核磁共振谱习题答案

核磁共振谱习题答案
核磁共振谱习题答案

核磁共振谱习题

一.选择题

1.以下五种核,能用以做核磁共振实验的有( ACE )

A:19F9 B:12C6 C:13C6

D:16O8 E:1H1

2.在100MHz仪器中,某质子的化学位移δ=1ppm,其共振频率与TMS相差( A )

A :100Hz B:100MHz C: 1Hz

D:50Hz E:200Hz

3.在60MHz仪器中,某质子与TMS的共振频率相差120Hz则质子的化学位移为( E )A:1.2ppm B:12ppm C:6ppm

D:10ppm E:2ppm

4.测试NMR时,常用的参数比物质是TMS,它具有哪些特点(ABCDE )

A:结构对称出现单峰

B:硅的电负性比碳小

C:TMS质子信号比一般有机物质子高场

D:沸点低,且容易溶于有机溶剂中

E:为惰性物质

5.在磁场中质子周围电子云起屏蔽作用,以下说法正确的是(ACDE )

A:质子周围电子云密度越大,则局部屏蔽作用越强

B:质子邻近原子电负性越大,则局部屏蔽作用越强

C:屏蔽越大,共振磁场越高

D:屏蔽越大,共振频率越高

E:屏蔽越大,化学位移δ越小

6.对CH3CH2OCH2CH3分子的核磁共振谱,以下几种预测正确的是(ACD )

A:CH2质子周围电子云密度低于CH3质子

B:谱线将出现四个信号

C:谱上将出现两个信号

D:<

E:>

7.CH3CH2Cl的NMR谱,以下几种预测正确的是(D)

A:CH2中质子比CH3中质子共振磁场高

B:CH2中质子比CH3中质子共振频率高

C:CH2中质子比CH3中质子屏蔽常数大

D:CH2中质子比CH3中质子外围电子云密度小

E:CH2中质子比CH3中质子化学位移δ值小

8.下面五个化合物中,标有横线的质子的δ最小的是(A)

A:CH4 B:CH3F C:CH3Cl

D:CH3Br E:CH 3l

9.下面五个化合物中,标有横线的质子的共振磁场H0最小者是(A)

A:RCH2OH B:RCH2CH2OH C:RCH2Cl

D:CHBr E:ArCH2CH3

10.下面五个结构单元中,标有横线质子的δ值最大的是(E)

A:CH3-C B:CH3-N C:CH3-O

D:CH3F E:CH2F2

11.预测化合物的质子化学位移,以下说法正确的是(C)

A:苯环上邻近质子离C=O近,共振在高磁场

B:苯环上邻近质子离C=O近,屏蔽常数大

C:苯环上邻近质子离C=O近,化学位移δ大

D:苯环上邻近质子外围电子云密度大

12.氢键对化学位移的影响,以下几种说法正确的是(BCE)

A 氢键起屏蔽作用

B:氢键起去屏蔽作用

C:氢键使外围电子云密度下降

D:氢键使质子的屏蔽增加

E:氢键使质子的δ值增加

13.对于羟基的化学位移,以下几种说法正确的是(ABE)

A:酚羟基的δ随溶液浓度而改变

B:浓度越大δ值越大

C:浓度越大,δ值越小

D:邻羟基苯乙酮的羟基δ值也随溶液的浓度改变而明显改变E:邻羟基苯乙酮的δoH与浓度无明显关系

二.填充题

1.在磁场H0的作用下,核能级分裂,(u为核磁矩),已知,在同一频率条件下,使氟,磷,氢发生共振,所需磁场强度最大的是:_磷_。

2.已知1H1的磁旋比(γ)大于13C6,则在同一射频条件下,使1H1和13C6发生共振的条件是:1H1发生共振所需磁场强度小于13C6_。

3.实现核磁共振的条件是:n0 = g H0 / (2p )。

4.对于质子来说,仪器的磁场强度如为1.4092T,则激发用的射频频率为60 Hz_。

5.某化合物的NMR谱上有两个峰,δ值分别为4.0和7.8ppm,如在60MHz仪器上引两峰频率差是_228_Hz。

6.进行核磁共振实验时,样品要置磁场中,是因为:在外磁场中,原子核能级才会产生裂分。

7.在核磁共振实验中,测定质子的化学位移,常用的参比物质是:_TMS。

8.有个共振谱如图,由图分析_B_质子的屏蔽常数更大。

9.上面两个化合物中,带圈质子的共振磁场较大的是_A_

10.有A、B、C三种质子,它们的屏蔽常数大小顺序为,试推测其共振磁场H0的大小顺序为_ H A> H B> H C__ 。

11.有A,B,C 三种质子,它们的共振磁场大小顺序为,则其化学位移δ的大小顺序为δC>δB>δA。

12.在化合物CHX3中随着卤素原子X的电负性增加,质子共振信号将向_低__磁场方向移动。

13.下面五种类型质子和五个化学位移的值,4.26,3.24,2.12,0.77和2.68ppm,请给以归属。

H3C-C,δ__0.77_ H3C-N, δ__2.68_; H3C-O,δ_3.24_; H3C-F,δ__4.26__; H3C-Br δ_2.12_。

14.影响质子化学位移的诱导效应是通过化学键起作用,而磁各向异性效应是通过空间关系起作用。15.对于二甲苯()分子中的_2__种类型等性质子,在核磁共振谱上有__2____个信号。16.预测乙烷分子(CH3CH3)在NMR谱上信号数目为_1_个,苯在NMR谱上信号数目有_1__个。

17.预测下列化合物各有几种等性质子,在NMR谱上有几个信号。

(CH3)3-C-O-C(CH3)3有_1__种等性质子,_1__个信号。

(CH3)2CH-O-CH-(CH3)2有_2_种等性质子,__2_个信号。

三.问答题

1、三个不同的质子H a、H b、H c,其屏蔽常数的大小次序为σb>σa>σc,这三种质子在共振时外加磁场

强度的次序如何?这三种质子的化学位移次序如何?σ增大化学位移如何变化?

