RC正弦波振荡器电路设计与仿真设计

合集下载

RC正弦波振荡电路-报告

RC正弦波振荡电路-报告

电子线路EDA报告专业电气工程及其自动化学生姓名 xxx x学号 xxxxxx题目 RC正弦波振荡电路指导教师 xx2016年x月x日一、任务与要求了解用集成运算放大器构成简单的正弦波的方法,掌握RC桥式正弦波振荡器的设计、仿真与调试方法。

理解RC 正弦波振荡电路的工作原理,利用Multisim 软件创建RC 桥式正弦振荡电路图,仿真分析其起振条件,稳幅特性。

掌握Multisim 软件中常用元器件的选取和参数设置,常用电子仪表的使用及电路调试的基本方法。

设计一个RC 桥式振荡电路。

其正弦波输出为: 振荡频率:500Hz振荡频率测量值与理论值的相对误差 电源电压变化时,振幅基本稳定 振荡波形对称,无明显非线性失真二、电路原理分析1、RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,如图1所示。

图中RC 选频网络形成正反馈电路,并由它决定振荡频率,和形成负反馈回路,由它决定起振的幅值条件和调节波形的失真程度与稳幅控制。

在满足1212R R R C C C ====,的条件下,该电路的振荡频率:o 12f RC π=(①)起振幅值条件 a bvf1a3R R A R +=≥或ba2R R ≥ (②)式中b 43d R R R r =+,d r 为二极管的正向动态电阻。

2、参数确定与元件选择一般说来,设计振荡电路就是要产生满足设计要求的振荡波形。

因此振荡条件是设计振荡电路的主要依据。

设计如图1所示振荡电路,需要确定和选择的元件如下:(1)确定R 、C 值根据设计所要求的振荡频率o f ,由式(①)先确定RC 之积,即o12RC f π=(③)为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使R 满足下列关系式:io R RR一般i R 约为几百千欧以上(如LM741型i 0.3M ΩR ≥),o R 而仅为几百欧以下,初步选定R 之后,由式(③)算出电容C 值,然后,再复算R 取值是否能满足振荡频率的要求。

实验五:RC正弦波振荡电路

实验五:RC正弦波振荡电路

实验五:RC正弦波振荡电路
一、实验目的
了解RC正弦波振荡器的两个组成部分。

了解正弦波振荡器的两个振荡条件。

掌握桥式RC正弦波振荡电路的调试和振荡频率的测量。

二.实验设备
安装Multisim10软件的计算机
三.实验内容
编辑RC正弦波振荡电路,验证振荡条件,计算并测试输出正弦波的周期。

四.实验步骤
1.编辑仿真电路如图2所示。

其中电位器R5的Increment栏设置为1%,初始时百分比为50%。

图2
2. 示波器放大面板中各栏设置如图3所示。

3. 打开仿真开关,但在示波器屏幕上看不到振荡正弦波形,为什么?
答:因为11+4.7<2*10,不能满足起振条件。

4. 按A键,逐渐增大电位器的百分比,观察何时可以看到电路起振波形,为什么?记录此时电位器的值。

答:当百分比为70%时,此时满足起振条件。

5. 继续增大电位器的百分比,将看到振荡器波形出现上、下削波失真。

6. 下调电位器的百分比,使输出正弦波达到不失真,测出正弦波的幅值。

根据此时电位器的值,判断振荡条件与理论是否相符?
答:此时幅值为11.117v,相符.
7.测出正弦波的周期,并与理论值比较,是否相符?
答:周期为6.364ms,相符。

rc正弦波振荡电路设计

rc正弦波振荡电路设计

rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。

2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。

对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。

因此,已知振荡频率f,可以求出R和C的值。

3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。

电路一般由放大器、RC电路和正反馈网络组成。

放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。

4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。

例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。

5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。

总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。

模电RC正弦波振荡电路课程设计

模电RC正弦波振荡电路课程设计

课程设计课程名称:模拟电子技术A设计名称:RC正弦波振荡电路专业班级:学号:学生姓名:指导教师:2018年1月5 日XX大学课程设计任务书学生姓名专业班级课程名称模拟电子技术A设计名称RC正弦波振荡电路设计设计周数 1 设计任务主要设计参数⑴振荡频率:500Hz;⑵振荡频率测量值与理论值的相对误差小于;⑶振幅基本稳定,振荡波形对称;⑷电源电压变化在以内时,无明显非线性失真。

