实验六 RC正弦波振荡器的设计及调试

合集下载

实验 rc正弦波振荡器实验报告

实验 rc正弦波振荡器实验报告

实验rc正弦波振荡器实验报告
一、实验目的
1.掌握RC正弦波振荡器的设计方法
2.掌握RC正弦波振荡器的调试方法
二、实验仪器及器件
集成运算放大器μA741二极管电阻瓷片电容若干
三、实验原理
振荡电路有RC正弦波振荡电路、桥式振荡电路、移相式振荡电路和双T网络式振荡电
路等多种形式。

其中应用最广泛的是RC桥式振荡电路
1.电路分析
RC桥式振荡电路由RC串并联选频网络和同相放大电路组成,图中RC选频网络形成
正反馈电路,决定振荡频率fo, R、R,形成负反馈回路,决定起振的幅值条件。

两个二极管起稳定作用(如波形)
该电路的振荡频率
(1)起振幅值条件
(2)式中R,=R +15k +3k,若加二极管,此时R, =R +15k +3k/rj
此时rg为二极管的正向动态电阻
2.电路参数确定
(1) 确定R、R,
电阻R和R,应由起振的幅值条件来确定,由式(2)可知R,≥2 R 通常取R,=(2.1-2.5) R,
这样既能保证起振,也不致产生严重的波形失真。

(2) 确定稳幅电路
通常的稳幅方法是利用A,随输出电压振幅上升而下降的自动调节作用实现稳幅。

图中稳幅
电路由两只正反向并联的二极管D、D2和3kQ
电阻并联组成,利用二极管正向动态电
阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端
并联小电阻Rz。

实验证明,取R_≈rj时,效果最佳。

四、实验内容
1.根据图形连接好电路,填写如下表格
五、思考题及实验心得:
在RC桥式振荡电路中,若电路不能起振,应调整哪个参数?
若输出波形失真应如何调整?。

3.RC正弦波振荡器实验报告

3.RC正弦波振荡器实验报告

RC正弦波振荡器实验报告
学号200800120228 姓名辛义磊实验台号30
一、实验目的
1、掌握RC正弦波振荡器的基本工作原理及特点;
2、掌握RC正弦波振荡器的基本设计、分析和测试方法。

二、实验仪器
双踪示波器数字频率计晶体管毫伏表直流稳压电源数字万用表
三、实验原理
1、RC正弦波振荡器的原理
文氏电桥振荡器时应用最广泛的RC正弦波振荡器,它由同相集成运算放大器与串并联选频电路组成。

由于二极管的导通电阻r D具有随外加正偏电压增加而减小的非线性特性,所以振荡器的起振条件为
当适当减小错误!未找到引用源。

,提高负反馈深度,调整输出信号幅度,即可实现稳定输出信号幅度的目的。

振荡器的振荡角频率
欲产生振荡频率错误!未找到引用源。

符合上式的正弦波,要求所选的运算放大器的单位增益带宽积至少大于振荡频率的3倍。

电路选用的电阻均在千欧姆数量级,并尽量满足平衡电阻
的条件。

2、实验电路
本实验采用RC正弦波振荡器,如图所示为实验电路图。

RC振荡器
四、实验步骤及内容
准备:接通电路电源。

(一)电路调试
按照电路图连接电路,并进行调试
(二)振荡频率的测量
通过数字示波器测量电路的振荡频率
实验所测得的振荡频率为错误!未找到引用源。

=858.96Hz 五、思考题。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1、 熟悉振荡器模块各元件及其作用。

2、 进行LC 振荡器波段工作研究。

3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、 测试LC 振荡器的频率稳定度。

三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。

将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。

图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、研究振荡器静态工作点对振荡幅度的影响。

(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。

(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

rc正弦波振荡实验报告RC正弦波振荡实验报告引言:RC正弦波振荡电路是电子学中非常重要的一种电路,它能够产生稳定的正弦波信号。

本实验旨在通过搭建RC正弦波振荡电路,研究其工作原理和参数对振荡频率的影响。

实验装置和步骤:实验所需的装置包括一个电容器(C)、一个电阻器(R)、一个信号发生器和一个示波器。

具体步骤如下:1. 将电容器和电阻器按照串联的方式连接起来。

2. 将信号发生器的输出端与电容器的一端相连,将示波器的输入端与电容器的另一端相连。

3. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。

实验结果:在实验过程中,我们通过调节信号发生器的频率和幅度,观察了示波器上的波形。

当频率较低时,波形呈现出较为平缓的正弦波;当频率逐渐增加时,波形开始变得不规则,并且出现了衰减的现象。

通过进一步调节电容器和电阻器的数值,我们发现改变这两个参数可以对振荡频率进行调节。

当电容器的容值较大或电阻器的阻值较小时,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,振荡频率较高。

