正确.【总结升华】解决这类与棱柱、棱锥、棱台有关的命题真假判定的问题,其关键在于准确把握它们的结构特征,也就是要以棱柱、棱锥、棱台概念的本质内涵为依据,以具体实物和图形为模型来进行判定.举一反三:【变式1】如下图中所示几何体中是棱柱有()A.1 B.2个C.3个D.4个【答案】C例2.有下面五个命题:(1)侧面都是全等的等腰三角形的棱锥是正棱锥;(2)侧棱都相等的棱锥是正棱锥;(3)底面是正方形的棱锥是正四棱锥;(4)正四面体就是正四棱锥;(5)顶点在底面上的射影既是底面多边形的内心,又是底面多边形的外心的棱锥必是正棱锥. 其中正确命题的个数是( ).A .1个B .2个C .3个D .4个【答案】 A【解析】 本题主要考查正棱锥的概念,关键看是否满足定义中的两个条件.命题(1)中的“各侧面都是全等的等腰三角形”并不能保证底面是正多边形,也不能保证顶点在底面上的射影是底面的中心,故不是正棱锥,如下图(1)中的三棱锥S-ABC ,可令SA=SB=BC=Ac=3,SC=AB=1,则此三棱锥的各侧面都是全等的等腰三角形,但它不是正三棱锥;命题(2)中的“侧棱都相等”并不能保证底面是正多边形,如下图(2)中的三棱锥P-DEF ,可令PD=PE=PF=1,2DE DF ==,EF=1,三条侧棱都相等,但它不是正三棱锥;命题(3)中的“底面是正方形的棱锥”,其顶点在底面上的射影不一定是底面的中心,如下图(3),从正方体中截取一个四棱锥D 1-ABCD ,底面是正方形,但它不是正四棱锥;命题(4)中的“正四面体”是正三棱锥.三棱锥中共有4个面,所以三棱锥也叫四面体.四个面都是全等的正三角形的正三棱锥也叫正四面体;命题(5)中的“顶点在底面上的射影既是底面多边形的内心,又是外心”,说明了底面是一个正多边形,符合正棱锥的定义.举一反三: 【变式1】如果一个面是多边形,其余各面都是三角形的几何体一定是棱锥.这种说法是否正确?如果正确说明理由;如果不正确,举出反例.【答案】不正确【解析】如图所示的几何体由两个底面相等的四棱锥组合而成,它有一个面是四边形,其余各面都是三角形,但是该几何体不是棱锥.例3.判断下图所示的几何体是不是台体?为什么?【解析】三个图都不是台体.(1)AA1,DD1交于一点,而BB1,CC1交于另一点,此图不能还原成锥体,故不是台体:(2)中面ABCD与面A1B1C1D1不平行,故也不是台体;(3)中应⊙O与⊙O1不平行,故也不是台体.【总结升华】判断一个几何体是否为台体,必须紧扣台体的两个本质特征:(1)由锥体截得的;(2)截面平行于锥体的底面.即棱台的两底面平行,且侧棱必须相交于同一点;圆台的两底面平行,且两底面圆心的连线与两底面垂直.举一反三:【变式1】判断如下图所示的几何体是不是台体?为什么?【答案】①②③都不是台体.【解析】因为①和③都不是由棱锥所截得的,故①③都不是台体;虽然②是由棱锥所截,但截面不和底面平行,故不是台体.只有用平行于锥体底面的平面去截锥体,底面与截面之间的部分才是台体.④是一个台体,因为它是用平行于圆锥SO底面的平面截圆锥SO而得的.类型二:几何体中的基本计算例4.一个圆台的母线长为12 cm,两底面面积分别为4πcm2和25πcm2.求(1)圆台的高;(2)截得此圆台的圆锥的母线长.【答案】(1)315(2)20【解析】画出轴截面,依据勾股定理及相似三角形知识即可求解.(1)如右图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A=2cm,下底面半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为2AM=--=(cm).12(52)2315(2)设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得1225ll-=,∴l=20(cm).故截得此圆台的圆锥的母线长为20 cm.【总结升华】对于这类旋转体的有关计算问题,其关键在于作出它们的轴截面(即过旋转铀的截面),再把它们转化为平面几何问题即可.举一反三:【变式1】已知圆台的上、下底面积之比为1:9,圆台的高为10,求截得圆台的圆锥的高.【答案】15【解析】设圆锥的高为h,上、下底半径为,r R.则1013r hR h-==,解得15h=.类型三、简单几何体的组合体例5.(1)一个正方体内接于一个球,过球心作一截面,如下图所示,则截面可能的图形是()A.①③B.②④C.①②③D.②③④(2)如右图所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切,求两球半径之和.【答案】(1)C;(2)33-.【解析】(1)当截面平行于正方体的一个侧面时得③,当截面过正方体的体对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能截出④.(2)此题的关键在于作截面.球不可能与边AB、CD相切,一个球在正方体内,一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如右图所示的截面图.球心O1和O2在AC上,过O1、O2分别作AD、BC的垂线交于E、F两点.设小球半径为r,大球半径为R.则由AB=1,3AC =,得13AO r =,23CO R =,∴3()r R r R +++.∴33331R r -+==+. 【总结升华】作适当的截面是解决球与其他几何体形成的组合体问题的关键.举一反三:【变式1】 圆锥底面半径为1cm ,高为2cm ,其中有一个内接正方体,求这个内接正方体的棱长.【答案】22【解析】过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面11CDD C ,如图所示.设正方体棱长为x ,则111,2CC x C D x ==.作SO ⊥EF 于O ,则2SO =,OE=1,∵ △ECC 1∽△EOS , ∴ 11CC EC SO EO =,即21212x -=. ∴ 2()2x cm =,即内接正方体棱长为2.2cm 【总结升华】此题也可以利用△SCD ∽△SEF 而求.两个几何体相接、相切的问题,关键在于发现一些截面之间的图形关系.常常是通过分析几个轴截面组合的平面图形中的一些相似,利用相似比列出方程而求.注意截面图形中各线段长度的计算.类型四、简单几何体的表面展开与折叠问题例6.长方体ABCD-A 1B 1C 1D 1(如图)中,AB=3,BC=4,A 1A=5,现有一甲壳虫从A 出发沿长方体表面爬行到C .来获取食物,试画出它的最短爬行路线,并求其路程的最小值.【答案】74【解析】把长方体的部分面展开,如右图所示.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为90、74、80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内到F到C1,其最短路程为74.【总结升华】在几何体表面求最短路径问题,就是要“化折为直”,因此需要把几何体表面展开,本题注意要分三种情况讨论.举一反三:【变式1】圆台的上、下底面半径分别为5 cm、10 cm,母线长A8=20 cm,从圆台母线AB的中点M拉一条绳子,绕圆台侧面转到A点,如图.求:(1)绳子的最短长度;(2)当绳子最短时,上底圆周上的点到绳子的最短距离.【答案】(1)绳子的最短长度为50 cm.(2)上底圆周上的点到绳子的最短距离为4 cm.例7.根据下图所给的平面图形,画出立体图形.【解析】将各平面图形折起后形成的空间图形如下图所示.【总结升华】平面图形的折叠问题实质上是多面体的表面展开问题的逆向问题(即逆向过程).