设计内容设计要求⑴RC正弦波振荡电路形式有多种,按照设计要求,提出两种设计方案,进行比较后确定选用方案。

⑵用Multisim软件设计电路原理图;②根据电路功能及技术指标要求,计算电路各元件的参数;③对所设计电路进行仿真、调试,使所设计电路能实现设计要求。

④对仿真过程和仿真结果进行分析。

⑤将仿真测得的正弦波频率,输出幅值分别与理论计算值进行比较,分析产生误差的原因。

⑥如果所设计的RC正弦波振荡电路不能起振,一个条件哪个参数?如何调节?(通过仿真验证)⑦如果输出波形失真,应该调节哪个参数?如何调节?(通过仿真验证)主要参考资料[1]华中科技大学电子技术课程组编,康华光主编.电子技术基础.模拟部分.第五版.北京:高等教育出版社,2010[2]华中科技大学电子技术课程组编,康华光主编.电子技术基础.数字部分.第五版.北京:高等教育出版社,2011[3]刘原主编.电路分析基础.北京:电子工业出版社,2011[4]及力主编.Protel 99 SE原理图与PCB设计教程.北京:电子工业出版社,2007[5](日)稻叶保著,何希才,尤克译.振荡电路的设计与应用.北京:科学出版社,2004学生提交归档文件“课程设计说明书”一本(用word编辑排版打印)要求:内容准确,表述清晰、调理,图文详尽。

注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订)。

2.可根据实际内容需要续表,但应保持原格式不变。

RC正弦波振荡器电路设计与仿真设计

RC正弦波振荡器电路设计与仿真设计

《电子设计基础》课程报告设计题目:RC正弦波振荡器电路设计及仿真学生班级:学生学号:学生姓名:指导教师:时间:成绩:西南xx大学信息工程学院一.设计题目及要求RC正弦波振荡器电路设计及仿真,要求:(1)设计完成RC正弦波振荡器电路;(2)仿真出波形,并通过理论分析计算得出频率。

二.题目分析与方案选择在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。

三.主要元器件介绍10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器四.电路设计及计算图 1在multisim软件上做的仿真电路图如图1。

电路震荡频率计算:f=1/2πRC起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d由其电路元件特性R=10KΩC=10nF电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。

平衡时A v=3,F v=1/3(w=w0=1/RC)五.仿真及结果分析在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图图2刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

图3经过不久,波形就开始产生振荡,幅度逐渐增大,并达到一个最大值后,保持幅度以正弦输出。

如图3六.PCB板排布图4Protel 99 se中做出来的原理图如图四,pcb如下图。

rc正弦波振荡器课程设计

rc正弦波振荡器课程设计

摘要振荡器是一种在没有外加激励信号,而自动的将直流电源产生的能量转化为具有一定频率、一定幅度和一定波形的交流信号的电路。

振荡器一般由晶体管等有源器件和具有选频能力的无源网络所组成。

振荡器的种类很多,根据工作原理来分,可分为反馈式振荡器和负阻式振荡器两大类。

根据所产生波形的不同,可分为正弦波振荡器和非正弦波振荡器。

根据选频网络所采用的器件来分,可分为LC振荡器、晶体振荡器以及RC振荡器等。

正弦波振荡器在无线电技术中应用非常广泛。

在通信系统中,可用来产生发射极部分的载波信号和接收机中的本地震荡信号。

在电子测量仪器中,可用来各种频段的正弦波信号。

本课程主要研究RC正弦波振荡器的电路设计与proteus软件仿真。

滤波器是对波进行过滤的器件。

它的作用实质上是“选频”,即允许某一部分的信号顺利通过。

在无线电技术、自动测量和控制系统中,常被用来对模拟信号进行处理,如数据传送、抑制干扰。

滤波器根据工作信号的频率范围,可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

本课程主要是对带通滤波器的设计与仿真。

关键词:RC正弦波振荡器;滤波器;proteus仿真目录1 绪论 (1)2 设计任务 (2)2.1课程设计的目的 (2)2.2课程设计任务与要求 (2)2.3课程设计技术指标 (2)3 RC正弦波振荡器工作原理 (3)3.1 电路原理及元件选择 (3)3.2 参数计算 (3)4 4阶带通滤波器工作原理 (5)4.1 电路原理及元件选择 (5)4.2 参数计算 (5)5Proteus软件介绍 (6)6电路仿真与结果分析 (7)6.1 RC正弦波振荡器仿真与结果分析 (7)6.2 4阶带通滤波器器仿真与结果分析 (7)致谢 (10)参考文献 (11)1 绪论本次课程设计的内容包括RC正弦波振荡器电路和高阶带通滤波器电路的设计与仿真两部分。

