空间向量的坐标公式
空间向量的正交分解及其坐标表示
当且仅当 x+y+z=1 时,P、A、B、C四点共面。
如果基向量 e1 、e2 、e3 是空间三个两两垂直的 单位向量,那么对空间任一向量 p ,存在一个有序实
数组x, y, z 使得 p xe1 ye2 ze3 .这种分解叫做
空间向量的单位正交分解.
其中 xe1、ye2、ze3 分别叫做 p 在 e1、e2、e3 方向 上的分向量.
3.中点坐标公式
已知 A( x1 , y1 , z1 ) , B( x2 , y2 , z2 )
则线段 AB 的中点坐标为 ( x1 x2 , y1 y2 , z1 z2 )
2
2
2
练习1:已知
a
(2,3,5),
b
(3,1,4),
求 a b, a b,8a, a b
解: a b (2, 3,5) (3,1, 4) (1, 2,1)
1.长度的计算 已知 a ( x, y, z) ,则 a x2 y2 z2
2.角度的计算
已知 a ( x1, y1, z1) , b ( x2, y2, z2 )
则 cos a, b a b
x1 x2 y1 y2 z1z2
ab
x12 y12 z12 x22 y22 z22
则顶点 D 的坐标为__(1_,_-1_,_2_)_______; ⑵ Rt△ABC 中, BAC 90 , A(2,1,1), B(1,1, 2) , C( x, 0,1) ,则 x _2___;
⑶已知 A(3, 5, 7) , B(2, 4, 3) ,则 AB 在坐标平面 yOz 上的射影的长度为__1__0_1__.
空间对称点
z
P3(1, 1,1)
高二数学空间向量运算的坐标表示
一、向量的直角坐标运算
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a (a1 , a2 , a3 ),( R) ;
F A1 B1 E D1 C1
D
C
A
B
练习三:
如图:直三棱柱ABC A1 B1C1 , 底面ABC 中, CA=CB=1,BCA=90o,棱AA1=2,M、 N分别为A1B1、AA1的中点, 1)求BN的长; 2)求 cos BA1 , CB1 的值; 3)求证:A1B C1M。
(3)当cos a , b 0 时,a b 。 思考:当 0 cos a , b 1 及 1 cos a , b 0时, 的夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1, 0 , 0) ;
解:设正方体的棱长为1,如图建
C1
z
D1 A1
F1 E1 B1
立空间直角坐标系 O xyz ,则
3 B(1,1, 0) , E1 1, ,1 , 4
C
D
O
B
y
1 D(0 , 0 , 0) , F1 0 , ,1 . 4
A
x
1 3 BE1 1, ,1 (1,1, 0) 0 , ,1 , 4 4
(1)线段 AB 的中点坐标和长度; 解:设 M ( x , y , z ) 是 AB 的中点,则
两点向量坐标公式
两点向量坐标公式在向量空间中,两点向量是一个非常重要的概念。
它是由两个点在空间中的位置关系所确定的向量。
在日常生活中,两点之间最直接的表示方式就是坐标。
因此,了解两点向量的坐标公式对于研究和应用向量计算具有很大的实际意义。
首先,我们来了解一下两点向量的定义。
两点向量是从一个起点到另一个终点的向量,可以用起点和终点的位置坐标来表示。
在二维平面直角坐标系中,两点向量可以用如下坐标表示:设有两点A(x1, y1)和B(x2, y2),则两点间的向量可以表示为:AB = (x2 - x1, y2 - y1)这里,AB表示从A点到B点的向量。
接下来,我们来看一下两点向量坐标的计算公式。
在二维平面直角坐标系中,两点间的向量可以表示为:AB = (x2 - x1, y2 - y1)这意味着,我们可以通过计算两点坐标的差值来得到向量的坐标。
同样,在三维空间中,两点间的向量可以表示为:AB = (x2 - x1, y2 - y1, z2 - z1)这里,x1、y1、z1和x2、y2、z2分别表示两点在三维空间中的坐标。
为了更好地理解两点向量坐标的计算公式,我们来看一个实例。
假设有一个平面上的两点A(2, 3)和B(5, 7),我们可以计算出向量AB的坐标:AB = (5 - 2, 7 - 3) = (3, 4)这意味着向量AB的坐标为(3, 4)。
此外,我们还需要了解坐标系的转换。
在实际应用中,有时需要将坐标系从一个基准系转换到另一个基准系。
例如,将平面上的坐标转换为空间中的坐标。
这时,我们需要用到坐标变换矩阵。
常见的坐标变换矩阵有旋转矩阵、平移矩阵等。
总之,了解两点向量坐标公式对于研究和应用向量计算具有重要意义。
通过掌握这个公式,我们可以更好地在各种坐标系中进行向量计算,从而解决实际问题。
空间向量数量积及坐标运算
空间向量数量积及坐标运算在空间解析几何中,向量是研究的重要对象之一,而向量的数量积和坐标运算是向量运算中的基本概念。
本文将介绍空间向量的数量积及其坐标运算方法。
一、空间向量的数量积空间中的向量可以用其坐标表示,记作a = (x1, y1, z1)和b = (x2, y2,z2),其中a、b分别是空间中的两个向量,xi、yi、zi为它们在笛卡尔坐标系中的坐标。
向量的数量积(又称点积或内积)定义为两个向量的对应坐标的乘积之和,即:a ·b = x1 * x2 + y1 * y2 + z1 * z2其中·表示数量积运算。
性质:1.数量积是实数。