讨论:RC正弦波振荡电路的工作原理是基于电容器和电阻器的充放电过程。

当电容器充电时,电流通过电阻器流入电容器,电容器的电压逐渐增加;当电容器放电时,电流从电容器流出,电容器的电压逐渐减小。

这个充放电过程会不断重复,从而产生稳定的正弦波信号。

在实验中,我们观察到当频率较低时,波形呈现出较为平缓的正弦波。

这是因为在较低的频率下,电容器有足够的时间来充放电,从而形成较为平缓的波形。

而当频率逐渐增加时,电容器的充放电时间变得不足,导致波形变得不规则,并且出现了衰减的现象。

此外,我们还观察到改变电容器和电阻器的数值可以对振荡频率进行调节。

这是因为电容器的容值和电阻器的阻值直接影响了电容器的充放电时间。

当电容器的容值较大或电阻器的阻值较小时,电容器的充放电时间较长,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,电容器的充放电时间较短,振荡频率较高。

制作与调试三角波发生器实验报告

制作与调试三角波发生器实验报告

制作与调试三角波发生器实验报告制作与调试三角波发生器实验报告一、实验目的本实验旨在掌握三角波发生器的基本原理,学习并掌握三角波发生器的制作和调试方法,提高学生对电路设计和调试的能力。

二、实验原理三角波发生器是一种基本的信号源,它可以产生一个频率固定、幅度对称、周期为定值的三角波信号。

其基本原理是利用放大器的正反馈作用,在RC积分电路中形成一个稳定振荡回路,从而产生三角波信号。

三、实验器材1. 电源:直流电源(+15V/-15V)2. 示波器:双踪示波器3. 元件:集成运算放大器LM741、电阻、电容等四、实验步骤1. 按照图1所示连接电路。

2. 调整R1和R2两个电阻,使得输出信号频率在1kHz左右。

3. 调整R3和C1两个元件,使得输出信号幅度为正负对称的三角波信号。

4. 将示波器连接到输出端口观察输出信号,并进行必要的微调。

5. 测量并记录各元件的参数,包括电阻值、电容值等。

五、实验注意事项1. 实验过程中要注意安全,避免触电和短路等危险。

2. 在调试时要小心操作,避免对电路产生损坏。

3. 测量元件参数时要使用合适的仪器,并进行正确的操作。

六、实验结果分析通过本实验,我们成功地制作了一个三角波发生器,并调试出了正负对称的三角波信号。

在实验过程中,我们学习了三角波发生器的基本原理和制作方法,并掌握了一些常用的调试技巧。

此外,我们还学会了如何测量和记录各元件的参数,这对于今后进行电路设计和调试都是非常有帮助的。

七、实验总结本次实验使我们深入了解了三角波发生器的基本原理和制作方法,并掌握了一些常用的调试技巧。

通过实践操作,我们不仅提高了自己的动手能力和创新意识,还培养了自己对于电路设计和调试方面的兴趣。

总之,这是一次非常有意义和收获的实验。

实验六 RC低通滤波电路幅频特性的测试与系统模拟

实验六  RC低通滤波电路幅频特性的测试与系统模拟

实验六、无源和有源低通、高通、带通、带阻滤波器一、实验目的1、了解RC无源和有源滤波器的种类、基本结构及其特性2、分析和对比无源和有源滤波器的滤波特性二、实验原理1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以由RLC元件或RC元件构成的无源滤波器,也可以由RC元件和有源器件构成的有源滤波器。

2、,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。

把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。

而通带与阻带的分界点的频率ωc称为截止频率或称转折频率。

图6-1中的|H(jω)|为通带的电压放大倍数,ω0为中心频率,ωcL和ωcH 分别为低端和高端截止频率。

(a)低通滤波(b)高通滤波(c)带通滤波(d)带阻滤波图6-1 各种滤波器的幅频特性四种滤波器的实验线路如图6-2所示:(a)无源低通滤波器 (b)有源低通滤波器(c) 无源高通滤波器 (d)有源高通滤波器(e)无源带通滤波器 (f)有源带通滤波器(g)无源带阻滤波器 (h)有源带阻滤波器图6-2 几种滤波器的实验线路图3、如图6-3所示,滤波器的频率特性H (j ω),用下式来定义:式中A (j ω)为滤波器的幅频特性,θ(j ω)为滤波器的相频特性。

