矩阵论B卷及答案上海交通大学

合集下载

上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分

上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分

上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分100分,其中*A 表示矩阵A 的共轭转置.一、 单项选择题(每题3分,共15分)1. 设⎪⎪⎪⎭⎫ ⎝⎛=001001001A ,则=-199200A A ( )(A )E ; (B )0; (C )A ; (D )2A .2. 下列集合对所给运算构成实数域上线性空间的是( )(A ) 次数等于)1(≥m m 的实系数多项式的集合,对于多项式的通常加法和数与多项式的通常乘法;(B ) Hermite 矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法;(C ) 平面上全体向量的集合,对于通常的加法和如下定义的数乘运算0x x k =⋅,k 是实数,0x 是某一取定向量;(D ) 投影矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法.3. 线性变换为正交变换的必要而非充分条件的是( )(A )保持向量的长度不变; (B )将标准正交基变为标准正交基;(C )保持任意两个向量的夹角不变;(D )在任意标准正交基下的矩阵为正交矩阵.4. 设A 是幂等矩阵,则下列命题中不正确的是( )(A )A 与对角矩阵相似; (B )A 的特征值只可能是1或者0;(C )A A )1sin()sin(=; (D )幂级数10)(-∞=-=∑A E A k k .5. 设21,V V 是V 的两个线性子空间,则与命题“21V V +的任意元素的分解式唯一”不等价的命题是( )(A ){}021=⋂V V ; (B )2121dim dim )dim (V V V V +=+;(C )21V V +的零元素的分解式唯一; (D )V V V =⋃][21.二、填空题(每空3分,共15分)设二维线性空间V 的线性变换V V T :1与V V T :2在基21,αα下的矩阵分别为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0201,1201B A . 1、21,T T 的乘积:21T T V V 在基21,αα下的矩阵为 . 2、=)(dim 1T R .3、)()(21T N T R ⋂的一个基为 .4、若常数k 使得)(B A k +为幂收敛矩阵,则k 应该满足的条件是 .5、⎪⎪⎭⎫⎝⎛B B A 0的Jordan 标准型为 .三、计算题(12分)向量空间22⨯R 中的内积通常定义为.))(,)((,),(22222121⨯⨯=====∑∑ij ij i j ij ij b B a A b a B A选取⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=1110,001121A A ,构造子空间],[21A A W =.1、求⊥W 的一组基;2、利用已知的W 和⊥W 求22⨯R 的一个标准正交基.四、计算题(18分)已知⎪⎪⎪⎭⎫⎝⎛-=110130002A .1、求矩阵A 的Jordan 标准型J 和可逆矩阵P 使得A 相似于J ;2、计算矩阵A e ;3、求下列微分方程组的解⎪⎩⎪⎨⎧==,)0(,0x x Ax dt dx ⎪⎪⎪⎭⎫ ⎝⎛=1110x .五、计算题(10分)设n m C A ⨯∈的秩为r ,A 的奇异值分解为*UDV A =,nm O O O D ⨯⎪⎪⎭⎫ ⎝⎛Λ=,),,(21r s s s diag ,=Λ.求矩阵)(A A B =的奇异值分解和它的Moore-Penrose 广义逆.六、计算题(18分) 设多项式空间})({][3322104R a t a t a t a a t f t P i ∈+++==中的线性变换为3032322110)()()()()(t a a t a a t a a a a t Tf -+-+-+-=.1、取定一组基,求该线性变换在该基下的矩阵A ;2、求与A 相关的四个子空间)(),(),(T A R A R A N 和)(T A N ;3、求线性变换T 的值域的基与维数;4、求线性变换T 的核的基与维数.七、证明题(6分)设n n C A ⨯∈. 证明A 是正定矩阵当且仅当存在一个正定矩阵B ,使得2B A =.八、证明题(6分)设A 为n 阶矩阵,证明:A 非奇异的充分必要条件是存在常数项不等于0的多项式)(λg 使得0)(=A g .。

上海交通大学试卷(答案)

上海交通大学试卷(答案)

上海交通大学试卷(答案)(2018至2019学年第2学期)课程名称概率论(MS107)第1题:[10分]以下两题任选一题解答:(1)箱子中有20个白球和30个黑球。

