3.探索与表达规律 PPT

合集下载

探索与表达规律课件PPT

 探索与表达规律课件PPT
=126.
7×中间数=7×18=126.
规律:“H”形中七数之和=7×中间数.
3.5 探索与表达规律
探究新知
日 一 二
1
6 7 8
13 14 15
20 21 22
27 28 29

2
9
16
23
30

3
10
17
24
31

4
11
18
25

5
12
19
26
十字形中五数之和
=7+13+14+15+21
=70
10×9=90,
所以这9个数的和等于正中间的数的9倍.
3.5 探索与表达规律
探究新知
(4)这个关系对其他这样的方框也成立吗?你能用代数
式表示这个关系吗?(提示:设a)
a-8 a-7 a-6
a-1
a a+1
a+6 a+7 a+8
9a
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = ____
我就会慢慢品读,一页读几分钟。班主任杨老师说:“刘峻琳
的每篇作文从选材到立意都很大气,其立足点都不是个人、家
庭,而是从民族、国家等角度去写,这都与他的阅读习惯有关。
3.5 探索与表达规律
刘峻琳同学的阅读习惯非常好,有快读有慢读,
既保证了一定的阅读速度,同时也没有落下重点。
下面我们来介绍另外一种快速阅读法。这种方法
方法点拨:规律探究问题的特点是问题的结论不是直接给出,

3.3 探索与表达规律 课件 (共26张PPT) 北师大版数学七年级上册

3.3 探索与表达规律 课件 (共26张PPT) 北师大版数学七年级上册

27 28 29 30 31
探究2:日历图的套色方框中的 9 个数之和与该方框 正中间的数有什么关系?
套色方框 9 个数之和是 90,是正中间的数 10 的 9 倍。
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19 “X”形
20 21 22 23 24 25 26
27 28 29 30 31
归纳总结
探索规律的一般步骤:





、 比










回头 重新
得 出 结 论 验 证 成立 规 律 不成立
27 28 29 30 31
探究2:这个关系对任何一个月的日历都成立吗? 为什么? 成立
猜想: 绿色方框中九个数之和 = 9×正中间的数
用代数式表示: a-8 a-7 a-6
a-1 a a+1
a+6 a+7 a+8 (a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)
我的结果是27。
你心里想的数 是78。

七年级上册数学《探索与表达规律》课件-北师大版

七年级上册数学《探索与表达规律》课件-北师大版
7)+(a+7)=_5_a_
a-1 aa-7 a+1
a+7
202X 年 星期日
12 月
日历
6
星期一
7
星期二
1 8
星期三 星期四
2
3
9
10
星期五
4 11
星期六
5 12
变式探 究(2)
13
14
15
16
17
20
21
22
23
24
27
28
29
30
31
18
19
25
26
在 H 形区域内,七个数之和与正中心的数有何关系?
所以, 3×3方框中, a-8 a-7 a-6
a 九数之和等于中间数 a-1 a+1
的九倍。
a+6a+7 a+8
(5) 你还能发现方框中九数之 间的其它关系吗?
a-8 a-7 a-6
a a-1
a+1
a+6 a+7 a+8
2 34
9 10 11
16 17 18
202X 年 星期日 12 月 日历
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
探究活动三
(1) 日历中3×3方框内九数之和与 方框中正中间的数有何等量关系?

探索与表达规律ppt

探索与表达规律ppt

社会科学中的应用
在社会科学中,规律被用于解释 和预测社会现象,如经济学、政 治学、社会学等。
技术领域中的应用
在技术领域中,规律被用于指导 技术创新和开发,如计算机科学 、人工智能、工程学等。
02
表达规律的关键要素
表达规律的准确性
精确使用词汇
在表达规律时,应选择准确、贴切的词汇,避免使用含糊不清或歧义的词汇。
THANKS
探索规律是表达规律的基础
探索是寻找和发现规律的过程
探索是一种观察、实验和思考的过程,通过它我们可以收集 数据、发现模式和寻找规律。只有通过探索,我们才能理解 事物的本质和运作方式。
探索为表达提供信息和依据
当我们探索一个领域或研究一个主题时,我们会收集到大量 的数据、信息和知识。这些信息为我们的表达提供了依据和 素材,帮助我们更好地理解和解释规律。
总结词
在天文学中,黑洞是一种极其神秘的天体,吸引着科学家们进行深入的探索。通 过对黑洞的观测和研究,科学家们能够更深入地了解宇宙的起源和演化。
详细描述
黑洞是一种由爱因斯坦的广义相对论预言,而现代天文学已经观测到的天体。它 具有极强的引力,连光也无法逃脱其吸引。通过对黑洞的观测和研究,科学家们 能够更深入地了解宇宙的起源和演化,为我们认识宇宙提供更多线索。
案例三:心理学中的认知过程探索
总结词
心理学中的认知过程探索是研究人类思维和行为的重要领域 。通过对认知过程的深入研究,科学家们能够更深入地了解 人类的思维方式和行为特征。
详细描述
认知过程是人类思维和行为的基础,包括知觉、注意、记忆 、语言、思维、意识等方面。通过对认知过程的深入研究, 科学家们能够更深入地了解人类的思维方式和行为特征,为 心理学的发展和应用提供更多可能性。