2、下列每个化合物中质子H a和H b哪个化学位移大?为什么?

3、指出下列化合物属于何种自旋体系:

a. CH2Br-CH2Cl

b. CH3CH2F

c. d.

4、异香草醛(I)与一分子溴在HOAc中溴化得(Ⅱ),(Ⅱ)的羟基被甲基化,主要产物为(Ⅲ),(Ⅲ)的NMR图谱如下,溴的位置在何处?

5、丙酰胺的图谱如下,说明图谱中各组峰对应分子中哪类质子。

6、下列一组NMR图谱内标物皆为TMS,试推测结构。

a

b.

7.下图给出的是某一化合物的门控去偶(非NOE方式)测定的 13CNMR图谱。已知分子式为C10H12O,试推测其结构。

8.化合物分子式为C4H7NO,其碳谱和氢谱如下,试推测其结构。(溶剂为CDCl3)

9.苯甲醛中,环的两个质子共振在δ7.72处,而其他三个质子在δ7.40处,说明为什么?

10. 释2-碘丙烷中异丙基的分裂型式和强度。

11.某化合物在300MHz谱仪上的1H NMR谱线由下列三条谱线组成,它们的化学位移值分别是0.3,1.5和7.3,在500MHz谱仪上它们的化学位移是多少?用频率(单位用Hz)来表示其值分别是多少?

12.判断下列化合物1H化学位移的大小顺序,并说明理由:

CH3Cl,CH3I,CH3Br,CH3F。

13.在常规13C谱中,能见到13C-13C的偶合吗?为什么?

14.试说出下面化合物的常规13C NMR谱中有几条谱线?并指出它们的大概化学位移值。

15.从DEPT谱如何区分和确定CH3、CH2、CH和季碳?

16.下图为L-薄荷醇(L-menthol)的2D-INADEQUATE谱及解析结果,试在L-薄荷醇的结构上标出相应字母。

答案:

1、外加磁场强度H b>H a>H c;化学位移δHc>δHa>δHb;σ增大化学位移减小。

2、化合物(A)中δHa>δHb。因为与H a相连的碳又与O 相连,使H a周围的电子云密度小于H b,去屏蔽作用增大,所以δHa>δHb。化合物(B)中δHa>δHb。因为Cl的电负性大于Br,吸电子使H a的去屏蔽效应强。

3、 a:A2X2 b:AMX c:A2M3X d:AA'BXX'Y

4、结构如图示

5、丙酰胺的结构:其中δH为0.9~1.2分裂为三重峰的是—CH3δH为2.0~2.5分裂为四重峰的是—CH2—δH为6.0左右的是—NH2

6、结构如图示 a、 b.

7

8

9.由于羰基的各向异性,使邻位氢去屏蔽。

10.异丙基的α-H表现为七重峰,强度比为

1∶6∶15∶20∶15∶6∶1,—CH3为二重峰。

11. 150Hz,750 Hz,3650 Hz。

12. CH3I< CH3Br< CH3Cl< CH3F

14. 5条 C12H14O4

15. 在DEPT-90°谱中,只有CH峰;DEPT-135°谱中CH、CH3为正峰;CH2为负峰,季碳在DEPT谱中不出现信号。

16.因j与i之间有相关峰,故j-i连接可以认定。顺着横轴上的13C信号i出发向上垂直引伸,可以找到另两个相关峰,顺着相关峰追踪,示i又分别与e及d相连,这样即得到该化合物的部分骨架(1)。进一步追踪下去,因e与a、b,d与g之间示为相关,故可将骨架(1)扩展到骨架(2)。接下去,因h

与f相关,而f又与g、c相关,故又可将骨架(2)扩展到骨架(3)。至此,所有的相关峰均已包括进来。故

L-menthol根据2D-INADEQUATE谱,采用上述简单的机械连接方式即可确定整个分子的碳架结构。

(1) (2) (3)

(注:可编辑下载,若有不当之处,请指正,谢谢!)