RC正弦波振荡器电路由四部分组成:放大电路,反馈网络,选频网络,稳幅环节。

其中放大电路和反馈网络构成正反馈系统,共同满足AF=1。

课设,RC正弦波发生器的设计与仿真

课设,RC正弦波发生器的设计与仿真

RC正弦波发生器的设计与仿真1.课程设计目的1、理解RC正弦波振荡器的工作原理;掌握调试RC振荡器频率特性的方法。

2、学习与掌握Multisim等仿真软件的元件搜寻、电路搭建、仿真分析等基本操作。

3、基于Multisim或其他仿真软件实现RC正弦波振荡器具体设计与模拟仿真,掌握元件、电路的仿真和波形的测试技能。

2.设计方案论证本实验使用的一个软件是Multisim,它是一款电子电路仿真的虚拟电子工作台软件,采用直观的图形界面创建电路,在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件,电路仿真需要的测试仪器均可以直接从屏幕上选取;软件仪器控制面板外形和操作方式都与实物相似,可以实时显示测量结果;Multisim软件带有丰富的电路元件库,提供多种电路分析方法;作为设计工具,它可以同其它流行的电路分析,设计和制版软件交换数据;Multisim还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。

Multisim工作环境如图1所示图1 Multisim工作环境Protel 包含电路原理图设计,电路原理图仿真测试,印制电路板设计,自动布线器和FPGA/CPLD设计,覆盖了以PCB为核心的整个物理设计。

它提供了进行层次原理图设计的环境,支持“自上而下”和“自下而上”的层次电路设计,能够完成更加大型,更为复杂的电路设计。

Protel 提供了丰富的原件原理图库和PCB封装库,并且库的管理和编辑功能更加完善,草组更加简便。

电路设计人员通过Protel提供的编辑工具,可以方便的实现库中没有包含的原件原理图以及PCB封装的设计制作。

它提供了原件集成库的概念。

在它的元件集成库中集成了元件的原理图符号,本次设计重要通过 Protel 绘图软件完成正弦波发生器原理图的绘制及PCB图的绘制,并利用Multisim软件进行编译、仿真出正弦波波形,并对其进行比较。

rc正弦波振荡器电路设计及仿真

rc正弦波振荡器电路设计及仿真

rc正弦波振荡器电路设计及仿真

正弦波振荡器电路的设计和仿真是电子技术的一个重要课题,对电子技术的研究有重
要的意义。

正弦波振荡器是一种典型的振荡电路,它可以用来产生正弦波和方波。

因其电
路简单,性能稳定,用途广泛,在电子电路技术中被广泛应用。

正弦波振荡器的基本原理是把正弦波加以无穷次平均,用此组成两极结构,即动态输
入和动态输出端口,把正弦波作为输入量,由输入端口输送到输出端口,通过反馈回路在
输入端口进一步处理,使其可以不断循环。

根据正弦波振荡器的工作原理,结合实际的应用需求,可以设计出一种满足要求的正
弦波振荡器电路。

其核心电路为双极复放机构,由输入阻抗器连接在振荡管的基极,另一
极连接地;反馈分支由调节圈提供反馈能量,当振荡管的基极的电压超过一定的值得时候,参考管会调节输出端口的电压,而正弦波振荡器就是通过这种反应机制实现正弦波振荡的。

在正弦波振荡器的设计与仿真中,可以采用SPICE模拟工具,运用电路技术与分析技术,对正弦波振荡器电路进行仿真,加以验证电路设计的可行性,并评估其性能参数,致
力于达到设计规定的要求。

总之,正弦波振荡器电路的设计与仿真是一个相当重要的课题,可以通过SPICE模拟
工具与电路技术来实现,并有效地验证仿真结果,为电子技术提供参考,提高电子产品的
质量。