球被一个个取出直到箱子中只剩下同样颜色的球为止。

试计算剩下的球全为白球的概率。

(2)一个罐子中有10个黑球和12个白球。

每次从罐子中等概率挑出一个球,再放回两个与之同色的球。

试说明前七次挑球看到颜色序列为(白白黑白白黑白)的概率与看到(黑黑白白白白白)的概率一致。

第2题:[10分]以下两题任选一题解答:(i)设Y1,...,Y n为一列独立同分布存在期望的随机变量。

令X1=Y1+···+Y nn ,X2=Y1+···+Y n−1n−1,...,X n−1=Y1+Y22,X n=Y1。

试说明X1,X2,...,X n是一个鞅序列。

(ii)一个罐子中有10个黑球和12个白球。

每次从罐子中等概率挑出一个球,再放回九个与之同色的球。

令X n表示第n次取放球操作后罐子中黑球所占比例。

试说明(X n)是一个鞅序列。

第3题:[10分]设A 为自然数集合的一个子集,且lim n →∞|A ∩{1,...,n }|n=δ。

对s >1,令P s (A )=∑n ∈A n −s∑∞n =1n−s 。

求证:lim s →1+P s (A )=δ。

第4题:[15分]设(Ω,F ,P )为一个概率空间,G 为F 的子σ-代数,X ∈L 1(Ω,F ,P ),Y ∈L 1(Ω,G ,P )。

试说明Y ≤E (X |G )几乎必然成立当且仅当∫G (Y −X )dP ≤0对所有G ∈G 成立。

如果条件Y ∈L 1(Ω,G ,P )被替换为Y ∈L 1(Ω,F ,P ),请判断前述结论是否仍成立。

第5题:[15分](a)假定X,Y∈L1(Ω,F,P)且E(X|Y)≤Y与E(Y|X)≤X都几乎必然成立。

试说明P(X=Y)=1。

矩阵论试题及答案

矩阵论试题及答案

一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。

上交大矩阵试卷

上交大矩阵试卷
− 2) (x − 1)(x − 2)2 ,
(
3. 4 ) A A−B 0 B (A) (x−1)2 (x−2)
(
) (C) (x−1)2 (x−2)2 (D) (x−1)3 (x−2)3 ( ) (D) || A|| ≥ ρ(A∗ A) ( )
(B) (x−1)(x−2)2
i=1 n ∑ i,j =1
(B) (D) 15 )
λ1 , · · · , λ n s1 , · · · , sn , n ∑ |λi |2 = |si |2 |si |2 =
i=1 n ∑ i,j =1
|aij |2 ,
i=1 n ∑ i=1
|aij |2
3
8.
9. 10.
(x, y, z )T ∈ R3 , σ ((x, y, z )T ) = (2x−y, 2x)T , σ )( ) ( ) ( x1 b1 1 1 = x2 b2 0 0 2 −1 2 1 2 2 −1 , x → Ax A= 3 −1 2 2 t e tet tet λE − A A 3 , eAt = 0 et 0 , t 0 0 e A r≥1 n , B = E − cos A, 1 B
1
二. 填 空 题 (每空 3 分, 共 15 分) 设二维线性空间V 的线性变换T1 : V → V 与T2 : V → V 在基α1 , α2 下的矩阵分别为 ( A= ) 1 0 , 2 1 ( B= ) 1 0 . 2 0 .
1、T1 , T2 的乘积T1 T2 : V → V 在基α1 , α2 下的矩阵为 2、dim R(T1 )= . .
V = R2 V , σ V
, (x, y )T ∈ V , e1 = (1, 0)T , e2 = (0, 1)T . (•, •) e1 , e1 + e2 ; e2 e1 − e2 ; , σ (e1 ) = e1 + e2 . σ ((x, y )T )?

矩阵论习题答案

矩阵论习题答案

自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。

矩阵理论答案(上海交大版)

矩阵理论答案(上海交大版)

0 2 2 2 , 3 1 2 1 3

T
e1, e2 , e3 e1, e2 , e3 A,




e1,
e2 , e3 '
'
,e1
'
,e 则 2
e3 .
P
' ' e1' , e2 , e3 e1, e2 , e3 PAP 1. 故使为对角形的基 e1, e2 , e3 P1 即可。
u1 ; w1 ; 故 U W 的基为 3w1 w2 , U 的基为 3w1 w2 , W 的基为 3w1 w2 , U W
的基为 3w1 w2 , u1 , w1 。 6. U W ( x, y, z, w)

1 1 1 1 x y z w 0 , r 2, 1 1 1 1 x y z w 0
数非 0 且不满足此方程式的元即可生成此补空间。 5. 记 U= u1, u2 , u3 , W w1, w2 ,把 U,W 放在一起成 4 行 5 列的矩阵,其 Hermite 标 准形为
1 0 0 0
4 5 1 2 1 5 1 1 3 9 , 0 0 1 3 0 0 0 0
5. | Em AB |
mn
, En BA 知除 0 外 AB 与 BA 的特征值全相同(包括代数重数)
而迹为矩阵特征值之和。
2 6. (1)特征多项式 x 8 x 7 为最小多项式,可能角化
(2) | E A | 1 2 3 为最小多项式,可对角化 ( 3 )特征多项式为 1

上海交大研究生矩阵理论答案

上海交大研究生矩阵理论答案

nk rnn12习题 一1.( 1)因cosnx sin nx sin nx cosnx cosx sin x sin x =cosxcos(n sin(n 1)x 1)x sin( n cos(n 1)x 1)x,故由归纳法知cosnx sin nx A。

sin nx cosnx( 2)直接计算得A4E ,故设 n4 k r (r 0,1,2,3) ,则 AnA 4 k Ar( 1) A , 即只需算出 A 2, A 3即可。

0 1 0 1( 3 )记 J=,则,1 0n1 n 12 n 2na C n aC n a C nanC 1 a n 1C n 1aAn(aE J )nnC i a i Jn ii 0n n an 。

C 1a n 1 an2. 设 AP1a2P 1(a 1,0),则由A 2E 得a 1时,11110 12 12 1 02不可能。

1而由 a10时,2 1知1 所以所求矩阵为 PB P 1 ,其中 P 为任意满秩矩阵,而ii2221 0 1 0 1 0 B 1, B 2, B 3。

0 10 11注: A2E 无实解, AnE 的讨论雷同。

3. 设 A 为已给矩阵,由条件对任意n 阶方阵 X 有 AX=XA ,即把 X 看作 n 2个未知数时线性方程 AXXA=0 有 n 2个线性无关的解, 由线性方程组的理论知其系数矩阵为零矩阵,1*1a w通过直接检验即发现 A 为纯量矩阵。

a na n 1 a 1 04. 分别对( A B )和A 作行(列)初等变换即可。

C5. 先证 A 或 B 是初等到阵时有AB*B *A *,从而当 A 或 B 为可逆阵时有AB*B * A *。

考虑到初等变换 A 对 B 的 n1阶子行列式的影响及 A A 即可得前面提到的结果。

E r 0 下设 PAQ,(这里 P , Q 满秩),则由前讨论只需证下式成立即可:0 0**E r 0 *E r 0 B B,0 00 0( 1) r<n-1 时,因秩小于 n-1 的 n 阶方阵的 n-1 阶子式全为 0,结论显然;B n1*E r 0 0 0 **E r 0 0B n2( 2) r=n-1 时,0 0, B,但0 10 0E r 0b 11b 12b 21b 22b 1 nb 2nb 11b 12b 21b 22b 1n b 2n ,故0 B nn0 0b n1b n2b nn0 0E r 0 B n1 *B n 2**E r 0 BB。