这两类问题都是立体几何中的基本问题,我们必须熟练掌握折叠与展开这两个基本功,并能准确地画出折叠和展开前后的平面图形和立体图形,找到这两个图形之间的构成关系.【巩固练习】1.下列说法中正确的是()A.棱柱中两个互相平行的平面一定是棱柱的底面B.棱柱的面中,至少有两个面互相平行C.棱柱中一条侧棱的长叫棱柱的高D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.下列命题中正确的是()A.直角三角形绕其一边所在直线旋转一周所形成的几何体是圆锥B.长方形绕二条直线旋转一周所形成的几何体是圆柱C.直角梯形绕其一边所在直线旋转一周所形成的几何体是圆台D.圆柱的任意两条母线相互平行3.下面的图形可以构成正方体的是()4.在正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点,那么,正方体过P、Q、R的截面是()A.三角形B.四边形C.五边形D.六边形5.下列命题中,正确的是()A.平行于圆锥的一条母线的截面是等腰三角形B.平行于圆台的一条母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台一个底面中心的截面是等腰梯形6.连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于743 M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1。
高中数学必修2--第一章《空间几何体》知识点总结与练习
![高中数学必修2--第一章《空间几何体》知识点总结与练习](https://img.taocdn.com/s3/m/d627fbe2f12d2af90342e6c3.png)
高中数学必修2__第一章《空间几何体》知识点总结与练习第一节空间几何体的结构特征及三视图和直观图[知识能否忆起]一、多面体的结构特征多面体棱柱棱锥棱台结构特征有两个面互相平行,其余各面都是四边形,并且每相邻两个面的交线都平行且相等有一个面是多边形,而其余各面都是有一个公共顶点的三角形棱锥被平行于底面的平面所截,截面和底面之间的部分二、旋转体的形成几何体圆柱圆锥圆台球旋转图形矩形直角三角形直角梯形半圆旋转轴任一边所在的直线一条直角边所在的直线垂直于底边的腰所在的直线直径所在的直线三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.四、平行投影与直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.五、三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.1.正棱柱与正棱锥(1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中 “正”字包含两层含义:①侧棱垂直于底面;②底面是正多边形.(2)底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:①顶点在底面上的射影必需是底面正多边形的中心,②底面是正多边形,特别地,各棱均相等的正三棱锥叫正四面体.2.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.3.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段,“平行于 x 轴的线段平行性不变,长度不变;平行于 y 轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图= 2 4S 原图形,S 原图形=2 2S 直观图.空间几何体的结构特征典题导入[例 1] (2012· 哈师大附中月考)下列结论正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线[自主解答] A 错误,如图 1 是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图△2,若ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;图1图2C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.[答案]D由题悟法解决此类题目要准确理解几何体的定义,把握几何体的结构特征,并会通过反例对概念进行辨析.举反例时可利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三棱锥、三棱台等,也可利用它们的组合体去判断.以题试法1.(2012·天津质检)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立).故仅命题B为假命题.几何体的三视图典题导入[例2](2012·湖南高考)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()[自主解答]根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.[答案]C由题悟法三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.[注意]画三视图时,要注意虚、实线的区别.以题试法2.(1)(2012·莆田模拟)如图是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的()解析:选D由俯视图排除B、C;由正视图、侧视图可排除A.= ,所以 OC ′=sin 120° a = 6a ,(2)(2012· 济南模拟)如图,正三棱柱 ABC -A 1B 1C 1 的各棱长均为 2,其正视图如图所示,则此三棱柱侧视图的面积为()A .2 2C. 3B .4D .2 3解析:选 D 依题意,得此三棱柱的左视图是边长分别为 2, 3的矩形,故其面积是2 3.几何体的直观图典题导入[例 3] 已知△ABC 的直观图 A ′B ′C ′是边长为 a 的正三角形,求原△ABC 的面积.[自主解答]建立如图所示的坐标系 xOy ′, △A ′B ′C ′的顶点 C ′在 y ′轴上,A ′B ′边在 x 轴上,OC 为△ABC 的高.把 y ′轴绕原点逆时针旋转 45°得 y 轴,则点 C ′变为点 C ,且 OC =2OC ′,A ,B 点即为 A ′,B ′点,长度不变.已知 A ′B ′=A ′C ′=△a ,在 OA ′C ′中,由正弦定理得OC ′ A ′C ′sin ∠OA ′C ′ sin 45°sin 45° 2所以原三角形 ABC 的高 OC = 6a.2 2 2S = (1+ 2+1)×2=2+ 2.V = Sh = πr 2h = πr 2 l 2-r 2所以 △S ABC =1×a ×6a = 26a 2.由题悟法用斜二测画法画几何体的直观图时,要注意原图形与直观图中的“三变、三不变”.⎧⎪坐标轴的夹角改变,“三变”⎨与y 轴平行线段的长度改变,⎪⎩图形改变;⎧⎪平行性不变,“三不变”⎨与x 轴平行的线段长度不变,⎪⎩相对位置不变.以题试法3.如果一个水平放置的图形的斜二测直观图是一个底角为 45°,腰和上底均为 1 的等腰梯形,那么原平面图形的面积是()A .2+ 22+ 2 C. 1+ 2 B.D .1+ 2解析:选 A 恢复后的原图形为一直角梯形1 2第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积面积体积圆柱圆锥S 侧=2πrlS 侧=πrlV =Sh =πr 2h1 1 13 3 31 V = ShV = πR 3圆台S 侧=π(r 1+r 2)l1V =3(S 上+S 下+ S 上· S 下)h1=3π(r 2+r 2+r 1r 2)h直棱柱正棱锥 正棱台球S 侧=Ch1S 侧=2Ch ′1S 侧=2(C +C ′)h ′S 球面=4πR 2V =Sh1 31V =3(S 上+S 下+ S 上· S 下)h431.