RC正弦波振荡电路设计

RC正弦波振荡电路设计

RC正弦波振荡电路设计首先,我们需要了解RC正弦波振荡电路的基本原理。

振荡器是一种电路,它能够将直流电源的能量转换为交流信号。

在RC振荡电路中,我们使用了一个电容和一个电阻来实现振荡。

在RC正弦波振荡电路中,电容充电和放电的时间常数(记为τ)非常重要。

时间常数τ决定了振荡频率的大小,公式为τ=RC,其中R为电阻的阻值,C为电容的电容值。

接下来,我们将详细介绍如何设计RC正弦波振荡电路。

设计过程分为以下几个步骤:1.确定振荡频率:首先根据需要确定振荡的频率范围,并选择一个合适的频率。

振荡频率主要由电容值和电阻值决定,可以通过调整它们的比例来改变频率。

2.选择电容和电阻:根据已知的振荡频率,选择一个合适的电容和电阻。

一般来说,电容的值可以在几十皮法(pF)到几百微法(uF)之间选择,而电阻的值可以在几百欧姆(Ω)到几兆欧姆(MΩ)之间选择。

3.计算时间常数:根据所选择的电容和电阻的值,计算时间常数τ。

时间常数τ决定了振荡的频率,可以根据τ=RC公式计算得出。

4.根据振荡频率调整电容和电阻:如果振荡频率与所需要的频率不一致,可以通过调整电容和电阻的比例来改变频率。

通常来说,增加电容值可以降低频率,而增加电阻值可以提高频率。

5.考虑放大器:为了增强正弦波信号的幅度,可以在RC振荡电路中添加一个放大器电路。

放大器电路一般采用运算放大器、晶体管等元件实现。

6.振荡电路的稳定性:为了确保RC振荡电路的稳定性,可以在电容的两端或电阻的两端添加阻尼电阻,用来衰减振荡中的能量。

7.电源:振荡电路需要一个直流电源供电,电源电压的稳定性会影响振荡器的稳定性,因此需要选择一个稳定的电源。

最后,设计好RC正弦波振荡电路后,可以使用示波器等仪器进行验证,观察输出的波形是否为正弦波,并调整电容和电阻的值,使得输出的波形更加稳定和准确。

总结来说,RC正弦波振荡电路的设计步骤包括确定振荡频率、选择电容和电阻、计算时间常数、根据频率调整电容和电阻、考虑放大器、确保振荡电路的稳定性和选择稳定的电源。

Multisim10的RC正弦波振荡电路仿真设计论文

Multisim10的RC正弦波振荡电路仿真设计论文

Multisim10的RC正弦波振荡电路仿真设计论文摘要:应用Multisim10软件对RC正弦波振荡电路进行仿真分析,结果表明仿真与理论分析和计算结果几乎完全一致,而且更形象、灵活,更贴近工程实际,可以达到帮助学生理解原理,更好地掌握所学的知识的目的,对提高学生发散性思维能力和分析问题、解决问题的能力具有重要的意义。

0 引言模拟电子技术是电子信息类重要的专业基础课,学生学习时感觉困难很多,使用Multisim软件进行模拟电子技术原理的仿真,可以克服时间、场地、仪器等带来的限制,让学生在课前或课后对所学知识进行预习和巩固,使得抽象枯燥的理论引入到软件仿真中,有利于把理论理解得更透彻。

该软件较适合模电仿真,它可以用来仿真所有的模拟电路,功能非常强大。

可以仿真运放电路、三极管的放大电路、场效应管放大电路、正弦波产生电路、直流稳压电路等,得到了很好的效果。

尤其在正弦波振荡电路中可以看到起振、稳幅的过程,这即使在实验室中使用常规的仪器也很难观测出来。

正弦波振荡电路是在没有外加输入信号的情况下,依靠电路自激振荡而产生正弦波输出电压的电路。

正弦波振荡电路是由放大电路、反馈网络、选频网络和稳幅环节构成。

图1是基本原理框图,选频部分可以在放大电路中,亦可在反馈网络中,稳幅环节主要由非线性元件构成。

重点在于掌握放大和选频的原理,而难点在于理解起振过程、稳幅环节。

本文分析了几种振荡电路,无论对于哪种振荡电路,由于比较抽象,用传统方法精确分析起振、稳幅、振荡频率的大小都是比较困难的,而用Multisim10软件则可灵活方便地进行仿真分析[1],在课堂教学中就可以生动地体现产生的过程。

1 RC正弦波产生电路仿真分析1.2 结型场效应管RC正弦波产生电路如图6所示。

该电路R1、C1、R2、C2的作用与图2相同,稳幅环节由结型场效应管2N3458及外围电路构成,调节R5、R6,使得Af=1+R5/(rds+R3)>3,当电路起振后,随着幅值的增大,经过D1整流、C3滤波后,C3与R4节点处为负电位幅值也增大,经R4、R6分压后Q1的栅源电压vGS也在增大,由图5所示的JFET的传输特性可知,可变电阻区几乎是线性的,vGS 增大,斜率减小,沟道电阻rds在增大,故Af减小。