17级矩阵论

17级矩阵论

学科专业代码_ _ 学科专业名称 全校考试科目代码__0806121410_ 考试科目 矩阵理论及其应用(本试卷考试时间为2个小时,卷面分数100分,答案请写在答题本上)一、填空题(每题5分,共25分)________100110001 1=⎥⎥⎦⎤⎢⎢⎣⎡--=F A J A 的有理标准形为,则矩阵的约当标准形为设矩阵、 _________2223221232221的取值范围为为正定二次型,则、设二次型t x tx x x x x x f ++++=_______422 3的奇异值为矩阵、⎥⎦⎤⎢⎣⎡-=i i A ____ ____ ____ 23 21===⎥⎥⎦⎤⎢⎢⎣⎡-=∞x x x i i x ; ;则,设4、 _______)12)(12(14132)2(1 5111的和为矩阵级数、∑∞=--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+k k k k k k k 二、解答题(每题15分,共75分)关组表示其余多项式极大无关组并用极大无的秩、,,,,求中,在、 343 33 74 732 ][ 1235234233222314++--=---=+++=+-=+++=x x x x x x x x x x x x x x F ααααα的通解、求微分方程组⎪⎩⎪⎨⎧+-=-=2122112d d 2d d 2x x t x x x t x 初等因子及标准形行列式因子、的不变因子、求、 111111)( 3⎥⎥⎦⎤⎢⎢⎣⎡------=λλλλA 矩阵在该基下的矩阵为对角的一组标准正交基,使为对称变换,并求证明,且正交基,为内积空间的一组标准,,设、T V T T T T V L T ⎪⎩⎪⎨⎧++=++=++=∈321332113211321444)( 4εεεεεεεεεεεεεεε的谱分解为正规矩阵,并求,证明设、A A i i i i A ⎥⎥⎦⎤⎢⎢⎣⎡----=01010 5。

矩阵理论补充习题及10年试题

矩阵理论补充习题及10年试题
⊕σi
i=1
U ⊗V σ⊗τ E{x} Ex
向量 x 与向量 y 的内积 向量 x 与向量 y 正交 (垂直) 实数域上 n 维有序数组构成的线性空间 复数域上 n 维有序数组构成的线性空间 数域 F 上 n 维有序数组构成的线性空间 数域 F 上 n 阶方阵全体构成的线性空间 全体 m × n 阶实矩阵构成的线性空间 全体 m × n 阶复矩阵构成的线性空间 数域 F 上全体 m × n 阶矩阵构成的线性空间 区间 [a, b] 上全体实变量连续函数构成的线性空间 由向量 α1, ..., αk 生成的子空间 子空间 (或矩阵)U 与 W 的直和
虚实数数单域位, 复√数−域1 , 有理数域, 整数 (环), 自然数集 复数 λ 的实部 复数 λ 的虚部 复数 λ 的共轭 充分必要条件
对所有 (任意) 存在有
证毕
多项式 f (x) 的次数 矩阵 A 的逆矩阵 矩阵 A 的 Moore-Penrose 广义逆矩阵 矩阵 A 的 i 次方或矩阵 A 的第 i 行 矩阵 A 的第 j 列
1
主要符号表
R, C, Q, Z, N i Re(λ) Im(λ) λ¯ ⇐⇒ ∀ ∃
∂f (x) A−1 A† Ai Aj A(i,j) vec(A) rvec(A) AT A∗ A>0 A≥0 A⊗B adj A r(A) tr A σ(A) ρ(A) |||A||| ||A||1, ||A||2, ||A||∞ |A| Cnr dk(λ) δij diag(λ1, ..., λn) eTi ej Eij HA I, Im J Jk(λ) N (A) N (AT ) R(A) R(AT )
目录
主要符号表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 第一章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 第三章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 第四章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第五章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第六章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 第七章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 第八章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 第九章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 第十一章补充习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 附录:上海交通大学 2009-2010 学年《矩阵理论》考试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