2.数量积的结果等于向量乘积和坐标乘积之和。
3.数量积满足交换律:a · b = b · a。
4.数量积满足分配率:(a + b) · c = a · c + b · c。
二、向量的坐标运算1. 向量的加法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的和记为c,则c的坐标为:x = x1 + x2y = y1 + y2z = z1 + z2即向量的和的每个坐标等于对应向量的坐标之和。
性质:1.向量的加法满足交换律:a + b = b + a。
2.向量的加法满足结合律:(a + b) + c = a + (b + c)。
2. 向量的减法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的差记为c,则c的坐标为:x = x1 - x2y = y1 - y2z = z1 - z2即向量的差的每个坐标等于对应向量的坐标之差。
3. 向量的数乘设k为实数,a = (x, y, z)是空间中的一个向量,ka为向量a的数乘,即ka 的坐标为:x' = k * xy' = k * yz' = k * z性质:1.数乘满足结合律:k(ka) = (k * k')a。
空间向量的直角坐标及其运算
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD
,
H
是
C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平
空间向量的坐标表示
e3 Oe 2
分别为x,y,z轴正方向上的单位向量,由空间向量 ( x, y, z) 基本定理,存在唯一的有序实数组
给定一个空间直角坐标系和向量 p 且设 ,
i、 k j、
A(x,y,z) y
e1
(1)设a (a1, a2 , a3 ), b (b1, b2 , b3 )
即对应坐标成比例.
4.判断下列各组中的两个向量是否共线.
9 (1)a (2,3, 4, ), b (3, , 6) 2 (2)a (2,0, 4,), b (4,1, 8) (3)a (2,0, 4,), b (4,0, 8)
5.已知m (8,3, a), n (2b, 6,5) ,若m n 则a=_____,b=______.
则:
2、空间向量的直角坐标运算律:
a (a1 , a2 , a3 )
(2)若A(a1 , b1 , c1 ), B(a2 , b2 , c2 )则 AB (a2 a1 , b2 b1 , c2 c1 )
a b (a1 b1 , a2 b2 , a3 b3 ) a b (a1 b1 , a2 b2 , a3 b3 )
a b
a (a1, a2 )( R),
(a1 b1 , a2 b2 ),
(2)若A( x1 , y1 ), B( x2 , y2 )
则AB ( x2 x1 , y2 y1 )
1、空间向量的坐标表示:
使得 p xi y j zk 则有序实数组 ( x, y, z ) 叫做 p 在空间直角坐标系 O-xyz中的坐标,上式可简记作 p ( x, y, z) z
坐标向量模长公式
坐标向量模长公式
1. 坐标向量的定义。
- 在平面直角坐标系中,设向量→a=(x,y),这里x和y分别是向量→a在x轴和y轴上的坐标分量。
- 在空间直角坐标系中,设向量→a=(x,y,z),x、y、z分别是向量在x轴、y 轴、z轴上的坐标分量。
2. 平面向量模长公式。
- 对于平面向量→a=(x,y),其模长|→a|=√(x^2)+y^{2}。
- 推导:根据勾股定理,向量→a的起点为坐标原点(0,0),终点为(x,y),那么向量的长度(模长)就相当于直角三角形的斜边,两直角边分别为x和y,所以根据勾股定理可得|→a|=√(x^2)+y^{2}。
- 例如:已知平面向量→a=(3,4),则|→a|=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
3. 空间向量模长公式。
- 对于空间向量→a=(x,y,z),其模长|→a|=√(x^2)+y^{2+z^2}。
- 推导:把空间向量→a的起点看作坐标原点(0,0,0),终点为(x,y,z)。
可以想象一个长方体,向量的模长就是长方体的体对角线长度。
由长方体体对角线长度公式(先根据勾股定理求出底面对角线长度√(x^2)+y^{2},再与高z一起根据勾股定理求出体对角线长度)可得|→a|=√(x^2)+y^{2+z^2}。
- 例如:已知空间向量→a=(1,2,2),则|→a|=√(1^2)+2^{2+2^2}=√(1 +
4+4)=√(9)=3。
空间向量运算的坐标公式
空间向量运算的坐标公式如果三个向量不共面那么对空间任一向量存在一个唯一的有序实数组x、y、z使得cbapczbyaxpcba叫做空间的一个______基底空间任意三个不共面向量都可以构成空间的一个基底一、空间直角坐标系单位正交基底如果空间的一个基底的三个基向量互相垂直且长都为1则这个基底叫做单位正交基底常用i j k 来表示.点O叫做原点向量i、j、k都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。
分别称为xOy平面yOz平面xOz平面.空间直角坐标系在空间选定一点O和一个单位正交基底i、j、k 。