数学3.3探索与表达规律(18张PPT)

数学3.3探索与表达规律(18张PPT)
2、若设中间的数为a,如何用代数式表示十字框框住的5个数之和?
4、十字形框中五个数之和能等于2014吗?2015呢?
探 知 规 律
如图,是用火柴棒拼成的图形。
图案编号
(1)
(2)
(3)
(4)

火柴根数

(1)填写下面的表格
5
7
9
3
(2)拼成第n个图形需要_______根火柴棒。
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
合 作 探 究
在日历中任意圈出横排相邻3个数,它们的和是24,你能猜出这三个数分别是多少吗?
在日历中任意圈出竖排相邻3个数,它们的和是33,你能猜出这三个数分别是多少吗?
在日历中任意圈出横排相邻3个数,它们的和可以是13吗?
在日历中任意圈出竖排相邻3个数,它们的和可以是75吗?
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
(2) 按照左图的方式继续排列餐桌,完成下表:
桌子张数
1
2
3
4
5

n
可坐人数

6
8
10
12
14
6
8
2n+4
……
(4+2n)
+2
+2
+2
+2
n张餐桌可坐_______人
2
1、按左图方式摆放餐桌和椅子(1) 1张餐桌可坐___人; 2张餐桌可坐___人.

3.3探索与表达规律 课件(共23张PPT) 北师大版初中数学七年级上册

3.3探索与表达规律  课件(共23张PPT)  北师大版初中数学七年级上册
3.3探索与表达规律
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(1)横向相邻的数之间的 关系是什么?
后一个数比前一个数多1.



探索数字与图形之间的规律的过程:
发现规律→表示规律→揭示规律.
家庭作业
教科书第100页(习题3.9) 第2、3题
(3)斜下方三个相邻的数 之间的关系是什么?
右下比左上的数多8
用字母表示: a-8,a,a+8 a-8+a+a+8=3a
斜下方三个相邻数的和是中间的数的3倍.
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(2)纵向相邻的数之间的 关系是什么?
下边一个数比上边一个数多7.
用字母表示: a-7,a,a+7 a-7+a+a+7=3a
纵向相邻三个数的和是中间的数的3倍.
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
我的结果是93
那你心里 想的是78.
我的结果是27
那你心里 想的是12

北师大版七上数学探索与表达规律课件(共31张)

北师大版七上数学探索与表达规律课件(共31张)
第三章 整式及其加减
3.5 探索与表达规律
探索与表达规律
1 课堂讲授 2 课时流程
数式的变化规律 图形的变化规律
逐点 导讲练
课堂 小结
作业 提升
(1)日历图的套色方框中的9个数之和与该方框正中间 的数有什么关系?
(2)这个关系对其他这样的方框成立吗?你能用代数式 表示 这个关系吗?
(3)这个关系对任何一个月的日历都成立吗?为什么? (4)你还能发现这样的方框中9个数之间的其他关系吗?
知1-讲
例1 给出下列算式: 32-12=8=8×1, 52-32=16=8×2, 72-52=24=8×3, 92-72=32=8×4, …… 视察上面一列等式,你能发现什么规律,用代 数式来表示这个规律.
知1-讲
导引:视察等式,不难发现:两个相邻的奇数的平方 差是8的倍数,由此设n为正整数,则相邻的两 个奇数为2n-1和2n+1,它们的平方差也必是 8的n倍.
解:规律是(2n+1)2-(2n-1)2=8n(n为正整数).
总结
知1-讲
等式类寻找规律一般要看每项上的数与项数之间 的关系,或找前后两项之间的关系.如例题中左边是 连续奇数的平方差,右边是8的倍数,把左边的两项 和右边的一项都用含同一个字母的代数式来表示.
知1-讲
例2 (中考·张家界)任意大于1的正整数m的三次幂
用代数式表示.
知识点 1 数式的变化规律
知1-导
想一想: (1)如果将方框改为十字
形框,你能发现哪些 规律? 如果改为H形 框呢? (2)你还能设计其他形状的 包含数字规律的数框吗?
知1-讲
对于有关数与算式的规律问题,第一要认真观 察,从给出的有限的几个入手视察数与数之间的规 律及算式本身存在的规律,把等式横向、纵向分别 进行比较,找出其中的不变部分与变化部分、数与 式子的序号之间的关系,然后找出其中的变化规律.