上海交通大学线性代数期末试卷合集

上海交通大学线性代数期末试卷合集

目录线性代数试卷(A)2004-06-16 (2)线性代数03-04学年第2学期期末考试参考答案 (8)线性代数试卷(A) 2003-12-31 (11)线性代数2003-2004学年度第1学期期末考试参考答案 (17)线性代数试卷(A) 2005-06-22 (20)线性代数(04-05-2)期末试卷(A)参考答案 (26)线性代数试卷(A) 2004-12-29 (30)线性代数(04-05-1)期末试卷(A)参考答案 (36)线性代数试卷(A卷)2006-06-21 (39)线性代数参考答案 (45)线性代数(B)试卷----A卷2006-1-4 (48)线性代数(B)(05-06-1)期末试卷(A)参考答案 (54)线性代数(C) 试卷----A卷2006-1-4 (57)线性代数(C)(05-06-1)期末试卷(A)参考答案 (63)上海交通大学线 性 代 数 试 卷(A ) 2004-06-16姓名____________班级___ _______学号______________得分一、选择题(每题3分,共15分) 1. 设n 阶行列式D =nija ,j i A 是D 中元素j i a 的代数余子式,则下列各式中正确的是 (A) 01=∑=ni ij ij A a ;(B) 01=∑=nj ij ij A a ;(C) D A a nj ij ij =∑=1;(D) D A a ni i i =∑=1212. n 阶实对称矩阵A 和B 相似的充分必要条件是(A) A 与B 都有n 个线性无关的特征向量; (B) )()(B r A r =;(C) A 和B 的主对角线上的元素的和相等; (D) A 与B 的n 个特征值都相等3. 设1α,2α,3α,4α是齐次线性方程组0=Ax 的一个基础解系,则下列向量组 中不再是0=Ax 的基础解系的为________________ (A) 1α,1α+2α,1α+2α+3α,1α+2α+3α+4α; (B) 1α+2α,2α+3α,3α+4α,4α-1α; (C) 1α+2α,2α-3α,3α+4α,4α+1α; (D) 1α+2α,2α+3α,3α+4α,4α+1α4. 设方程组⎪⎩⎪⎨⎧=++=--=++222513321321321x x x b x x x x x x 有无穷多组解,则必有_______________(A) b =1 (B) b =-1 (C) b =2 (D) b =-2 5. 设向量组[Ⅰ]是向量组[Ⅱ]的线性无关的部分向量组,则____ ___(A) 向量组[Ⅰ]是[Ⅱ]的极大线性无关组 (B) 向量组[Ⅰ]与[Ⅱ]的秩相等(C) 当[Ⅰ]中向量均可由[Ⅱ]线性表出时,向量组[Ⅰ],[Ⅱ]等价 (D) 当[Ⅱ]中向量均可由[Ⅰ]线性表出时,向量组[Ⅰ],[Ⅱ]等价 二、填空题(每题3分,共15分)1.设 1-,5,λ 是矩阵⎪⎪⎪⎭⎫⎝⎛----=120222023A 的特征值,则λ= ,A 对应三个特征值的特征向量是 ,且(选填;线性无关,线性相关,相互正交,相互不正交)2.设A 为n 阶可对角化矩阵,且n E A r <-)(,则A 必有特征值λ= ; 且其重数为 ,其对应的线性无关的特征向量有 个 3.已知实二次型),,(321x x x f = 31212322212232x x x x x x x ++++λ是正定二次型, 则参数λ的取值范围为4.设23A ⨯为矩阵,已知⎪⎪⎪⎭⎫ ⎝⎛-=0211ξ,⎪⎪⎪⎭⎫ ⎝⎛=1032ξ都是齐次线性方程组0=AX 的解,则矩阵A = (答案不唯一) 5.设A 为n 阶可逆阵,且E A A ||2=,则*A =三、计算题(每题9分,共54分)1. 试求行列式 ||A ,||B ,||C ,其中,A ,B 为 n 阶方阵⎪⎪⎪⎪⎪⎭⎫⎝⎛+++=x x xA 111111111 ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B00020001,⎪⎪⎭⎫ ⎝⎛=00B A C2. 已知线性方程组⎪⎩⎪⎨⎧=++=-=+bx ax x x x x x 321312111,(1)常数b a ,取何值时,方程组有无穷多解、唯一解、无解?(2)当方程组有无穷多解时,求出其通解.3.设4阶方阵C B A ,,满足方程 11)2(--=-C A B C E T ,试求矩阵A ,其中1232120101230120,0012001200010001B C --⎛⎫⎛⎫ ⎪⎪-⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4.求正交变换y Q x =,用此正交变换将以下实二次型化为标准形),,(321x x x f =121323222x x x x x x ++5.设34()2,A r A ⨯=为矩阵,且已知非齐次线性方程组 Ax b = 的三个解为1η=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2011, 2η=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-4112, 3η=⎪⎪⎪⎪⎪⎭⎫⎝⎛-11354,求:(1) 齐次线性方程组0Ax =的通解;(2) 非齐次线性方程组Ax b =的通解6.设线性空间3R 中的向量组为1α=⎪⎪⎪⎭⎫ ⎝⎛--221,2α=⎪⎪⎪⎭⎫ ⎝⎛-031,3α=⎪⎪⎪⎭⎫ ⎝⎛-601,4α=⎪⎪⎪⎭⎫ ⎝⎛-283,1β=⎪⎪⎪⎭⎫ ⎝⎛-210,2β=⎪⎪⎪⎭⎫⎝⎛--652(1)求由1α,2α,3α,4α生成的子空间L(1α,2α,3α,4α)的维数与一个基; (2)从1β,2β中选出属于L(1α,2α,3α,4α)的向量,并求出它们在(1)中所选的基下的坐标。

矩阵论试题

矩阵论试题

《矩阵论》 试题11姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)1. 设1()kk A f A k ∞==∑收敛,则A 可以取为A. 0091⎡⎤⎢⎥--⎣⎦ B. 0091⎡⎤⎢⎥-⎣⎦ C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散3. 设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 4. 设,则A = A.214020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭B.114010061-⎛⎫ ⎪ ⎪ ⎪⎝⎭C.224020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061-⎛⎫⎪ ⎪ ⎪⎝⎭5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C. 20012002M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦ D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦二、填空题(每题3分,共15分)1. 设220A A -=,则cos 2A = [ ]。

2.已知n n A C ⨯∈,并且()1A ρ<,则矩阵幂级数0kk kA ∞=∑=[ ]。

3.设矩阵1111A ⎡=⎥⎦,则A 的谱半径()A ρ=[ ]。

4. 设(,)m nHom R R σ∈,则dim(Im )dim(ker )σσ⊥⊥+= 。

5. 设5阶复数矩阵A 的特征多项式为22()(1)(2)f λλλλ=-+,则2|A +E |= [ ].三、(8分)利用初等变换求1BA -,其中450231271A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 4 5 0 2 3 1 2 7 92 3 7B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦。

上海交通大学矩阵理论试卷张跃辉

上海交通大学矩阵理论试卷张跃辉
7
八、证明题(6 分)
设A为n阶矩阵,证明:A非奇异的充分必要条件是存在常数项不等于0的多项式g(λ)使 得g(A) = 0。
8


上海交通大学 2009-2010 学年第一学期《矩阵理论》试卷
姓名
学号
矩阵理论分班号
成绩
本试卷共四道大题, 总分 100 分. 其中 A∗ 表示矩阵 A 的共轭转置.
A

B
的最小多项式分别为
(x

1)2(x

2)

(x

1)(x

2)2,
则矩

A A−B 0B
的最小多项式为 (
)
(A)(x−1)2(x−2)
(B)(x−1)(x−2)2
(C)(x−1)2(x−2)2
(D)(x−1)3(x−2)3
4. 设 A 为 n 阶可逆矩阵, ρ(A) 是其谱半径, || • || 是一种矩阵范数, 则必有 ( )
(3) 设 σ 是 V 的一个等距变换, σ(e1) = e1 + e2. 求 σ((x, y)T )? 这样的等距变换唯一吗?


