轨迹方程的五种求法例题
求动点轨迹方程的几种方法
1、求曲线方程的一般步骤:建系、设点、列式、化简、确定点的范围.2、求动点轨迹方程的几种方法:(1)直接法:(2)定义法:(3)相关点代入法:(4)待定系数法;(5)交轨法;(6)参数法:(7)点差法: 典型例题一:直接法: 此类问题重在寻找数量关系。
当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1:已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.求曲线C 的方程.二:定义法:熟悉一些基本曲线的定义是用定义法求曲线方程的关键.1)圆:到定点的距离等于定长;2)椭圆:到两定点的距离之和为常数(大于两定点的距离);3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离);4)抛物线:到定点与定直线距离相等.(定点不在定直线上).例1.已知点()1,0F ,点A 是直线1:1l x =-上的动点,过A 作直线2l ,12l l ⊥,线段AF 的垂直平分线与2l 交于点P .求点P 的轨迹C 的方程.例2: 一条线段AB 的长等于a 2,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点M 的轨迹方程?例3:已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.求曲线Γ的方程.例4:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
5:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支三:相关点代入法 “相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例1:点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )例2:已知抛物线2 4C y x =: 焦点为F .点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 轨迹方程.3.已知A 为曲线2:410C x y 上的动点,定点(2,0)M ,若2AT TM ,求动点T 的轨迹方程.四、交轨法 1.求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程. 2.若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的轨迹方程,也可以解方程组先求出交点坐标的参数方程,再化为普通方程.例:两条直线10x my --=和10mx y +-=的交点的轨迹方程是( )五、待定系数法六、参数法此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
专题20 轨迹方程的求法(含参考答案)
【例 2】一动圆与圆 x2 y2 6x 5 0 外切,同时与圆 x2 y2 6x 91 0 内切,求动圆圆心 M 的轨
迹方程,并说明它是什么样的曲线。
【例 3】已知 A、B、C 是直线 l 上的三点,且|AB|=|BC|=6,⊙O′切直线 l 于点 A,又过 B、C 作⊙O′异于 l 的两切线,设这两切线交于点 P,求点 P 的轨迹方程.
y
BQ
R
A
o
P
x
【五】交轨法
交轨法: 在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交
点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去 参数得到轨迹方程),该法经常与参数法并用。 1.例题
【例 1】抛物线 y 2 4 px( p 0) 的顶点作互相垂直的两弦 OA、OB,求抛物线的顶点 O 在直线 AB 上的
【练习 2】过点 A(-1,0),斜率为 k 的直线 l 与抛物线 C:y2=4x 交于 P,Q 两点.若曲线 C 的焦点 F 与 P,Q,R 三点按如图顺序构成平行四边形 PFQR,求点 R 的轨迹方程。
【四】代入法(相关点法)
代入法(相关点法):
如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的运动规律已知,(该点坐标满足某 已知曲线方程),则可以设出 P(x,y),用(x,y)表示出相关点 P'的坐标,然后把 P'的坐标代入已 知曲线方程,即可得到动点 P 的轨迹方程。 1.例题
F1 是抛物线
y
1 4
(x
1)2
1的焦点,两点
A(-3,2)、B
(1,2)都在该双曲线上.