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.3.求组合体的表面积时注意几何体的衔接部分的处理.几何体的表面积典题导入[例 1] (2012· 安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱 (如图所示).所以其表面积为2×1×(2+5)×4+2×4+4×5+4×5+4×4=92. 视图、侧视图都是面积为 3,且一个内角为 60°的菱形,俯视图为正方面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为 8×⎝2×1×1⎭=4.在四边形 ABCD 中,作 DE ⊥AB ,垂足为 E ,则 DE =4,AE =3,则 AD =5.2[答案] 92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(2012· 河南模拟)如图是某宝石饰物的三视图,已知该饰物的正2形,那么该饰物的表面积为()A. 3B .2 3C .4 3D .4解析:选 D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底⎛1 ⎫几何体的体积典题导入[例 2](1)(2012·广东高考)某几何体的三视图如图所示,它的体积为()V =V 半球+V 圆锥= · π·33+ ·π·32·4=30π. [答案](1)C (2)=π×32×4-1π×32×4=24π.3A .72πB .48πC .30πD .24π(2)(2012· 山东高考)如图,正方体 ABCD -A 1B 1C 1D 1 的棱长为 1,E为线段 B 1C 上的一点,则三棱锥 A -DED 1 的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为 3,高为 4,半球的半径为 3.14 1 23 31 1 1 1(2)V A -DED 1=VE -ADD 1=3×△S ADD 1×CD =3×2×1=6.16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V圆锥答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.3 32 2 32 1 = .33和 2 个直角边分别为 3,1 的直角三角形,其底面积 S =9+2× ×3×1=12,以题试法2.(1)(2012·长春调研)四棱锥 P -ABCD 的底面 ABCD 为正方形,且 PD 垂直于底面ABCD ,N 为 PB 中点,则三棱锥 P -ANC 与四棱锥 P -ABCD 的体积比为()A .1∶2C .1∶4B .1∶3D .1∶8解析:选 C 设正方形 ABCD 面积为 S ,PD =h ,则体积比为1 11 1 11Sh - · S · h - · Sh1 4Sh(2012· 浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是()A .32C .8B .2432 D.解析:选 B 此几何体是高为 2 的棱柱,底面四边形可切割成为一个边长为 3 的正方形12所以几何体体积 V =12×2=24.与球有关的几何体的表面积与体积问题典题导入[例 3] (2012·新课标全国卷)已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC是边长为 1 的正三角形,SC 为球 O 的直径,且 SC =2,则此棱锥的体积为()A.C. 2 62 3B.D. 3 62 2×AB 2=4 41 3 6=2 =2V O -ABC =2× ×34 3 6 × . b c A .2 3π8πB.[自主解答 ] 由于三棱锥 S -ABC 与三棱锥 O -ABC 底面都是△ABC ,O 是 SC 的中点,因此三棱锥 S -ABC 的高是三棱锥 O -ABC 高的 2 倍,所以三棱锥 S -ABC 的体积也是三棱锥 O -ABC 体积的 2 倍.在三棱锥 O -ABC 中,其棱长都是 1,如图所示,△S ABC = 3 3,高 OD =12-⎛ 3⎫2= 6,⎝ 3 ⎭ 3∴V S -ABC[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为 a ,球的半径为 R ,①正方体的外接球,则 2R = 3a ;②正方体的内切球,则 2R =a ;③球与正方体的各棱相切,则 2R = 2a.(2)长方体的同一顶点的三条棱长分别为 a ,,,外接球的半径为 R ,则 2R = a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为 1∶3.以题试法3.(1)(2012·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()3C .4 316πD. B 2=16π.2 故球 O 的体积 V = = 6π.3(2)(2012· 潍坊模拟)如图所示,已知球 O 的面上有四点 A 、 、C 、D ,DA ⊥平面 ABC ,AB ⊥BC ,DA =AB =BC = 2,则球 O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示.其中侧面 DBC ⊥底面 ABC ,取 BC 的中点 O 1,连接 AO 1,DO 1 知 DO 1⊥底面 ABC 且 DO 1= 3,AO 1=1,BO 1=O 1C =1.在 △Rt ABO 1 和 Rt △ACO 1 中,AB =AC = 2,又∵BC =2,∴∠BAC =90°.∴BC 为底面 ABC 外接圆的直径,O 1 为圆心, 又∵DO 1⊥底面 ABC ,∴球心在 DO 1 上,即△BCD 的外接圆为球大圆,设球半径为 R ,则( 3-R)2+12=R 2,∴R = 2 3.⎛ 2 ⎫∴S 球=4πR 2=4π×⎝ 3⎭3(2)如图,以 DA ,AB ,BC 为棱长构造正方体,设正方体的外接球 球 O 的半径为 R ,则正方体的体对角线长即为球 O 的直径,所以|CD|= ( 2)2+( 2)2+( 2)2=2R ,所以 R =6 .4πR 33答案:(1)D (2) 6π某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.33=3×π×12×4=3π.1.对称补形[典例 1] (2012· 湖北高考)已知某几何体的三视图如图所示,则该几何体的体积为( )8π A.10π C.B .3πD .6π[解析]由三视图可知,此几何体是底面半径为 1,高为 4 的圆柱被从母线的中点处截去了圆柱的1,根据对称性,可补全此圆柱如图,故体积 V44[答案] B[题后悟道] “对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称关系对空间想象能力的提高很有帮助.2.联系补形(2012· 辽宁高考)已知点 P ,A ,B ,C ,D 是球 O 表面上的点,PA ⊥平面 ABCD ,四边形ABCD 是边长为 2 3的正方形.若 P A =2 △6,则 OAB 的面积为________.