100
13. 设 A = 1 0 1 .
010
(1) 求 A 的 Jordan 标准形 J(不必计算变换矩阵 P ); (2) 设 n ≥ 3, 计算 An − An−2 与 A2 − E; (3) 求 ∫0t(E − A−2)eAsds.
1
二. 填空题(每空 3 分, 共 15 分)
设二维线性空间V 的线性变换T1 : V → V 与T2 : V → V 在基α1, α2下的矩阵分别为
()
A=
1 2

上海交通大学 线性代数教材 课后答案 习题二

上海交通大学 线性代数教材 课后答案 习题二
31.判断下列向量组是否线性相关,为什么?
(1)
(2)
(3)
(4)
(5)
(6)
解:(1)线性无关,因为
(2)线性相关,因为
(3)线性无关,因为
(4)线性无关,因为
(5)线性无关,因为
(6)线性相关,因为
32.给定向量组
(1)求此向量组的秩;
(2)求此向量组的一个极大线性无关组;
(3)用(2)中选定的极大线性无关组表示其余向量。
(1)交换矩阵A的第i行与第j行;
(2)将A的第i行乘以非零常数k;
(3)A的第j行各元素加上第i行对应元素的k倍,
则 相应地发生了什么变化?
解:(1)
(2)
(3) .
4设
(1)求可逆矩阵 使 为简化行阶梯形矩阵;
(2)求可逆矩阵 使 为简化行阶梯形矩阵
解:(1)
(2)类似的列变换求得Q
5.设
验证A可逆并将A表示成初等矩阵的乘积
(2)
解:(1)
(2)如果 是方程组的解,那么 也是方程组的根,其中 。因些可对 列变换得到
因此方程组为
37.下列线性方程组中p,q取何值时,方程组有唯一解,无穷多解,无解?在有解的情况下求出所有的解。
(1)
(2)
(3)
(4)
解:满秩有唯一解,系数矩阵与增广矩阵的秩相等且非满秩时有无穷多解,系数矩阵与增广矩阵的秩不相等时无解。

易知 , 非零,满足条件。
58.求下列方程组的通解。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
解:
(1) ;
(2) ;
(3)
(4)无解

矩阵论期末试题及答案

矩阵论期末试题及答案

矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。

B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。

C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。

D. 同一矩阵的行秩与列秩相等。

题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。

B. 阶梯形矩阵的行秩等于主元的个数。

C. 阶梯形矩阵的列秩等于主元的个数。

D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。

题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。

B. 若A的行秩和列秩都为n,则A为可逆矩阵。

C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。

D. 若A为可逆矩阵,则方程Ax=b存在唯一解。

题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。

B. A的所有特征值都是实数。

C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。

D. A一定可以对角化。

2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。

解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。

解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。

对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。

上海交通大学《矩阵分析》试卷及答案

上海交通大学《矩阵分析》试卷及答案

上海交通大学《矩阵分析》试卷(A)一、单项选择题(每题3分,共15分)AAABC1. 设F 是数域,(,)m nHom F F σ∈,则A.dim(Im )dim(ker )m σσ+=B.dim(Im )dim(ker )n σσ+=C.dim(Im )dim(ker )m σσ⊥⊥+=D.dim(Im )dim(ker )n σσ⊥+=2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散3. 设2222221212134400033t t t tt t Attt tte e e te e e ee e e e ⎛⎫-+-+ ⎪= ⎪ ⎪-+⎝⎭,则A =A.214020031⎛⎫⎪ ⎪ ⎪⎝⎭B. 114010061⎛⎫ ⎪⎪ ⎪⎝⎭C. 224020031⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061⎛⎫⎪ ⎪ ⎪⎝⎭4. 设1()(1)kkk A f A k ∞==-∑收敛,则A 可以取为 A. 0091⎛⎫⎪--⎝⎭ B.0091⎛⎫ ⎪-⎝⎭ C. 1011⎛⎫ ⎪-⎝⎭ D. 1021⎛⎫⎪⎝⎭5. 设3阶矩阵A 满足242(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件2(1)(2)(3)1,m m m a a =+为某实数,则A 可以相似于A. 200130002M ⎛⎫ ⎪= ⎪ ⎪-⎝⎭B. 20012092M ⎛⎫⎪= ⎪ ⎪⎝⎭C. 2001202M ⎛⎫-⎪=- ⎪ ⎪-⎝⎭D. 200030013M -⎛⎫ ⎪= ⎪ ⎪⎝⎭二、填空题(每题3分,共15分)6. 设5阶复数矩阵A 的最小多项式为22()(1)(2)f λλλλ=-+,则*dim ()N A =[ 1 ];dim ()R A ⊥= [ 1 ].(其中*A 表示共轭转置)7. 设220A A -=,则cos2A = [ E +2(cos1-1)A ]。