第三章 核磁共振氢谱习题

第三章 核磁共振氢谱 习题 一、判断题 [1] 核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。 [2] 质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。 [3] 自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。 [4] 氢质子子在二甲基亚砜中的化学位移比在氯仿中要小。 [5] 核磁共振波谱仪的磁场越强,其分辨率越高。 [6] 核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。 [7] 在核磁共振波谱中,耦合质子的谱线裂分数目取决于临近氢核的个数。 [8] 化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。 [9] 核磁共振波谱中出现的多重峰是由于临近核的核自旋相互作用。 [10] 化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。 [11] 苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。 [12] 氢键对质子的化学位移影响较大,所以活泼的氢的化学位移在一定范围内变化。 [13] 不同的原子核核产生共振条件不同,发生共振所必须的磁场强度B0和射频频率υ不同。 [14] (CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。 [15] 羟基的化学位移随氢键的强度变化而移动,氢键越强,化学位移值就越小。 二、选择题(单项选择) [1]氢谱主要通过信号特征提供分子结构信息,以下选项中不是信号特征的是()。 A. 峰的位置 B. 峰的裂分 C. 峰高 D. 积分线高度 [2]以下关于“核自旋弛豫”的标书中,错误的是()。 A. 没有弛豫,就不会产生核磁共振 B. 谱线宽度与弛豫时间成反比 C. 通过弛豫,维持高能态核的微弱多数 D. 弛豫分为纵向弛豫和横向弛豫 [3]具有以下自旋量子数的原子核中,目前研究最多用途最广的是()。 A. I=1/2 B. I=0 C. I=1 D. I>1 [4]进行已知成分的有机混合物的定量分析,宜采用()。 A. 极谱法 B. 色谱法 C. 红外光谱法 D. 核磁共振法 [5]CH3CH2COOH在核磁共振波谱图上有几组峰?最低场有几个氢?()。 A. 3(1H) B. 6(1H) C. 3(3H) D. 6(2H) [6]下列化合物中在核磁共振谱中出现单峰的是()。 A. CH3CH2Cl B. CH3CH2OH C. CH3CH3 D. CH3CH(CH3)2 [7]核磁共振波谱解析分子结构的主要参数是()。 A. 质荷比 B. 波数 C. 化学位移 D. 保留值 [8]分子式为C5H10O的化合物,其1H NMR谱上只出现两个单峰,最有可能的结构式为()。 A. (CH3)CHCOCH3 B. (CH3)C-CHO C. CH3CH2CH2COOH D. CH3CH2COCH2CH3

核磁共振氢谱解析方法

2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3, 可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰的裂距(J),低场三 重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂 分为三重峰。则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定的分 子式应为CH 3-CH 2 -CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结 构。

核磁一般氢谱和碳谱的解析步骤

核磁一般氢谱和碳谱的解析步骤 分析氢谱有如下的步骤。 (1) 区分出杂质峰、溶剂峰、旋转边带。 杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。据此可将杂质峰区别出来。 氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDCl3中的微量CHCl3在约7.27ppm处出峰。边带峰的区别请阅6.2.1。 (2) 计算不饱和度。 不饱和度即环加双键数。当不饱和度大于等于4时,应考虑到该化合物可能存在一个苯环(或吡啶环)。 (3) 确定谱图中各峰组所对应的氢原子数目,对氢原子进行分配。 根据积分曲线,找出各峰组之间氢原子数的简单整数比,再根据分子式中氢的数目,对各峰组的氢原子数进行分配。 (4) 对每个峰的δ、J都进行分析。 根据每个峰组氢原子数目及δ值,可对该基团进行推断,并估计其相邻基团。 对每个峰组的峰形应仔细地分析。分析时最关键之处为寻找峰组中的等间距。每一种间距相应于一个耦合关系。一般情况下,某一峰组内的间距会在另一峰组中反映出来。

通过此途径可找出邻碳氢原子的数目。 当从裂分间距计算J值时,应注意谱图是多少兆周的仪器作出的,有了仪器的工作频率才能从化学位移之差Δδ(ppm)算出Δν(Hz)。当谱图显示烷基链3J耦合裂分时,其间距(相应6-7Hz)也可以作为计算其它裂分间距所对应的赫兹数的基准。 (5) 根据对各峰组化学位移和耦合常数的分析,推出若干结构单元,最后组合为几种可能的结构式。每一可能的结构式不能和谱图有大的矛盾。 (6) 对推出的结构进行指认。 每个官能团均应在谱图上找到相应的峰组,峰组的δ值及耦合裂分(峰形和J值大小)都应该和结构式相符。如存在较大矛盾,则说明所设结构式是不合理的,应予以去除。通过指认校核所有可能的结构式,进而找出最合理的结构式。必须强调:指认是推结构的一个必不可少的环节。 如果未知物的结构稍复杂,在推导其结构时就需应用碳谱。在一般情况下,解析碳谱和解析氢谱应结合进行。从碳谱本身来说,有一套解析步骤和方法。 核磁共振碳谱的解析和氢谱有一定的差异。在碳谱中最重要的信息是化学位移δ。常规碳谱主要提供δ的信息。从常规碳谱中只能粗略的估计各类碳原子的数目。如果要得出准确的定量关系,作图时需用很短的脉冲,长的脉冲周期,并采用特定的分时去耦方式。用偏共振去耦,可以确定碳原子的级数,但化合物中碳原子数较多时,采用此法的结果不完全清楚,

第三章_核磁共振波谱法习题集及答案

第三章、核磁共振波谱法 一、选择题 ( 共80题 ) 1. 2 分 萘不完全氢化时,混合产物中有萘、四氢化萘、十氢化萘。附图是混合产物的核磁共 振谱图,A、B、C、D 四组峰面积分别为 46、70、35、168。则混合产物中,萘、四氢化萘,十氢化萘的质量分数分别如下:( ) (1) 25.4%,39.4%,35.1% (2) 13.8%,43.3%,43.0% (3) 17.0%,53.3%,30.0% (4) 38.4%,29.1%,32.5% 2. 2 分 下图是某化合物的部分核磁共振谱。下列基团中,哪一个与该图相符?( ) CH (1)CH3C CH2 O CH O CH3 (2)CH (3)CH3CH O 2 (4)C H3O CH O CH