[解析] 由 P A ⊥底面 ABCD ,且 ABCD 为正方形,故可补形为长方体如图,知球心 O 为 PC 的中点,又 PA =2 6,AB =BC =2 3,∴AC =2 6,∴PC =4 3,∴OA =OB =2 △3,即 AOB 为正三角形,∴S =3 3.[答案] 3 3[题后悟道] 三条侧棱两两互相垂直,或一侧棱垂直于底面,底面为正方形或长方形,则此几何体可补形为正方体或长方体,使所解决的问题更直观易求.练习题1.(教材习题改编)以下关于几何体的三视图的论述中,正确的是()A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析:选A B中正方体的放置方向不明,不正确.C中三视图不全是正三角形.D中俯视图是两个同心圆.2.(2012·杭州模拟)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱C.球体B.圆锥D.圆柱、圆锥、球体的组合体解析:选C当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.3.下列三种叙述,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个C.2个B.1个D.3个解析:选A①中的平面不一定平行于底面,故①错.②③可用下图反例检验,故②③不正确.4.(教材习题改编)利用斜二测画法得到的:①正方形的直观图一定是菱形;②菱形的直观图一定是菱形;③三角形的直观图一定是三角形.以上结论正确的是________.解析:①中其直观图是一般的平行四边形,②菱形的直观图不一定是菱形,③正确.答案:③5.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为________.解析:由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为③.答案:③1.(2012·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.②③④C.①③④B.①②③D.①②④解析:选A①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.(其中真命题的个数是() A .1C .3B .2D .4解析:选 A 命题①不是真命题,因为底面是矩形,但侧棱不垂直于底面的平行六面体不是长方体;命题②不是真命题,因为底面是菱形 非正方形),底面边长与侧棱长相等的直 四棱柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂直于底面一边不能推出侧棱与底面垂直;命题④是真命题,由对角线相等,可知平行六面体的对角面是矩形,从而推得侧棱与底面垂直,故平行六面体是直平行六面体.3.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()解析:选 C C 选项不符合三视图中“宽相等”的要求,故选 C.4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是()解析:选 B 由直观图和正视图、俯视图可知,该几何体的侧视图应为面 P AD ,且 EC投影在面 P AD 上,故 B 正确.△5.如图 A ′B ′C ′是△ABC 的直观图,那么△ABC 是()A .等腰三角形B .直角三角形解析:选 D 依题意得,该几何体的侧视图的面积等于 22+ ×2× 3=4+ 3.为 ,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号)角形;如图 2 所示,直三棱柱ABC -AB C 符合题设要求,此时俯视图△ABC 是直角三角形;-A B C D 符合题设要求,此时俯视图(四边形 ABCD)是正方形;若俯视图是扇形或圆,体C .等腰直角三角形D .钝角三角形解析:选 B 由斜二测画法知 B 正确.6.(2012· 东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A .2+ 3C .2+2 3B .1+ 3D .4+ 3127.(2012· 昆明一中二模)一个几何体的正视图和侧视图都是边长为 1 的正方形,且体积12①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆.解析:如图 1 所示,直三棱柱 ABE -A 1B 1E 1 符合题设要求,此时俯视图△ABE 是锐角三1 1 1如图 3 所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱 ABCD1 1 1 1积中会含有 π,故排除④⑤.答案:①②③8.(2013· 安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.何体的体积为1×2×2sin 60°×2-1×1×2×2sin 60°×1=5 3.3解析:结合三视图可知,该几何体为底面边长为 2、高为 2 的正三棱柱除去上面的一个高为 1 的三棱锥后剩下的部分,其直观图如图所示,故该几2 3 2 35 3答案:9.正四棱锥的底面边长为 2,侧棱长均为 3,其正视图(主视图)和侧视图(左视图)是全 等的等腰三角形,则正视图的周长为________.解析:由题意知,正视图就是如图所示的截面PEF ,其中 E 、F分别是 AD 、BC 的中点,连接 AO ,易得 AO = 2,而 P A = 3,于是解得 PO =1,所以 PE = 2,故其正视图的周长为 2+2 2.答案:2+2 210.已知:图 1 是截去一个角的长方体,试按图示的方向画出其三视图;图2 是某几何体的三视图,试说明该几何体的构成.解:图 1 几何体的三视图为:图 2 所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.11.(2012· 银川调研)正四棱锥的高为 3,侧棱长为 7,求棱锥的斜高(棱锥侧面三角形在△Rt SOE 中,∵OE =1BC = 2,SO = 3,42-⎝ × ×2 3⎭2 2的高).解:如图所示,正四棱锥 S -ABCD 中,高 OS = 3,侧棱 SA =SB =SC =SD = 7,在 △Rt SOA 中,OA = SA 2-OS 2=2,∴AC =4.∴AB =BC =CD =DA =2 2.作 OE ⊥AB 于 E ,则 E 为 AB 中点.连接 SE ,则 SE 即为斜高,2∴SE = 5,即棱锥的斜高为 5.12.(2012· 四平模拟)已知正三棱锥 V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)三棱锥的直观图如图所示.(2)根据三视图间的关系可得 BC =2 3, ∴侧视图中V A =⎛2 3 3 2⎫= 12=2 3,∴△S VBC =1×2 3×2 3=6. 1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为 a 时,该三棱锥的全 面积是()A. a 242 4 a 2+3× ×⎝ 2 a ⎭2= a 2.(3 2)2-⎝2×6⎭2=3,因此底面中心到各顶点的距离均等于 3,所以该四棱锥的外接球的棱锥的高是 5,可由锥体的体积公式得 V = ×8×6×5=80.3+ 3 3 B. a 2 43+ 36+ 3 C.a 2D.a 2解析:选 A ∵侧面都是直角三角形,故侧棱长等于31 ⎛2 ⎫ 3+ 3∴S 全=42422a ,2.