实验12 RC正弦波振荡器

实验12 RC正弦波振荡器

实验十二 RC 正弦波振荡器
班级: 姓名:
1、 RC 串并联选频网络振荡器
(1) 按图12-1组接线路
图12-1 RC 串并联选频网络振荡器
(2) 断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。

(3) 接通RC 串并联网络,并使电路起振,用示波器观测输出电压u O 波形,调节R f 使获得满意的正弦信号,记录波形及其参数。

(4) 测量振荡频率,并与计算值进行比较。

U B
U C U E A V
(5) 改变R 或C 值,观察振荡频率变化情况。

(6) RC 串并联网络幅频特性的观察
将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。

且输入、输出同相位,此时信号源频率为f 0=
u O
幅值 频率 (实测值) 频率 (计算值)。

RC正弦波振荡器仿真

RC正弦波振荡器仿真

Avf
| Avf F( ) |
声明:电压所测皆为最大值 max 表 10-9
5 测量震荡频率和失真度
6.2kΩ 79 % 3.9kΩ VCC 12V
7 3 1 5
XDA1
THD
XFC1
123
XSC1
Tektronix
P G 1 2 3 4 T
10kΩ Key=A
U1 C3
6
R11 2kΩ
R3 12kΩ
R4 18kΩ
R5 24kΩ
C1 22nF
R6 3kΩ
R7 6.2kΩ
R8 12kΩ
R9 18kΩ
R10 24kΩ
测试内容 正常振荡
Vo 9.64v
VF(+)
3.3v
F = (+)
VF(+) Vo
F0 594hz
声明:电压所测皆为最大值 max 表 10-6
2(2)测量放大倍数
6.2kΩ 80 % 3.9kΩ XFG1 VCC 12V
100hz 1.28v
120hz 1.46v
160hz 1.85v
…… ……
80khz 62.8mv
100khz 49.2mv
U(B) 280mv
U(A) =3v 声明:电压所测皆为峰峰值 pk-pk 表 10-12
2013 年 5 月 8 号
R6 3kΩ
R7 6.2kΩ
R8 12kΩ
R9 18kΩ
R10 24kΩ
测试点 1 正常振荡状 态 静态 0v 0v 2 -0.945mv -0.976mv 3 -0.956mv -0.987mv 表 10-5
uA741 4 12v -12v 5 0v 0v 6 -2.478mv -2.465mv 7 12v 12v 8

实验四 RC正弦振荡电路设计与调试(设计性实验)

实验四 RC正弦振荡电路设计与调试(设计性实验)

18 实验四 RC 正弦波振荡电路设计与调试一、实验目的1、熟悉用集成运放设计信号发生器的方法;2、掌握RC 桥式振荡电路元器件的选择和振荡电路的调整测试方法;3、培养独立进行电路设计的能力。

二、设计要求与技术指标1、技术指标用集成运放设计一RC 桥式正弦波振荡器:振荡频率在100H Z ~2KHz 内均可(如160H Z ),不要求频率可调;输出波形正负半周对称、无明显失真。

2、设计要求(1)设计上述电路,确定电路元件参数;(2)确定调试方案,选择实验仪器;(3)联接电路并调整测试,使电路达到设计要求。

3、预习要求(1)掌握RC 桥式振荡电路的工作原理和各部分元器件的选择;(2)熟悉RC 桥式振荡电路的调试步骤;三、设计提示1、RC 桥式振荡电路设计的一般方法 图 4.1 实用RC 桥式振荡电路(1)集成运放的选择对运放的选择,除要求输入电阻高、输出电阻低外,最主要的是运放的增益带宽积应满足如下条件,即o u f BW A 3>∙因振荡输出幅度比较大,集成运放工作在大信号状态,因此要求转换速率S R 满足om o R U S ω≥该实验选择741单运放即可满足要求。