H X :H M :H A =1:2:3 3. 2 分 在下面四个结构式中 (1) C CH 3 H R H (2)H C CH 3H CH 3 (3)H C CH 3CH 3 CH 3 (4) H C H H H 哪个画有圈的质子有最大的屏蔽常数 ? ( ) 4. 1 分 一个化合物经元素分析,含碳 88.2%,含氢 11.8%,其氢谱只有一个单峰。它是 下 列 可 能 结 构 中 的 哪 一 个 ? ( ) 5. 1 分 下述原子核中,自旋量子数不为零的是 ( )

(1) F (2) C (3) O (4) He 6. 2 分 在 CH3- CH2- CH3分子中,其亚甲基质子峰精细结构的强度比为 哪一组数据 ?() (1) 1 : 3 : 3 : 1 (2) 1 : 4 : 6 : 6 : 4 : 1 (3) 1 : 5 : 10 : 10 : 5 : 1 (4) 1 : 6 : 15 : 20 : 15 : 6 : 1 7. 2 分 ClCH2- CH2Cl 分子的核磁共振图在自旋-自旋分裂后,预计 ( ) (1) 质子有 6 个精细结构 (2) 有 2 个质子吸收峰 (3) 不存在裂分 (4) 有 5 个质子吸收峰 8. 2 分 在 O - H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ? ( ) (1) 2 (2) 1 (3) 4 (4) 3 9. 2 分 在CH3CH2Cl 分子中何种质子值大? ( ) (1) CH3- 中的 (2) CH2- 中的 (3) 所有的 (4)

核磁共振氢谱解析图谱的步骤

核磁共振氢谱解析图 谱的步骤 -CAL-FENGHAI.-(YICAI)-Company One1

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节 未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢 原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。 8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。 9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现 AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。 10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。 11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。 12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。 (4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结

核磁共振氢谱专项练习及答案

核磁共振氢谱专项练习及答案 (一)判断题(正确的在括号内填“√”号;错误的在括号内填“×”号。) 1.核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。( ) 2.质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。( ) 3.自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。( ) 4.氢质子在二甲基亚砜中的化学位移比在氯仿中要小。( ) 5.核磁共振波谱仪的磁场越强,其分辨率越高。( ) 6.核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。( ) 7.在核磁共振波谱中,耦合质子的谱线裂分数目取决于邻近氢核的个数。( ) 8.化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。( ) 9.核磁共振波谱中出现的多重峰是由于邻近核的核自旋相互作用。( ) 10.化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。( ) 11.苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。( ) 12.氢键对质子的化学位移影响较大,所以活泼氢的化学位移在一定范围内变化。( ) 13.不同的原子核产生共振条件不同,发生共振所必需的磁场强度(B0)和射频频率(v)不同。( ) 14.(CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。( ) 15.羟基的化学位移随氢键的强度变化而移动,氢键越强,δ值就越小。( ) 答案 (一)判断题 1.√2.×3.×4.×5.√6.×7.√8.×9.√l0.√11.√l2.√

l3.√l4.×l5.× (二)选择题(单项选择) 1.氢谱主要通过信号的特征提供分子结构的信息,以下选项中不是信号特征的是( )。 A.峰的位置;B.峰的裂分;C.峰高;D.积分线高度。 2.以下关于“核自旋弛豫”的表述中,错误的是( )。 A.没有弛豫,就不会产生核磁共振; B.谱线宽度与弛豫时间成反比; C.通过弛豫,维持高能态核的微弱多数;D.弛豫分为纵向弛豫和横向弛豫两种。 3.具有以下自旋量子数的原子核中,目前研究最多用途最广的是( )。 A.I=1/2;B.I=0;C.I=1; D.I>1。 4.下列化合物中的质子,化学位移最小的是( )。 A.CH3Br;B.CH4;C.CH3I;D.CH3F。 5.进行已知成分的有机混合物的定量分析,宜采用( )。 A.极谱法;B.色谱法;C.红外光谱法;D.核磁共振法。 6.CH3CH2COOH在核磁共振波谱图上有几组峰?最低场信号有几个氢?( ) A.3(1H); B.6(1H);C.3(3H);D.6(2H)。 7.下面化合物中在核磁共振谱中出现单峰的是( 九 A.CH3CH2C1;B.CH3CH20H;C.CH3CH3;D.CH3CH(CH3)2。 8.下列4种化合物中,哪个标有*号的质子有最大的化学位移?( ) 9.核磁共振波谱解析分子结构的主要参数是( )。

核磁共振碳谱详解

核磁共振碳谱(13C-NMR) Produced by Jiwu Wen

?核磁共振碳谱的特点: 1. 化学位移范围宽。 碳谱(13C-NMR)的化学位移δC通常在0~220 ppm之间(对于碳正可达330 ppm)。 离子δ C 比较:1H-NMR的化学位移δ通常在0~10 ppm之间。Example:

2. 13C-NMR给出不与氢相连的碳的共振吸收峰。 核磁共振碳谱(13C-NMR)可以给出季碳,羰基碳,氰基碳,以及不含氢原子的烯碳和炔碳的特征吸收峰。 3. 13C-NMR的偶合情况复杂,偶合常数大。 核磁共振碳谱(13C-NMR)中偶合情况比较复杂,除了1H-1H偶合,还有1H-13C以及1H,13C与其它自旋核之间的偶合。1H-13C的偶合常数通常在125-250 Hz。因此在谱图测定过程中,通常采用一些去偶技术。 4. 13C-NMR的灵敏度低。