轨迹方程的 几种求法整理(例题+答案)之欧阳法创编
轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1.直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
2.定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t 的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。
设点。
列式。
化简。
说明等,圆锥曲线标准方程的推导。
1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。
26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD⊥AE,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k1、k2满足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为焦点,直线x=4为准线的抛物线,并且p=6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴. ∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q是圆x2+y2=4上动点另点A(3。
轨迹方程的求法
解:以BC所在的直线为x轴,BC中点为坐标
原点,建立如图所示的直角坐标系,则B
(一a/2,0),C(a/2,0),设A(x,y)
则
由sinC- sinB=
∴c-b=
1 2
a
1 2
sinA
A
B
C
即|AB|-|AC|=
1 2
a(定值)
些密如发丝的暗青色珠粒被烟一晃,立刻变成皎洁辉映的珠光,不一会儿这些珠光就闪烁着飞向罕见异绳的上空,很快在四金砂地之上 变成了隐隐约约的凸凹飘动的摇钱树……这时,宝石状的物体,也快速变成了树皮模样的湖青色胶状物开始缓缓下降……只见女政客
4、参数法 例题4、已知线段AB的长为a,P分AB为
AP∶PB= 2∶l两部分,当A点在y轴上运动时, B点在x轴上运动,求动点P的轨迹方程。
解 : 设 动 点 P ( x , y ) , AB 和 x 轴 的 夹 角 为 θ ,
|θ|≤
2
,作PM⊥x于M,
PN⊥y轴于N
∵|AB|= a, | AP | 2
皮肤时浓时淡渗出水睡朦胧般的晃动!接着玩了一个,飞蟒吊灯翻一千零八十度外加狐嚎排骨旋七周半的招数,接着又来了一出,怪体 牛蹦海飞翻七百二十度外加笨转四百周的尊贵招式……紧接着异常的如同原木一样的脚立刻蠕动变形起来……鲜红色酒罐耳朵闪出水绿 色的团团明烟……深灰色麦穗样的嘴唇闪出中灰色的点点神响。最后摆起多变的深黄色土堆模样的卷发一嚎,飘然从里面涌出一道佛光, 她抓住佛光冷峻地一颤,一件银晃晃、黄澄澄的咒符『蓝鸟骨怪火腿宝典』便显露出来,只见这个这件东西儿,一边转化,一边发出“咝 咝”的神响。骤然间女政客T.克坦琳叶女士急速地弄了一个侧卧扭曲炸蛤蟆的怪异把戏,,只见她修长的淡灰色怪石一样的脑袋中,威
轨迹方程的求法及典型例题含答案
轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。
求轨迹方程题型全归纳
求轨迹方程的六种常用方法1. 直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段AB =6,直线AM,BM相交于M,且它们的斜率之积是,求点M 的轨迹方程。
解:以AB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则A(-3,0),B(3,0), 设点M的坐标为(x,y),则直线AM的斜率 ,直线B M 的斜由已知有化简,整理得点M的轨迹方程为练习:1. 平面内动点P到点F(10,0)的距离与到直线x=4的距离之比为2,则点P的轨迹方程是2. 设动直线I垂直于x轴,且与椭圆x²+2y²=4交于A、B两点,P是I上满足PA ·PB=1的点,求点P的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A. 直线B. 椭圆C. 抛物线D. 双曲线2. 定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.若B(-8,0),C(8,0)为△ABC的两顶点, AC和AB两边上的中线长之和是 30,则△ABC的重心轨迹方程是。
解:设△ABC的重心为G(x,y),则由AC和AB两边上的中线长之和是 30可得,而点B(-8,0),C(8,0)为定点,所以点G的轨迹为以B,C 为焦点的椭圆。
所以由2a=20,c=8可得a=10,b=√ a² - c²=6故△ABC的重心轨迹方程是练习:4.方程2√(×-1)²+(y-1)²=1x+y+2)表示的曲线是()A. 椭圆B. 双曲线C. 线段D. 抛物线3. 点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x,y1),B(×,y2)的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得xi+×2,yi+y2,X1 - X2,yi - y2等关系式,由于弦AB 的中点P(x,y) 的坐标满足2x=x₁+×2, 2y=yi+y2且直线AB的斜率为,由此可求得弦AB中点的轨迹方程。
轨迹方程的 几种求法整理(例题+答案)
轨迹方程的六种求法整顿求轨迹方程是高考中罕有的一类问题.本文对曲线方程轨迹的求法做一归纳,供同窗们参考.求轨迹方程的一般办法:1.直译法:假如动点P的活动纪律是否合乎我们熟知的某些曲线的界说难以断定,但点P知足的等量关系易于树立,则可以先暗示出点P所知足的几何上的等量关系,再用点P的坐标(x,y)暗示该等量关系式,即可得到轨迹方程.2.界说法:假如动点P的活动纪律合乎我们已知的某种曲线(如圆.椭圆.双曲线.抛物线)的界说,则可先设出轨迹方程,再依据已知前提,待定方程中的常数,即可得到轨迹方程3. 参数法:假如采取直译法求轨迹方程难以奏效,则可追求引动员点P活动的某个几何量t,以此量作为参变数,分离树立P 点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而经由过程消参化为轨迹的通俗方程F(x,y)=0.4. 