北师大数学七上课件《探索与表达规律》

北师大数学七上课件《探索与表达规律》

后面的数比前面的数多1
请用字母表示这一关系
灿若寒星
勇往直前 下面的数比上面的数多7
日历中相 邻三个日 期数的关 系和变化 规律是什 么?
请用字母表示这一关系
灿若寒星
探究活动
(1) 日历中3×3方框内九数之和与方框中正中间 的数有何等量关系? 矩形方框中九数之和等于中间数的9倍
灿若寒星
探究活动
(2) 这个关系在其它方框中成立吗? 成立!
2张餐桌可坐_1_0_人.
(2) 按照左图的方式继续排列 餐桌,完成下表:
桌子 张数
1
2
34
5…
n
可坐 人数
6 10 1418 22 …
灿若寒星
……
4 +4 +4 +4
n张餐桌可坐(4n+2) 人
灿若寒星
练一练(2):
如图是2002 年6月的日历。 现用一个矩形在 日历中任意框出 4个数,
ab
cd
(a+1)+(a+6)+(a+7)+(a+8) = _9__a___
灿若寒星
活动 二
用火柴棒按下图的方式搭三角形.
填写下表:
三角形 个数
1
2
34 5

n
火柴棒 根数
3
5
7 9 11 …
灿若寒星
1+32 +2 +2 +2 +2 +2
三角形个数 1
3 火柴棒根数
三角形个数
1 2 3 4 5

n
23
4
初中数学课件
金戈铁骑整理制作
聪越它体思数 明来使操维学 。 越人,的是

探索与表达规律课件

探索与表达规律课件

表达情势: 3+2(n-1)=2n+1.
②从第一个图形起,火柴棍根数等于所含三角 形个数乘3再减去重复的火柴棍根数. 三角形个数 1 2 3 4 … n 火柴棍根数 1×3 2×3-1 3×3-2 4×3-3 … 3n-(n-1)
表达情势:3n-(n-1)=2n+1.
③从第一个图形起,以一根火柴棍为基础,每 增加一个三角形,就增加2根火柴棍.
例:如图所示,用火柴棍拼成一排由三角 形组成的图形,如果图形中含有2、3或4个三 角形,分别需要多少根火柴棍,如果图形中含 有n个三角形,需要多少根火柴棍?
①从第二个图形起,与前一图形比,每增加一个 三角形,就增加2根火柴棍.
三角形个数 1 2
3
4… n
火柴棍根数 3 3+2 3+2×2 3+2×3 … 3+2(n-1)
新课导入
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
(1)日历图的套色方框中的9个数之和与该方框正中 间的数有什么关系? 套色方框9个数之和是90,
是正中间的数1星期四 星期五 星期六
课堂小结
【归纳结论】探索规律的一般步骤: (1)视察; (2)归纳; (3)猜想; (4)验证.
对于图形的变化规律一般有多种解法, 注意视察图形,分析其特点,找出解题方法.

