四波混频
关于四波混频的理论探讨
收稿日期 : 2008 - 05 - 07 作者简介 : : 黄湘宁 ( 1964 —) ,男 ,湖南洞口人 ,副教授 。研究方向 : 计算机应用。
第 6期
黄湘宁 :关于四波混频的理论探讨
71
→
→
→
→
kc
(ω 1
+
ω 2
-
ω p
)
=
k1
(ω ) 1
+
k2
(ω 2
)
-
kp
(ω p
)
若三列入射波频率均为 ω,则相位共轭波的频率也为 ω,此过程为简并四波混频 (DFWM ) 。
光学相位共轭是指光波行进到特殊介质或环境时 ,产生与该光波波形完全吻合 (相位共轭 ) 的反向 光波 (即共轭光波 ) 。光学相位共轭发现于 20世纪 70年代 ,目前已在实时自适应光学校正 、光学信息处 理 、光计算 、信息存储 、图像处理 、超低噪音检测 、干涉测量技术及非线性激光光谱等领域中广泛应用。本 文通过对四波混频的探讨 ,为如何选取克尔介质的最佳尺寸提供一定的理论指导意义 。
第 26卷 第 6期 2008年 12月
青海 大学学 报 (自然科 学版 ) Journal of Q inghai Unive rsity (N ature Sc ience)
Vol126 No16 D e c 12008
关于 四波混频的理论探讨
黄湘宁
(青海师范大学实验教学管理中心 , 青海 西宁 810008)
→
在 k1
→
= k2 的情况下为前向四波混频 ,产生的相位共轭波矢
→
→
→
kc
(ω c
= ω)
= 2 k1 (ω)
第四章三次谐波与四波混频
分类: 分类:
2、非参量过程---非参量过程---介质在与光场相互作用后的终态与初态不同了, 介质在与光场相互作用后的终态与初态不同了,发生 质间的能量转移。 了光场与介 质间的能量转移。
受激拉曼散射(SRS)、受激布里渊散射(SBS)。 受激拉曼散射(SRS)、受激布里渊散射(SBS)。 双光子吸收(TPA)。 双光子吸收(TPA)。 饱和吸收(SA)。 饱和吸收(SA)。
实现三次谐波的困难
(1)晶体中的激光损伤强度阈值较低,无法使用高强度的入射激光。 晶体中的激光损伤强度阈值较低,无法使用高强度的入射激光。 (2)晶体中的双折射特性难以实现三次谐波所要求的位相匹配。 晶体中的双折射特性难以实现三次谐波所要求的位相匹配。 所以,一般难以在晶体中直接实现三次谐波(THG), 所以,一般难以在晶体中直接实现三次谐波(THG),方解石直接实现 THG相位匹配的晶体 THG相位匹配的晶体。 相位匹配的晶体。 −6 目前实验结果: 4mm长方解石晶体中以 目前实验结果:在4mm长方解石晶体中以 3 × 10 的转换效率得到了 三次谐波输出。 三次谐波输出。 (3) 对紫外光吸收较强
三次谐波
实现三次谐波的介质 I. 晶体: 晶体:
χ (3) ~ 10− 20 − 10− 23 ( SI制) χ (3) ( SI ) = χ ( 2) ~ 10 −11 − 10−13 ( SI制)
4π ×10 −8 χ ( 3) (esu ) 9 4π χ ( 2) ( SI ) = ×10 − 4 χ ( 2 ) (esu ) 3
三阶非线性光学效应概述
主要特点: 及耦合波方程描述。 主要特点:1、基于 χ (3) 及耦合波方程描述。 2、无论介质有何种对称性,总存在一些非零的 无论介质有何种对称性, χ ( 3) 张量元,原则上三阶非线性光学效应可 张量元, 所有介质中观察到 中观察到。 在所有介质中观察到。 3、比二阶效应弱几个数量级( χ (3) << χ ( 2) ),更难 比二阶效应弱几个数量级( ), 于观察。 于观察。 4、三阶效应中参与相互作用的有四个光电场, 三阶效应中参与相互作用的有四个光电场, 现象更加丰富。 现象更加丰富。
四波混频
E ( w1 ) χ(3) E ( w2 )
E ( w3 )
E ( w4 )
四个不同频率的波失在介质中混频.在四波混频过程中 光子的能量与动量守恒
w4 = w1 + w2 + w3 ∆k = k1 − k2 − k3
在四个波得频率相等的情况下,四波混频称为 简并四波混频
虽然简并四波混件下,必须保证 。
改变信道间距
用适当不等间距的波长信道配置设计来实现 ,通常选择通 道频率,使产生的新频率分量大部分落在通道滤波器通带 之外,这种技术用于10个信道,每个信道速率为10G/s 以下 的系统可大大减小四波混频的影响 加大信道间距也可抑 制四波混频的效率,却是以牺牲系统带宽为代价的 实际上 , 采用部分等间距信道更为有意义,其核心在于使通道间隔 相对远的信道之间的四波混频所产生的频率分量落在信道 滤波器通带内,由于四波混频的效率随着波长间隔加大而 降低,引入的恶化并不严重,这样可使系统容纳更多的波长。
∆k = k4 − (k1 − k2 − k3 ) = 0
考虑一种特殊情况,如下图,存在两对波矢方向相反的光,输 出为-k‘,它们满足如下相位匹配条件 k ' + (−k ' ) = k + (−k ) 。
简并四波混频的相位匹配
四波混频效应