代入法(相干点法):假如动点P的活动是由别的某一点P'的活动激发的,而该点的活动纪律已知,(该点坐标知足某已知曲线方程),则可以设出P(x,y),用(x,y)暗示出相干点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.交轨法:在求动点轨迹时,有时会消失请求两动曲线交点的轨迹问题,这种问题平日经由过程解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用. 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一.直接法把标题中的等量关系直接转化为关于x,y,的方程根本步调是:建系.设点.列式.化简.解释等,圆锥曲线尺度方程的推导. 1. 已知点(20)(30)A B -,,,,动点()P x y ,知足2PA PB x =·,求点P 的轨迹.26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且知足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD⊥AE,断定:直线DE 是否过定点?试证实你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k1.k2知足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二.界说法应用所学过的圆的界说.椭圆的界说.双曲线的界说.抛物线的界说直接写出所求的动点的轨迹方程,这种办法叫做界说法.这种办法请求题设中有定点与定直线及两定点距离之和或差为定值的前提,或应用平面几何常识剖析得出这些前提.1. 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122--=x y .选(B ).2.一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支3.在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 地点直线为x 轴,线段BC 的中垂线为y 轴树立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是认为B C ,核心的椭圆,个中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 留意:求轨迹方程时要留意轨迹的纯粹性与完整性.4.设Q 是圆x2+y2=4上动点另点A (3.0).线段AQ 的垂直等分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上活动时,求点P 的轨迹方程.解:衔接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ 上.∴|PO|+|PQ|=2.由椭圆界说可知:P 点轨迹是以O.A 为核心的椭圆.5.已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求极点C 的轨迹方程 解:|BC|+|CA|=4>2,由椭圆的界说可知,点C 的轨迹是以A.B 为核心的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不克不及组成三角形,故x≠─2,是以点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程今后评论辩论x 的取值规模,现实上就是斟酌前提的须要性6.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并解释它是什么样的曲线.解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分离为1O .2O ,将圆方程分离配方得:22(3)4x y ++=,22(3)100x y -+=,当M 与1O 相切时,有1||2O M R =+①当M 与2O 相切时,有2||10O M R =-②将①②两式的双方分离相加,得21||||12O M O M +=, 即2222(3)(3)12x y x y +++-+=③移项再双方分离平方得:222(3)12x y x ++=+④双方再平方得:22341080x y +-=,整顿得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆. (法二)由解法一可得方程2222(3)(3)12x y x y +++-+=, 由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是核心为1(3,0)O -.2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中间在坐标原点,核心在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=. 三.相干点法此办法实用于动点随已知曲线上点的变更而变更的轨迹问题. 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0.y0可用x.y 暗示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种办法称为相干点法(或代换法).x y 1O 2O P1.已知抛物线y2=x+1,定点A(3,1).B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.剖析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P 为线段AB 的内分点.2.双曲线2219x y -=有动点P ,12,F F 曲直线的两个核心,求12PF F ∆的重心M 的轨迹方程.解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两核心为12(10,0),(10,0)F F -,∵12PF F ∆消失,∴10y ≠ 由三角形重心坐标公式有11(10)10003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ . ∵10y ≠,∴0y ≠.3.已知点P 在双曲线上,将上面成果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠.4.(上海,3)设P 为双曲线-42x y2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是.