?核磁共振碳谱的去偶技术 1. 质子宽带去偶(也称为质子噪声去偶)。质子宽带去偶是一种双共振去偶技术,实验方法是:用一相当宽的频率(包括样品中所有氢核的共振频率)照射样品,消除13C-1H 之间的偶合,使每种碳原子只给出一条谱线。 2. 偏共振去偶(也称不完全去偶)。 这种去偶技术的实验方法是:采用一个频率范围很小、比质子宽带去偶功率弱很多的射频场(B 2),其频率略高于待测样品中所有氢核的共振吸收频率,使1H 与13C 之间在一定程度上去偶,不仅消除2J ~4J 的弱偶合,而且使1J 减小到J r (表观偶合常数)。J r 和1J 之间的关系如下: r 12J J B /2?ν λπ =

核磁共振氢谱碳谱各种溶剂峰

show their degree of variability.Occasionally,in order to distinguish between peaks whose assignment was ambiguous,a further1-2μL of a specific substrate were added and the spectra run again. Table1.1H NMR Data proton mult CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent residual peak7.26 2.05 2.507.16 1.94 3.31 4.79 H2O s 1.56 2.84a 3.33a0.40 2.13 4.87 acetic acid CH3s 2.10 1.96 1.91 1.55 1.96 1.99 2.08 acetone CH3s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 acetonitrile CH3s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 benzene CH s7.367.367.377.157.377.33 tert-butyl alcohol CH3s 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH c s 4.19 1.55 2.18 tert-butyl methyl ether CCH3s 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3s 3.22 3.13 3.08 3.04 3.13 3.20 3.22 BHT b ArH s 6.98 6.96 6.877.05 6.97 6.92 OH c s 5.01 6.65 4.79 5.20 ArCH3s 2.27 2.22 2.18 2.24 2.22 2.21 ArC(CH3)3s 1.43 1.41 1.36 1.38 1.39 1.40 chloroform CH s7.268.028.32 6.157.587.90 cyclohexane CH2s 1.43 1.43 1.40 1.40 1.44 1.45 1,2-dichloroethane CH2s 3.73 3.87 3.90 2.90 3.81 3.78 dichloromethane CH2s 5.30 5.63 5.76 4.27 5.44 5.49 diethyl ether CH3t,7 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2q,7 3.48 3.41 3.38 3.26 3.42 3.49 3.56 diglyme CH2m 3.65 3.56 3.51 3.46 3.53 3.61 3.67 CH2m 3.57 3.47 3.38 3.34 3.45 3.58 3.61 OCH3s 3.39 3.28 3.24 3.11 3.29 3.35 3.37 1,2-dimethoxyethane CH3s 3.40 3.28 3.24 3.12 3.28 3.35 3.37 CH2s 3.55 3.46 3.43 3.33 3.45 3.52 3.60 dimethylacetamide CH3CO s 2.09 1.97 1.96 1.60 1.97 2.07 2.08 NCH3s 3.02 3.00 2.94 2.57 2.96 3.31 3.06 NCH3s 2.94 2.83 2.78 2.05 2.83 2.92 2.90 dimethylformamide CH s8.027.967.957.637.927.977.92 CH3s 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3s 2.88 2.78 2.73 1.86 2.77 2.86 2.85 dimethyl sulfoxide CH3s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 dioxane CH2s 3.71 3.59 3.57 3.35 3.60 3.66 3.75 ethanol CH3t,7 1.25 1.12 1.060.96 1.12 1.19 1.17 CH2q,7d 3.72 3.57 3.44 3.34 3.54 3.60 3.65 OH s c,d 1.32 3.39 4.63 2.47 ethyl acetate CH3CO s 2.05 1.97 1.99 1.65 1.97 2.01 2.07 C H2CH3q,7 4.12 4.05 4.03 3.89 4.06 4.09 4.14 CH2C H3t,7 1.26 1.20 1.170.92 1.20 1.24 1.24 ethyl methyl ketone CH3CO s 2.14 2.07 2.07 1.58 2.06 2.12 2.19 C H2CH3q,7 2.46 2.45 2.43 1.81 2.43 2.50 3.18 CH2C H3t,7 1.060.960.910.850.96 1.01 1.26 ethylene glycol CH s e 3.76 3.28 3.34 3.41 3.51 3.59 3.65“grease”f CH3m0.860.870.920.860.88 CH2br s 1.26 1.29 1.36 1.27 1.29 n-hexane CH3t0.880.880.860.890.890.90 CH2m 1.26 1.28 1.25 1.24 1.28 1.29 HMPA g CH3d,9.5 2.65 2.59 2.53 2.40 2.57 2.64 2.61 methanol CH3s h 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH s c,h 1.09 3.12 4.01 2.16 nitromethane CH3s 4.33 4.43 4.42 2.94 4.31 4.34 4.40 n-pentane CH3t,70.880.880.860.870.890.90 CH2m 1.27 1.27 1.27 1.23 1.29 1.29 2-propanol CH3d,6 1.22 1.10 1.040.95 1.09 1.50 1.17 CH sep,6 4.04 3.90 3.78 3.67 3.87 3.92 4.02 pyridine CH(2)m8.628.588.588.538.578.538.52 CH(3)m7.297.357.39 6.667.337.447.45 CH(4)m7.687.767.79 6.987.737.857.87 silicone grease i CH3s0.070.130.290.080.10 tetrahydrofuran CH2m 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O m 3.76 3.63 3.60 3.57 3.64 3.71 3.74 toluene CH3s 2.36 2.32 2.30 2.11 2.33 2.32 CH(o/p)m7.177.1-7.27.187.027.1-7.37.16 CH(m)m7.257.1-7.27.257.137.1-7.37.16 triethylamine CH3t,7 1.030.960.930.960.96 1.050.99 CH2q,7 2.53 2.45 2.43 2.40 2.45 2.58 2.57 a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed;it appears at 2.81and 3.30ppm in acetone and DMSO,respectively.In the former solvent,it is often seen as a1:1:1triplet,with2J H,D)1Hz. b2,6-Dimethyl-4-tert-butylphenol.c The signals from exchangeable protons were not always identified.d In some cases(see note a),the coupling interaction between the CH2and the OH protons may be observed(J)5Hz).e In CD3CN,the OH proton was seen as a multiplet atδ2.69,and extra coupling was also apparent on the methylene peak.f Long-chain,linear aliphatic hydrocarbons.Their solubility in DMSO was too low to give visible peaks.g Hexamethylphosphoramide.h In some cases(see notes a,d),the coupling interaction between the CH3and the OH protons may be observed(J)5.5Hz).i Poly(dimethylsiloxane).Its solubility in DMSO was too low to give visible peaks. Notes https://www.360docs.net/doc/5d6538280.html,.Chem.,Vol.62,No.21,19977513