这种简并四波混频非线性过程与典型的全息照过程很 相似。可以将k‘当做物光,k当做参考光,两者在介质 中互相干涉,形成全息图,如果全息图被记录下来了, 在参考光k的照射下,沿物光k’相反的方向-k‘可见物得 虚像。若挡住物光k’,在另一参考光-k的照射下,会 产生-k‘方向的赝像,该赝像就是原物光的相位共轭光。 虽然全照息过程和四波混频过程都产生相位共轭光, 但两者根本不同之处:全息照相的记录和重现过程在 时间上式分段进行的,而四波混频的相位共轭光与原 入射光几乎是同时产生。
四波混频实验报告
研究生实验报告实验项目名称四波混频特性实验研究 _____________________________研究生实验报告评价标准实验目的:光学问题。
当电场强度较高时,可以将非线性极化强度写成级数形式:P = 0 X 1)E +.x 2)E 2+ 允3)E 3+ …=P ⑴ +P ⑵ + P ⑶ + …式中 尸是i 阶电极化率或线性电极化率,是i 阶量。
二阶及其以上各阶极化 率统称非线性极化率。
利用麦克斯韦方程以及物质方程得到光波在介质中传播的波动方程:"一 一 i 2、〔▽x(▽为 +FF 〕E (r,t)= c由于波的相互作用,在极化强度中应考虑非线性项。
现设电场强度E(r,t) 可展开成无限个平面波的组合,即E (r,t) = ei(kiri lt)l又有 P = P L +P NL 用l 11 l表示介电常数则上述方程变为2 2〔〔▽x(▽为-―^〕E ( k, 3)= 3 叫 P N L (k m , GJm)设 P NL (k m , 3m)是 E I (k 1, 31), E ( k 2, 32),…,E n (k n , 3n)共 n 个场作 用于介质产生的非线性极化强度,因此这 n 个场通过P NL (k m, 3m)相互间的耦 合。
这就是光波间耦合方程。
二、简并四波混频的耦合波方程简并四波混频〔即四个波都有相同的频率〕对应光电场与物质相互作用的 三阶微扰,比二阶效应弱很多。
三阶效应的产生与三阶非线性极化率对于有关。
对于非共振型非线性介质 来说x 3)不可能很大。
当光频接近于材料的电子共振频率时,由于极化率共振增 强,有可能大大提高相位共轴反射系数。
随着实验材料研究的进展,特别是有机非线性材料的出现,人们可以在分子的水平上设计材料的结构来得到在特定波 长激光照射下具有较大x (3)的材料。
采用共振型非线性材料介质就可以在较低 的泵浦强度下,获得较强的相位共轴波,甚至可以连续工作。
四波混频
一实验目的1.了解偶氮染料聚合物的非线性光学特性2.掌握四波混频的基本知识和实验方法3.掌握泵浦,探测光和信号光三者的关系4.了解四波混频的应用范围二实验装置半导体激光器一台,反射镜若干,CCD一个,微机一台及其他光学元件三实验原理1.基础知识(1)偶氮染料的分子结构偶氮染料是一类具有光异构特征的有机光学材料,其分子结构是在两个芳环之间以N=N双键连接为特征。
它们的基本结构特征,即骨架决定了它们的主要吸收峰的范围(最大吸收峰在可见光区内)。
偶氮染料还具有一定共轭性,一般来说,共轭程度越大,分子的基态与第一激发态之间的能级差越小,其吸收峰发生红移。
偶氮染料的第二结构特征(苯环上的取代基)对吸收峰的位置具有一定影响。
取代基的电子效应(诱导效应和共轭效应)影响分子中电子云密度分布,使分子的基态与激发态之间的能级差发生变化,其吸收峰发生移动。
(a)光异构过程(b) 偶氮分子的能级结构图1(2)偶氮染料的光异构特性偶氮染料是一种偏振敏感的有机染料,它具有反式(trans)和顺式(cis)两种分子结构,如图1(a)所示(其中R1和R2表示不同的取代基,本实验所用甲基橙的取代基R1为NaO3S , R2 为N(CH3)2 )。
它们的分子主轴均为氮氮双键。
两者对应能态的能量是反式结构能量低,结构稳定;顺式结构能量高,结构不稳定,所以一般情况下偶氮分子多以稳定的反式结构存在。
图 1 (b) 是偶氮分子的能级结构图,由图可见,当用激光激发时,反式偶氮分子的基态粒子So吸收一个光子后,跃迁到第一激发态的某一振动能级Sv上,并迅速驰豫到第一激发态的最低能级S1上。
处于S1能级上的粒子可以进一步吸收一个光子并跃迁到第二重激发态S2上,也可经过系间跃迁无辐射驰豫到三重激发态T1上,这种跃迁由S1与T1间能级差决定。
差距越小,跃迁越容易。
T1态的粒子可以吸收光子跃迁到T2态上,也可通过无辐射跃迁回到So态上。
同时当激光强度达到一定值后,S2、T2等能级上的粒子还可以进一步吸收光子跃迁到更高一级激发态上去。
非线性光学-四波混频课件
四波混频(Four-wave mixing) 现象产生的条件理论应用和危害定义:在量子力学术语中,一个或几个光波的光子被湮灭,同时产生了几个不同频率的新光子,且在此过程中,净能量和动量是守恒的。