解析:设P (x0,y0) ∴M(x,y ) ∴2,200y y x x ==∴2x=x0,2y =y0∴442x -4y2=1⇒x2-4y2=15.已知△ABC 的极点(30)(10)B C -,,,,极点A 在抛物线2y x =上活动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四.参数法假如不轻易直接找出动点的坐标之间的关系,可斟酌借助中央变量(参数),把x,y 接洽起来.若动点P (x,y )的坐标x 与y 之间的关系不轻易直接找到,而动点变更受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.1.已知线段2AA a '=,直线l 垂直等分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',知足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '地点直线为x 轴,以线段AA '的中垂线为y 轴树立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,. 由点斜式得直线AP A P '',的方程分离为4()()t y x a y x a a ta =+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,症结有两点:一是选参,轻易暗示出动点;二是消参,消参的门路灵巧多变.2.设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且12-=t t OQ OP,当t 变更时,求点P 的轨迹方程,并解释轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 个中t >1.消去t,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.3.已知双曲线2222n y m x -=1(m >0,n >0)的极点为A1.A2,与y 轴平行的直线l 交双曲线于点P.Q 求直线A1P 与A2Q 交点M 的轨迹方程; 解设P 点的坐标为(x1,y1),则Q 点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P 的方程为y=)(11m x mx y ++① A2Q 的方程为y=-)(11m x mx y --② ①×②得y2=-)(2222121m x m x y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即 代入③并整顿得2222n y m x +=1此即为M 的轨迹方程4.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线 解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0)直线AB 的方程为x=my+a由OM⊥AB,得m=-y x 由y2=4px 及x=my+a,消去x,得y2-4pmy -4pa=0所以y1y2=-4pa, x1x2=22122()(4)y y a p = 所以,由OA⊥OB,得x1x2 =-y1y2所以244a pa a p =⇒=故x=my+4p,用m=-y x代入,得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法二设OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1k y x p k=--,过定点(2,0)N p , 由OM⊥AB,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法三设M(x,y) (x≠0),OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k 则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -由OM⊥AB,得M 既在以OA 为直径的圆222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点5.过点A (-1,0),斜率为k 的直线l 与抛物线C :y2=4x 交于P,Q 两点.若曲线C 的核心F 与P,Q,R 三点按如图次序组成平行四边形PFQR,求点R 的轨迹方程;解:请求点R 的轨迹方程,留意到点R 的活动是由直线l 的活动所引起的,是以可以寻找点R 的横.纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并没有直接接洽.与l 有直接接洽的是点P.Q,经由过程平行四边形将P.Q.R 这三点接洽起来就成为解题的症结.由已知:(1)l y k x =+,代入抛物线C :y2=4x 的方程,消x 得:204k y y k -+=∵C l P 直线交抛物线于两点.Q∴20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k+==将其代入直线l的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵四边形PFQR 是平行四边形, ∴RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃∴(1,)M x ∈+∞.∴点R 的轨迹方程为.1),3(42>+=x x y6.垂直于y 轴的直线与y 轴及抛物线y2=2(x –1)分离交于点A 和点P,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y2=16(x –21) 点评:本题采取点参数,即点的坐标作为参数在求轨迹方程时应剖析动点活动的原因,找出影响动点的身分,据此恰当地选择参数7.