以点O为原点分别以i、j、k的正方向建立三条数轴x轴、y轴、z轴它们都叫做坐标轴.这样就建立了一个空间直角坐标系O--xyzOxyzijk二、向量的直角坐标aaaa 1 2 3给定一个空间坐标系和向量且设i、j、k为坐标向量由空间向量基本定理存在唯一的有序实数组1 2 3使1i 2j 3k 有序数组1 2 3叫做在空间直角坐标系O--xyz中的坐标记作.aaaaaaaaaaaaxyzOAa1a2a3ijka在空间直角坐标系O--xyz中对空间任一点A对应一个向量OA于是存在唯一的有序实数组xyz使OAxiyjzk在单位正交基底i j k 中与向量OA对应的有序实数组xyz叫做点A在此空间直角坐标系中的坐标记作Axyz其中x叫做点A的横坐标y叫做点A的纵坐标z叫做点A的竖坐标.xyzOAxyzijka三、向量的直角坐标运算.111222axyzbxyz设则121212abxxyyzz111axyzR121212abxxyyzz121212abxxyyzz例1、1求向量axyz的模a 2求两个非零向量111axyz222bxyz 的夹角的余弦值3、已知向量235a31bz且ab求Z的值。
练习1.知235a314b求ababa8aab 练习2、已知cos1sinaaasin1cosbaa则向量ab与ab的夹角为练习3、已知22ax235b且a与b的夹角为钝角求x的取值范围练习4、已知sincostanaaaacossincotbaaa且ab则且a角______________AM1______________NB________________ PQ练习2如图在边长为2的正方体ABCD-A1B1C1D1中取D点为原点建立空间直角坐标系N、M、P、Q分别是AC、DD1、CC1、A1B1的中点写出下列向量的坐标.zxyABCDA1B1C1D1NMPQ例2设Ax1y1z1Bx2y2z2则AB证明如图因为正方体的棱长为1 分别以DA、DC、1DD 为单位正交基底建立空间直角坐标系Oxyz 如图棱长为1的正方体1111ABCDABCD中EF分别是1BB11DB中点求证1EFDA 则1112E11122F 所以111222EF 又1101A000D 所以1101DA 所以11111010222EFDA 因此1EFDA即1EFDA 练习已知A、B 、C三点的坐标分别为2-12、45-1、-223若求P点的坐标。
3第三讲 空间向量的坐标运算-学生版
第三讲空间向量的坐标运算【基础知识】一、空间直角坐标系在空间选定一点O和一个单位正交基底{i, j,k},以点O为原点,分别以i, j,k的方向为正方向,以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i, j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面,它们把空间分成八个部分.二、空间点的坐标表示在空间直角坐标系Oxyz中,i, j,k为坐标向量,对空间任意一点A,对应一个向量OA,且点A的位置由向量OA唯一确定,由空间向量基本定理,存在唯一的有序实数组(x,y,z),使OA=x i+y j+z k.在单位正交基底{i,j,k}下与向量OA对应的有序实数组(x,y,z),叫做点A在空间直角坐标系中的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A 的竖坐标.三、空间向量的坐标表示在空间直角坐标系Oxyz中,给定向量a.作OA=a.由空间向量基本定理,存在唯一的有序实数组(x,y,z),使a=x i+y j+z k.有序实数组(x,y,z)叫做a在空间直角坐标系Oxyz中的坐标,上式可简记作a=(x,y,z).四、空间向量常用结论的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3).1.建立适当的空间直角坐标系,求出相应点的坐标;2.求出直线的方向向量;3.证明两向量共线;4.说明其中一个向量所在直线上的一点不在另一个向量所在的直线上,即表示方向向量的 有向线段不共线,即可得证. 六、证明两直线垂直的步骤:1.根据已知条件和图形特征,建立适当的空间直角坐标系,正确地写出各点的坐标;2.根据所求点的坐标求出两直线方向向量的坐标;3.计算两直线方向向量的数量积为0;4.由方向向量垂直得到两直线垂直. 七、求两异面直线夹角的步骤1.求异面直线a ,b 上的方向向量的坐标:a =(x 1,y 1,z 1),b =(x 2,y 2,z 2);2.利用公式cos<a ,b >= 求解;3.设异面直线a ,b 所成的角为θ,则cos θ=|cos<a ,b >|.【考点讲解】考点一:求点的坐标例1.已知空间点(3,1,4)P --,则点P 关于y 轴对称的点的坐标为( ) A .(3,1,4)--- B .(3,1,4)-- C .(3,1,4)-D .(3,1,4)考点二:求向量的坐标例2.给定空间三个点()1,1,2A 、()3,7,1B -、()5,4,0C . (1)求以向量AB 、AC 为一组邻边的平行四边形的面积S ; (2)求与向量AB 、AC 都垂直的单位向量a .考点三:线性运算的坐标表示例3.已知向量()3,2,5a =-,()1,5,1b =-,则3a b -=( ) A .8,11(),14-B .9,3(),15-C .10,1(),16-D .(0,13,2)考点四:数量积运算的坐标表示例4.(多选)已知空间向量()1,1,1a =,()1,0,2b =-,则下列正确的是( ) A .()0,1,3a b +=B .3a =C .2a b ⋅=D .a <,4b π→>=考点五:求长度或距离例5.