矩阵论试题及答案可编辑全文

矩阵论试题及答案可编辑全文

2006矩阵论试题答案一.填空(每题4分,共40分)1. 设−−=41311221222832A ,则A 的值域4(){,R }R A y y Ax x ==∈的维数=)(dim A R 2 .2. 设A 的若当标准型−−−=10000011000001100000020000012000002J ,则A 的最小多项式=)(λψm 32(1)(2)λλ+−.3. 设110430102A −=−,则()5432333h A A A A A A =−++−=110430102−− −−. 4. 设埃尔米特阵为 −−+=2005111i i i i A , 则矩阵A 为 正定的 埃尔米特阵.5. 在3R 中有下列两组向量:()13,1,2Tα=−−,()21,1,1Tα=−,()32,3,1Tα=−; ()11,1,1Tβ=,()21,2,3Tβ=,()32,0,1Tβ=,则由321,,ααα到321,,βββ的过渡矩阵=P 619113421270−−−−−− −− .6.设33CA ×∈,21332211{}ij m j i A a ===∑∑,H AA 的非零特征值分别为15 ,5 ,3,则=2mA.7. 设12102101, 11111137A B −== −−,12,V V 分别为齐次线性方程组 0Ax =,0Bx =的解空间,则=)dim(21V V ∩ 1 .8. 设1(1)1(1)121()321nn n n n n n A n n n n +−−=++ −,则lim n n A →∞=1311e .9. 设213121202A −=,则A 的 LDU 分解为 A =100121012/51 2001123205200115004/5001−  −   − 10.设 −=5221A ,=0242B ,则2448204048102040100A B−−−⊗=. 二.(10分)设T 为n 维欧氏空间V 中的线性变换,且满足:),(),(Ty x y Tx −=,试证明:T 在标准正交基下的矩阵A 为反对称阵(T A A −=)证明:设n ααα,,,21 为V 的标准正交基,n n ij a A ×=}{,下证:ji ij a a −=: 由=),,,(21n T ααα A n ),,,(21ααα 知n ni i i i a a a T αααα+++= 2211,n nj j j j a a a T αααα+++= 2211, ),(),(j i j i T T αααα−=;=),(j i T ααji j n ni i i a a a a =+++),(2211αααα , =),(j i T ααij n nj j j i a a a a =+++),(2211αααα , 所以:ji ij a a −=.三.(10分)在复数域上求矩阵−−−=7137341024A 的若当标准形J ,并求出可逆矩阵P 使得J AP P =−1.解: A 的若当标准形210021002J=. 令123(,,)P p p p =,则有112123232,2,2Ap p Ap p p Ap p p ==+=+;1213262100621062104170,417,4173150315315p p p p p −−−−=−=−= −−−解得:123(2,1,1),(0,1,0),(1,2,1)T T Tp p p ===− , 201112101P=−.四. (10分)已知 =654321x x x x x xX ,162534()sin()x x f X e x x x x =++,求dXdf . 解答:16161234652543225516cos()cos()x x x x ff f x x x df dX ff f x x x x e x x x x x x x x x e ∂∂∂∂∂∂== ∂∂∂ ∂∂∂. 五.(10分)已知311202113A −=−−−,求4sin()A π,Ae .解:3||(2)E A λλ−=−,A 的最小多项式2)2()(−=λλϕ .待定系数一:令24sin ()(2)q a b πλλλλ=−++,则21,0a b b +==,4sin()A E π=;令2()(2)e q a b λλλλ=−++,则222,a b e b e +==.222211212112A e e e E e A −−=−+=− −−.待定系数二:令324sin ()(2)q a b c πλλλλλ=−+++,则22222414018,8,32216a b c b c a b c c ππππ ++=+=⇒=−==− =− ; 224sin()(44)32A E E A A E ππ=−−+=.令32()(2)e q a b c λλλλλ=−+++,则2222222414,,22a b c e b c e a e b e c e c e++= +=⇒==−== ; 2221()2211212112A e e E A A e −−− =− +−−= .六.(10分)设−=01200110A ,求A 的奇异值分解. 解答一:=5002A A H ,A 的奇异值为5,2; 00Σ= , 25H HV A AV = ,1001V =; 1100100100200100U AV −−− =Σ==; 00000000U− =; 0000010001 0 000 0 000A=.解答二:=5002A A H ,那么A 的奇异值为5,2,A A H对应于特征值5,2的标准特征向量为 = =01,1021x x ,=0110V ; 再计算H AA 的标准正交特征向量,解得分别与5,2,0,0对应的四个标准正交特征向量=0520511υ, −=2102102υ,−=0510523υ,=2102104υ,−−=210210051052210210052051U ; 所以=∆=HV UA 0000000000000110.七.(10分)设n n i A ×∈≠C 0,2rank rank i i A A =),,2,1(n i =,且当i j ≠时),,2,1,(0n j i A A j i ==.试用归纳法证明存在同一个可逆阵n n P ×∈C 使 得对所有的i ),,2,1(n i =有1−=P PE a A ii i i ,其中C ∈i a . 证明:1n =时,命题显然.假设n k ≤时,命题成立. 当1n k =+时,设1rank A r =.由若当分解11111000D A P P − =,其中1C r rD ×∈可逆; 当2,,j n = 时,由110j j A A A A ==可得1(1)(1)1100, C 0n n j jj A P P B B −−×− =∈(直接推出的j B 为()()n r n r −×−的) 再由0i j A A =得0i j B B =(,,2,,)i j i j n ≠= ;0j B ≠,2rank rank j j B B =也是明显的.由假设知存在可逆阵(1)(1)C n n Q −×−∈使得1j j jj B a QE Q −=,其中C j a ∈,2,,j n = .此时,再由110j j A A A A ==得到11111111110101010000000a A P P a P P Q Q −−− == ; 记1100P P Q =,则 11111111100000000 (2,,).0 j j j jj j j jj jj A P P P P B a QE Q a P P a P E P j n E −−−−− =====由归纳原理知命题为真.。