第三章 核磁共振氢谱 习题

第三章核磁共振氢谱习题 一、判断题 [1] 核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。 [2] 质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。 [3] 自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。 [4] 氢质子子在二甲基亚砜中的化学位移比在氯仿中要小。 [5] 核磁共振波谱仪的磁场越强,其分辨率越高。 [6] 核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。 [7] 在核磁共振波谱中,耦合质子的谱线裂分数目取决于临近氢核的个数。 [8] 化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。 [9] 核磁共振波谱中出现的多重峰是由于临近核的核自旋相互作用。 [10] 化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。 [11] 苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。 [12] 氢键对质子的化学位移影响较大,所以活泼的氢的化学位移在一定范围内变化。 [13] 不同的原子核核产生共振条件不同,发生共振所必须的磁场强度B0和射频频率υ不同。 [14] (CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。 [15] 羟基的化学位移随氢键的强度变化而移动,氢键越强,化学位移值就越小。 二、选择题(单项选择) [1]氢谱主要通过信号特征提供分子结构信息,以下选项中不是信号特征的是()。 A. 峰的位置 B. 峰的裂分 C. 峰高 D. 积分线高度 [2]以下关于“核自旋弛豫”的标书中,错误的是()。 A. 没有弛豫,就不会产生核磁共振 B. 谱线宽度与弛豫时间成反比 C. 通过弛豫,维持高能态核的微弱多数 D. 弛豫分为纵向弛豫和横向弛豫 [3]具有以下自旋量子数的原子核中,目前研究最多用途最广的是()。 A. I=1/2 B. I=0 C. I=1 D. I>1 [4]进行已知成分的有机混合物的定量分析,宜采用()。 A. 极谱法 B. 色谱法 C. 红外光谱法 D. 核磁共振法 [5]CH3CH2COOH在核磁共振波谱图上有几组峰?最低场有几个氢?()。 A. 3(1H) B. 6(1H) C. 3(3H) D. 6(2H) [6]下列化合物中在核磁共振谱中出现单峰的是()。 A. CH3CH2Cl B. CH3CH2OH C. CH3CH3 D. CH3CH(CH3)2 [7]核磁共振波谱解析分子结构的主要参数是()。 A. 质荷比 B. 波数 C. 化学位移 D. 保留值 [8]分子式为C5H10O的化合物,其1H NMR谱上只出现两个单峰,最有可能的结构式为()。 A. (CH3)CHCOCH3 B. (CH3)C-CHO C. CH3CH2CH2COOH D. CH3CH2COCH2CH3

核磁共振氢谱和碳谱讲解

核磁共振氢谱 核磁共振---NMR 1945年美国斯坦福大学的 F. Block 和哈佛大学的 E. M. Purcell 同时发现了核磁共振现象,并因此荣获了1952年的 Nobel 物理奖。 核磁共振谱可为化合物鉴定提供下列信息: 1.磁核的类型:由化学位移来判别,如在1HNMR 中,可判别甲基氢、芳氢、烯氢、醛氢等。 2.磁核的化学环境:由偶合常数和自旋-自旋裂分来判别,如在 1H-NMR 中可判定甲基是与-CH 2-相连,还是与苯环相连。 3.各类磁核的相对数量:氢谱中,通过积分面积或积分曲线来判断。 4 .核自旋弛豫时间:13CNMR 可提供 T 1,并用于结构归属指定,构象的测定,以及窥测体 系的运动情况。 5 .核间相对距离:通过核的 Overhause 效应可测得。 3.1核磁共振的基本原理 3.1.1原子核的磁矩 原子核是带正电荷的粒子,自旋将产生磁矩,但并非所有同位素的原子核有自旋,只有有自旋才有磁矩。 具有自旋运动的原子核具有一定自旋量子数(I ),I=1/2 *n ,那1,2,3··· 1. 核电荷数和和质量数均为偶数的原子核没自旋。 2. 核电荷数为奇数或偶数,核质量数为奇数,有自旋现象。 3. 核电荷数为奇数,核质量数为偶数,I 为整数的原子核有自旋现象。 对于自旋不为零的核来说,当其自旋时由于形成环电流,故而产生一个小磁场,这个小磁场可用核磁矩 μ 表示。 μ 是矢量,其大小由下式确定: πγγμ2)1(h I I p +== 式中 γ ---核的磁旋比 p---自旋角动量 不同的核有不同的 γ 值,是确定同位素核的特征常数。