过双曲线C :x2─y2/3=1的左核心F 作直线l 与双曲线交于点P.Q,以OP.OQ 为邻边作平行四边形OPMQ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 消失时,取k 为参数,树立点M 轨迹的参数方程设M(x,y),P(x1,y1), Q(x2,y2),PQ 的中点N(x0,y0), l:y=k(x+2), 代入双曲线方程化简得:(3─k2)x2─4k2x─4k2─3=0,依题意k≠3,∴3─k2≠0,x1+x2=4k2/(3─k2), ∴x=2x0=x1+x2=4k2/(3─k2),y=2y0=2k(x0+2)=12k/(3─k2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k k y k k x , 消去k 并整顿,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不消失时,点M(─4,0)在上述方程的曲线上,故点M 的轨迹方程为:点评:本题用斜率作为参数,即k 参数法,k 是经常应用的参数设点P.Q 的坐标,但没有求出P.Q 的坐标,而是用韦达定理求x1+x2,y1+y2,从整体上行止理,是处懂得析几何分解题的罕有技能8.(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 知足OA OB OA OB +=-.设圆C 的方程为(I) 证实线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X2Y=0的距离的最小值为5时,求p 的值.解析:(I)证实1:22,()()OA OB OA OB OA OB OA OB +=-∴+=- 整顿得:0OA OB ⋅=12120x x y y ∴⋅+⋅=设M(x,y)是以线段AB 为直径的圆上的随意率性一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--=整顿得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径(II)解法1:设圆C 的圆心为C(x,y),则又因12120x x y y ⋅+⋅=1212x x y y ∴⋅=-⋅22121224y y y y p∴-⋅= 所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x2y=0的距离为d,则当y=p 时,d=2p ∴=.五.交轨法一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程.1. 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随 A.B 的移动而变更,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的重要办法,也是经常应用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.2.自抛物线y2=2x 上随意率性一点P 向其准线l 引垂线,垂足为Q,贯穿连接极点O 与P 的直线和贯穿连接核心F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x1,y1).R (x,y ),则Q (-21,y1).F (21,0),∴OP 的方程为y=11x y x,①FQ 的方程为y=-y1(x -21).②由①②得x1=xx 212-,y1=xy 212-,代入y2=2x,可得y2=-2x2+x.六.待定系数法当曲线(圆.椭圆.双曲线以及抛物线)的外形已知时,一般可用待定系数法解决.1.已知A,B,D三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交认为A B ,核心的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=.即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切, 2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整顿,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴,又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.2.已知圆C1的方程为(x -2)2+(y -1)2=320,椭圆C2的方程为2222by ax +=1(a >b >0),C2的离心率为22,假如C1与C2订交于A.B 两点,且线段AB 恰为圆C1的直径,求直线AB 的方程和椭圆C2的方程..解:由e=22,可设椭圆方程为22222b y b x +=1,又设A(x1,y1).B(x2,y2),则x1+x2=4,y1+y2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,2121x x y y --=-1,故直线AB 的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0. 有Δ=24b2-72>0,又|AB|=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b2=8.故所求椭圆方程为81622y x +=1.3.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 订交于A.B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;(2 )若椭圆的右核心关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程. 讲授:(1)设A.B 两点的坐标分离为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由得02)(2222222=-+-+b a a x a x b a , 依据韦达定理,得∴线段AB的中点坐标为(222222,ba b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右核心坐标为),0,(b F 设)0,(b F 关于直线2:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得b y b x 545300==且由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .。
求点的轨迹方程的六种常见方法
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,
与椭圆有关的轨迹方程的求法