起源:光纤中的三阶电极化率1、四波混频现象——理论描述22222*1111121112341234222222*2221222212342134222233313233122(2)22(2)22(222i kzi kzA A A i A i A CD A C A A A iC A A A e z t tA A A i A i CD A A A C A A iC A A A e z t tA A A i A i C A A A z t tαββγγαββγγαββγ−Δ−Δ∂∂∂++=−+++++∂∂∂∂∂∂++=−+++++∂∂∂∂∂∂++=−+++∂∂∂22*34312422222*44414244123441232)(2)22i kzi kzC A A iC A A A eA A A i A i A C A C A A A iC A A A e z t tγαββγγΔΔ++∂∂∂++=−+++++∂∂∂2、四波混频产生的条件1、非线性光纤2、输入一个或以上不同频率的光波(简并条件下两个光波)3、输入光波的强度较强4、能量守恒:ω1+ω2=ω3+ω45、动量守恒:即满足相位匹配条件3、四波混频的理论方程•For FWM in DSF with not very long, we neglect the walk-offbetween the four waves and dispersion-induced pulse broaden, thus in Eq. (2) we have β11≈β12≈β13≈β14≡1/v g and β2j =0, where v g is the group velocity. Introducing a retarded frame in which T =t -z /v g , and decomposing the complex amplitude A j into their abosolute amplitudes and phases (j =1,2,3,4), eight equations with realvariables are obtained22222*1111121112341234222222*2221222212342134222233313233122(2)22(2)22(222i kzi kzA A A i A i A CD A C A A A iC A A A e z t t A A A i A i CD A A A C A A iC A A A e z t tA A A i A i C A A A z t tαββγγαββγγαββγ−Δ−Δ∂∂∂++=−+++++∂∂∂∂∂∂++=−+++++∂∂∂∂∂∂++=−+++∂∂∂22*34312422222*44414244123441232)(2)22i kzi kzC A A iC A A A e A A A i A i A C A C A A A iC A A A e z t tγαββγγΔΔ++∂∂∂++=−+++++∂∂∂FWMSelf phase modulation/ Cross phase modulation Fiber absorptionWalk-offGroup-velocity dispersion22222*1111121112341234222222*2221222212342134222233313233122(2)22(2)22(222i kzi kzA A A i A i A CD A C A A A iC A A A ez t tA A A i A i CD A A A C A A iC A A A e z t tA A A i A i C A A A z t tαββγγαββγγαββγ−Δ−Δ∂∂∂++=−+++++∂∂∂∂∂∂++=−+++++∂∂∂∂∂∂++=−+++∂∂∂22*34312422222*44414244123441232)(2)22i kzi kzC A A iC A A A e A A A i A i A C A C A A A iC A A A e z t tγαββγγΔΔ++∂∂∂++=−+++++∂∂∂Neglecting fiber absorption, walk-off between pulses, group-velocity dispersion (GVD)-induced pulse broadening:(,)exp()j j j A z T P i φ=2222*1123412342222*2123421342222*3123431242222*412344123(2)(2)(2)(2)i kz z i kzz i kzz i kz z A i A CD A C A A A iC A A A eA i CD A A A C A A iC A A A e A i C A A A Cd A A iC A A A eA i A C A Cd A A A iC A A A e γγγγγγγγ−Δ−ΔΔΔ∂=++++∂=++++∂=++++∂=++++相对相位1/2112341/211234123411/2212341/221234123421/2312342()sin (2)()cos /2()sin (2)()cos /2()sin z z zzz zzP C PP P P e z P CDP CP P e C PP P P e P z P C PP P P e z CDP P P CP e C PP P P e P z P C PP P P e z αααααααγθφγγθγθφγγθγ−−−−−−−∂=∂∂=++++∂∂=∂∂=++++∂∂=−∂1/231234123431/2412341/24123412344(2)()cos /2()sin (2)()cos /z zzz