空间两点()1,2,3A 、()2,0,5B 之间的距离为______.考点六:求角度例6.已知()cos ,1,sin a αα=-,()sin ,1,cos b αα=-,则向量a b +与a b -的夹角为( ) A .90° B .60°C .30°D .0°考点七:根据平行或垂直求参数的值例7.已知点(2,0,2)A -,(1,1,2)B -,(3,0,4)C -,设a AB =,b AC =. (1)求a ,b 夹角的余弦值.(2)若向量ka b +,2ka b -垂直,求k 的值. (3)若向量a b λ-,a b λ-平行,求λ的值.【课堂练习】1.已知向量(2,1,3),(,2,6)a b x →→=-=-,若a b →→⊥,则实数x 的值为( ) A .7B .8C .9D .102.若向量()1,,0a λ=,(2,1,2)b =-且a 与b 的夹角余弦值为23,则实数λ等于( ) A .0B .-43C .0或-43D .0或433.平行六面体1111ABCD A B C D -中,()()11,2,3,1,2,4AC C =-,则点1A 的坐标为( ) A .()0,4,7B .()2,0,1-C .()2,0,1-D .()2,0,14. (多选)已知平面{}00P n P P α=⋅=,其中点0P 是平面α内的一定点,n 是平面α的一个法向量,若0P 坐标为()2,3,4,()1,1,1n =,则下列各点中在平面α内的是( ) A .()1,3,5B .()4,3,2C .()2,3,8-D .()2,3,8-5. (多选)已知正方体1111ABCD A B C D -的棱长为1,,,P Q R 分别在111,,AB CC D A 上,并满足111(01)1D R AP CQ a a PB QC RA a===<<-,设1,,AB i AD j AA k ===,设PQR ∆的重心为G ,下列说法正确的是( )A .向量,,i j i j k +-可以构成一组基底B .当12a =时,111j+333DG i k =-C .当13a =时,PQ 在平面1ADD .对任意实数a ,总有0RG DG ⋅=6.已知空间三点A (1,-1,-1),B (-1,-2,2),C (2,1,1),则AB 在AC 上的投影向量的模是______.7.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.8.已知空间中三点(),1,2A m -,()3,1,4B -,()1,,1C n -. (1)若A ,B ,C 三点共线,求m n +的值;(2)若AB ,BC 的夹角是钝角,求m n +的取值范围.【课后练习】1.若点(2,5,1)A --,(1,4,2)B ---,(3,3,)C m n +-在同一条直线上,则m n -=( ) A .21B .4C .-4D .102.已知直线2,l l l 的方向向量分别为()()1,4,2,2,1,a b m =-=-,若12l l ⊥,则m 等于( ) A .0B .1C .2D .33.设,x y ∈R ,向量(,1,1),(1,,1),(2,4,2)a x b y c ===-,且,a c b c ⊥∥,则||x y +=( ) A .1B .2C .3D .44.已知(1,0,1)a =,(,1,2)b x =,且3a b ⋅=,则向量a 与b 的夹角为( ) A .60︒B .120︒C .30D .150︒5. (多选)对于非零空间向量a ,b ,c ,现给出下列命题,其中为真命题的是( ) A .若0a b ⋅<,则a ,b 的夹角是钝角 B .若()1,2,3a =,()1,1,1b =--,则a b ⊥ C .若a b b c ⋅=⋅,则a c =D .若()1,0,0a =,()0,2,0b =,()0,0,3c =,则a ,b ,c 可以作为空间中的一组基底 6.(多选)已知空间向量()2,1,1a =--,()3,4,5b =,则下列结论正确的是( ) A .()2//a b a + B .53a b = C .()56a a b ⊥+D .a 与b 夹角的余弦值为7.(多选)已知空间中三点()0,1,0A ,()1,2,0B ,()1,3,1C -,则正确的有( ) A .AB 与AC 是共线向量 B .AB 的单位向量是()1,1,0C .AB 与BC 夹角的余弦值是D .平面ABC 的一个法向量是()1,1,3-8. 平面α经过点()0,0,2A 且一个法向量()1,1,1n =--,则平面α与x 轴的交点坐标是______.9.已知()1,1,2A -,()1,0,1B -.设D 在直线AB 上,且2AD DB =,设1,,13C λλλ⎛⎫++ ⎪⎝⎭,若CD AB ⊥,则实数λ=______.10.空间中,两两互相垂直且有公共原点的三条数轴构成直角坐标系,如果坐标系中有两条坐标轴不垂直,那么这样的坐标系称为“斜坐标系”.现有一种空间斜坐标系,它任意两条数轴的夹角均为60°,我们将这种坐标系称为“斜60°坐标系”.我们类比空间直角坐标系,定义“空间斜60°坐标系”下向量的斜60°坐标:,,i j k 分别为“斜60°坐标系”下三条数轴(x 轴、y 轴、z 轴)正方向的单位向量,若向量n xi yj zk =++,则n 与有序实数组(x ,y ,z )相对应,称向量n 的斜60°坐标为[x ,y ,z ],记作[,,]n x y z =. (1)若[]1,2,3a =,[1,1,2]b =-,求a b +的斜60°坐标;(2)在平行六面体11ABCD ABC D -中,AB =AD =2,AA 1=3,1160BAD BAA DAA ∠=∠=∠=,如图,以{}1,,AB AD AA 为基底建立“空间斜60°坐标系”.①若1BE EB =,求向量1ED 的斜60坐标; ①若[]2,,0AM t =,且1AM AC ⊥,求AM .。