根据不同的滤波器,可以求出各自滤波器的H (j ω),详细的推导过程及原理,请参照《电路原理》的相关内容。

它们也都可以通过实验的方法来测量。

图6-3 滤波器三、 仪器设备1、实验主板;2、RC 滤波器模块。

四、实验内容及步骤1、滤波器的输入端接正弦信号发生器,滤波器的输出端接输出通道;2、测试无源和有源低通滤波器的幅频特性。

(1)测试RC 无源低通滤波器的幅频特性。

用图6-2(a )所示的电路,测试RC 无源低通滤波器的特性。

微量振荡器的使用方法

微量振荡器的使用方法

微量振荡器的使用方法一、准备工作1.选择合适的微量振荡器:根据实验需要选择合适的型号和频率范围的微量振荡器。

2.检查设备:确保设备完好无损,电源和连接线正常。

二、连接设备1.连接电源:将微量振荡器的电源插头插入电源插座,并确保电源线连接牢固。

2.连接工作台:将微量振荡器的输出端插入工作台的输入端,并确保连接牢固。

三、设置参数1.选择振荡模式:根据实验需求选择合适的振荡模式,如正弦波、方波或三角波等。

2.设置振荡频率:根据实验需求设置合适的振荡频率,可以通过旋钮或键盘输入进行调整。

3.设置振幅幅度:根据实验需求设置合适的振幅幅度,可以通过旋钮或键盘输入进行调整。

四、开始振荡1.打开电源:按下电源开关,微量振荡器开始工作。

2.观察输出信号:通过示波器或其他测量设备观察微量振荡器的输出信号,确保信号稳定和准确。

3.调整参数:根据需要对振荡频率和振幅进行微调,以获得最佳的实验效果。

4.实验记录:记录振荡器的工作状态、振荡频率和振幅等参数,以备后续分析和研究。

五、注意事项1.安全操作:在操作微量振荡器时要注意安全,避免触摸高压部分,以免触电。

2.防止干扰:在使用微量振荡器时,要保持实验环境的电磁场干扰较小,以避免对实验结果产生干扰。

3.合理使用:根据实验需求合理使用微量振荡器,避免超出设备的最大负荷范围,以免损坏设备。

4.定期维护:定期对微量振荡器进行维护和检修,保持设备的正常工作状态。

六、常见故障及排除方法1.无输出信号:检查设备是否连接正确,确保电源和连接线正常。

2.输出信号不稳定:检查电源是否稳定,排除电源波动的影响。

3.输出信号频率不准确:检查设备的频率设置是否正确,排除设置错误的因素。

总结:微量振荡器是一种重要的实验设备,在科研实验和工业生产中有着广泛的应用。

正确的使用方法和注意事项可以保证设备的正常工作和实验的准确性。

在使用过程中遇到故障时,应及时进行排除和维修,以确保设备的正常运行。

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告
一、实验目的
学习RC正弦波振荡器的组成及其振荡条件。

学习如何设计、调试上述电路和测量电路输出波形的频
率、幅度。

二、实验设备
1、实验箱(台)。

2、示波器。

3、频率计。

4、毫伏表。

三、实验内容及步骤
按图13-1接线(1、2两点接通)。

本电路为文氏电桥RC正弦波振荡器,可用来产生频率范围宽、波形较好的正弦波。

电路由放大器和反馈网络组成。

有稳幅环节的文氏电桥振荡器。

(1)接通电源,用示波器观测有无正弦波电压Vo输出。

若无输出,可调节RP ,使Vo为无明显失真的正弦波,并观察Vo值是否稳定。

用毫伏表测量Vo和Vf的有效值,填入表13-1中,
( 2 )观察在R3=R4=10K2、C1=C2=0.01μf和R3=R4=10k2、C1=C2=0.02μf两种情况下的输出波形(不失真),测量V0、Vf及f0, 填入表13-2和表23-4中,并与计算结果比较。

( 2 )观察在R3=R4=10KQ2、C1=C2=0.01μf和R3=R4=10k2、C1=C2=0.02μf两种情况下的输出波形(不失真),测量V0、Vf及f0,
填入表13-2和表23-4中,并与计算结果比较。

3.无稳幅环节的文氏电桥振荡器
断开1、2两点的接线,接通电源调节RP,使Vo输出为无明显失真的正弦波,测量V0、Vf和f0 ,填入表13-3和表23-4中,并与计算结果比较。

