商环与环同态基本定理
近世代数第四章 环与域题解讲解
第四章环与域§1 环的定义一、主要内容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.2.环中元素的运算规则和环的非空子集S作成子环的充要条件:二、释疑解难1.设R是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).三、习题4.1解答1.2.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§4.2 环的零因子和特征一、主要内容1.环的左、右零因子和特征的定义与例子.2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子. 二、释疑解难1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素⎪⎪⎭⎫⎝⎛0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵),(00Q y x y x ∈∀⎪⎪⎭⎫ ⎝⎛对方阵普通加法与乘法作成的环.则易知⎪⎪⎭⎫⎝⎛0001是R 的一个右零因子,但它却不是R 的左零因子.2.关于零因子的定义.关于零因子的定义,不同的书往往稍有差异,关键在于是否把环中的零元也算作零因子.本教材不把零元算作零因子,而有的书也把零元算作零因子.但把非牢的零因子称做真零因子.这种不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异.大致有以下4种定义方法: 定义1 无零因子的交换环称为整环(这是本教材的定义方法). 定义2 阶大于l 且无零因子的交换环,称为整环. 定义3 有单位元且无零因子的交换环,称为整环.定义4 阶大于1、有单位元且无零因子的交换环,称为整环.以上4种定义中,要求整环无零因子、交换是共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1的方法也有很多原因,现举一例。
05 商环、欧氏环
n 1
作成 R x 的一个理想。 注:以上是常数项为零的多项式的集合,关于多 项式的加法与乘法。 以上两个理想显然既不是零理想也不是单位理想。
7
理想的性质
8
推论 域是单环。
9
10
11
12
13
14
15
16
17
理想的交与和
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
谢
谢
192
19
20
21
22
理想的传递
设 N 是 R 的理想, I 是 N 的理想, 那么 I 不一定是 R 的理想。
x y 例.设 R z w | x , y , z , w Z M 2 ( Z ) ,
a1 , a2 2a1 a2 N | ai 2 Z 是 R 的理想,而 I | ai 2Z 是 N 的理想, a3 , a4 a3 a4
近世代数及其应用
罗守山 教授 博士生导师
北京邮电大学计算机学院
1
第5章 商环、欧氏环
群是只有一种二元运算的代数系统。第2章群 之后介绍第3章特殊子群,由正规子群引出商 群,得到群同态基本定理。 环是建立在群基础上的代数系统,有二种二元 运算。第4章环之后介绍第5章特殊子环:理想, 由理想引出商环,得到环同态基本定理。 整数环上整数相除有余数和商,推广引出欧氏 环。 学习环知识应随时与群的相应概念与理论进行 比较,即复习群的内容,又学习新的知识。
信息安全数学基础ch10环
第九章 环
定义 设R是至少含有两个元素的环, 1如果R中每个非零元均可逆,则称R是一个除环。 2交换的除环称为域。 除环中所有非零元素构成的集合在乘法下构成一个群。
第九章 环
例 设p是一个素数,则(Zp,+,.)是一个域。 1假定[a]≠[0],有(a,p)=1; 2存在s,t∈Z使得 as+pt=1; 3as≡1(modp); 4[as]=[1]=>[a].[s]=[1]。
第九章 理想商环
定义 设(R,+,.)是一个环,S是R的非空子集,如果S关于R的 运算也构成环,则称S是R的子环. 例 整数环Z是有理数环Q的子环。 例 (mZ,+,.)={mk|k∈Z}是整数环Z的子环; mZ在Z的加法和乘法下封闭; 容易看出mZ在Z的加法和乘法下构成一个环; mZ是Z的子环。
第九章 理想商环
定义 设(R,+,.)是环,I是R的一个子环,如果对任意的a∈I 和任意r∈R,均有ra∈I;ar∈I,则称I是R的一个理想。 一个环至少有两个理想,即环R本身及{0},这两个理 想称为环R的平凡理想。
第九章 理想商环
定理 设I是环R的理想,在加法商群R=I上定义如下的乘法 (x+I)+(y+I)=(x+y)+I (x+I).(y+I)=(xy)+I 则上述定义是R/I上一个乘法运算,且R/I关于加法, 乘法构成一个环。 1根据前面的讨论,这里的加、乘运算定义是自恰的。 2环R=I称为R关于理想I的商环。 3在讨论商环时,我们一般把x+I记为x。
f(x)g(x)的m+n次项的系数为anbm; 由于R无零因子,所以anbm≠0; f(x)g(x)≠0。
近世代数课件--3.5子环、环的同态
R
S
R
S
数学与计算科学学院
S
2018/11/9
思路分析:
(1) 构造 R S ( R S ) ; (2) 作 R 到 R 的对应关系 : R R,并证明 是双射;
~ R; (3) 在 R 中定义两个代数运算,并证明 R (P99的引理)
(4) 证明 S R 。