空间向量的坐标表示与混合积的应用
空间向量的坐标表示与混合积的应用空间向量是三维空间中具有方向和长度的量,通常用坐标来表示。
本文将讨论空间向量的坐标表示以及混合积的应用。
一、坐标表示在空间直角坐标系中,一个空间向量可以表示为三个坐标的有序组(x, y, z),分别对应向量在x轴、y轴和z轴上的投影。
坐标表示的示例:对于向量AB,A点坐标为(x1, y1, z1),B点坐标为(x2, y2, z2),则向量AB的坐标表示为(x2 - x1, y2 - y1, z2 - z1)。
二、混合积混合积也称为标量三重积,是三个向量的乘积,其结果是一个数。
对于三个向量A、B和C,其混合积的计算公式如下:(A × B) · C = |A × B| × |C| × cosθ其中,A × B表示向量A和向量B的叉积,|A × B|表示叉积的模,|C|表示向量C的模,θ表示向量C相对于向量A × B的夹角。
混合积的应用示例:1. 体积计算:对于三个相交于一点的向量A、B和C,其混合积的绝对值| (A × B) · C |表示以这三个向量为棱所构成的平行六面体的体积。
2. 判断共线与共面关系:若三个向量A、B和C的混合积为0,则说明这三个向量共线或者共面。
3. 判断四面体的定向体积:对于四面体的四个顶点A、B、C和D,可以利用混合积来判断顶点的排列顺序是否与其定向体积一致。
三、应用示例以下是一些应用示例,展示了空间向量的坐标表示和混合积的应用:1. 三角形面积计算:已知三角形的三个顶点A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3),可以将AB和AC两个向量进行叉积运算得到一个新向量D,其模即为三角形的面积:S = 0.5 |D|.2. 判断四点共面:已知四个点A(x1, y1, z1),B(x2, y2, z2),C(x3,y3, z3),D(x4, y4, z4),可以将AB和AC两个向量进行叉积运算得到一个新向量E,然后计算DE与DC的叉积F。
空间向量及其运算的坐标表示
平面向量
平面向量的坐标运算: a ( x1 , y1 ), b ( x2 , y2 ) a b ( x1 x2 , y1 y2 );
空间向量
空间向量的坐标运算: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) a b ( x1 x2 , y1 y2 , z1 z 2 );
空间向量
空间向量的夹角: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) ab cos a,b | a || b | x1 x2 y1 y2 z1 z 2 2 2 2 2 2 x1 y1 z12 x2 y2 z 2
垂直与平行: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) x1 y1 z1 a // b (?) x2 y 2 z 2 a b x1 x2 y1 y2 z1 z 2 0
x1 x 2 y1 y 2 z1 z 2 (3)中点坐标公式: ( , , ) 2 2 2
2.两个向量夹角公式
a1b1 a2b2 a3b3 a b cos a, b ; 2 2 2 2 2 2 | a || b | a1 a2 a3 b1 b2 b3
垂直与平行: a ( x1 , y1 ), b ( x2 , y2 ) a // b x1 y2 x2 y1 0 a b x1 x2 y1 y2 0
对比表4
平面向量
平面向量基本定理: 如果e1 , e 2是同一平面内的两个不 共线 的向量,那么对于这个 平面内的任一 向量a,有且仅有一对实数 x, y,使a xe1 ye 2 .
空间向量9个坐标计算公式
空间向量9个坐标计算公式空间向量是三维空间中的一个重要概念,它可以用来描述物体在空间中的位置、方向和运动。
在三维空间中,一个向量可以用三个坐标来表示,分别是x、y和z坐标。
通过这三个坐标,我们可以计算出向量的模、方向角和方向余弦等重要性质,从而更好地理解和应用空间向量。
在三维空间中,一个向量可以用以下公式来表示:\[。
\vec{a} = (x, y, z)。
\]其中,\(\vec{a}\)表示向量,\(x\)、\(y\)和\(z\)分别表示向量在x、y和z方向上的分量。
向量的模是指向量的长度,它可以用以下公式来计算:\[。
|\vec{a}| = \sqrt{x^2 + y^2 + z^2}。
\]这个公式就是三维空间中向量的模的计算公式,通过这个公式我们可以计算出向量的长度,从而更好地理解向量在空间中的位置和方向。
除了模之外,向量的方向角也是一个重要的性质。
在三维空间中,一个向量的方向角可以用以下公式来计算:\[。
\cos\alpha = \frac{x}{|\vec{a}|}, \cos\beta = \frac{y}{|\vec{a}|}, \cos\gamma =\frac{z}{|\vec{a}|}。
\]其中,\(\alpha\)、\(\beta\)和\(\gamma\)分别表示向量与x、y和z轴的夹角,通过这个公式我们可以计算出向量与坐标轴的夹角,从而更好地理解向量的方向。