五、实验报告
1、整理实验数据,填写表格。

2、测试Vo的频率并与计算结果比较。

方波-三角波变换电路参考设计

方波-三角波变换电路参考设计

量结果填入表2。
表2
三角波
Rw4调至最小值 幅度 波形
(Vopp)
Rw4调至中间某个值 幅度(Vopp) 波形
Rw4调至最大值 幅度(Vopp) 波形
方波
方波的tr(us) 方波的td(us) fo(Hz)测量值 Rw4+ R6(测量) fot(Hz)计算值 (fot- fo)/ fot*100
2、方波-三角波主要参数测试(续)
该电路由一个迟滞比较器和积分器组成。对于±15V双
电源供电方式,方波的幅度为:
,VOM>6V。
(2)方波-三角波变换电路参考设计(续)
三角波的幅度为:
方波的周期T为:
五、基础实验内容及要求
1、 正弦波主要参数测试
参考图5设计RC正弦 波振荡电路,计算出各元 件参数值,R w1、R w2采 用双联可调电位器。
实验六 信号产生与转换电路设计
一、 实验目的
(1)掌握正弦波振荡电路的基本工作原理; (2)掌握RC正弦波振荡电路的基本设计、调试和分析 方法; (3)掌握方波、三角波发生器的基本设计、调试和分析 方法; (4)理解正弦波产生电路和方波、三角波转换电路的相 互转换。
二、实验仪器及器件
(1)双踪示波器; (2)直流稳压电源; (3)数字电路实验箱或实验电路板; (4)数字万用表; (5)uA741集成电路芯片.
2、设计要求
(1)输出波形:正弦波、方波和三角波; (2)输出频率:750HZ--7KHZ可调。 (3)输出峰峰值:正弦波Upp≥5V,方波Upp≥12V,三 角波Upp≥3V。
(4)输出阻抗*不大于100Ω。
(5)方波的占空比可调*。 说明:带(*)的指标要求为扩展内容。

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告实验目的:本实验的目的是通过搭建一个RC正弦波振荡器电路,研究RC电路的振荡特性,并分析RC电路中电流和电压的变化规律。