与椭圆有关的轨迹方程的求法一.定义法:若动点轨迹的条件符合某一基本轨迹的定义,可用定义直接探求.例1:已知两圆169)4(:221=+-y x C ,9)4(:221=++y x C ,动圆在圆1C 内部且和圆1C 相内切,和圆2C 相外切,求动圆圆心M 的轨迹方程.分析:动圆满足的条件为:①与圆C 1相内切;②与圆C 2相外切.依据两圆相切的充要条件建立关系式 解:设动圆圆心),(y x M ,半径为r 如图所示,由题意:圆M内切于圆C 1,∴r MC -=131, 圆M外切于圆C 2 ,∴r MC +=32, ∴1621=+MC MC ,∴动圆圆心M的轨迹是以C 1、C 2为焦点的椭圆, 且82,162==c a ,48222=-=c a b ,故所求轨迹方程为:1486422=+y x 。
例2.在周长为定值的ABC ∆中,已知|AB |6=,且当顶点C 位于定点P 时,C cos 有最小值为257,建立适当的坐标系,求顶点C 的轨迹方程. 解:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,设 )3(2>=+a a CB CA 为定值,则C 点的轨迹是以B A ,为焦点的椭圆, 焦距62==AB c ,因为:1||||182||||236||||2|)||(|||||26||||cos 22222--=--+=-+=CB CA a CB CA CB CA CB CA CB CA CB CA C又 22)22(||||a a CB CA =≤⋅,所以 2181cos a C -≥, 由题意得 25,25718122==-a a,此时,PB PA =,P 点坐标为)4,0(±, 所以C 点的轨迹方程为:)0(1162522≠=+y y x 。
例3.已知圆16)1(:22=++y x B 及点)0,1(A ,C 为圆B 上任一点,求线段AC 的垂直平分线l 与线段BC 交点P 的轨迹方程。
求轨迹方程的五种方法
求轨迹方程的五种方法1.直线轨迹方程的求解方法:直线的轨迹方程可以通过以下五种方法求解。
1.1斜率截距法:当直线已知斜率m和截距b时,可以使用斜率截距法求解。
直线的轨迹方程为:y = mx + b。
1.2点斜式方法:当直线已知斜率m和通过的一点(x1,y1)时,可以使用点斜式方法求解。
直线的轨迹方程为:(y-y1)=m(x-x1)。
1.3两点式方法:当直线已知通过的两点(x1,y1)和(x2,y2)时,可以使用两点式方法求解。
直线的轨迹方程为:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。
1.4截距式方法:当直线已知x轴和y轴上的截距时,可以使用截距式方法求解。
直线的轨迹方程为:x/a+y/b=1,其中a和b分别为x轴和y轴上的截距。
1.5法向量法:当直线已知法向量n和通过的一点(x1,y1)时,可以使用法向量法求解。
直线的轨迹方程为:n·(r-r1)=0,其中n为法向量,r为直线上的任意一点的位置矢量,r1为通过的一点的位置矢量。
2.圆轨迹方程的求解方法:圆的轨迹方程可以通过以下五种方法求解。
2.1一般式方法:当圆的圆心为(h,k)且半径为r时,可以使用一般式方法求解。
圆的轨迹方程为:(x-h)²+(y-k)²=r²。
2.2标准式方法:当圆的圆心为(h,k)且半径为r时,可以使用标准式方法求解。
圆的轨迹方程为:(x-h)²+(y-k)²=r²。
2.3参数方程方法:当圆的圆心为(h,k)且半径为r时,可以使用参数方程方法求解。
圆的轨迹方程为:x = h + rcosθ,y = k + rsinθ,其中θ为参数。
2.4三点定圆方法:当圆已知经过三点(x1,y1),(x2,y2)和(x3,y3)时,可以使用三点定圆方法求解。
圆的轨迹方程为:(x-x1)(x-x2)(x-x3)+(y-y1)(y-y2)(y-y3)-r²(x+y+h)=0,其中h为x平方项和y平方项的系数之和。
求轨迹方程的五种方法
求轨迹方程的五种方法有五种方法可以求解轨迹方程,分别是:1.参数方程法2.一般方程法3.极坐标方程法4.隐函数方程法5.线性方程组法接下来将对这五种方法进行详细解释。
1.参数方程法:参数方程法是指将坐标轴上的点的位置用一个参数表示,通过参数的变化来表示轨迹。
例如,一个点在x轴上运动,其速度为v,经过时间t后的位置可以用参数方程表示为x = vt。
参数方程法可以很方便地描述物体的运动轨迹,特别适用于描述曲线的参数方程。
2.一般方程法:一般方程法是指将轨迹上的点的位置用一般方程表示。
例如,对于一个圆形轨迹x^2+y^2=r^2,其中r为半径,可以通过该一般方程来描述圆的轨迹。
一般方程法可以描述各种曲线轨迹,但是求解过程可能较为繁琐。
3.极坐标方程法:极坐标方程法是指将轨迹上的点的位置用极坐标系表示。
极坐标系由极径和极角两个参数组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向角度。
通过给定极径和极角的值可以唯一确定一个点的位置。
例如,对于一个以原点为中心的圆形轨迹,可以用极坐标方程表示为r=R,其中R为圆的半径。
极坐标方程法适用于描述具有对称性的轨迹,如圆形、椭圆形等。
4.隐函数方程法:隐函数方程法是指将轨迹上的点的位置用隐函数方程表示。
隐函数方程是一个含有多个变量的方程,其中至少有一个变量无法用其他变量表示。
通过给定其他变量的值,可以计算出不能用其他变量表示的变量的值,从而确定轨迹上的点的位置。
例如,对于一个抛物线轨迹y = ax^2 + bx + c,其中a、b、c为常数,可以根据给定的x的值求解出y的值,从而确定轨迹上的点的位置。
5.线性方程组法:线性方程组法是指将轨迹上的点的位置用线性方程组表示。
线性方程组是由多个线性方程组成的方程组,其中每个方程的未知数是轨迹上的点的坐标。
通过求解线性方程组可以得到轨迹上的点的坐标。
线性方程组法适用于描述由多个轨迹组成的复杂图形,如多边形等。
以上就是求解轨迹方程的五种方法,分别是参数方程法、一般方程法、极坐标方程法、隐函数方程法和线性方程组法。
轨迹方程的求法及典型例题含答案
轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。
在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。
在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。
一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。
2. 将轨迹上的点的坐标表示为一般形式。
3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。