除了方向角之外,向量的方向余弦也是一个重要的性质。
在三维空间中,一个向量的方向余弦可以用以下公式来计算:\[。
\cos\alpha = \frac{x}{|\vec{a}|}, \cos\beta = \frac{y}{|\vec{a}|}, \cos\gamma =\frac{z}{|\vec{a}|}。
\]通过这个公式我们可以计算出向量的方向余弦,从而更好地理解向量的方向。
除了以上的性质之外,向量还有很多其他重要的性质,比如向量的加法、减法、数量积、向量积等。
3.1.4空间向量的直角坐标运算
七、 当堂训练( 8 分钟)
15
OA与BO的夹角
5. 已知 a (3, 2,5), b (1, 3,0), c (7, 2,1) ,求 2 | a b c | (4) cos a, b (1) a b c (2)(a b) c (3)
三、学习目标:(10s)
1. 掌握向量的坐标表示、坐标运算。 2.掌握平行向量、垂直向量坐标之间的关系。 3.掌握两个向量夹角与向量长度的坐标计算 公式。 4.体会类比思想在空间向量公式推导当中的 应用。
四、自学指导:(7分钟)
认真阅读课本P89-P91,并注意以下问题:
1.空间向量的直角坐标运算:建立空间直角坐标系 的方法以及如何用坐标表示向量的加减、数乘、 数量积? 2.空间向量平行和垂直的条件是什么? 3.怎样表达两个向量的夹角? 4.向量长度的坐标计算公式是什么? (限时7分钟,7分钟后进行检测,看谁能利用本节 知识做对检测题)
3.空间向量平行和垂直的条件
若 a (a1 , a2 , a3 ) b (b1 , b2 , b3 )
a // b (b 0)
当b 与三个坐标平面都不平 行时
a1 a 2 a3 b1 b2 b3
b1 a ___ 1 a b ( R) b2 a2 ___ a ___ 3 b
则 a
a a a
2 1 2 2
————————
Cos a, b
AB
2 2 2 a12 a 2 a3 b12 b2 b32 若 A( x1 , y1 , z1 ) B( x2 , y2 , z2 ) 则
a b ———————— = ab
空间向量知识点总结
空间向量知识点总结空间向量是高中数学中的重要内容,它为解决立体几何问题提供了一种全新的思路和方法。
下面我们来对空间向量的相关知识点进行一个系统的总结。
一、空间向量的基本概念1、空间向量的定义在空间中,具有大小和方向的量称为空间向量。
2、空间向量的表示空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量通常用小写字母加箭头表示,如\(\vec{a}\)。
3、空间向量的模空间向量\(\vec{a}\)的模(长度)记作\(|\vec{a}|\),其计算公式为\(|\vec{a}|=\sqrt{a_1^2 + a_2^2 + a_3^2}\)(假设\(\vec{a} =(a_1, a_2, a_3)\))。
4、零向量长度为\(0\)的向量称为零向量,记作\(\vec{0}\),其方向是任意的。
5、单位向量模为\(1\)的向量称为单位向量。
若\(\vec{a}\)是非零向量,则与\(\vec{a}\)同向的单位向量为\(\frac{\vec{a}}{|\vec{a}|}\)。
6、相等向量长度相等且方向相同的向量称为相等向量。
7、相反向量长度相等但方向相反的向量称为相反向量。
二、空间向量的运算1、加法空间向量的加法满足三角形法则和平行四边形法则。
设\(\vec{a}\)、\(\vec{b}\)为两个空间向量,则它们的和向量\(\vec{c} =\vec{a} +\vec{b}\)。
2、减法空间向量的减法是加法的逆运算,\(\vec{a} \vec{b} =\vec{a} +(\vec{b})\)。
3、数乘运算实数\(\lambda\)与空间向量\(\vec{a}\)的乘积\(\lambda\vec{a}\)仍然是一个向量。
当\(\lambda > 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)同向;当\(\lambda < 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)反向;当\(\lambda =0\)时,\(\lambda\vec{a} =\vec{0}\)。
空间向量建系
OG
23 26 B
B1 C (2,
3
, x
) 3
C1
O
M
B1
FG 3
F
C
F H
H
OF FG OG
3 3 2 3 y uuur uuur 3 3
A1B B1C 0 A1B与B1C所成角为90
D
C
解:如图,建立空间直角坐标系.
A
B
C (0, 20, 70) D (0, 0, 70)
o D1 x
E
Q P
y
C1
O D1
Q
P
A1
B1
y
C1
x
A1
B1
x 设D1Q x D1P x 1
Q 3 x, 4 x, 0
55
P 3 (x 1), 4 (x 1), 0
5
5
CE 1 CP
P
2
1 ( AP AC) 2
1 c 1 (AB AD) 22
1c1a1b 222
AE
D
B
C
例:平行六面体ABCD A1B1C1D1中,设D1 A a,
D1 B1 b, D1 C c,求D1B D1B D1B1 D1D b D1D D1B D1C CB c CB
上的射影G是ABC的重心,高为
2
6 3
,求A1B与B1C所成角的大小.
解:如图,建立空间直角坐标系.