3.3探索与表达规律课件+2024-2025学年北师大版数学七年级上册

3.3探索与表达规律课件+2024-2025学年北师大版数学七年级上册
七年级·数学·北师大版·上册
3 探索与表达规律
3 探索与表达规律
素养目标
1.经历探索数量关系,运用符号表示规律的过程. 2.会用代数式表示简单问题中的数量关系. 3.在活动中发展观察、发现、合作、交流等能力,认识探索 规律的必要性,体会数学学习的乐趣.
会探索生活中的数学规律,并能运用符号表示规律. 根据数字或图形的特征,探索其中的规律并表示出来.
每个同学桌上都有一堆纽扣(40颗),请同学们从中数出三堆 数目相等的纽扣(每堆不少于8颗),按左、中、右的顺序摆放在 桌面上,然后按照老师的指令操作:①从左堆取出3颗放入中堆; ②从右堆取出5颗放入中堆;③从中堆取出与左堆剩余数目相等 的纽扣放入左堆.
请你猜一猜,你的同桌现在中堆还剩多少颗纽扣?能猜出其 他同学的吗?
数字游戏题 阅读课本第97页“随堂练习”之后和第98页“随堂练习”之前 的内容,思考下列问题. 1.设该游戏中心里想的两位数的十位数字是a,个位数字是b, 请你表示出这个两位数,并计算这个两位数经过游戏中的运算 之后的结果. 10a+b,(2a+3)×5+b=10a+b+15.
2.心里想的两位数和经过游戏中的运算之后的结果有什么 关系?
数字规律

1


式:12+1=1×2,22+2=2×3,32+3=3×4,
写出第4个等式,并写出第n个等式.



……按此规律
解:42+4=4×5;第n个等式是n2+n=n(n+1).
变式训练 观 察 下 列 各 式 :21=2,22=4,23=8,24=16,25=32,26=64…… 请 你 猜测210的个位数字是 4 ,22025的个位数字是 2 .

探索与表达规律ppt课件

探索与表达规律ppt课件

摆放1个长方形时 实线部分的长为3
摆放2个长方形时 实线部分的长为3
摆放3个长方形时 实线部分的长为8
导航精选题
3.用形状相同的两种菱形拼成如图所示的图形,用 表示第 个图形中菱形的个数, 则 (用含 的式子表示)为____________.
4.古希腊数学家把数1,3,6,10,15,21,…叫作三角数,它们具有一定的规律性。若把第1个
3.5 规律探索与表达
观察日历回答:
题型一:日历
1、日历中相邻三个日期数 的关系是什么?有什么规 律? 横着三个相邻的日期数:
竖着三个相邻的日期数:
探究:
题型一:日历
1.日历图的套色方 框中的9个数与中间 的数有什么关系? 2.这个关系对其他 这样的方框成立吗? 用代数式表示这个 关系。 3.这个关系对任何 一个月的日历都成 立吗?为什么?
能等于2015吗?能等于245吗?
题型二:图形 用棋子摆下一组“口”字,按这种方法摆下去,第n个“口”字需用棋子_______个
A n2枚
B 4n枚
C (4n+4)枚 D (4n-4)枚
结构规律:边长 结构规律:旋转分组
题型二:图形
按照这样的规律摆放,则第n个图形中所有小三角形的个数是多少?
数数 旋转分组 其它分组
强化训练




(2)猜想:第n个图形共 有多少个正方形?
n2+(n1)2+…+22+1
导航精选题
1.观察下列图形及图形所对应的算式,根据你发现的规律计算
2.将相同的长方形卡片按如图方式摆放在一个直角上,每个长方形卡片的长为2,宽 为1,以此类推,摆放2023个长方形时,实线部分的长为__________。

3.3+探索与表达规律+课件2024-2025学年北师大版(2024)数学七年级上册

3.3+探索与表达规律+课件2024-2025学年北师大版(2024)数学七年级上册

谢谢
(2)请同学们找一找右上左下、左上右下对角线上三个相邻数的关系.
左上右下对角线上三个相邻数的关系:下一行比上一行多8. 左下右上对角线上三个相邻数的关系:下一行比上一行多6.
知识点二:解决日历中的数
(1)日历图的套色方框中的9个数之和 与该方框正中间的数有什么关系?
(2)这个关系对其他这样的方框成立吗? 你能用代数式表示这个关系吗?
星期 星期 星期 星期 星期 星期 星期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
同一横行上相邻三个数之间的关系:相差1, 竖列上三个相邻数的关系:相差7.
知识点一:日历中的数字规律
解:
a-8
a-7
a-6
a-1
a
a+1
a+6
a+7
a+8
(a-8)+(a-7)+(a-6)+(a-1) +a+(a+1)+(a+6)+(a+7)+(a+8)=9a.9个数 的和是中间这个数的9倍.
当是“十字型”“H型”“M型”时, 周围数字与中间数字有什么关系?
“十”字形:5个数的和是中间这个数的5倍; “H” 形和“M型”:7个数的和是中间这个数的7倍;
新壹 课 导 入
目录
讲贰 授 新 知
当叁 堂 训 练
课肆 堂中的数字规律 (1)请找出同一横行上三个相邻数、竖列上三个相邻数之间的关系:
星期 星期 星期 星期 星期 星期 星期 日一二三四五六