(只需证明 S 原有的运算和 R 新定义的运算是一致的)
2018/11/9 数学与计算科学学院
上两例表明:一个环有没有零因子这个性质经 过了一个同态满射后不一定能保持的。 但若把同态换为同构的话,则这个环的代数性 质当然没有什么区别了,所以有:
~R , 定理3:设 R和 R 是两个环 ,并且 R 那么若 R 是整环 (除环、域),则 R 也是整环(除环、域)。
(1) S包 含 非 零 元 ; ( )为加群; 1)(S, ( 2)a , b S a b S; S为R的子除环 * ( )为群。 ( 3)a , b S,b 0 a b1 S . 2)(S , 数学与计算科学学院 2018/11/9
例8:设 R {(a, b) | a, b Z } ,R Z 。现定义 R 的运算:
(a1 , b1 ) (a2 , b2 ) (a1 a2 , b1 b2 )
(a1 , b1 )(a2 , b2 ) (a1a2 , b1b2 )
(1)容易验证,R {(a, b) | a, b Z } 关于所定义的运算 构成一个环。 作
: R R, (a, b) a 。
(2)容易验证 是同态。 (3)可以看出 R Z 无零因子,而 R {(a, b) | a , b Z } 却有零因子,因为对于(a,0), (0, b) (0,0) ,我们有 (a ,0)(0, b) (0,0) 。 注:此例表明:R ~ R ,R 有零因子,但 R 却没有零因子。
3.5子环、环同态
事实上, xs ys ( xs ) ( ys ) ( xs ys )( 是S 到S的同构映射)
xs ys ( xs ) ( ys ) ( xs ys )( R中 的定义) ( xs ys )( xs ys S ) xs ys
(平凡子环)
例2:一个环R的可以同每一个元交换的元作成 一个子环,叫做环R的中心.
Байду номын сангаас
§3.5 子环、环的同态
二、环的同态及其若干性质
定理1:设R是一个环, R是一个不空集合, R有两个代数运算,一个叫做加法,一个 叫做乘法.若存在一个R到R的满射,使得 R与R对于一对加法以及一对乘法来说都 同态,则R也是一个环.
则规定的法则是 A 的加法和乘法, 且 对于一对加法 和一对乘法来说都是同构映射.
§3.5 子环、环的同态
(1)构造R S ( R S ); 证明: (2)作一个R 到 R 的一一映射;
(3)在R中定义两个代数运算,使得 R R ; (4)证明S是R 的子环.
R
S
§3.5 子环、环的同态
(1)作R S (R S ) {as , bs , cs , } {a, b, c, }.
§3.5 子环、环的同态
(2)规定 :
RR
xs xs ( xs ), xs S , x x, x R S ,
则 是R到R的一一映射.
R
S
§3.5 子环、环的同态
§3.5 子环、环的同态
定义:设R和R 是两个环,则称R和R同态 (同构),若满足
(1)存在满射(一一映射) : R R (2)保持运算(保持加法和乘法运算) ( x y ) ( x ) ( y )(x, y R );
同态基本定理的应用
同态基本定理的应用摘要:通过具体例子说明当所给的群(或环)是商群(或商环)时,利用同态基本定理可以简化同构问题的证明过程.关键词:同态基本定理;同构;商群;商环证明同构问题,一般是通过建立映射并证明该映射是同构映射来完成的,然而对商群(或商环)之间的同构关系却不容易用此种方法来证明.同态基本定理(简记为FHT)是代数学的一个重要定理:设G是一个群,H是G的不变子群,令5:a y aH,Pa I G,则5是G到GPH的满同态;反之,若5是G到Gc的同态满射,则GPker5µGc.类似可得到环同态基本定理.本文给出的证明实例表明,利用FHT证明商群(商环)的同构问题,可以使证明过程简化.这种方法只须建立一个同态满射,求出同态核,就可获得问题的证明.本文约定:H A G表示H是G的子群(或子环) ;H ¨G 表示H 是G 的不变子群( 或理想) ; G1 µG2表示G1与G2同构.以下是同态基本定理的应用举例.例1求证:如果H、K A G,且K¨G,那么(HK)PKµHP(H HK) .证明由H、K A G]H H K A G,又由K¨G]H HK¨H]H P(H HK)有意义.( • ) 定义5: hk y h#H HK , 其中h、k 分别为H 、K 中的任意元.若hk=hckc]kkc- 1=h- 1hc]h- 1hcI H HK]h#H HK=hc#H HK I H P(H HK) .即5( hk ) 与5( hckc) 表示相同的陪集, 因此5 是HK 到HP( H HK ) 的映射.( ‚ ) 对HP( H HK ) 中的任意元h#H H K ( 其中h I H ) , 由于e I K , 故至少存在HK 中的元he=h,使得5(he) =h#H HK,所以5是HK到HP(H H K)的满射.( ƒ ) 因为K ¨G, 所以对任意hcI H 有Khc= hcK , 于是对任意的k I K , 存在kd I K , 使得khc= hckd, 从而5( hk#hckc) = 5( hhc#kdkc) = hhc#H HK . 但由于hhc#H HK =h#( H HK ) * hc#( H HK ) ] 5( hk#hckc) = 5( hk) * 5( hckc) , 所以5 是一个群同态.( … ) 由于e#H HK = H HK 是H P( H HK ) 的单位元, 因此ker 5 = { hk I HK | 5 ( hk) = H HK } . 