已知正四棱锥的侧棱与底面的边长都为 3 2,则这个四棱锥的外接球的表面积为()A .12πC .72π B .36πD .108π解析: 选 B 依题意得,该正四棱锥的底面对角线长为 3 2 × 2 = 6 ,高为⎛1⎫球心为底面正方形的中心,其外接球的半径为 3,所以其外接球的表面积等于 4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为 5 的等腰三角形,侧视图是一个底边长为 6,高为 5 的等腰三角形,则该几何体的体积为()A .24C .64 B .80D .240解析:选 B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为 8 和 6 的矩形,1 34.(教材习题改编)表面积为 3π 的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为 l ,圆锥底面半径为 r ,则 πrl +πr 2=3π,πl =2πr.解得 r =1,即直径为 2.答案:25.某几何体的三视图如图所示,其中正视图是腰长为 2 的等20/2733××2×2×2=.形42-⎝232+22⎭2=,所以棱锥O-A BCD的体积等于×(3×2)×51=51.________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.(2012·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是()A.8 C.48 B.4 D.解析:选D将三视图还原,直观图如图所示,可以看出,这是一个底11面为正方形(对角线长为2),高为2的四棱锥,其体积V=3S正方ABCD×P A=314232.(2012·山西模拟)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=3,BC=2,则棱锥O-ABCD的体积为()A.51 C.251B.351 D.651解析:选A依题意得,球心O在底面ABCD上的射影是矩形ABCD的中心,因此棱锥O-A BCD的高等于⎛1⎫5112323.(2012·马鞍山二模)如图是一个几何体的三视图,则它的表面积为()4 4 解析:选 D 由三视图可知该几何体是半径为 1 的球被挖出了 部分得到的几何体,故·4π·12+3· ·π·12= π.22只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2× ×2×1=4,所以该A .4πC .5π15 B. π17 D. π18表面积为7 1 178 44 4.(2012· 济南模拟)用若干个大小相同,棱长为 1 的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为()A .24C .22B .23D .21解析:选 C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为 22.5. (2012· 江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为()11 A.9 C.B .5D .4解析:选 D 由三视图可知,所求几何体是一个底面为六边形,高为1 的直棱柱,因此12几何体的体积为 4×1=4.6.如图,正方体 ABCD -A ′B ′C ′D ′的棱长为 4,动点 E ,F 在棱 AB 上,且 EF =2,动点 Q 在棱 D ′C ′上,则三棱锥 A ′-EFQ 的体积()解析:选 D 因为 V A ′-EFQ =V Q -A ′EF = ×⎝2×2×4⎭×4= ,故三棱锥 A ′-EFQ 的高为 3,连接顶点和底面中心即为高,可求得高为 2,所以体积 V =1×1×1× 2= 2.3答案: 3π⎧⎪a +b =6 ,A .与点 E ,F 位置有关B .与点 Q 位置有关C .与点 E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值1 ⎛1 ⎫ 163 3体积与点 E ,F ,Q 的位置均无关,是定值.7.(2012· 湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为 1 的正方形和 4 个边长为 1 的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为 1,侧棱长为 1,斜2 23 2 6答案:2 68.(2012· 上海高考)若一个圆锥的侧面展开图是面积为 2π 的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为 2π,所以半圆的半径为 2,圆锥的母线长为 2.底面圆的周长为2π,所以底面圆的半径为 1,所以圆锥的高为 3,体积为 3π.39.(2013· 郑州模拟)在三棱锥 A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,2 2 2 设该长方体的长、宽、高分别为 a 、b 、c ,且其外接球的半径为 R ,则⎨b 2+c 2=52,⎪⎩c 2+a 2=52,得 a 2+b 2+c 2=43,即(2R)2=a 2+b 2+c 2=43,易知 R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为 4πR 2=43π.答案:43π10.(2012· 江西八校模拟)如图,把边长为 2 的正六边形 ABCDEF 沿对角线 BE 折起,使 AC = 6.。
高中数学立体几何空间几何体结构-PPT
![高中数学立体几何空间几何体结构-PPT](https://img.taocdn.com/s3/m/871b11ab7d1cfad6195f312b3169a4517623e500.png)
⑷两个面平行且相似,其余各面都就是梯形得多面体就是棱台( × )
⑸有两个面互相平行,其余四个面都就是等腰梯形得六面体就是棱
台
(√)
(×)
⑹棱台各侧棱得延长线交于一点
(×)
⑺各侧面都就是正方形得四棱柱一定就是正方体
菱形
如图,正四棱锥S-ABCD被一平行于底面得平面A'B'C'D'所截,其中A'为SA 得中点、若四棱锥得底边AB=4,求截得得正棱台ABCD-A'B'C'D'得上底面面积 与下底面得面积之比。
线
叫做圆锥得侧面。
顶点:作为旋转轴得直角边与斜边得交点
A
母线:无论旋转到什么位置,直角三角形得斜 边叫做圆锥得母线。
顶点 S
轴
侧 面
O B
底面
圆锥可以用它得轴来表示。
如:圆锥SO
注:棱锥与圆锥统称为锥体
6、圆台得结构特征
用一个平行于圆锥底面得平面去截圆锥,底面与截面之 间得部分就是圆台、
圆台得轴,底面,侧面,母线与圆锥相似
底面
两底面得全等得多边形
多边形
两底面就是相似得多边形
侧面 侧棱
平行于底面 得平面
平行四边形 平行且相等
三角形 相交于顶点
梯形 延长线交于一点
与两底面就是全等得多边形 与底面就是相似得多边形 与两底面就是相似得多边形
过不相邻两 侧棱得截面
平行四边形
三角形
梯形
D1
E
C1
A1
F
D
A
B1 C
B
例2 一个三棱柱可以分割成几个三棱锥?
C1
B1 C1
B1
2020年高考数学一轮复习考点与题型总结:第八章 立体几何含答案
![2020年高考数学一轮复习考点与题型总结:第八章 立体几何含答案](https://img.taocdn.com/s3/m/0c9deb52915f804d2b16c1df.png)