zCP P P CP e C PP P P e P z P C PP P P e z P CP CP P e C PP P P e P zαααααθφγγθγθφγγθ−−−−−∂=++++∂∂=−∂∂=++++∂1234(,)(,)(,)(,)(,)T z kz T z T z T z T z θφφφφ=Δ++−−Then from the 2nd , 4th , 6th , and 8th equations wecan obtain12341/2111112341234[(1)(1)] ()cos ()zzk CD C P CD C P P P e zC PP P P e P P P P ααθγγθ−−−−−−∂=Δ+−−+−−++∂++−−4、四波混频的应用及害处四波混频的应用四波混频的害处1.四波混频应用分类1PIA based on FWMP hase-inputSignal IdlerPump 1Pump 2PSA based on FWM 3P hase-s ensitive a mplification (PSA ): FWM with idler inputPump 1Pump 2Signal Idler1/21123412341(2)()cos /z z zP CDP CP P e C PP P P e P zααφγγθ−−∂∂=++++∂应用优势及挑战快速全光纤化……挑战?5(1) Wavelength conversion6(2) All-optical amplifier: PIA8(2) All-optical amplifier: PSAAmplifier with low noise-figure; Suppression of phase noise; Phase regeneration2. Applications of FWM(3) Optical phase conjugationEs ( z, t ) = As exp(−iωt )PumpEc ( z, t ) = As* exp(−iωt )Signal PumpPC signal9相位共轭系统又称频谱反转相位共轭器(OPC)Es ( z , t ) = As exp(−iωt )泵浦 共轭光 信号Ec ( z , t ) = As* exp(−iωt )泵浦5/18/20111利用相位共轭器的优点 仅利用一个器件就可以极大抑制多种非线性; 同时补偿偶数阶色散; 对调制格式、光纤种类透明; 已铺设好的系统易于升级.25/18/2011相位共轭 (OPC)的抑制原理相位共轭器(OPC)Es ( z , t ) = As exp(−iωt )Ec ( z , t ) = As* exp(−iωt )功率5/18/2011OPC功率对称系统:α(-z)= -α(z)3相位共轭技术抑制各种非线性损伤 1983年,脉冲自相位调制(SPM); 1994年,信道间四波混频; 2004年,信道间交叉相位调制 信道内非线性作用…5/18/20114相位共轭实验的原理泵浦 信号ωω0 ω0+Ωω新生成的共轭光A = Ap + As exp(−iΩt )k输入:∂Ai* = −2iγ Pp As e iΔkz ∂z四波 混频+∞ k −1 i βk ( z) ⎛ ∂ ⎞ ∂A α 2 + A+∑ ⎜ ⎟ A = iγ A A k ! ⎝ ∂t ⎠ ∂z 2 k =2非线性克尔效应5/18/201152. Applications of FWM(4) All-optical regeneration102. Applications of FWM(5) Slow light112. Applications of FWM(5) Slow light4000 3000 延迟量 /ps 2000 1000 0 -1000 1540 SMF3.4ns15451550 波长 λ /nm15551560122. Applications of FWM(6) RZ pulse generationO-TDM switchAll-optical samplingAll-optical logic gateAll-optical switching 142. Applications of FWM Others。
四波混频
三次谐波与四波混频(2013年12月31)摘要:讨论了各向同性介质中的三阶非线性过程,以及四波混频和它的特殊情况。
关键词:三阶非线性过程,四波混频。
一、 各向同性介质中的三阶非线性过程只有不具有中心对称性的介质或者各向异性介质才具有二阶非线性,但是所有介质都存在着三阶非线性。
一般(3)χ比(2)χ小得多,故三阶效应要比二阶效应弱得多。
在三阶非线性现象中,也存在着光与介质不发生能量交换,而参与作用的光波之间发生能量交换的非线性效应,这被称为波动非线性效应。
设输入光场()E t 是由沿z 方向传播的三个不同频率的单色光场组成312123().i t i t i t E t E e E e E e c c ωωω---=+++ (1.1) 相应的各向同性介质中的三阶非线性极化强度为(3)(3)30()()P t E tεχ= (1.2) 将式(1.1)代入式(1.2),可见(3)()P t 是具有不同频率的(包括零频)的各项极化强度之和,可以写成(3)()()n i t n nP t P e ωω-=∑ (1.3)式中n 取±,负号表示复数共轭量,包括极化强度的各种频率成分:11211231231200,0,3,,,2ωωωωωωωωωωωω+++-+等。