实验设备:- 信号发生器- 电压表- 电流表- 电阻- 电容- 电源- 连接线- 示波器实验原理:RC正弦波振荡器电路由电容C和电阻R组成。

根据基尔霍夫定律,电路中的电压满足以下方程:V = VR + VC,其中VR为电阻上的电压,VC为电容上的电压。

在电容未充电时,电流通过电阻,而电容不导电。

当电压施加到电路上时,电容开始充电,电流开始减小。

随着时间的流逝,电容上的电压也在增加。

当电容经过一段时间充电后,电压达到最大值,电流达到最小值。

此时电容开始放电,电流再次增大。

随着电容的放电,电压逐渐减小。

电容和电阻的相互作用导致电流和电压的周期性变化,形成正弦波。

实验步骤:1. 将信号发生器的正负极分别连接到电阻R和电容C的一个端口。

2. 将电容的另一个端口连接到电阻的另一端,形成一个闭合的回路。

3. 将电流表连接到电阻上,以测量通过电阻的电流。

4. 将电压表连接到电容上,以测量电容上的电压。

实验结果:通过实验观察,我们可以看到电流和电压随着时间的变化呈现正弦波形。

当电流为最大值时,电压达到最小值,当电流为最小时,电压达到最大值。

电流和电压的变化是周期性的,证明了电路中存在振荡现象。

实验讨论:1. 实验中,我们可以通过调节信号发生器的频率来改变振荡的频率。

2. 通过改变电阻R和电容C的数值,我们可以观察到振荡的幅度和频率的变化。

3. RC振荡器电路还可以应用于实际电路中,例如通信信号源的产生、交流电源的输出等。

实验总结:通过本次实验,我们成功搭建了一个RC正弦波振荡器电路,并观察到了电流和电压的周期性变化。

实验结果验证了RC电路的振荡特性,并加深了对振荡器电路的理解。

实验中我们还发现,通过调节信号发生器的频率、改变电阻和电容的数值,可以对振荡的频率和幅度进行调节。

集成rc正弦波振荡器实验报告

集成rc正弦波振荡器实验报告

集成RC正弦波振荡器实验报告引言在电子技术领域中,正弦波振荡器是一种常见且重要的电路。

它能够产生稳定的正弦波信号,被广泛应用于通信、测量以及控制系统中。

本实验旨在通过集成RC电路设计和实现一个正弦波振荡器,并进行详细的探索和分析。

一、电路设计1. RC电路原理RC电路是由电阻(R)和电容(C)组成的一种基本电路。

在充电过程中,电容器会通过电阻放电,导致电压逐渐减小;在放电过程中,电容器会再次通过电阻充电,导致电压逐渐增大。

当电容器充放电周期很短而频率很高时,RC电路就能产生连续变化的电压,形成一个振荡器。

2. RC正弦波振荡器的设计要求一个RC正弦波振荡器的设计需要满足以下要求:•可以产生稳定的正弦波信号;•输出波形的频率和幅度应可调节。

3. RC正弦波振荡器的基本原理RC正弦波振荡器的基本原理是通过将一个放大器的输出信号反馈至输入端,形成一个正反馈回路。

当回路增益大于等于1时,系统会不断振荡产生正弦波信号。

二、电路实现1. 基本RC正弦波振荡器电路图为了实现RC正弦波振荡器,我们可以采用如下电路图:•在非反相输入端连接一个电阻R和电容C,形成一个低通RC滤波器;•输出通过一个放大器反馈至输入端,产生正反馈。

2. 具体电路参数的选择在设计RC正弦波振荡器时,我们需要选择合适的电阻和电容数值,以控制振荡器的频率和幅度。

这里我们选择R=10kΩ和C=1μF。

3. 搭建电路实验平台为了实现RC正弦波振荡器,我们需要搭建一个电路实验平台:•使用集成运算放大器(Op-Amp)作为放大器,例如LM741;•将电阻R和电容C按照电路图连接至Op-Amp;•使用函数发生器作为输入信号源,连接至Op-Amp的输入端;•连接示波器至Op-Amp的输出端,用于观测输出波形。

三、实验过程1. 搭建实验电路根据电路图和参数选择,通过实验器材搭建RC正弦波振荡器实验电路。

2. 设置函数发生器参数设置函数发生器的频率和幅度,以达到所需的正弦波输出。

模电实验报告

模电实验报告

模拟电子技术基础实验报告:钊哲学号:2014300446日期:2015.12.21实验1:单极共射放大器实验目的:对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。

实验原理:静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流I CQ和管压降V CEQ。

其中集电极电流有两种测量方法。

直接法:将万用表传到集电极回路中。

间接法:用万用表先测出R C两端的电压,再求出R C两端的压降,根据已知的R E的阻值,计算I CQ。

输出波底失真为饱和失真,输出波顶失真为截止失真。

电压放大倍数即输出电压与输入电压之比。

输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量。

输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量。

实验电路:实验仪器:(1)双路直流稳压电源一台。

(2)函数信号发生器一台。

(3)示波器一台。

(4)毫伏表一台。

(5)万用表一台。

(6)三极管一个。

(7)电阻各种组织若干。

(8)电解电容10uF两个,100uF一个。

(9)模拟电路试验箱一个。

实验结果:经软件模拟与实验测试,在误差允许围,结果基本一致。

实验2:共射放大器的幅频相频实验目的:测量放大电路的频率特性。

实验原理:放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。

但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。

放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。

在一端频率围,曲线平坦,放大倍数基本不变,叫作中频区。

在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。

通频带为: f BW=f H-f L实验电路:实验结果:理论估算值实际计算值参考f L f H f L f H R L=2k欧17.98H Z53.13MH Z17.88H Z53.09MH ZBW=A V(f h-f l)=4.5*107实验3:反向加法器实验目的:(1)加深对集成运算放大器的基本应用电路和性能参数的理解(2)掌握反向比例电路,反向加法电路。

RC正弦振荡器的设计与调试(设计性实验)

RC正弦振荡器的设计与调试(设计性实验)

② 将规定的振荡频率下的RC参数的实测值和理论 估算值列表进行比较,整理测试数据并分析误差。 ③根据实验结果,总结所设计的RC振荡器的特点。 (2) 思考与总结 表6-1
fO (
有稳 压管 VOP- VPP- V形
fO (
当ω =ω 0=1/RC时,F=1/3,根据振幅平衡条件, 只有A=3,电路才能维持振荡。 振荡电路自行起振的条件是AF>1,因F=1/3,则 A>3有利于电路起振,但A过大,波形严重失真。为 了达到稳幅和改善输出波形,电路中引入了两个二 极管及反馈元件R5。 此电路为RC串并联网络(文氏桥)振荡器。 振荡频率:
起振条件: |
|>3
电路特点: 可方便地连续改变振荡频率,便 于加负反馈稳幅,容易得到良好的振
荡波形。 4.实验步骤 (1) 连接电路。 (2) 振荡电路的调整。 调RP,用示波器观察输出电压VO,测其频率和幅 度,记录于表6-1中。 将RP调到0,再增大RP,观测VO波形变化。 (3)用示波器观察VP、VN,将结果填入表5-1中。 (4)去掉稳压管,重复第(2)、(3)步。 5. 实验总结与分析 (1) 实验报告要求 ① 画出设计电路和提供元器件选择依据;
SL-162
0-20M 待选 待选
1台
1台 1台 1块
5 6 7
稳压管 电位器 电阻 电容器 集成运算放大器
2CW53 100K 10K 0.1uF 741
2个 1个 4个 2个 1块
3. 设计要求与提示 (1) 设计要求 ① 本振荡器要求振荡频率为f0=160Hz(误差在1%), 放大环节用集成运算放大器,输出无明显失真,取 UCC=+12V,VEE=-12V。 ②计算选择元器件参数,进行元器件测试。(实验 报告中要有设计过程) ③连接实验电路。 ④测量振荡器的振荡频率,记录波形及其参数。