第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一 空间几何体的结构特征[典例] 下列结论正确的是( )A .侧面都是等腰三角形的三棱锥是正三棱锥B .六条棱长均相等的四面体是正四面体C .有两个侧面是矩形的棱柱是直棱柱D .用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析] 底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A 错;斜四棱柱也有可能两个侧面是矩形,所以C 错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D 错.[答案] B [题组训练]1.下列结论中错误的是( )A .由五个面围成的多面体只能是三棱柱B .正棱台的对角面一定是等腰梯形C .圆柱侧面上的直线段都是圆柱的母线D .各个面都是正方形的四棱柱一定是正方体解析:选A 由五个面围成的多面体也可以是四棱锥,所以A 选项错误.B 、C 、D 说法均正确. 2.下列命题正确的是( )A .两个面平行,其余各面都是梯形的多面体是棱台B .两个面平行且相似,其余各面都是梯形的多面体是棱台C .直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D .用平面截圆柱得到的截面只能是圆和矩形解析:选C 如图所示,可排除A 、B 选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二 空间几何体的直观图[典例] 已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.[解析] 法一:如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案](1)B(2)12考法(三)由三视图中的部分视图确定剩余视图[典例](2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()[解析]由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是( ) A .等腰三角形的直观图仍为等腰三角形 B .梯形的直观图可能不是梯形 C .正方形的直观图为平行四边形 D .正三角形的直观图一定为等腰三角形解析:选C 根据“斜二测画法”的定义可得正方形的直观图为平行四边形. 2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) A .球 B .三棱锥 C .正方体D .圆柱解析:选D 球、正方体的三视图的形状都相同,大小都相等,首先排除选项A 和C.对于三棱锥,考虑特殊情况,如三棱锥C -OAB ,当三条棱OA ,OB ,OC 两两垂直,且OA =OB =OC 时,正视图方向为AO 方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D ,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( )A .2 3B .2 2C .4 3D .8 2解析:选D 由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B ′O ′A ′=45°且O ′B ′=22,那么在原图形中,∠BOA =90°且OB =4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A .0B .1C .2D .3解析:选B ①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解析:选D 由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D. 6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A 1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC =CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B.考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析](1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π. (2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD 1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D=V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312 B.34 C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932B.916C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C. 法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B.7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32. 答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πrl ,即l=3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC=13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO , 即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形, 可得BE =22x . 由已知得,三棱锥E -ACD 的体积 V 三棱锥E -ACD=13·12AC ·GD ·BE =624x 3=63, 故x =2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求1证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()。
必修二立体几何知识点+例题+练习+答案
![必修二立体几何知识点+例题+练习+答案](https://img.taocdn.com/s3/m/a922c6260c22590103029d02.png)
学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除立体几何知识点一、空间几何体1.多面体:由若干个多边形围成的几何体,叫做多面体。
围成多面体的各个多边形叫做多面体的面 , 相邻两个面的公共边叫做多面体的棱 , 棱与棱的公共点叫做多面体的顶点 .2.棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都平行,由这些面所围成的多面体叫做棱柱。
两个互相平行的面叫做底面, 其余各面叫做侧面 .3.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
底面是正多边形,且各侧面是全等的等腰三角形的棱锥叫做正棱锥。
正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形;顶点在底面上的射影是底面正多边形的中心。