这些频率项分别表示三次谐波、四波混频、相位共轭、光克尔效应、自聚焦、饱和吸收、双光子吸收、受激散射等三阶非线性光学效应。
三倍频效应是频率为ω的光场入射介质产生频率为3ω光场的过程,其极化强度为(3)(3)30(3)(3;,,)()P E ωεχωωωωω= (1.4) 这里D=1. 很少有晶体能实现三倍频的相位匹配,而且输入激光的强度往往受到光损伤的限制。
气体激光损伤极限强度比固体要高几个数量级,研究表明碱金属蒸汽在可见光区极化率(3)χ有很强的共振增强,因此具有较强的三倍频效应。
以功率比表示的三倍频的转换效率为222(3)223243039()sin ()2P P L kL c P c n n S ωωωωωωηχε∆== (1.5) 定义相干长度c c /,L=L kL /2/2c L k ππ=∆∆=当时,,三倍频效率很快下降;当0k ∆=,相位匹配,有最大的转换效率。
光纤通信实验4光纤中的四波混频效应
东莞理工学院《光纤通信》optisystem软件仿真实验实验4光纤中的四波混频效应(FWM)一、实验目的1、了解影响四波混频效应的产生的因素2、了解抑制或增强四波混频效应的方法二、实验要求图4-1 G.653(a)及G.655(b)光纤的传输光谱某FWM的实验结果:如图4-1 (a)为4个3dBm的光信号在G.653光纤中传输了25km 后的光谱,其中λ0为1550nm波长,另外三个信号的中心波长分别为1549nm、1547nm、1551.5nm。
由图可见,经过传输后的信号,由于FWM产生了数十个串扰信号,有的叠加在原来信号上,有点落在其他位置上,干扰了原信号及其他位置信号的传输。
图4-1(b) 为初始输入的4个光波信号。
1、请根据上述实验数据,分别采用G.653光纤和G.655光纤作为传输光纤,对比光信号分别经过G.653光纤和G.655光纤后的FWM效应。
2、假设有两个输入光波信号输入到G.653光纤,其中一个输入信号的波长固定在1550nm,另一个波长在1550nm附近(可调)。
改变输入光功率,两个波长的间隔,光纤长度,观察FWM效应,总结哪些因素将影响FWM效应。
图4-2 仿真实验系统搭建三、思考题:1、G.653光纤有什么缺点?为什么要研制G.655光纤?G.655光纤有什么优点?2、如何抑制光纤中的FWM效应?附录:计算并输出G.653或G.655光纤的色散文件clear all;close all;WL=linspace(1450,1630,1801);S0=0.06;WL0=1550;D=S0*(WL-WL0);%G.653%S0=0.0467;WL0=1480;D=S0*(WL-WL0);%G.655figure(1)plot(WL,D,'k');hold on;plot(WL,D*0,'k');hold on;axis([1450,1630,-20,20]);WL=WL';D=D';da=[WL D]save E:\G652.txt-ascii da1:G.653:G.655:2:(1)改变波长间隔:1545:1542:1520:1515:(2)改变光功率:10dbm:5dbm:-10dbm:-20dbm:-50dbm:(3)改变光纤长度:50km:10km:5km:1km:0.2km:。
四波 混频
A4 z
43
A4 t
i 2
43
2 A4 t 2
1 2
4
A4
i A4 2 2 A3 2 2P0 A4 iP0 A3*ei
3.相位匹配技术
物理机制:
✓ 相位匹配时,参量增益对应FWM的峰值,可写为
kM kW kNL 0
材料色散 波导色散 非线性效应 对于简并FWM,上述贡献分别为
✓ FWM的微观解释:在量子力学术语中,一个或几个光波的光子被湮灭, 同时产生了几个不同频率的新光子,且在此参量作用过程中,净能量 和动量是守恒的,这样的过程就称为四波混频过程。
2.四波混频的标量理论
✓ 在准连续条件下运转,则可忽略场分量的时间依赖关系:
E j (r) Fj (x, y) Aj (z),
人理解。 • (3)别人眼中的自己,才是真正存在的自己。学会以别人的
角度看问题,并据此改进自己在他们眼中的形象。 • (4)只能修正自己,不能修正别人。想成功地与人相处,让
别人尊重自己的想法,惟有先改变自己。 • (5)真诚坦白的人,才是值得信任的人。 • (6)真情流露的人,才能得到真情回报。
• 2.表达同理心七个步骤 • (1)问开放式的问句 • (2)放慢脚步 • (3)避免太快下判断 • (4)注意你的身体反应 • (5)了解过去 • (6)让故事说出来 • (7)设定界限
• 14.交谈时,我会注视对方的眼睛。
ABC
• 15.我很注意人们无意间身体姿态所流露的心情。 A B C
• 16.别人跟我讲话时,我会东张西望。
ABC
• 17.别人说我表情太严肃了。
ABC
• 18.别人不听我的劝告,我并不生气。
ABC
