高中数学函数知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数知识点总结

.8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

9. 求函数的定义域有哪些常见类型?

()()

例:函数的定义域是

y x x x =

--432

lg

()()()(答:,,,)022334

函数定义域求法:

● 分式中的分母不为零;

● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一;

● 对数式的底数大于零且不等于一,真数大于零。

● 正切函数x y tan = ⎪⎭

⎫ ⎝

⎛∈+

≠∈Z π

πk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域

函数y =ar csinx 的定义域是 [-1, 1] ,值域是,函数y=arcco s

x 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =a rctgx 的定义域是 R ,值域

是.,函数y=arc ctgx 的定义域是 R ,值域是 (0, π) .

当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的

范围,再取他们的交集,就得到函数的定义域。

10. 如何求复合函数的定义域?

[]

如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0

义域是_____________。 []

(答:,)a a -

复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

11、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=

x

1

的值域 2、配方法

配方法是求二次函数值域最基本的方法之一。

例、求函数y=2

x -2x +5,x ∈[-1,2]的值域。

3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面

下面,我把这一类型的详细写出来,希望大家能够看懂

.1

12..2

22

22222

b

a y 型:直接用不等式性质k+x bx

b. y 型,先化简,再用均值不等式

x mx n

x 1 例:y 1+x x+x

x m x n c y 型 通常用判别式

x mx n x mx n

d. y 型

x n

法一:用判别式 法二:用换元法,把分母替换掉

x x 1(x+1)(x+1)+1 1

例:y (x+1)1211

x 1x 1x 1

=

=++==≤

''

++=++++=+++-===+-≥-=+++

6、函数单调性法

7、换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。

例 求函数y=x+1-x 的值域。 8 数形结合法

例求函数y=

)

2(2

-x +

)

8(2

+x 的值域。

解:原函数可化简得:y=∣x-2∣+∣x +8∣

上式可以看成数轴上点P(x)到定点A(2),B (-8)间的距离之和。 由上图可知:当点P 在线段A B上时, y =∣x-2∣+∣x+8∣=∣AB ∣=10ﻠ

当点P 在线段AB 的延长线或反向延长线上时, y=∣x-2∣+∣x +8∣>∣AB ∣=10 故所求函数的值域为:[10,+∞)

多种方法综合运用

总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我

当年的错误,与到手的满分失之交臂

(

)

如:,求f

x e x f x x +=+1().

令,则t x t =

+≥10

∴x t =-2

1

∴f t e

t t

()=+--2

1

21

()∴f x e x x x ()=+-≥-2

1

210

15 . 如何用定义证明函数的单调性? (取值、作差、判正负)

判断函数单调性的方法有三种:ﻫ(1)定义法:

根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系

可以变形为求

1212()()f x f x x x --的正负号或者12()

()

f x f x 与1的关系

(2)参照图象:

①若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a ,0)的对称区间具有相同的单调性; (特例:奇函数)ﻫ②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)ﻫ(3)利用单调函数的性质:

相关文档
最新文档