(2)选频网络元件值的确定 按照振荡频率RCf o π21=来选择RC 的大小。

为了减小集成运放输入阻抗对振荡频率的影响,应选择较小的R ,但为了减小集成运放输出阻抗对振荡频率的影响,又希望R 大些。

通常集成运放的输入电阻均比较大,所以R 可取大些,一般可取几千欧至几十千欧的电阻。

电容C 一般应大于几百皮法,以减小电路寄生电容对振荡频率的影响,电容过大以至需采用电解电容是不合适的。

因此,C 可在几百皮法至1微法之间选择。

为了提高振荡频率的稳定度,一般选用稳定性较好、精度较高的电阻和介质损耗较小的电容。

(先确定电容C ,再计算电阻。

如可取C=0.1微法)19 (3)负反馈电路元件值的确定负反馈电路元件参数的大小将决定闭环后的增益,各阻值选择应确保起振时放大电路闭环增益大于3。

基于 Multisim 的 RC 正弦波振荡电路仿真分析

基于 Multisim 的 RC 正弦波振荡电路仿真分析

基于 Multisim 的 RC 正弦波振荡电路仿真分析RC正弦波振荡电路是一类重要的电路,被广泛应用于电子领域。

本文以基于Multisim的RC正弦波振荡电路为研究对象,对其进行仿真分析,从而探究其基本特性和性能参数。

一、电路搭建首先,在Multisim软件中,选取电路图纸,通过选取电子元器件,建立RC电路。

RC正弦波振荡电路的基本架构由正放式运放、两个电阻和一个电容组成。

将一个电容放在反相输入端与输出端负极相连,电容的另一端与一个固定电阻相接,在反相输入端连接一个变阻器,非反相输入端接地。

通过连接电源,建立好电路图。

二、调整电路参数在搭建电路之后,需要为电路调整参数。

首先可以调整电阻的值,调整R1、R2值,以便改变振荡频率。

然后对电容C进行调整,设置合适的电容值,以得到电路的理想振荡频率。

当调整好参数后,可以进行振荡波形的观测,从而验证电路的实际效果。

三、分析电路特性通过Multisim软件得到电路的振荡波形,并分析其特性。

在本文所述的RC正弦波振荡电路中,通过选择合适的元器件值,可以得到稳定、可调谐范围广、信噪比高的正弦振荡器。

在这样的正弦振荡器中,正放运放工作于非线性区,并且依靠电容C和电阻R进行反馈调整,从而保持输出的正弦波振荡。

四、参数计算在Multisim中,我们可以测量并计算各个参数。

例如,可通过测量电压对时间的变化,计算出电路的振荡频率。

通过计算得知,RC正弦波振荡电路的振荡频率为:f = 1 / (2 * π * RC)。

其中,C为电容值,R为与电容器相连的电阻值。

五、性能分析通过Multisim软件的仿真分析,我们可以获得RC正弦波振荡电路的性能指标。

这些指标包括:振幅稳定、振荡频率稳定、频率可调范围、波形畸变系数、信噪比等。

其中,振荡频率可调范围是关键参数之一。

通常,在RC正弦波振荡电路中,调节电容和电阻值,既可以调节振荡频率,又可以实现对振幅和相位的调节。

综上所述,本文以基于Multisim的RC正弦波振荡电路为研究对象,通过仿真分析其基本特性和性能参数。

实验十集成电路RC正弦波振荡器

实验十集成电路RC正弦波振荡器

实验十 集成电路RC 正弦波振荡器一、实验目的1、掌握桥式RC 正弦波振荡器的电路构成、工作原理及其振荡条件。

2、熟悉正弦波振荡器的调整、测试方法。

3、观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。

4、研究负反馈强弱对振荡的影响。

二、实验原理图10.1为RC 桥式正弦波振荡器。

其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W及二极管等元件构成负反馈和稳幅环节。

调节电位器R W ,可改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反 图10.1正弦波振荡器向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。

D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R 3的接入是为了削弱二极管非线性的影响,以改善波形的失真。

电路的振荡频率RC f π210= 起振的幅值条件21≥R R f 式中()D W f r R R R R //32++=, r D — 二极管正向导通电阻。

调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应适当加大R f 。

如波形失真严重应当减小R f 。

改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程的频率细调。

三、实验内容及步骤1、按图10.1连接实验电路。

检查无误后,接通电源。

2、调节电位器R W ,使输出波形从无到有,从正弦波到出现失真。

描绘u 0的波形,记录下临界起振、正弦波输出及失真情况下的R W 值,分析负反馈强弱对起振条件及输出波形的影响。

3、调节电位器R W,使输出电压u O幅值最大且不失真,用交流毫伏表分别测量输出电压u O、反馈电压U F+和U F-,分析研究振荡的幅值条件。

4、用频率计测量频率f0,然后在选频网络的两个电阻R上并联同一阻值电阻,观察记录振荡频率的变化情况,并与理论值进行比较。

RC正弦波振荡电路-报告

RC正弦波振荡电路-报告

电子线路EDA报告专业电气工程及其自动化学生姓名 xxx x学号 xxxxxx题目 RC正弦波振荡电路指导教师 xx2016年x月x日一、任务与要求了解用集成运算放大器构成简单的正弦波的方法,掌握RC桥式正弦波振荡器的设计、仿真与调试方法。