• 对于 1,2,4,5,7,12,13,14,15,18 题(共10 题),如果选A 则得1 分,选B 得2 分,选C 得3 分。对于3, 6,8,9,10,11,16,17 题(共8 题),如果选A 则得3
《光纤通信》实验4 光纤中的四波混频效应
东莞理工学院《光纤通信》optisystem软件仿真实验实验4光纤中的四波混频效应(FWM)一、实验目的1、了解影响四波混频效应的产生的因素2、了解抑制或增强四波混频效应的方法二、实验要求图4-1 G.653(a)及G.655(b)光纤的传输光谱某FWM的实验结果:如图4-1 (a)为4个3dBm的光信号在G.653光纤中传输了25km 后的光谱,其中λ0为1550nm波长,另外三个信号的中心波长分别为1549nm、1547nm、1551.5nm。
由图可见,经过传输后的信号,由于FWM产生了数十个串扰信号,有的叠加在原来信号上,有点落在其他位置上,干扰了原信号及其他位置信号的传输。
图4-1(b) 为初始输入的4个光波信号。
1、请根据上述实验数据,分别采用G.653光纤和G.655光纤作为传输光纤,对比光信号分别经过G.653光纤和G.655光纤后的FWM效应。
2、假设有两个输入光波信号输入到G.653光纤,其中一个输入信号的波长固定在1550nm,另一个波长在1550nm附近(可调)。
改变输入光功率,两个波长的间隔,光纤长度,观察FWM效应,总结哪些因素将影响FWM效应。
图4-2 仿真实验系统搭建三、思考题:1、G.653光纤有什么缺点?为什么要研制G.655光纤?G.655光纤有什么优点?2、如何抑制光纤中的FWM效应?附录:计算并输出G.653或G.655光纤的色散文件clear all;close all;WL=linspace(1450,1630,1801);S0=0.06;WL0=1550;D=S0*(WL-WL0);%G.653%S0=0.0467;WL0=1480;D=S0*(WL-WL0);%G.655figure(1)plot(WL,D,'k');hold on;plot(WL,D*0,'k');hold on;axis([1450,1630,-20,20]);WL=WL';D=D';da=[WL D]save E:\G652.txt-ascii da1:G.653:G.655:2:(1)改变波长间隔:1545:1542:1520:1515:(2)改变光功率:10dbm:5dbm:-10dbm:-20dbm:-50dbm:(3)改变光纤长度:50km:10km:5km:1km:0.2km:。
非线性光学四波混频
(5.3 - 17)
2
1
在求解这些方程时, 为了克服有多个坐标量的困难, 我们引入共同坐标z。 对于平面波而言, 有
而由图5.3 - 6, 又有
4
3
(5.3 - 18)
于是, (5.3 - 17)式可以改写为
(5.3 - 19)
在一般情况下, DFWM相位共轭特性可以通过对(5.3 - 35)式进行数值计算给出。 图5.3 - 7~图5.3 - 10分别为对称激励情况下计算得到的特性曲线, 由这些曲线可以得到DFWM的如下特性:
02
5.3.2 简并四波混频(DFWN)理论
简并四波混频作用简并四波混频是指参与作用的四个光波的频率相等。 这时, 支配这个过程的三阶非线性极化强度一般有三个波矢不同的分量:
(5.3 - 1)
式中
简并四波混频的输出可以利用耦合波方程求解。其四波相互作用也可以理解为如下的全息过程:三个入射光波中的两个相互干涉,形成一个稳定光栅,第三个光波被光栅衍射,得到输出波。
图5.3 - 3 简并四波混频结构示意图
01
我们讨论的DFWM结构如图5.3 - 3所示, 非线性介质是透明、 无色散的类克尔介质, 三阶非线性极化率是χ(3) 。 在介质中相互作用的四个平面光波电场为
02
(5.3 - 3)
03
其中, E1、 E2是彼此反向传播的泵浦光, E3、 E4是彼此反向传播的信号光和散射光。 一般情况下, 信号光和泵浦光的传播方向有一个夹角, 它们的波矢满足
01
图5.3 - 4 振荡时, 介质中E3和E4的功率分布
01
图5.3 - 5 DFWN的放大特性
当(3π/4)>|g|L>(π/4)时, R>1。 此时, 可以产生放大的反射光, 在介质中E3和E4的功率分布如图5.3 - 5所示。
光纤通信实验4光纤中的四波混频效应
东莞理工学院《光纤通信》optisystem软件仿真实验实验4光纤中的四波混频效应(FWM)一、实验目的1、了解影响四波混频效应的产生的因素2、了解抑制或增强四波混频效应的方法二、实验要求图4-1 G.653(a)及G.655(b)光纤的传输光谱某FWM的实验结果:如图4-1 (a)为4个3dBm的光信号在G.653光纤中传输了25km 后的光谱,其中λ0为1550nm波长,另外三个信号的中心波长分别为1549nm、1547nm、1551.5nm。
由图可见,经过传输后的信号,由于FWM产生了数十个串扰信号,有的叠加在原来信号上,有点落在其他位置上,干扰了原信号及其他位置信号的传输。
图4-1(b) 为初始输入的4个光波信号。
1、请根据上述实验数据,分别采用G.653光纤和G.655光纤作为传输光纤,对比光信号分别经过G.653光纤和G.655光纤后的FWM效应。