3.1.2自旋核在磁场中的取向和能级 对于I 不为零的核来说,如果不受外来磁场的干扰, 其自旋轴的取向将是任意的。当它们处于外加静磁场(磁场强 度为H0)中时,根据量子力学理论,它们的自旋轴的取向不 再是任意的,而只有(2I+1)种,这叫核自旋的空间量子化。每 一种取向可用一个磁量子数m 表示,则m=I,I-1,I-2,…-I+1, -I。 以1H为例,有两种取向:m1/2 和m-1/2 核磁矩μ和外加磁场H0 的相互作用能E由下式确定: E = -μ· H0 我们把外加磁场引起的核自旋能级的分裂称为核的赛曼效应。 3.1.3核的回旋和核磁共振 当一个原子核的核磁矩处于磁场H0中,核自身有一旋 转,而外加磁场又力求它取向于磁场方向,在这两种力的作 用下,核会在自旋的同时绕外加磁场的方向进行回旋,这种 运动称为Larmor(拉莫尔)进动。 在外加磁场H0的作用下,自旋量子数为I 的核,其自旋能级分裂为(2I+1) 个,任意相邻 的两能级间的能量差都等于γhH0/2π。用一个 频率为ν射的射频波(电磁波)照射磁场中的自 旋核时,如果电磁波的能量hν射与该能级差相 等,即 E射=hν射=ΔE= hν回=γ hH0/2π ν射=ν回=γ ·H0/2π 时,低自旋能态的核即可吸收电磁波的能量而跃迁到高自旋能态,这就是核磁共振。 3.1.4核的自旋弛豫 如果核平均分布在高低能态,由低能态跃迁到高能态释放能量回到低能态速度相等,无静吸收,即无核磁共振。若低能态核跃迁后,不能释放能量回到低能态,低能态核数减少,则不会有静吸收,即无NMR信号。实际上则是有自旋弛豫过程帮助回到低能态。 弛豫过程分为两种类型:自旋-晶格弛豫和自旋-自旋弛豫。 自旋-自旋弛豫:又称横向弛豫。一些高能态的自旋核把能量转移给同类的低能态核,同时一些低能态的核获得能量跃迁到高能态,因而各种取向的核的总数并没有改变,全体核的总能量也不改变。 自旋-晶格弛豫:也叫纵向弛豫。是处于高能态的核自旋体系与其周围环境之间的能量交换过程(通常习惯于将“环境”称为“晶格”)。

核磁共振碳谱总结

第4章核磁共振碳谱 在C的同位素中,只有13C有自旋现象,存在核磁共振吸收,其自旋量子数I=1/2。13C NMR 的原理与1H NMR一样。由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。加之H核的偶合干扰,使得13C NMR信号变得很复杂,难以测得有实用价值的图谱。知道二十世纪七十年代后期,质子去偶技术和傅里叶变换技术的发展和应用,才使13C NMR的测定变的简单易得。 4.1 核磁共振碳谱的特点 1. 灵敏度低 由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。 2. 分辨能力高 氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。这样,复杂和分子量高达400的有机物分子结构的精细变化都可以从碳谱上分辨。同时13C 自身的自旋-自旋裂分实际上不存在,虽然质子和碳核之间有偶合,但可以用质子去偶技术进行控制。 3. 能给出不连氢碳的吸收峰 有机化合物分子骨架主要由 C 原子构成,因而13C NMR 能更全面地提供有关分子骨架的信息。而1HNMR 中不能给出吸收信号的 C=O、C=C、C≡C、C≡N以及季碳等基团,在13CNMR 中都可以直接给出特征吸收峰。13CNMR 可直接观测不带氢的含碳官能团,如羰基、氰基等。 4. 不能用积分高度来计算碳的数目 13C NMR的常规谱是质子全去偶谱。对大多数碳,尤其是质子化碳,他们的信号强度都会由去偶的同时产生的NOE效应而大大增强。因此不到呢国家的碳原子的数目不能通过常规共振谱的谱线强度来确定。 5. 弛豫时间T1可作为化合物结构鉴定的波谱参数 在化合物中,处于不同环境的13C核,他们的弛豫时间数值相差较大,可以达到2~3个数量级,通过T1可以致人结构归属,窥测体系的运动情况等。 4.2 核磁共振碳谱的测定方法 4.2.1 脉冲傅里叶变换法 同核磁共振氢谱。 4.2.2 核磁共振碳谱中的几种去偶技术 13C核的天然丰度很低,分子中相邻的两个 C 原子均为13C 核的几率极低,因此可忽略13C 核之间的偶合。 13C-1H 之间偶合常数很大,高达 120~320Hz,而13C 被偶合氢按 n+1 规律分裂为多重峰,使谱图不易解析,为提高灵敏度和简化谱图,须去掉1H 对13C 的偶合,方法有如下几种。 1. 质子带宽去偶法 又称噪声去偶,是最重要的去偶技术。在观察13C的同时,用一覆盖所有质子共振频率的射频照射质子,消除全部氢核对13C 的偶合,使每一个磁等价的13C 核成为一个信号,13CNMR呈现一系列单峰,同时由于 NOE 效应使13C 峰大为增强,信噪比提高。