矩阵论B卷及答案上海交通大学

矩阵论B卷及答案上海交通大学

上海交通大学《矩阵论》 B 卷姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)(答案AAAAB )1. 设1()kk A f A k ∞==∑收敛,则A 可以取为A. 0091⎡⎤⎢⎥--⎣⎦ B. 0091⎡⎤⎢⎥-⎣⎦C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦注:A 的特征值为0,-1,而1kk x k∞=∑的收敛区间为[1,1)-2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散 注:由定理M 有n 个不同特征值,故可以对角化3. 设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 注:M 的秩为2故无QR 分解 4. 设,则A = A.214020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭B.114010061-⎛⎫ ⎪ ⎪ ⎪⎝⎭C.224020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061-⎛⎫⎪ ⎪ ⎪⎝⎭注:'()At Ate Ae =,故()'A At t A Ae Aee ====5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C. 20012002M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦ D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦注:B 中矩阵的最小多项式为()22x - 二、填空题(每题3分,共15分) 1. 设220A A -=,则cos 2A = [ E+()2cos11A - ]。

2.已知n nA C ⨯∈,并且()1A ρ<,则矩阵幂级数kk kA ∞=∑=[()2AE A - ]。

矩阵论试题及答案

矩阵论试题及答案

由若当分解
A1
=
P1
D1 0
0 0
P1−1
,其中
D1

Cr×r
可逆;
当 j = 2, , n 时,由 A1Aj = Aj A1 = 0 可得
0 Aj = P1 0
0 Bj

P1−1
,
Bj ∈ C(n−1)×(n−1) (直接推出的 Bj 为 (n − r ) × (n − r ) 的)

1
2
1

5
0
−2 5
−1
0 所以 A = U∆V H =
0 2
2
1

5
0
5
0
10 2
0

1 2
0


5 0 0 0
1
2
0

2
0

0 1
1 0
.
0
七.(10 分)设 0 ≠ Ai ∈ Cn×n , rank Ai = rank Ai2 (i = 1, 2, , n) ,且当 i ≠ j 时
2006 矩阵论试题答案
一.填空(每题 4 分,共 40 分) 2 − 3 8 2
1. 设 A = 2 12 − 2 12 ,则 A 的值域 R( A) = { y y = Ax, x ∈ R4 } 的维数 1 3 1 4
dim R( A) = 2 .
2 0 0 0 0 0

+
cλ 2 ,则
a + 2b + 4c = 1
b + 4c = 0
⇒ a =1−π2 8,
2c = − π 2 16

矩阵论试题(整理)(完整版)实用资料

矩阵论试题(整理)(完整版)实用资料

矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。

3.是否可将B看作欧式空间V2中某个基的度量矩阵。

()4.(),其中。

5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。

6.AB的全体特征值是()。

7.()。

8.B的两个不同秩的{1}-逆为。

二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。

三.(15分已知。

1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。

四.(10分用Householder变换求矩阵的QR分解。

五.(10分)用Gerschgorin定理隔离矩阵的特征值。

(要求画图表示)六.(15分已知。

1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。

(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。

6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。

2011矩阵论B研究生试卷答案

2011矩阵论B研究生试卷答案

线性变换T 满足2212321(()),(()),(())T f t t T f t t T f t t t =+==++. (1) 求T 在基123(),(),()f t f t f t 下的矩阵A ; (2) 求T 在基123(),(),()g t g t g t 下的矩阵B ; (3) 设2123()f t t t =++,求(())T f t . 【解答】[][][]123123123110101012()()()()()()()()()f t f t f t g t g t g t g t g t g t C ⎡⎤⎢⎥=-=⎢⎥⎢⎥⎣⎦(1)[][][][]2212312312312321 =201 011101 ()()()()()()()()()()()()T f t f t f t t t t t f t f t f t Ag t g t g t CA g t g t g t ⎡⎤=+++=⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦[]1231()()()g t g t g t C =则1CA C =,11A C C -=,1121221111C ---⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,则122323111A ---⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦;………………(5分)(2)123(),(),()g t g t g t 到123(),(),()f t f t f t 的过度阵为C ,T 在基123(),(),()f t f t f t 下的矩阵A ,则T 在基123(),(),()g t g t g t 下的矩阵1353110232B CAC ---⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦;………………(5分)(3)[]123123()()()()f t g t g t g t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,设[]112323(())()()()a T f t g t g t g t a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则123135314211023323232a a B a ---⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,则2432(())T f t t t =-+-.……………(5分)3. (15分)设矩阵200131111A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,求:1) 可逆阵P 和A 的Jordan 标准形J ,使1A PJP -=;2)求矩阵函数sin()4A π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海交通大学《矩阵论》 B 卷姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)(答案AAAAB )1. 设1()kk A f A k ∞==∑收敛,则A 可以取为A. 0091⎡⎤⎢⎥--⎣⎦ B. 0091⎡⎤⎢⎥-⎣⎦C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦注:A 的特征值为0,-1,而1kk x k∞=∑的收敛区间为[1,1)-2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散 注:由定理M 有n 个不同特征值,故可以对角化3. 设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 注:M 的秩为2故无QR 分解 4. 设,则A = A.214020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭B.114010061-⎛⎫ ⎪ ⎪ ⎪⎝⎭C.224020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061-⎛⎫⎪ ⎪ ⎪⎝⎭注:'()At Ate Ae =,故()'A At t A Ae Aee ====5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C. 20012002M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦ D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦注:B 中矩阵的最小多项式为()22x - 二、填空题(每题3分,共15分) 1. 设220A A -=,则cos 2A = [ E+()2cos11A - ]。

2.已知n nA C ⨯∈,并且()1A ρ<,则矩阵幂级数kk kA ∞=∑=[()2AE A - ]。

3.设矩阵1111A ⎡=⎥⎦,则A 的谱半径()A ρ=[3 ]。

4. 设(,)m nHom R R σ∈,则dim(Im )dim(ker )σσ⊥⊥+=n 5. 设5阶复数矩阵A 的特征多项式为22()(1)(2)f λλλλ=-+,则2|A +E |= [ 20 ].注:把E 写成1或I 均可;()AE A -也可有其它等价形式如()()()222,,EEE A A A E A E AE A -------等 三、(8分)利用初等变换求1BA -,其中450231271A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 4 5 0 2 3 1 2 7 92 3 7B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦。