低频线路实验报告

低频线路实验报告

一、实验目的1. 理解低频电子线路的基本概念和组成。

2. 掌握低频电子线路的仿真和实验方法。

3. 分析低频电子线路的性能指标,如放大倍数、频率响应等。

4. 熟悉低频电子线路的设计和调试方法。

二、实验原理低频电子线路是指工作频率在1Hz到1MHz之间的电子线路。

它广泛应用于通信、广播、雷达、自动控制等领域。

低频电子线路主要包括放大器、滤波器、振荡器等基本单元电路。

1. 放大器:放大器是一种将输入信号放大一定倍数的电子线路。

常见的放大器有共射极放大器、共集电极放大器、共基极放大器等。

2. 滤波器:滤波器是一种能够选择性地通过或抑制某一频率范围的信号,而对其他频率范围的信号不产生影响的电子线路。

常见的滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

3. 振荡器:振荡器是一种能够产生周期性信号的电子线路。

常见的振荡器有正弦波振荡器、方波振荡器、三角波振荡器等。

三、实验器材1. 信号发生器:用于产生不同频率和幅值的信号。

2. 示波器:用于观察和分析信号的波形、幅度、频率等特性。

3. 信号源:用于提供所需的直流电源。

4. 电阻、电容、电感等元件:用于搭建实验电路。

5. 实验电路板:用于搭建实验电路。

四、实验内容1. 放大器实验(1)搭建共射极放大器电路,测量输入信号、输出信号和静态工作点。

(2)改变输入信号频率,观察放大器的频率响应。

(3)调整电路参数,分析放大倍数对电路性能的影响。

2. 滤波器实验(1)搭建低通滤波器电路,测量输入信号、输出信号和截止频率。

(2)改变输入信号频率,观察滤波器的频率响应。

(3)调整电路参数,分析滤波器的性能。

3. 振荡器实验(1)搭建正弦波振荡器电路,测量输出信号的频率和幅度。

(2)调整电路参数,分析振荡器性能。

五、实验步骤1. 根据实验内容,设计实验电路图。

2. 搭建实验电路,连接实验器材。

3. 开启信号发生器,产生所需信号。

4. 使用示波器观察信号波形、幅度、频率等特性。

正弦电路实验报告

正弦电路实验报告

正弦电路实验报告正弦电路实验报告引言:正弦电路是电子工程中常见的一种电路,它可以产生稳定的正弦波信号。

在本实验中,我们将通过搭建正弦电路并进行实验验证,深入了解正弦电路的工作原理和应用。

一、实验目的本实验的主要目的是通过搭建正弦电路,验证正弦波信号的产生和特性,并观察电路参数对正弦波信号的影响。

二、实验原理正弦电路是由振荡器、放大器和滤波器组成的。

其中,振荡器用于产生稳定的正弦波信号,放大器用于放大信号的幅度,滤波器用于去除杂散信号。

三、实验器材1. 信号发生器2. 示波器3. 电阻、电容、电感等被动元件4. 电压表、电流表等测量仪器四、实验步骤1. 搭建正弦电路:根据电路原理图,连接信号发生器、放大器和滤波器,确保电路连接正确。