二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。
3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。
点的轨迹方程的求法
2x 4 2y 3
①
2
因为点A (x0 , y0 ) 在圆 (x 1)2 y2 4 上运动
(x0 1)2 y02 4
②
将①代入②中,得 (2x 4 1)2 (2 y 3)2 4
化简,得 (x 3)2 ( y 3)2 1
2
2
所以点M的轨迹是以 (3 , 3) 为圆心,半径长是1的圆
一、求动点的轨迹方程的常用方法
1、直接法
第2页/共13页
1. 已知点M与两个定点O(0,0) 、A(3,0)
距离的比为
1 2
求点M的轨迹方程,说明它是什么图形
解:设点M的坐标是 (x, y)
由题意得 MO 1 MA 2
即
x2 y2 1
(x 3)2 y2 2
两边平方,得
x2 y2 1
化简,得
第6页/共13页
4、已知线段AB的端点B的坐标 是(4,3),端点A在圆 (x 1)2 y2 4 上运动,求线段AB的中点M的轨 迹方程,并说明轨迹的形状
图像
第7页/共13页
解:设点M的坐标是(x, y)
点A的坐标是(x0 , y0 )
因
y
y0
3
x0 y0
2第82页/共13页
【小结】 求一个随着已知曲线上的动点而动的点的 轨迹方程用的方法叫 相关点法
第9页/共13页
求动点的轨迹方程的常用方法
1、直接法: 2、相关点法 (也称坐标转移法): 所求动点M
的运动依赖于一已知曲线上的一个动点M0的 运动,将M0的坐标用M的坐标表示,代入已知 曲线,所得的方程即为所求.
(x 3)2 y2 4
x2 y2 2x 3 0 即(x 1)2 y2 4
轨迹方程的五种求法
轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =u u u r u u u r·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r ,,由2PA PB x =u u u r u u u r·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来 例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=u u u r u u u u r·,求直线AP与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变. 五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =u u u r ,1()2AE AB AD =+u u u r u u u r u u u r.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+u u u r u u u r u u u r知E 为BD 中点,易知(222)D x y -,.又2AD =u u u r,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =.将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
常见轨迹方程的求法
动点轨迹方程的常见求法一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。
其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。
例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。
求椭圆和双曲线的方程。
解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22by = 1,双曲线的方程为22mx -22n y = 1。
Θ2c = 213 , ∴c = 13 .Θa – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . Θ b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。
二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。
它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。
例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。
解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2αΘ3-x y = K PB = tg(π-2α) = - tg2α =αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。
轨迹方程的求法
又 AM 4, AB 6 PA PM PA PB 8 AB
点P的轨迹是以 A, B为焦点的椭圆
x2 y2 设 椭 圆 的 方 程 为 2 + 2 1(a b 0) a b
15
M
10
N
5
由题意得 : 2a 8,2c 6 b 4 3 7
2 2
3 2 则|PM|· |PN|=|t1t2|= . 1+11sin2α 所以当 sin2α=0 时,即 α=0,|PM|· |PN|的最小值为 .
(2011· 课标高考 ) 在直角坐标系 xOy 中,曲线 x =2cosα , C1 的参数方程为 y=2+ 2sin α (α 为参数).M 是 C1 上的动
因此其方程为
(2)设圆P的半径为r,则|PA|=r+1,|PB|=r,
2 x(y≠0) y2 1 . 9 5
5 5
因此|PA|-|PB|=1.
由双曲线的定义知,P点的轨迹为双曲线的右支, 1 且2a=1,2c=4,即a= ,c=2,b= , 15 2 2 因此其方程为 2
4y 1 4x 1(x ) 15 2
y
o
x
复习1:
求动点轨迹方程的基本步骤是什么?
(1)建系: 建立直角坐标系; (2)设点: 设所求动点P(x,y); (3)列式: 根据条件列出动点P满足的关系式; (4)化简: 化简方程; (5)检验:检验所得方程的纯粹性和完备性, 多余的点要剔除,不足的点要补充。
复习2:
求动点轨迹方程的基本方法有哪些?
B x
?
过点
P
求曲线轨迹方程
=
=
此即点 M 的轨迹方程.
