2019年北京市朝阳区二模试题数学【理科】试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区高三年级第二次综合练习

2018.5

(考试时间120分钟 满分150分)

本试卷分为选择题(共40分)和非选择题(共110分)两部分

第一部分(选择题 共40分)

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)已知集合{230}A x x =∈-≥R ,集合2{320}B x x x =∈-+

(A )32x x ⎧⎫≥

⎨⎬⎩⎭ (B )322x x ⎧⎫

≤<⎨⎬⎩⎭

(C ){}

12x x << (D )322x

x ⎧⎫

<<⎨⎬⎩⎭

(2)如果0a b >>,那么下列不等式一定成立的是

(A )33log log a b < (B )1

1()()4

4

a

b

> (C )

11

a b

< (D )22a b < (3)执行如右图所示的程序框图.若输出的结果为2,则输入的正整

数a 的可能取值的集合是 (A ){}1,2,3,4,5 (B ){}1,2,3,4,5,6 (C ){}2,3,4,5 (D ){}2,3,4,5,6

(4)已知函数()π

()sin (0,0,)2

f x A x A ωϕωϕ=+>><的

部分图象如图所示,则ϕ=

(A )π6

- (B )6π

(C )π

3

- (D )π3

(5)已知命题p :复数1i

i

z +=在复平面内所对应的点位于第四象限;命题q :0x ∃>,cos x x =,则下列

(A )()()p q ⌝∧⌝ (B )()p q ⌝∧ (C )()p q ∧⌝ (D )p q ∧

π

3π122

-2

O y x

开始 i =0

结束

i =i +1

a >13?

输出i 是

a =2a +3 输入a

(6)若双曲线2

2

2

1(0)y x b b

-

=>的一条渐近线与圆22

(2)1x y +-=至多有一个交点,则双曲线离心率的取值范围是

(A )(1,2] (B )[2,)+∞ (C

) (D

))+∞ (7)某工厂分别生产甲、乙两种产品1箱时所需要的煤、电以及获得的纯利润如下表所示.

若生产甲、乙两种产品可使用的煤不超过120吨,电不超过60千度,则可获得的最大纯利润和是 (A )60万元 (B )80万元 (C )90万元 (D )100万元

(8)如图放置的边长为1的正△PMN 沿边长为3的正方形ABCD 的各边内侧逆时针方向

滚动.当△PMN 沿正方形各边滚动一周后,回到初始位 置时,点P 的轨迹长度是 (A )

83π (B )163

π

(C )4π (D )5π

第二部分(非选择题 共110分)

二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.

(9)已知平面向量a ,b 满足1=a ,2=b ,a 与b 的夹角为60︒,则2+=a b ____. (10)5

(12)x -的展开式中3

x 项的系数为___.(用数字表示)

(11)如图,AB 为圆O 的直径,2AB =,过圆O 上一点M 作圆O 的切线,交AB 的延长线于点C ,过点M

作MD AB ⊥于点D ,若D 是OB 中点,则AC BC ⋅=_____.

(12)由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积是 .

(13)已知数列

{}n a 的前n 项和

为n S ,且满足

24()

n n S a n *=-∈N

A (第11题图)

2

侧视图

正视图

B

A

,则n a = ;

数列2{log }n a 的前n 项和为 .

(14)若存在正实数M ,对于任意(1,)x ∈+∞,都有()f x M ≤,则称函数()f x 在(1,)+∞ 上是有界函数.下

列函数

①1()1f x x =

-; ②2()1x f x x =+; ③ln ()x f x x

=; ④()sin f x x x =, 其中“在(1,)+∞上是有界函数”的序号为 .

三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)

在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3

A 2π

=

,3b =,△ABC

. (Ⅰ)求边a 的长; (Ⅱ)求cos2B 的值.

(16)(本小题满分13分)

某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,

[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.

(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计

从全市高中学生中任意选取一人,其参 加社区服务时间不少于90小时的概率;

(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望E ξ.

(17)(本小题满分14分)

如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为PA ,

BD 中点,2PA PD AD ===.

(Ⅰ)求证:EF ∥平面PBC ; (Ⅱ)求二面角E DF A --的余弦值; (Ⅲ)在棱PC 上是否存在一点G ,使

服务时间/小时

C

D

P E

相关文档
最新文档