理解RC 正弦波振荡电路的工作原理,利用Multisim 软件创建RC 桥式正弦振荡电路图,仿真分析其起振条件,稳幅特性。

掌握Multisim 软件中常用元器件的选取和参数设置,常用电子仪表的使用及电路调试的基本方法。

设计一个RC 桥式振荡电路。

其正弦波输出为: 振荡频率:500Hz振荡频率测量值与理论值的相对误差 电源电压变化时,振幅基本稳定 振荡波形对称,无明显非线性失真二、电路原理分析1、RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,如图1所示。

图中RC 选频网络形成正反馈电路,并由它决定振荡频率,和形成负反馈回路,由它决定起振的幅值条件和调节波形的失真程度与稳幅控制。

在满足1212R R R C C C ====,的条件下,该电路的振荡频率:o 12f RC π=(①)起振幅值条件 a bvf1a3R R A R +=≥或ba2R R ≥ (②)式中b 43d R R R r =+,d r 为二极管的正向动态电阻。

2、参数确定与元件选择一般说来,设计振荡电路就是要产生满足设计要求的振荡波形。

因此振荡条件是设计振荡电路的主要依据。

设计如图1所示振荡电路,需要确定和选择的元件如下:(1)确定R 、C 值根据设计所要求的振荡频率o f ,由式(①)先确定RC 之积,即o12RC f π=(③)为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使R 满足下列关系式:io R RR一般i R 约为几百千欧以上(如LM741型i 0.3M ΩR ≥),o R 而仅为几百欧以下,初步选定R 之后,由式(③)算出电容C 值,然后,再复算R 取值是否能满足振荡频率的要求。

rc正弦波振荡电路设计

rc正弦波振荡电路设计

rc正弦波振荡电路设计
RC正弦波振荡电路是一种常见的电路设计,用于产生稳定的正弦波信号。

这种电路通常由一个电阻(R)和一个电容(C)组成。

在这个电路中,电容和电阻的相互作用使得电荷以周期性的方式在电容器中积累和释放,从而产生正弦波形的电压输出。

在RC正弦波振荡电路中,电阻的作用是限制电流的流动,而电容则负责积累和释放电荷。

当电压施加到电路上时,电荷开始积累在电容器的板上,导致电压上升。

随着电压的上升,电荷开始流回电源,导致电压下降。

这种电流循环往复,形成了正弦波形的输出信号。

为了确保RC正弦波振荡电路的稳定性,需要选择合适的电阻和电容值。

电阻的值决定了电流的流动速度,而电容的值则影响电荷的积累和释放速度。

选择合适的电阻和电容值可以使电路产生稳定的振荡频率和幅值。

在设计RC正弦波振荡电路时,还需要考虑到电源的稳定性和电路的耦合效应。

电源的稳定性对于产生稳定的振荡信号至关重要,而电路的耦合效应则可能导致信号失真或干扰。

总的来说,RC正弦波振荡电路是一种简单而有效的电路设计,用于产生稳定的正弦波信号。

正确选择电阻和电容值,并考虑电源的稳定性和电路的耦合效应,可以保证电路的性能和稳定性。

这种电路
在很多应用中都有广泛的应用,如音频处理、通信系统等。

RC正弦波振荡电路

RC正弦波振荡电路

实验7 RC 正弦波振荡电路1 实验目的:1.1 熟悉集成运算放大器构成的正弦波振荡电路的原理与设计方法。

1.2 掌握由运放构成的函数发生器。

2 预习要求:2.1分析图10-1电路工作原理,按照图中的元件参数,计算符合振荡条件的R W 值及振荡频率fo 。

2.2分析图10-4电路的工作原理,画出1o v 、2o v 的波形,推导1o v 、2o v 的波形的周期和幅度的计算公式。

2.3 按图10-4中给出的元件参数计算1o v 、2o v 的波形的周期和幅度,与实验实测值进行比较。

3 实验器材(1) 模拟实验箱 (2) 数字万用表 (3)示波器 (4) 集成运算放大器LM324/A 1片 (5)电子元件若干4 实验电路与原理及实验内容 4.1 RC 桥式正弦振荡电路RC 桥式正弦振荡电路如图10-1所示。