G
B(1,0,0) C(1,0,0)
z
30
326
A1
A1 (0, 3 , 3 )
BC BB1
几个空间向量公式就在这里了
空间向量知识点21221(,)AB x x y z z =--.AB =-则)a b +=,1(a b x x -=-11(,,a x y λλλ=||||cos a b a <设点P 分有向线段⇔所成的比为λ,即1PP =λ2PP ,121x x x λλ+=+,121y y y λλ+=+,121z z z λλ+=+(1R λλ∈≠且)中点公式:122x x x +=,122y y y +=,122z z z +=三角形重心公式:1233x x x x ++=,1233y y y y ++=,1233z z z z ++=21(z z -+a =(,,)x y z a1122//,,)a b a a b R λ⇔=∈,(或1x x =1y y =cos θ = ||||a ba b ⋅=233y z z +●建立空间直角坐标系常用方法:1、底面是正方形,常以底面两条邻边为x 轴,y 轴;2、底面是菱形,常以底面两条对角线为x 轴,y 轴;3、底面是等腰三角形,常以底边及底边上的高为x 轴,y 轴;4、底面为平行四边形,常以一条边为x 轴,并作一条与这一条边垂直的直线作为y 轴。
空间向量的应用(1)例题:1、如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是DC 的中点,取如图所示的空间直角坐标系.B(1)写出A 、B 1、E 、D 1的坐标; (2)求AB 1与D 1E 所成的角的余弦值.解:(1) A (2, 2, 0),B 1(2, 0, 2),E (0, 1, 0),D 1(0, 2, 2)(2)∵ → AB 1 =(0, -2, 2),→ ED 1 =(0, 1, 2) ∴ |→ AB 1 |=22 ,|→ED 1 |=5 ,→ AB 1 ·→ED 1 =0-2+4=2,∴ cos 〈→ AB 1 ,→ED 1 〉 = → AB 1 ·→ ED 1 |→ AB 1 |·|→ ED 1 | = 222×5= 1010 .∴ AB 1与ED 1所成的角的余弦值为1010 .2、在直三棱柱ABC -A 1B 1C 1中,已知C A ⊥平面ABB 1A 1,AB =AA 1=1.(1)求证:A 1B ⊥平面AB 1C ;(2)若AC =2,求点A 到平面BB 1C 1C 的距离;(3)若二面角B -B 1C -A 为600,求AC 的长.(1)证:11111ABC A B C CA -⎫⎪⊥⇒⎬⎪=⎭11是正三棱柱平面ABB A 中点AB=AA11ACAB AC AB A ⊥⎫⎪⇒⊥⇒⎬⎪=⎭1111A B 四边形ABB A 是正方形A BA 1B ⊥平面AB 1C(2)解:∵平面ABC ⊥平面BB 1C 1C ,∴点A 到平面BB 1C 1C 的距离即为A 到BC的距离,作AD ⊥BC,BC A 到平面BB 1C 1C 的距离AD =AB ACBC(3)解:(空间向量法)以A 为坐标原点,建立如图空间直角坐标系A-BA 1C ,则B ( 1,0,0),B 1(1,1,0),C (0,0,c ),平面AB 1C 法向量1n =(—1,1,0),平面BB 1C 法向量2n =(x ,y ,z ),1BB =(0,1,0), BC =(—1,0,c ), ∴00y x cz =⎧⎨-+=⎩,∴令z=1,则x =c ,∴2n =(c ,0,1), Cos600=1212||||||n n n n =221c +=12221c +=12,22422c c =+,解得c =1,所以AC 长为1 。
空间向量运算的坐标公式
空间向量运算的坐标公式如果三个向量不共面那么对空间任一向量存在一个唯一的有序实数组x、y、z使得cbapczbyaxpcba叫做空间的一个______基底空间任意三个不共面向量都可以构成空间的一个基底一、空间直角坐标系单位正交基底如果空间的一个基底的三个基向量互相垂直且长都为1则这个基底叫做单位正交基底常用i j k 来表示.点O叫做原点向量i、j、k都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。
分别称为xOy平面yOz平面xOz平面.空间直角坐标系在空间选定一点O和一个单位正交基底i、j、k 。
以点O为原点分别以i、j、k的正方向建立三条数轴x轴、y轴、z轴它们都叫做坐标轴.这样就建立了一个空间直角坐标系O--xyzOxyzijk二、向量的直角坐标aaaa 1 2 3给定一个空间坐标系和向量且设i、j、k为坐标向量由空间向量基本定理存在唯一的有序实数组1 2 3使1i 2j 3k 有序数组1 2 3叫做在空间直角坐标系O--xyz中的坐标记作.aaaaaaaaaaaaxyzOAa1a2a3ijka在空间直角坐标系O--xyz中对空间任一点A对应一个向量OA于是存在唯一的有序实数组xyz使OAxiyjzk在单位正交基底i j k 中与向量OA对应的有序实数组xyz叫做点A在此空间直角坐标系中的坐标记作Axyz其中x叫做点A的横坐标y叫做点A的纵坐标z叫做点A的竖坐标.xyzOAxyzijka三、向量的直角坐标运算.111222axyzbxyz设则121212abxxyyzz111axyzR121212abxxyyzz121212abxxyyzz例1、1求向量axyz的模a 2求两个非零向量111axyz222bxyz 的夹角的余弦值3、已知向量235a31bz且ab求Z的值。
练习1.知235a314b求ababa8aab 练习2、已知cos1sinaaasin1cosbaa则向量ab与ab的夹角为练习3、已知22ax235b且a与b的夹角为钝角求x的取值范围练习4、已知sincostanaaaacossincotbaaa且ab则且a角______________AM1______________NB________________ PQ练习2如图在边长为2的正方体ABCD-A1B1C1D1中取D点为原点建立空间直角坐标系N、M、P、Q分别是AC、DD1、CC1、A1B1的中点写出下列向量的坐标.zxyABCDA1B1C1D1NMPQ例2设Ax1y1z1Bx2y2z2则AB证明如图因为正方体的棱长为1 分别以DA、DC、1DD 为单位正交基底建立空间直角坐标系Oxyz 如图棱长为1的正方体1111ABCDABCD中EF分别是1BB11DB中点求证1EFDA 则1112E11122F 所以111222EF 又1101A000D 所以1101DA 所以11111010222EFDA 因此1EFDA即1EFDA 练习已知A、B 、C三点的坐标分别为2-12、45-1、-223若求P点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r rr | a |2 a a a12 a22 a32
r rr | b |2 b b b12 b22 b32
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式
在空间直角坐标系中,已知 A(x1 , y1 , z1) 、
3)求证:A1B C1M。
C
A
B
思考题:
已知A(0,2,3)、B( 2,1,6), C(1,1,5), 用向量 方法求ABC的面积S。
四、课堂小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。
B(x2 , y2 , z2 ),则
uuur AB
( x2 x1 , y2 y1 , z2 z1)
uuur | AB |
uuur uuur ABgAB
(x2 x1)2 ( y2 y1)2 (z2 z1)2
d A,B ( x2 x1)2 ( y2 y1)2 (z2 z1)2
uuuur DF1
0
,
1 4
,1
(0
,
0
,
0)
0
,
1 4
,1 .