2. 调节信号发生器:设置信号发生器的频率和幅度,使其输出正弦波信号。

3. 观察示波器:将示波器连接到电路的输出端,观察波形是否为正弦波,并记录波形的频率和幅度。

4. 调节电路参数:逐步调节电路中的电阻、电容、电感等参数,观察波形的变化,并记录调节前后的波形特性。

5. 测量电路参数:使用电压表、电流表等测量仪器,测量电路中的电压、电流等参数,并记录下来。

五、实验结果与分析通过实验观察和测量,我们得到了一系列的实验数据。

根据这些数据,我们可以分析正弦电路的特性和参数对正弦波信号的影响。

首先,我们观察到在正弦电路中,信号发生器的频率对输出波形的频率有直接影响。

当信号发生器的频率增加时,输出波形的频率也随之增加。

这是因为正弦电路中的振荡器会根据信号发生器的频率产生相应频率的振荡信号。

其次,我们发现放大器对输出波形的幅度有重要影响。

通过调节放大器的增益,我们可以改变输出波形的幅度大小。

这是因为放大器可以放大信号的幅度,使得输出波形的振幅增加。

此外,滤波器对输出波形的形状也有影响。

滤波器可以去除杂散信号,使得输出波形更加纯净。

通过调节滤波器的参数,我们可以改变输出波形的形状,使其更加接近理想的正弦波。

模电实验_RC正弦波振荡器

模电实验_RC正弦波振荡器

实验六——正弦波振荡器发生器实验报告一,实验目的(1)学习运算放大器在对信号处理,变换和产生等方面的应用,为综合应用奠定基础。

(2)学习用集成运算放大器组成波形发生器的工作原理。

二,实验原理波形的产生是集成运算放大器的非线性应用之一。

常见的波形发生器有正弦波发生器、方波发生器、三角波发生器和锯齿波发生器,每一种波形的产生方法都不是唯一的。

RC正弦波振荡器。

RC桥式震荡电路由两部分组成,即放大电路和选频网络。

电路如图所示,选频网络由R,C元件组成,一般用来产生1Hz~1MHz的低频信号,在放大电路中引入正反馈时,会产生自激,从而产生持续振荡,由直流电变为交流电。

若图中R1=R2=R,C1=C2=C,则电路的振荡频率为f0=1/2πRC。

为使电路起振要求电压放大倍数Av满足Av=1+(RP+R4)/R3>3→Rp+R4>2R3。

三,实验内容(1)用示波器观察Vo、Vc处的波形,记录波形并比较他们之间的相位关系。

(2)用示波器测量Vo,Vc处波形的幅值和频率(3)调节可变电阻Rp,用示波器观察输出电压Vp的变化情况。

(4)当T1=T2时,测量电阻Rp的大小,将理论值与实测值进行比较。

四,实验器材(1)双路直流稳压电源一台(2)函数信号发生器一台(3)示波器一台(4)万用表一台(5)集成运算放大器两片(6)电阻,电容,二极管,稳压管若干。

(7)模拟电路试验箱一台。

五,实验步骤RC正弦波振荡器。

1)按图示连接号电路,检查无误后,接通±12V直流电源。

2)用示波器观察有无正弦波输出。

3)调节可变电阻Rp,使输出波形从无到有直至失真,绘制输出波形Vo,记录临界起振、正弦波输出及出现失真情况下的Rp值。

4)调节可变电阻Rp,分别测量以上三种情况下,输出电压vo和反馈电压vf的值并将结果记录到表3.4.2中,分析负反馈强弱对起振条件和输出波形的影响。

5)测量当R1=R2=10kΩ,C1=C2=0.01μF和R1=R2=10kΩ,C1=C2=0.02μF 两种情况下。

3. 掌握RC正弦波振荡器的调试

3. 掌握RC正弦波振荡器的调试
1 F (0) , (0) =00。 3
F ( )
1 3
0
( ) 90 0
00
900
0
1
0
四、实验内容
1. 测量振荡器的振荡幅度及幅度稳定度 V Vo 幅度稳定度:是指时间或温度、湿度、电源电压及负载等因 素在一定变化范围内振荡幅度的相对变化程度。
接通电源电压EC(+12V),连接VF 与Vi 两点,用示 波器2通道接振荡器输出端。调节电位器RW,使振荡器 输出不失真正弦波形,用示波器多次测量振荡器的输出 振幅 Vo (有效值),计算幅度稳定度 V Vo 。 其中: Vo Vo1 Vo2
f o ―额定振荡频率(理论值或在规定环境下高精度仪器
的测量值,实验中取 fo fo1 fo 2
n (n = 5)
f
―绝对频率稳定度(实验中取 f = fox fo ,fox 为多次测量值中偏离 f o 最大者)
四、实验内容
3. 李莎茹图形法测量 fo
(1)将示波器设置为<X—Y>工作模式; (2)示波器1通道接信号源输出,2通道接振荡器输出; (3)调节示波器1、2通道垂直灵敏度V/DIV,使示波器屏幕 上图形适当; (4)改变信号源频率 f i ,使示波器屏幕上出现如图5中任一 清晰稳定的李沙茹图形; (5)读取信号源频率值,按公式计算振荡器的振荡频率 fo。
N fo x fi Ny
N x 为水平线与图形的交点数, N y 为垂直线与图形的交点数。
四、实验内容
4. 测量RC串并联网络的幅频特性和相频特性曲线 (1)将RC串并联网络的输出端VF 与放大器的输入端Vi 断开。 (2)信号源输出接放大器输入Vi (1Vpp),示波器1通道 接放大器输出 VO 端,2通道接RC网络输出 VF 端。 (3)按下表选取不同的信号频率f,测量VO (不失真)和VF V 0 ,计算反馈系数 及它们之间的相移(相位差) F F 绘制RC串并联网络的幅频特性和相频特性曲线。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