第三章 核磁共振碳谱

第三章核磁共振碳谱 核磁共振氢谱是通过确定有机物分子中氢原子的位置,而间接推出结构的。事实上,所用有机物分子都是以碳为骨架构建的,如果能直接确定有机物分子中碳原子的位置,无疑是最好的办法。由于13C 核的天然丰度仅仅是1H的1/100,因而灵敏度很低。只有脉冲傅立叶核磁共振仪问世,碳谱才能用于常规测试。核磁共振碳谱测定技术近30年来迅速发展和普及。 图9.10 一甾类化合物核磁共振氢谱和碳谱 和核磁共振氢谱相比,核磁共振碳谱有许多优点:首先,氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。这样,复杂和分子量高达400的有机物分子结构的精细变化都可以从碳谱上分辨。如图9.10是一个结构较复杂的甾类分子的核磁共振谱,其氢谱各峰重叠,根本无法分辨(上图)。而碳碳谱则有24条清晰可见的谱线,非常容易分析(下图)。其次,碳谱直接反映有机物碳的结构信息,对常见的>C=O,>C=C=C<,-N=C=O和-N=C=S等有机物官能团可以直接进行解析。最后,利用核磁共振辅助技术,可以从碳谱上直接区分碳原子的级数(伯、仲、叔和季)。这样不仅可以知道有机物分子结构中碳的位置,而且还能确定该位置碳原子被取代的状况。当然,核磁共振碳谱也有许多缺点:主要是13C同位原子核在自然界中的丰度低,而且13C的磁极矩也只有1H的四分之一。这样,碳谱测定不仅需要高灵敏度的核磁共振仪器,而且所测的有机样品量也增加。另外,测定核磁共振碳谱的技术和费用也都高于氢谱。因此,往往是先测定有机物样品的氢谱,若难以得到准确的结构信息再测定碳谱,一个有机物同时测定了氢谱和碳谱一般就可以推断其结构。 核磁共振碳谱测定的基准物质和氢谱一样仍为四甲基硅烷(TMS),但此时基准原子是TMS分子中的13C,而不是1H。碳谱仍然需在溶液状态下测定,虽然溶剂中含有氢并不影响13C测定,但考虑到同一样品一般都要在测定碳谱前测定氢谱,所以仍然采用氘代试剂。

核磁共振氢谱解析方法

创作编号:BG7531400019813488897SX 创作者:别如克* 2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样 品的信号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示 有芳香族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确 定有何种基团。如果峰的强度太小,可把局部峰进行放大测试,增 大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官 能团,并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。 再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定 其结构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分 强度为2:2:3,可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰 的裂距(J),低场三重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂分为三重峰。则该化合物具有CH 3 -CH 2-CH 2 -结构单元。参考所给定的分子式应为CH 3 -CH 2 -CH 2 - NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求 其结构。

核磁共振碳谱.

13核磁共振碳谱(C-NMR)Produced by Jiwu Wen ?核磁共振碳谱的特点:1. 化学位移范围宽。 碳谱(13C-NMR)的化学位移通常在0~220 ppm之间(对于碳正离子可达330 ppm)。 比较:1H-NMR的化学位移通常在0~10 ppm之间。 2. 13C-NMR给出不与氢相连的碳的共振吸收峰。核磁共振碳谱(13 C-NMR)可以给出季碳,羰基碳,氰基碳,以及不含氢原子的烯碳和炔碳的特征吸收峰。 3. 13C-NMR的偶合情况复杂,偶合常数大。 核磁共振碳谱(13C-NMR)中偶合情况比较复杂,除了1H-1H偶合,还有1H-13C 以及1H,13C与其它自旋核之间的偶合。1H-13C的偶合常数通常在125-250 Hz。因此在谱图测定过程中,通常采用一些去偶技术。 13 ?核磁共振碳谱的去偶技术1. 质子宽带去偶 ( 也称为质子噪声去偶 )

。质子宽带去偶是一种双共振去偶技术,实验方法是:用一相当宽的频率(包括样品中所有氢核的共振频率)照射样品,消除13C-1H之间的偶合,使每种碳原子只给出一条谱线。 这种去偶技术的实验方法是:采用一个频率范围很小、比质子宽带去偶功率弱很多的射频场(B2),其频率略高于待测样品中所有氢核的共振吸收频率,使1H与13C之间在一定程度上去偶,不仅消除2J ~4J的弱偶合,而且使1J减小到Jr(表观偶合常数)。Jr和1J之间的关系如下: 根据n+1规律,在偏共振去偶谱中,伯碳裂分为四重峰(用q表示),仲碳为三重峰(t),叔碳为两重峰(d),季碳以及不与氢相连的碳为单峰(s) 。

2-丁醇的偏共振去偶谱 3. 质子选择性去偶。

相关文档
最新文档