其中R 1、C 1、R 2、C 2是选频网络,接在集成运算放大器的输出与同相输入端之间。

构成正反馈,产生正弦自激振荡。

图中虚线框内的部分是带有负反馈的同相放大电路,其中R 3、R W 及R 4为负反馈网络,调节R W 即可改变负反馈的反馈系数,从而调节放大电路的电压增益,使之满足振荡的幅度条件。

二极管D 1、D 2起限制输出幅度,改善输出波形。

4.1.1 RC 串并联选频网络的选频特性一般取R 1=R 2=R ,C 1=C 2=C ,令R 1、C 1并联的阻抗为Z 1,R 2、C 2串联的阻抗为Z 2及ωo =RC 1,则Z 1=RC j R ω+1,Z 2=R Cj ω1+ 推出正反馈的反馈系数为)//(31211ωωωωo o o f J Z Z Z V V F -+=+==(10-1) 由此可得RC 串并联选频网络的幅频特性与相频特性分别是R 1 16K22)//(31ωωωωO O F -+=(10-2)3)//(ωωωωϕO O F arctg--= (10-3)由(10-2)、(10-3)两式可画出其幅频特性与相频特性的曲线,如图10-3所示由(10-2)、(10-3)两式可知,当ω=ωO =RC 1时,反馈系数的幅值为最大,即F=31,而相频响应的相角φF =0。

六.RC正弦振荡器仿真

六.RC正弦振荡器仿真

uipp=10V 5K 10K
比值:△t/T
角度: φ/ 0 备注:输入/输出信号相位差角:φ=(△t/T)*3600
长江大学 龙从玉 4
2013-8-27
图-3 RC选频电路图
+
ui
C1
AM FM
Rb
10k
D1
1N4001
D2
1N4001
0.01u
11 2 10k 3
10k
16%
选频电路输入输出波形f=100 选频电路输入输出波形 f=1591 选频电路输入输出波形 f=10k
2.3 RC选频电路特性 将RC振荡电路的输出与正反馈的连接断开,则电路转换为 RC串、并选频电路。 如在RC选频电路同相输入等幅的、频率变化的正弦信号, 则输出信号电压的大小与相位的变化状况为: f <fo 输出信号uo电压衰减, uo相位超前于ui; f =fo 输出信号uo电压与相位不变; f >fo 输出信号uo电压衰减, uo相位落后于ui。
2013-8-27 长江大学 龙从玉 8
2013-8-27
长江大学 龙从玉
7
4、实验注意事项 4.1 测量开环相频特性时,注意uo与ui的相位差φ在 fo前后要发生正负变化!!! 4.2 在测量相频特性中,用某频率fx输入/输出信号初 相差时间△t 换算相位差角φF时,要代入其周期Tx来计 算!输入/输出信号相位差角:φ=(△t/T)*3600 5、实验报告要求 5.1 将实验测到的RC正弦波振荡器的振荡频率与计算 值频率比较,分析产生误差的原因。 5.2 根据实验数据,作出选频放大器的开环幅频特性 曲线和相频特性曲线。 5.3 验证RC正弦波振荡器的起振条件。
2013-8-27 长江大学 龙从玉
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电子设计基础》
课程报告
设计题目:RC正弦波振荡器电路设计及仿真学生班级:
学生学号:
学生姓名:
指导教师:
时间:
成绩:
西南xx大学
信息工程学院
一.设计题目及要求
RC正弦波振荡器电路设计及仿真,要求:
(1)设计完成RC正弦波振荡器电路;
(2)仿真出波形,并通过理论分析计算得出频率。

二.题目分析与方案选择
在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。

三.主要元器件介绍
10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器
四.电路设计及计算
图 1
在multisim软件上做的仿真电路图如图1。

电路震荡频率计算:f=1/2πRC
起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d
由其电路元件特性R=10KΩC=10nF
电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。

平衡时A v=3,F v=1/3(w=w0=1/RC)
五.仿真及结果分析
在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图
图2
刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

图3
经过不久,波形就开始产生振荡,幅度逐渐增大,并达到一个最大值后,保持幅度以正弦输出。

如图3
六.PCB板排布
图4
Protel 99 se中做出来的原理图如图四,pcb如下图。

图5
七.总结
经过了这次RC正弦波振荡器电路设计及仿真的实践,我对于protel 和multisim两个软件的使用方法有了更深刻的理解和熟悉,对于模拟电路技术的知识也得到了巩固,总的来说觉得自己在软件使用上还不够熟悉,需要以后更多的练习去熟练掌握软件的使用。

相关文档
最新文档