rc正弦波振荡实验报告RC正弦波振荡实验报告实验目的:本实验旨在通过搭建RC正弦波振荡电路,观察电路的振荡特性,并验证理论上的振荡频率和幅度。

实验原理:RC正弦波振荡电路由一个电阻R和一个电容C组成,通过连接一个交流信号源和一个运放构成一个反馈电路。

当输入信号通过运放放大后,输出信号又通过反馈回到输入端,形成一个闭环。

在一定条件下,该电路会产生稳定的正弦波振荡。

实验步骤:1. 准备实验仪器和元件,包括电阻R、电容C、运放、示波器等。

2. 按照电路图搭建RC正弦波振荡电路。

3. 调节电路参数,如电阻R和电容C的数值,以及交流信号源的频率和幅度。

4. 使用示波器观察输出波形,并记录振荡频率和幅度。

5. 对比实验结果与理论计算值,分析实验误差和可能的影响因素。

实验结果:经过实验观测和数据记录,我们得到了RC正弦波振荡电路的输出波形,并测得了振荡频率和幅度。

通过与理论计算值的对比,我们发现实验结果与理论值基本吻合,验证了RC正弦波振荡电路的振荡特性。

实验结论:通过本次实验,我们成功搭建了RC正弦波振荡电路,观察到了其振荡特性。

实验结果与理论计算值基本吻合,验证了该电路的振荡频率和幅度。

同时,我们也发现了一些可能的影响因素,为今后的实验和研究提供了参考。

这次实验为我们理解振荡电路的原理和特性提供了宝贵的实践经验。

总结:通过本次实验,我们深入了解了RC正弦波振荡电路的原理和特性,掌握了搭建和调试该电路的方法,提高了实验操作和数据处理的能力。

这次实验为我们打下了扎实的实验基础,为今后的学习和科研工作奠定了良好的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 RC 正弦波振荡器的设计及调试
一、实验目的
1、进一步学习RC 正弦波振荡器的组成及其振荡条件;
2、学会测量、调试振荡器。

二、实验原理
从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大电路。

若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz ~1MHz 的低频信号。

1、RC 移相振荡器
电路型式如图8.1所示,选择R >>R i 。

振荡频率:O f =起振条件:放大电路A 的电压放大倍数|A
|>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。

频率范围:几Hz ~数十kHz 。

2、RC 串并联网络(文氏桥)振荡器
电路型式如图8.2所示。

振荡频率:12O f RC
p = 起振条件:|A |>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。

三、实验条件
1、12V 直流电源
2、函数信号发生器
3、双踪示波器
图8.1 RC 移相振荡器原理图
图8.2 RC 串并联网络振荡器原理图
4、频率计
5、直流电压表
6、3DG12×2或9013×2,电阻、电容、电位器等
四、实验内容
1、RC串并联选频网络振荡器
2、双T选频网络振荡器
3、RC移相式振荡器的组装与调试
五、实验步骤
1、RC串并联选频网络振
荡器
(1)按图8.4组接线路;
(2)接通12V电源,调节
电阻,使得Vce1=7-8V,
Vce2=4V左右。

用示波器观察
图8.4 RC串并联选频网络振荡器有无振荡输出。

若无输出或振
荡器输出波形失真,则调节Rf以改变负反馈量至波形不失真。

并测量电压放大倍数及电路静态工作点。

(3)观察负反馈强弱对振荡器输出波形的影响。

逐渐改变负反馈量,观察负反馈强弱程度对输出波形的影响,并同时记录观察到
的波形变化情况及相应的Rf值。

(4)改变R(10KΩ)值,观察振荡频率变化情况;
(5)RC串并联网络幅频特性的观察。

将RC串并联网络与放大电路断开,用函数信号发生器的正弦信号注入RC
串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。

且输入、输出同相位,此时信号源频率为:
12f f RC o p ==。

相关文档
最新文档