3.3.1探索与表达规律+课件+2024-2025学年北师大版数学七年级上册

3.3.1探索与表达规律+课件+2024-2025学年北师大版数学七年级上册

形 与“H”
星星星
期期期 日一二
星星星
期期期 四五六
1
345
67 8
10 11 12
13 14 15
17 18 19
20 21 22 23 24 25 26
27 28 29 30
04 课堂练习
【知识技能类作业】必做题:
1. 如图,第①个图形中共有1个小平行四边形,第②个图形中共 有5个小平行四边形,第③个图形中共有11个小平行四边形..... 则第⑩个图形中小平行四边形的个数是( D )
03 新知讲解
尝试 ·思考
(1)图所示的日历图中,能否使框中9个数的和为144?180呢?为什么?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
因为9个数的和可以表示为9a,即可以被9整除,所以框中的9个数的和 不能为144,9个数的和可以是180
03 新知讲解
(2)在某个月的日历中,恰好有五个星期日位于同一列且日期数的 和为80,这个月的第一个星期日是几号?
设这五个星期日的日期数由上至下分别为a-14,a-7 ,a ,a+7,
a+14, 根据题意,得(a-14)+(a-7)+a+(a+7)+(a+14)=80,
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
03 新知讲解
(1)日历图中的数有什么规律? (2)日历图的套色方框中的9个数之和与该方框正中间的数有什 么关系? (3)这个关系对任何一个月的日历都成立吗?为什么? (4)你还能发现这样的方框中9个数之间的其他关系吗?请用代数 式表示。

《探索与表达规律》

《探索与表达规律》

跨学科综合应用
复杂系统研究
探索与表达规律在复杂系统研究 中具有广泛应用,如生态系统、 气候变化等领域的跨学科研究。
科技创新
科学家们通过探索自然规律和社 会规律,不断推动科技创新,为 人类社会发展提供动力。
政策制定
政府和企业通过研究和应用经 济规律、社会规律等,制定更 加科学合理的政策和战略。
教育实践
背景
随着科学技术的不断发展和数据 量的急剧增加,探索与表达规律 在各个领域的应用越来越广泛, 成为解决复杂问题的重要手段。
探索与表达规律的重要性
提高决策效率
促进知识发现
通过探索数据中的规律和趋势,可以帮助 决策者更快地做出准确、科学的决策。
探索与表达规律是知识发现的重要手段, 可以帮助人们从海量数据中挖掘出有价值 的信息和知识。
归纳与演绎法
01
02
03
归纳法
从个别到一般的推理过程, 通过观察和实验收集材料, 找出共性,形成一般性规 律。
演绎法
从一般到个别的推理过程, 根据已知的一般性规律来 推断个别事物的性质或发 展趋势。
归纳与演绎的结合
在探索规律时,归纳和演 绎往往交替使用,相互补 充,以形成更全面、更准 确的规律性认识。
《探索与表达规律》PPT大纲
目 录
• 引言 • 探索规律的基本方法 • 表达规律的主要方式 • 探索与表达规律在科学研究中的应用 • 探索与表达规律在教育中的意义 • 探索与表达规律的未来发展趋势
01 引言
目的和背景
目的
介绍探索与表达规律的基本概念 、方法和应用,帮助读者更好地 理解和应用这一领域的知识。
定了基础。
社会科学领域的应用
1 2
经济学中的规律探索

探索与表达规律 省级一等奖课件3

探索与表达规律  省级一等奖课件3

青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
探索规律
小试牛刀
仔细观察,按规律填空: (1)、1,2,3,4, 5