2、假设有两个输入光波信号输入到G.653光纤,其中一个输入信号的波长固定在1550nm,另一个波长在1550nm附近(可调)。
改变输入光功率,两个波长的间隔,光纤长度,观察FWM效应,总结哪些因素将影响FWM效应。
图4-2 仿真实验系统搭建三、思考题:1、G.653光纤有什么缺点?为什么要研制G.655光纤?G.655光纤有什么优点?2、如何抑制光纤中的FWM效应?附录:计算并输出G.653或G.655光纤的色散文件clear all;close all;WL=linspace(1450,1630,1801);S0=0.06;WL0=1550;D=S0*(WL-WL0);%G.653%S0=0.0467;WL0=1480;D=S0*(WL-WL0);%G.655figure(1)plot(WL,D,'k');hold on;plot(WL,D*0,'k');hold on;axis([1450,1630,-20,20]);WL=WL';D=D';da=[WL D]save E:\G652.txt-ascii da1:G.653:G.655:2:(1)改变波长间隔:1545:1542:1520:1515:(2)改变光功率:10dbm:5dbm:-10dbm:-20dbm:-50dbm:(3)改变光纤长度:50km:10km:5km:1km:0.2km:。
四波混频波形剖析
第1章引言碰撞问题是物理学中常见的问题,早在1639年就有物理学家开始提出有关碰撞的问题,之后的几百年中无数科研工作着持续对碰撞问题进行探索,提出不同的假设,运用实验演示验证自己的理论,研究碰撞问题的规律和特点等。
当时的碰撞问题还只局限于宏观物体的碰撞,到近代物理研究中碰撞问题的研究已经深入到微观领域。
物质是由分子构成,碰撞效应能够对对物质的结构的检测和分析,用于研究激光制冷。
对于碰撞截面的探究有助于我们了解碰撞系统下能量的再分布,各个能级之间的跃迁几率等等。
它不仅仅在物理方向具有重要作用,而且在其它领域都具有广泛的应用,包括,天文学、等离子体学、原子物理学化学、材料和气体电子学等领域。
关于碰撞的研究与之有联系的种类相当宽泛:原子间碰撞、Au+Au碰撞等。
由于碰撞效应能够为许多实际生产应用部门都会需要相关数据,促进各个领域的飞速发展,因此碰撞效应[1-2]的研究具有重要的研究价值四波混频是一种先进的光谱学技术,随着激光技术的不断发展使得四波混频技术的应用有的巨大的提高,比以往的技术相比拥有许多技术优势,因而四波混频技术是一种常用技术手段。
本文中我们就应用四波混频来研究多普勒系统中的碰撞效应。
1.1 碰撞效应近代物理学中无数科研工作着对微观领域的碰撞问题进行探索,发现碰撞的的特点之一就是粒子之间发生碰撞之后,辐射频率发生改变。
一个原子或者分子和其它物质产生碰撞时,能导致其固有辐射频率的改变,这个现象就叫做碰撞效应。
宇宙中的物质都是由原子分子构成的,碰撞效应的理论可以用来分析原子或分子内部的结构,为众多学科的研究和发展奠定了理论基础,提供了实验方法,具有非常重要的研究价值。
关于碰撞问题的研究包括对碰撞截面的研究,对谱线线性的研究,对谱线展宽的研究等等。
碰撞效应在物理化学甚至其它领域都具有广泛的应用,包括,天文学[3]、等离子体学[4-6]、原子物理学化学[7-9]、材料和气体电子学[10-14]等领域。
四波混频波形
四波混频波形第1章引言碰撞问题是物理学中常见的问题,早在1639年就有物理学家开始提出有关碰撞的问题,之后的几百年中无数科研工作着持续对碰撞问题进行探索,提出不同的假设,运用实验演示验证自己的理论,研究碰撞问题的规律和特点等。
当时的碰撞问题还只局限于宏观物体的碰撞,到近代物理研究中碰撞问题的研究已经深入到微观领域。
物质是由分子构成,碰撞效应能够对对物质的结构的检测和分析,用于研究激光制冷。
对于碰撞截面的探究有助于我们了解碰撞系统下能量的再分布,各个能级之间的跃迁几率等等。
它不仅仅在物理方向具有重要作用,而且在其它领域都具有广泛的应用,包括,天文学、等离子体学、原子物理学化学、材料和气体电子学等领域。
关于碰撞的研究与之有联系的种类相当宽泛:原子间碰撞、Au+Au碰撞等。
由于碰撞效应能够为许多实际生产应用部门都会需要相关数据,促进各个领域的飞速发展,因此碰撞效应[1-2]的研究具有重要的研究价值四波混频是一种先进的光谱学技术,随着激光技术的不断发展使得四波混频技术的应用有的巨大的提高,比以往的技术相比拥有许多技术优势,因而四波混频技术是一种常用技术手段。
本文中我们就应用四波混频来研究多普勒系统中的碰撞效应。
1.1 碰撞效应近代物理学中无数科研工作着对微观领域的碰撞问题进行探索,发现碰撞的的特点之一就是粒子之间发生碰撞之后,辐射频率发生改变。
一个原子或者分子和其它物质产生碰撞时,能导致其固有辐射频率的改变,这个现象就叫做碰撞效应。
宇宙中的物质都是由原子分子构成的,碰撞效应的理论可以用来分析原子或分子内部的结构,为众多学科的研究和发展奠定了理论基础,提供了实验方法,具有非常重要的研究价值。
关于碰撞问题的研究包括对碰撞截面的研究,对谱线线性的研究,对谱线展宽的研究等等。