2
+
,
2
消去
-,
k,得 y2=p(x-2p),
2 2
,
2
,
对点训练3过圆O:x2+y2=4外一点A(4,0),作圆的割线,求割线被圆截得的弦
BC的中点M的轨迹方程.
解:设点M(x,y),B(x1,y1),C(x2,y2),直线AB的方程为y=k(x-4),
求轨迹方程的常用方法
代入法
参数法
交轨法
点差法
一、定义法
如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、
抛物线)的定义,则可先设出轨迹方程,再根据已知条件,确定方程中的常数,
即可得到轨迹方程.
例1.已知△ABC的顶点A,B的坐标分别为(-4,0),(4,0),C为动点,且满足sin A
A.圆
B.椭圆
C.双曲线
D.抛物线
答案:D
解析:=(-2-x,-y),=(3-x,-y),∴ ·=(-2-x)(3-x)+y2=x2-x-6+y2.
由条件,x2-x-6+y2=x2,整理得y2=x+6,此即点P的轨迹方程,
∴点P的轨迹为抛物线,故选D.
)
对点训练 2 动点 P(x,y)到两定点 A(-3,0)和 B(3,0)的距离的比等于 2 即
解:由题意,设 A
2
4
, ,B
2
4
, ,所以
4
4
kOA= ,kOB= ,
由 OA 垂直 OB 得 kOAkOB=-1,得 yAyB=-16p2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点轨迹方程的求法
一、直接法
按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.
例1已知直角坐标平面上点Q (2,0)和圆C :12
2
=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线.
【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有
λ=MQ
MN ,即
λ=-MQ
ON
MO 2
2,
λ=+--+2
222)2(1y x y x .整理得0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点
M 的轨迹方程.若1=λ,方程化为45=
x ,它表示过点)0,4
5
(和x 轴垂直的一条直线;若λ≠1,方程化为2
222
222)1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,1
3122-+λλ为半径的圆.
二、代入法
若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.
例2 已知抛物线12
+=x y ,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线.
【解析】:设),(),,(11y x B y x P ,由题设,P 分线段AB 的比2==
PB
AP
λ,∴ .2121,212311++=++=
y y x x 解得2
1
23,232311-=-=y y x x .又点B 在抛物线12+=x y 上,其坐标适合抛物线方程,∴ .1)2
3
23()2123(
2+-=-x y 整理得点P 的轨迹方程为),3
1
(32)31(2-=-x y 其轨迹为抛物线.
|
三、定义法
若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.
例3 若动圆与圆4)2(2
2=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是
(A )012122
=+-x y (B )012122
=-+x y
(C )082=+x y (D )082
=-x y
【解析】:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122
--=x y .选(B ). 例4 一动圆与两圆12
2
=+y x 和01282
2
=+-+x y x 都外切,则动圆圆心轨迹为 (A )抛物线 (B )圆 (C )双曲线的一支 (D )椭圆
【解析】:如图,设动圆圆心为M ,半径为r ,则有.
1,
2,
1=-+=+=MO MC r MC r MO 动点M 到两定点的距
离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选(C ).
;
四、参数法
若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程. 例5设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且
12-=t t OQ
OP ,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.
【解析】:(1)设所求椭圆方程为).0(122
22
>>b a b x a y =+由题意得⎪⎩⎪
⎨⎧==-,
,
122t b
a b a 解得
⎪⎪⎩
⎪⎪⎨
⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-. (2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,
,
)1()1(1122122122tx y t y t x t t 得
⎪⎪⎩
⎪⎪⎨⎧-=-=.)1(2,)1(2121
21t t y t x 由12
-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,
2
,
2,222
2
t
y t x t y t x 或
其中t >1.消去t ,得点P 轨迹方程为)22(222
>=
x y x 和)2
2(222-<-=x y x .其轨迹为抛物线y x 222
=
在直线2
2=x 右侧的部分和抛物线y x 222
-=在直线2
2
-
=x 在侧的部分. 五、交轨法
一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.
例6 已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程. 》
【解析】:PA 和QB 的交点M (x ,y )随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A ,则
PA :),2)(2(222-≠++-=
-t x t t y QB :).1(1
1
2-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x 当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以
点M 的轨迹方程是.082222
2=+--+-y x x y x
以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关
系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.
\。