4.棱台:用一个平行于底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
由正棱锥截得的棱台叫做正棱台。
正棱台的性质:各侧棱相等,各侧面都是全等的等腰梯形;正棱台的两底面以及平行于底面的截面是相似的正多边形5.旋转体:由一个平面图形绕一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫做旋转体的轴,6.圆柱、圆锥、圆台:分别以矩形的一边、直角三角形的直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台。
圆柱、圆锥、圆台的性质:平行于底面的截面都是圆;过轴的截面 ( 轴截面 ) 分别是全等的矩形、等腰三角形、等腰梯形。
注:在处理圆锥、圆台的侧面展开图问题时,经常用到弧长公式 l R7.球: 以半圆的直径为旋转轴,旋转一周所成的曲面叫做球面 . 球面所围成的几何体叫做球体 ( 简称球 )8.简单空间图形的三视图:一个投影面水平放置,叫做水平投影面,投影到这个平面内的图形叫做俯视图。
一个投影面放置在正前方,这个投影面叫做直立投影面,投影到这个平面内的图形叫做主视图 ( 正视图 ) 。
和直立、水平两个投影面都垂直的投影面叫做侧立投影面,通常把这个平面放在直立投影面的右面,投影到这个平面内的图形叫做左视图( 侧视图) 。
高中简单立体几何体(附例题 详解)
![高中简单立体几何体(附例题 详解)](https://img.taocdn.com/s3/m/dfe611435acfa1c7aa00cce0.png)
2. 简单几何体知识网络 简单几何体结构简图画龙点晴概念棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体称为棱柱。
两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点.不在同一个平面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高.棱柱的分类: 按侧棱与底面的关系,棱柱可分为:斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.正棱柱:底面是正多边形的直棱柱叫做正棱柱.按底面的多边形的边数可分为: 底面是三角形、四边形、五边形……我们把这些棱柱分别叫做三棱柱、四棱柱、五棱柱……棱柱的表示法: 棱柱用表示底面各顶点的字母表示,或者用棱柱对角线的两个端点的字母表示,如五棱柱可表示为:棱柱ABCDE-A/B/C/D/E/,或棱柱AC/.棱柱的性质:(1)侧棱都相等,侧面都是平行四边形;(2)两个底面与平行于底面的截面都是全等的多边形;(3)过不相邻的两条侧棱的截面(对角面)是平行四边形;直棱柱的性质: 直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。
平行六面体: 底面是平行四边形的四棱柱叫做平行六面体.长方体: 底面是矩形的直平行六面体叫做长方体, 长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和.正方体: 棱长都相等的长方体叫做正方体.公式棱柱的侧面积和全面积: 直棱柱的侧面积等于它的底面周长C与高的乘积, 即, 斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面)的周长C1与侧棱长的乘积,即, 棱柱的全面积等于侧面积与两底面积的和.[活用实例][例1] 如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=,(1)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(2)求这个平行六面体的表面积.[题解](1) 如图,连结A1O,则A1O⊥底面ABCD.作OM⊥AB交AB于M,作ON⊥AD交AD于N,连结A1M,A1N.由三垂线定理得A1M⊥AB,A1N⊥AD.∵∠A1AM=∠A1AN,∴Rt△A1NA≌Rt△A1MA.∴A1M=A1N.∴OM=ON. ∴点O在∠BAD的平分线上.(2),侧面AB1和侧面DC1的面积都等于4=6,侧面AD1和侧面BC1的面积都等于5=7.5,又ABAD,两底面面积都等于4=20,平行六面体的表面积为2(6+7.5)+20=47.[例2] 如图,A1B1C1-ABC是直三棱柱,过点A1、B、C1的平面和平面ABC的交线记作.(1)判定直线A1C1和的位置关系,并加以证明;(2)若A1A=1,AB=4,BC=3,∠ABC=90°,求顶点A1到直线的距离.[题解](1)根据棱柱的定义知平面A1B1C1和平面ABC平行.由题设知直线A1C1=平面A1B1C1∩平面A1BC1,直线=平面A1BC1∩平面ABC.根据两平面平行的性质定理有∥A1C1.(2)解法一:过点A1作A1E⊥于E,则A1E的长为点A1到l的距离.连结AE.由直棱柱的定义知A1A⊥平面ABC.∴ 直线AE是直线A1E在平面ABC上的射影.又 在平面ABC上,根据三垂线定理的逆定理有AE⊥.由棱柱的定义知A1C1∥AC,又∥A1C1, ∥AC.作BD⊥AC于D,则BD是Rt△ABC斜边AC上的高,且BD=AE,从而AE=BD=在Rt△A1AE中,∵ A1A=1,∠A1AE=90°,故点A1到直线的距离为.解法二:同解法一得∥AC.由平行直线的性质定理知∠CAB=∠ABE,从而有Rt△ABC∽Rt△BEA,AE:BC=AB:AC,, 以下同解法一.[例3] 如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB1∥平面DBC1;(2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.[题解](1)∵A1B1C1-ABC是正三棱柱, ∴四边形B1BCC1是矩形.连结B1C交BC1于E,则B1E=EC.连结DE.在△AB1C中,∵AD=DC,∴DE∥AB1.又平面DBC1, DE平面DBC1, ∴AB1∥平面DBC1.(2)作DF⊥BC,垂足为F,则DF⊥面B1BCC1,连结EF,则EF是ED在平面B1BCC1上的射影.∵AB1⊥BC1,由(1)知AB1∥DE,∴DE⊥BC1,则BC1⊥EF,∴∠DEF 是二面角α的平面角.设AC=1, 则DC=∵△ABC是正三角形,∴在Rt△DCF中,CF=取BC中点G.∵EB=EC,∴EG⊥BC. 在Rt△BEF中,AC=1,又BF=BC-FC=, GF=,, 即EF=.∴∠DEF=45°. 故二面角α为45°.概念棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.棱锥的分类: 按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥……棱锥的表示法: 棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示.例如,棱锥S-ABCDE,或棱锥S-AC.正棱锥:底面是正多边形,并且顶点在底面上的射影是底面中心,这样的棱锥叫做正棱锥.正棱锥的性质:(1)各侧棱相等,各侧面是全等的等腰三角形;(2)棱锥的高、斜高及斜高在底面上的射影(底面的边心距)组成一个直角三角形,这个直角角三角形的一个锐角是侧面与底面的夹角;(3)棱锥的高、侧棱和侧棱在底面上的射影(底面正多边形外接圆半径)也组成一个直角三角形,这个直角三角形的一个锐角是侧棱与底面的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单几何体的结构、三视图和直观图考纲解读 1.