碰撞效应在物理化学甚至其它领域都具有广泛的应用,包括,天文学[3]、等离子体学[4-6]、原子物理学化学[7-9]、材料和气体电子学[10-14]等领域。
光纤的非线性-克尔效应和四波混频ppt实用资料
F331
F1
F2
F3
2.四波混频
• 四波混频的影响:
• 原有波长的光能量因转移而损失,影响系统的BER、信噪比等性能; • 如果产生的新波长与原有某波长相同或交叠,从而产生严重的串扰
• 减小四波混频的方法:
• 引入色散 • 不均匀信道间隔 • 较大信道间隔
通信技术专业教学资源库 深圳职业技术学院
• 交叉相位调制 通信技术专业教学资源库
通信技术专业教学资源库 通信技术专业教学资源库 四波混频 通信技术专业教学资源库 原有波长的光能量因转移而损失,影响系统的BER、信噪比等性能; 如果产生的新波长与原有某波长相同或交叠,从而产生严重的串扰 四波混频 克尔效应 四波混频
2.四波混频
• 不同波长的三个光波同时在光纤中传播时,通过石英介质相互作
用产生新的波长,新的波长的频率是三者的组合,这种现象称为 不同波长的三个光波同时在光纤中传播时,通过石英介质相互作用产生新的波长,新的波长的频率是三者或交叠,从而产生严重的串扰
四波混频 四波混频
原有波长的光能量因转移而损失,影响系统的BER、信噪比等性能; 通信技术专业教学资源库
通信技术专业教学资源库 深圳职业技术学院
《华为传输工程师HCNA认证》课程
克尔效应与四波混频
主讲: 吴粤湘
课程团队: 吴粤湘 林琪 赵晓吉 李滢滢
目录
01 克尔效应 02 四波混频
1.克尔效应
• 自相位调制
原有波长的光能量因转移而损失,影响系统的BER、信噪比等性能; 四波混频 通信技术专业教学资源库 克尔效应 克尔效应
谢谢
主讲: 吴粤湘
课程团队: 吴粤湘 林琪 赵晓吉 李滢滢
如果产生的新波长与原有某波长相同或交叠,从而产生严重的串扰
三次谐波和四波混频
E1
(
z
)
E1
(
z
)
E1
(z)
c (3) 12
E1
(
z)
E2
(z)E2 (z)
c (3) 13
E1
(
z
)E3
(
z)
E3
(
z)
c (3) 14
E1
(
z)
E4
(
z
)E4
(
z)]
E2 (z) z
i
32
cn2
[
c (3) eff
E1
(
z
)
E3
(
z
)
E4
(
z)eikz
1 2
c E (3) 22 2
( z ) E2
和,即
P(3) (t) P(n )eint
n
P(3) (t) P(n )eint
n
式中n的取值可以从负到正,包括各种频率成分及其 复数共轭量,这些极化强度的各种频率成分是:
100,12 0,31,1 2 3,1 2 3,21 2
这些频率分别表示光克尔效应、三次谐波、四波混频 、相位共轭、自聚焦、饱和吸收、双光子吸收、受激 散射等三阶非线性光学效应。
(
z)
c (3) 31
E3
( z ) E1 ( z ) E1
(z)
c (3) 32
E3
(
z)
E2
(
z)
E2
(
z)
c (3) 34
E3
(
z)
E4
(
z)
E4
(
z)]
E4 (z) z
i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性光学中,四波混频是介质中四个光波相互作用所引起的非线性光学效应,它起因于介质的三阶非线性极化。 四波混频相互作用的方式一般可分为以下三类:
一,三个泵浦场的作用情况;二,输出光与一个光具有相同模式的情况;三,后向参量放大和振荡
由于四波混频在所有介质中都能很容易的观察到,而且变换形式很多,所以它已经得到了很多有意义的应用。例如,利用四波混频可以把可调谐相干光源的频率范围扩展到红外和紫外;在简笔的情况下,四波混频可用于自适应光学的波前再现;在材料应用中共振四波混频技术又非常有效的光谱和分析工具等待
发生四波混频的原因是入射光中的某一个波长上的变化,从而产生了新的波长的光波。
在DWDM系统中,当信道间距与光纤色散足够小且满足相位匹配时,四波混频将成为非线性串扰的主要因素。当信道间隔达到10GHZ 以下时,FWM 对系统的影响将最严重。
通信中,四波混频(Four-Wave Mixing,FWM) 亦称四声子混合,是光纤介质三阶极化实部作用产生的一种光波间耦合效应,是因不同波长的两三个光波相互作用而导致在其它波长上产生所谓混频产物,或边带的新光波,这种互作用可能发生于多信道系统的信号之间,可以产生三倍频、和频、差频等多种参量效应。
目前的DWDM系统的信道间隔一般在100GHZ ,零色散导致四波混频成为主要原因,所以,采用G.653 光纤传输DWDM系统时,容易产生四波混频效应,而采用G.652 或G.655 光纤时,不易产生四波混频效应。但G.652 光纤在1550nm 窗口存口存在一定的色散,传输10G信号时,应加色散补偿,G.655 光纤在1550nm 窗口的色散很小,适合10G DWDM 系统的传输。
四波混频对DWDM系统的影响主要表现在:(1)产生新的波长,使原有信号的光能量受到损失,影响系统的信噪比等性能;(2)如果产生的新波长与原有某波长相同或交叠,从而产生严重的串扰。四波混频的产生要求要求各信号光的相位匹配,当各信号光在光纤的零色散附近传输时,材料色散对相位失配的影响很小,因而较容易满足相位匹配条件,容易产生四波混频效应。