uuuur uuuur BE1 gDF1
0
0
1 4
1 4
11
15 16
,
D
O
A
x
B
C
cos
y
uuuur BE1
uuuur | BE1 uuuur , DF1
|
|
2)求点A到直线EF的距离。 D1
(用向量方法)
F A1
C1 B1
E
D A
C B
练习三:
如图:直三棱柱ABC A1B1C1, 底面ABC中,
CA=CB=1,BCA=90o,棱AA1=2,M、
N分别为A1B1、AA1的中点,
C1
1)求BN的长;
A1
B1
M
2)求 cos BA1, CB1 的值; N
2.求下列两点间的距离:
(1) A(1,1, 0) , B(1,1,1) ;
(2) C(3 ,1, 5) , D(0 , 2 , 3) .
三、应用举例
例1 已知A(3 , 3 ,1)、B(1, 0 , 5) ,求:A (1)线段 AB 的中点坐标和长度;
M
B
解:设 M(x , y , z) 是 AB的中点,则
2.两个向量夹角公式
rr cos a,b
rr ra br
a1b1 a2b2 a3b3
;
| a || b |
a12 a22 a32 b12 b22 b32
注意:
rr
rr
(1)当 cos a , b 1 时,a 与 b 同向;
rr
rr
(2)当 cos a , b 1 时,a 与 b 反向;
uuuur OM
1 2
uuur (OA
uuur OB)
1 2
(3 ,
3
, 1)
1 ,
0
,
5
2
,
3 2
,
3
,
O
∴点 M的坐标是
2
,
3 2
,
3
.
dA,B (1 3)2 (0 3)2 (5 1)2 29 .
(2)到 A 、B两点距离相等的点 P(x , y , z) 的
3.1.5空间向量运算的坐标表示
一、向量的直角坐标运算
设a (a1, a2 , a3 ), b (b1, b2 , b3 )则 a b (a 1b1,a2 b2 ,a3 b3 ) ; a b (a 1b1,a2 b2 ,a3 b3 );
a (a1,a2,a3),( R) ;
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
BE1
与
DF1
所成的角的余弦值。
z
解:设正方体的棱长为1,如图建
D1
F1
C1
立空间直角坐标系 O xyz ,则
A1
E1 B1
B(1,1, 0)
,
E1 1,
3 4
, 1
,
D
O
A
x
Cy
D(0 , 0 , 0)
,
F1
0
,
1 4
,1 .
B
uuuur BE1
1 ,
3 4
, 1
(1,1,
0)
0
,
1 4
, 1
,
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
BE1
与
DF1
所成的角的余弦值。
z
D1
F1
C1
A1
E1 B1
17 uuuur 4 , | DF1 | uuuur uuuur uuBuuEr 1gDuFuu1ur BE1 | | DF1 |
17 . 4 15
16 17
17
15 . 17
44
练习二:
正方体A1B1C1D1-ABCD,E、F分别是C1C
D1A1的中点,1)求 AB, EF
rr
rr
(3)当cos a , b 0 时,a b 。
思考:当
0
cos
r a
,
r b
1及
1
cos
r a
,
r b
0时,
的夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1, 0 , 0) ; (2) a (1, 1,1) , b (1, 0 ,1) ;
a b a1b1 a2b2 a3b3 ;
a // b a1 b1,a2 b2 ,a3 b3( R) ; a1 / b1 a2 / b2 a2 / b2 .
a b a1b1 a2b2 a3b3 0 ;
二、距离与夹角
1.距离公式
坐标 x , y , z 满足的条件。
解:点P(x , y , z)到 A 、B 的距离相等,则
(x 3)2 ( y 3)2 (z 1)2 (x 1)2 ( y 0)2 (z 5)2 ,
化简整理,得 4x 6 y 8z 7 0 即到 A 、B 两点距离相等的点的坐标 (x , y , z) 满 足的条件是 4x 6 y 8z 7 0