答案:1BA - = 1 0 0 0 1 04 9 0141 8 33⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦(各数值均可取近似值如13算成25)解法一、解答中只要是使用列初等变换的思想即得4分,初等变换的用法正确但答案较离谱给6分,有清淅的步骤但结果错误较大给7分,明显简单数值计算错误或答案完全正确给8分;解法二、使用行初等变换求出1A -再计算1BA -,答案无明显错误给满分,否则只给2分。

四、 (10分)设V 是由函数22,,,x x x x e xe x e e 的线性组合生成的线性空间,定义V 的一个线性算子如()'T f f =. 求T 的Jordan 标准形及Jordan 基。

证明:1。

由定义()()1 1 0 00 12 02222,,,,,,0 0 1 00 0 0 2x x x x x x x x T e xe x e e e xe x e e ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=()22,,,xx x x e xe x e eA , (2分)2.计算出A 的特征值为1,3; (2分) 3.用最小多项式或初等因子或零度判断Jordan 块形状(2分) 4. 给出A 的Jordan 标准形1 1 0 00 1 1 00 0 1 00 0 0 2⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2分) 5.写出过渡矩阵与基变换正确公式; (1分) 6.给出Jordan 基。

(1分) 注:Jordan 基不唯一如,2221,,,2x x x e xe x e e ;2221,,,2x x x x x x e e xe e xe x e e +++等均算正确(不严格要求基变换为正交变换) 五、 (10分)设1 1 20 1 11 3 4A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 求A 的四个相关子空间:(),(),(),()T T N A R A R A N A . 解法一、1.求出Hermite 标准形; (2分) 2.求出每个子空间给(2分)共8分; 解法二、直接由定义求子空间给分方式:算出任意一个给4分,其余每算出一个给2分。

注:计算过程中的错误如不影响子空间的维数最多可扣1分;如计算错误影响到空间维数但步骤正确扣两分。

六、 8分)求矩阵0.9 0.01 0.120.01 0.8 0.130.01 0.02 0.4A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的孤立盖尔圆盘(即对矩阵作适当的相似变换后求得的盖尔圆盘是孤立的)。

解法一、1.只要有分离盖尔圆的想法即可得;(2分)2.选择正确的相似过渡矩阵;(2分)3.算出三个分离的盖尔圆。

(4分)解法二、直接计算A的列盖尔圆并指出他们是分离的给满分(8分)。

注:仅求出A的行或列盖尔圆但没进一步处理给(2分)七、(8分)已知正交矩阵2 1 311 2 232 2 1-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦表示一个旋转,求其旋转轴与旋转角。

1.指出特征值1,(2分)2.求出1对应的特征向量(1,1,0)并指出其为旋转轴,(2分)3.指出旋转角度和另两个共轭特征值关系,或指出旋转角与矩阵迹的关系;(2分)4.求出旋转角1arccos3,(2分)注:思想正确但没算1的特征向量或算错特征向量至多扣一分;旋转角的各种表示均可(如);全题中的计算错误总共至多扣一分。

八、(8分)设100101,010A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求证:EAAA nn322-+=-.证法一、1.算出特征多项式()()()211f λλλ=-+, (2分) 2.指出()0f A =, (2分) 3.使用定理“两个矩阵函数相等当且仅当函数在A 的谱上数值相等”正确证明结论, (4分) 注:第3步中没有验证函数在1λ=处的导数值扣两分。

解法二、1.算出特征多项式()()()211f λλλ=-+, (2分) 2.指出()0f A =, (2分) 3.使用归纳法或直接从多项式221n n λλλ----分解出因子()()()211f λλλ=-+从而证明结论。

(4分)解法三、1.直接计算出3230A A A E --+=, (4分) 2.使用归纳法或直接从多项式221n n λλλ----分解出因子()()()211f λλλ=-+从而证明结论。

(4分)解法四、1.求出A 的Jordan 标准形; (4分) 2.用Jordan 标准形计算出结论。

(4分)注:把A 当作可相似于对角阵从而计算出结论视其是计算错误所致还是思想错误所致而给分,前者至多扣一分,后者给4 分。

九、 (8分)对下面矩阵A 求矩阵函数At e :2 2 31 1 113 1-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦。

解法一、1.求出特征值多项式并指出其为最小多项式, (2分) 2.设()2012g a a a λλλ=++, (2分)3.列出线性方程组012201230122439t t te a a a e a a a e a a a -⎧=++⎪=-+⎨⎪=++⎩,其 (2分)4.算出()At e g A = (2分) 注:过程全且计算出012,,a a a 给满分(不管计算正确与否),未计算扣一分。

解法二、1.求出特征值多项式并指出其为最小多项式, (2分) 2.算出A 的相似对角形及过渡矩阵, (2分) 3.用书上定理写出At e , (2分) 注:有步骤但未具体计算出过渡阵扣2分,算出过渡阵但未算出其逆扣1分。

十、 (10分)证明矩阵范数12||||, ||||||||A A A ∞和分别是向量范数12, l l l ∞和导出的算子范数。

只需证三个范数之一即可。

一、1.111||||max ||nij j ni A a ≤≤==∑, (2分)2.11111||||||(||||)n n n nij j j ij i j j i AX a x x a =====≤∑∑∑∑111||max ||n n j ij j nj i x a ≤≤==≤∑∑=111||||max ||nij j ni X a ≤≤=∑, (2分)3.1101||||||||sup||||X AX A X ≠≤, (2分)4.设j 是使1 中的最大值达到的列,令()0,,0,1,0,,0Tj X = 第个,则111||||||||||||AX A X =。

(2分) 二、三、类似略。

注:证明中只要涉及到这些点即给分而不考虑证明的组织,而且4这一条并不要求有明确构造(有这种想法即可)。

相关文档
最新文档