(2)、2,4,6,8, 10
(3)、1,4,7,10, 13


活动 一
日历中相 邻三个日 期数的关 系和变化 规律是什 么?
后面的数比前面的数多1
请用字母表示这一关系
勇往直前
日历中相 邻三个日 期数的关 系和变化 规律是什 么?
1 8 15 22 29
2 9 16 23 30
3 10 17 24 31
4 11 18 25
5 12 19 26
a-8 a-7 a-6
a-1
a
a+1
a+6 a+7 a+8
(a-8)+(a-7)+(a-6)+(a-1)+a+
9a (a+1)+(a+6)+(a+7)+(a+8) = ______
活动 二
更多精彩内容,微信扫描二维码获取
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当堂练习
CБайду номын сангаас
64x7 606
课堂小结
探索与表达规律
数式变化 中的规律
图形拼接 中的规律
探索 猜想 验证 特殊 一般
议一议
观察下列等式,找出规律填空:
典例精析
[解析] 题中的正负号可暂时不考虑,因为当你找到的数若分 母是偶数,则带负号,若分母是奇数,则带正号.这些数字 第 1 行有 1 个数,第 2 行有 2 个数,所以第 1 到 20 行共有 1 +2+3+…+20=210(个)数,即第 20 行的最后一个数为-
你们能很快地说出数字200 落在哪个手指上吗?2000呢?
讲授新课
一 数式变化中的规律
合作探究
请同学们认真观察日历表,回答下列问题:
(1)请找出同一横线上三个相邻数之间的关系: (2)请同学们找一找竖列三个相邻数的关系; (3)请同学们找一找左上右下对角线上三个相邻数 的关系; (4)请同学们找一找左下右上对角线上三个相邻数 的关系.
[归纳总结] 不易求解时,可以先动手摆几 个图形,再从中找出规律.
练一练
如图,用灰、白两色正方形瓷砖铺设地 面,第n个图案中白色瓷砖有_(_3_n_+__2_)_块.
[解析] 观察第1个图案中白色瓷砖的块数为1 +3+1=5,第2个图案中白色瓷砖的块数为2+4 +2=8,第3个图案中白色瓷砖的块数为3+5+3 =11,依此规律可以得到第n个图案中白色瓷砖的 块数为n+(n+2)+n=3n+2.
绿色方框中的九个数之 和与该方框正中间的数
有什么关系?
猜想: 绿色方框中九个数之和=9×正中间的数
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
用代数式表示
a-8 a-7 a-6
a-1 a a+1
a+6 a+7 a+8
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)
练一练
观察下列图形,则第n个图形中三角形的个 数是( D )
A.2n+2 B.4n+4 C.4n-4 D.4n
[归纳总结] 规律探究型问题的特点是问题的 结论不是直接给出,而是通过对问题的观察、分析、 归纳、概括、演算、判断等一系列的探究活动,才 能得到问题的结论.这类问题,具有独特的规律性 和探究性.
3.探索与表达规律
学习目标
1.了解正数与负数是从实际需要中产生的. 2.理解正数、负数及0的意义,掌握正数、负数的表示方法. 3.会用正数、负数表示具有相反意义的量.(重点、难点)
导入新课
情境引入
请同学们伸出左手,一起做 下面的游戏:从大拇指开始,像 图中显示的这只手那样依次数数 字1,2,3,4,5,……,请问数 字20落在哪个手指上?
+(a+8) = __9_a___
结论: 绿色方框中九个数之和=9×正中间的数
做一做
十字形中的数字有何规律?你是如何验证的?
规律: 十字形中五数之和=5×中间数
“H”形中的数字有何规律?你是如何验证的? 规律: “H”形中七数之和=7×中间数
你还能设计其他形状的包含数字规律的数框吗? “X”形
1 ,所以第 20 行从左到右第 10 个数,可从第 20 行去掉后 210 面的 10 个数而得到,即为- 1 .
200
[归纳总结] 解“探索数字规律”的一般步骤: 1.观察:如对一列数,可观察它前后几项的和、差、 积、平方等特点,注意数的大小、结构的变化. 2.归纳:从已知的有限个数据中去寻找数量或 图形之间的关系,进行归纳. 3.猜想:猜想出能够表达每一项的通用表达式,即第n 项的表达式. 4.验证:验证结论的正确性.
练一练
正整数按下图的规律排列,则第20行,第21列的 数字是___3_8_0___.
二 图形拼接中的规律
例 2 观察下图,它们是按一定规律排列的, 按照此规律,第 16 个图形共有___4_9____个★.
[解析] 第 1 个图形共有 4 个★,第 2 个图形 共有 7 个★,第 3 个图形共有 10 个★,第 4 个图 形共有 13 个★,由此可推得第 n 个图形共有 3n+ 1 个★,则第 16 个图形共有(3×16+1)个★,求得 答案为 49.
例2 将棱长为1的正方体层层叠放如图所示,问第 (5)个、第(6)个图形各需多少个正方体?
[解析] 认真观察图形,注意分 析看不到的地方,再从中找出规律.
解:第(5)个图形需1+(1+2)+(1 +2+3)+(1+2+3+4)+(1+2+3+ 4+5)=35(个)正方体.同理,第(6) 个图形需56个正方体.
相关文档
最新文档