以常见的几何体及简单组合体为模型画三视图、辩认三视图;2.辩识三视图所表示的立体模型;3.通过模型转化几何体、三视图、直观图;4.会画某些建筑物的三视图与直观图.[基础梳理]1.多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线3.(1)三视图的形成与名称:①形成:空间几何体的三视图是用平行投影得到的,在这种投影之下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是完全相同的;②名称:三视图包括正视图、侧视图、俯视图.(2)三视图的画法:①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.[三基自测]1.如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.简单组合体答案:C2.某几何体的三视图如图所示,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案:C3.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.答案:1考点一简单几何体的结构特征|易错突破[例1](1)给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是() A.0B.1C.2 D.3(2)给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中不正确的命题的个数是________个.[解析](1)①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③都不正确,②中对等腰三角形的腰是否为侧棱未作说明,故也不正确,④平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④也不正确.[答案](1)B(2)4[易错提醒]1.明确各种空间几何体的概念及相关元素的特征.2.善于构建、利用几何体模型.3.通过反例对结构特征进行判断.[纠错训练]给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④棱台的侧棱延长后交于一点,侧面是等腰梯形.其中正确命题的序号是()A.①②③B.②③C.③D.①②③④解析:对于①,棱柱的侧面不一定全等,故①错;对于②,截面与底面不一定平行,故②错;对于④,棱台的侧棱延长后相交于一点,但侧面不一定是等腰梯形,故④错;由面面垂直的判定及性质知③正确,故选C.答案:C考点二 简单几何体的直观图|易错突破[例2] (1)用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2(2)(2018·青岛模拟)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形[解析] (1)依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.(2)在直观图中,O ′D ′=2cos 45°=22,C ′D ′=2,恢复平面图形后,OD =42,CD =2, ∴OC =(42)2+22=6, ∴OABC 为菱形,故选C. [答案] (1)C (2)C [易错提醒]注意原图与直观图的“变”与“不变” (1)“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度改变(减半)图形改变(2)“三不变”⎩⎪⎨⎪⎧平等性不变与x 轴平行的线段长度不变相对位置不变[纠错训练]如图所示,一个水平放置的正方形ABCD ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出正方形的直观图A ′B ′C ′D ′中,顶点B ′到x ′轴的距离为________.解析:正方形的直观图A′B′C′D′如图:因为O′A′=B′C′=1,∠B′C′x′=45°,所以顶点B′到x′轴的距离为1×sin45°=2 2.答案:22考点三简单几何体的三视图|模型突破角度1已知几何体识别三视图[例3]正方体ABCD-A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C.[答案]C[模型解法](3)按规定的视线,找出各个顶点在投影面上的投影.(4)确定线在投影面上的虚实.[高考类题]1.(2013·高考课标全国Ⅱ)一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()解析:设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O、A、B、C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.答案:A角度2已知三视图,判断几何体[例4](2018·烟台模拟)若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1B.2C.3 D.4[解析]观察三视图,可得直观图如图所示.该三棱锥ABCD的底面BCD是直角三角形,AB⊥平面BCD,CD⊥BC,侧面ABC,ABD是直角三角形;由CD⊥BC,CD⊥AB,知CD⊥平面ABC,CD⊥AC,侧面ACD也是直角三角形,故选D.[答案]D[模型解法]识别三视图应从以下几方面考虑(1)从线型看类型,由三视图中的线是线段还是曲线,可确定此几何体是简单多面体还是旋转体;(2)分部分,想整体,判断几何体是简单几何体还是组合体;(3)对比一些熟悉的三视图模型进行分析,如正方体、圆锥、三棱锥等三视图模型.2.(2014·高考新课标全国卷Ⅰ)如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:将三视图还原为几何体如图所示,几何体为三棱柱.答案:B1.[考点一、二、三](2014·高考湖北卷)在如图所示的空间直角坐标系O xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析:设A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2).∵B ,C ,D 在平面yOz 上的投影的坐标分别为(0,2,0),(0,2,1),(0,2,2),点A (0,0,2)在平面yOz 上,又点C 的横坐标小于点B 和D 的横坐标,∴该几何体的正视图为图④.∵点A ,C ,D 在平面xOy 上的投影的坐标分别为(0,0,0),(1,2,0),(2,2,0),点B (2,2,0)在平面xOy 上,∴该几何体的俯视图为图②.故选D.答案:D2.[考点一、二、三](2015·高考全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:如图,由已知条件可知,在正方体ABCD A 1B 1C 1D 1中,截去三棱锥A A 1B 1D 1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.答案:D3.[考点一、二、三](2013·高考山东卷)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:由题意知该四棱锥为正四棱锥,其底面边长为2,正四棱锥的高为2,故侧面三角形的高为 5.所以该四棱锥的侧面积为4×12×2×5=45,体积为13×22×2=83,故答案为B.答案:B。