又由于5( hk ) = h#H HK , 因此应有h#H HK = H HK . 从而h I H HK ] ker 5= { hk I HK | 5( hk ) = H HK } = ( H HK ) #K = K , 于是, 根据FHT 得到( HK )PK µH PH H K .例2求证:如果H、K¨G、K AH,那么GPHµ(GPK)P(H PK) .证明( • )定义5:g y gK#(H PK) .对所有的g I G,显然它是G到(GPK)P(H PK)的映射,且容易看出5是满射.(‚ )对任意的x、y I G,5(xy) = (xy)K#(H PK) =[ ( xK ) #( yK ) ] ( H PK ) =[ ( xK ) #( HPK ) ] * [ ( yK ) #( H PK ) ] = 5 ( x ) *5 ( y ) , 所以5 保持群运算.(ƒ )ker 5= { g I G | 5 ( g ) = e#( H PK ) , e 是GPK 中的单位元} , 即ker 5 = { gI G | 5 ( g) =H PK } = H , 因此根据FHT, GPker 5 = GPH µ( GPK )P( H PK ) .例3设S是环R的子环,I是R的理想,求证:SP(S H I)µ(S+I)PI.证明( • )易知S+I是R的子环,I是S+I的理想,S H I是S的理想,因此(S+I)P I 及SP( S H) 均为商环.( ‚ ) 现要给出S 到( S + I ) PI 的一个映射, 注意到( S + I )PI 中的元素均可为表成s+ I , 其中 s I S, 故可定义G: s y s+ I .显然,G是S到(S+I)PI的一个满射,同时对于S中任意两个元s及t,有s + t y ( s + t ) + I = ( s + I ) + ( t +I ) ,s # t y ( s # t ) I = sI # tI ,即G是一个环同态.( ƒ )因为ker G= {s I S|s+I=I}]ker G= {s I S|s I I}]ker G=S H I.故由FHT可得到SP(S H I)µ(S+I)PI.例4设R是环,S和I均是R的理想,求证: (RPS)PSµRP(S+I) .证明因为S和I均是R的理想,所以S+I也是R的理想,且S A S+I.于是S+IPS也应是RPS的理想,所以(RPS)P(S+I)PS与RP(S+I)均有意义.( • )令G:r+S y r+ (S+I) .Pr I R,易知G是RPS到RP(S+I)的映射,且是满射.( ‚ ) Pr1、r2I R , G( ( r1 + S ) + ( r 2 + S ) ) = G( ( r 1 + r2 ) + S) = ( r1 + r 2 ) + ( S + I ) =( r 1 + ( S + I ) ) + ( r 2 + ( S + I ) ) = G( r1 + S ) + G( r 2 + S) ,G( ( r1 + S ) #( r2 + S ) ) = G( ( r1 #r2 ) + S) = r 1 r2 + ( S + I ) =( r1 + ( S+ I ) ) ( r 2 + ( S + I ) = G( r1 + S ) #G( r2 + S ) ,由此可见G是环同态.( ƒ )因ker G={ r+S , r I R | G( r + S ) = r + ( S + I ) = S+ I } ={ r+ S , r I R | r I S + I } = { r + S | r I S +I } = ( S + I )PS, 所以由FHT 得( RPS) P( S+I ) PS µRP( S+ I ) .例5设R是一个交换环,I、K为R的两个理想,并且R=I©K,求证:( • )对P a、b I R,存在c I R,使得c S a( modI) ,c S b( modK) ;( ‚ )若任意一对a、b所确定的满足上述条件的c是唯一的]R µRPI ª RPK .证明( • )由R=I©K]对Pa、b I R,存在i a、i b I I、k a、k b I K,使得a=i a+k a,b=i b+ k b . 定义c= i b + k a , 可得到c- i a = k a = ( a- i a ) ] c- a= i b - i a I I ] c S (modI ) .同理(c-k a) =i b= (b-k b)]c-b=k a-k b I K]c S b( modK) .( ‚ ) 首先, 需要知道在何种条件下c 是唯一的. 给出a、b I R , 若存在c、cc都满足上述规定的与a、b的同余关系,即有c S a( modI ) S cc ] c- ccI I ,c S b( modK ) S cc ] c- ccI K ] c- ccI I H K ,从而I H U= { 0}Z c=cc(即若存在唯一的元c既同余于a( modI)又同余于b( modK)则当且仅当 I 与K 的交集生成的理想是平凡理想) .用 G( r ) = ( r + I , r + K ) 定义G: R y RPI ª RPK , 我们可以验证:G( r + s ) = ( ( r+ s) + I ,( r + s) + K ) = ( r+ I , r + K ) = ( s + I , s+ K ) = G( r ) + ( s ) ,G( r#s ) = ( ( r #s ) + I , ( r#s) + k) = G( r ) #G( s) ,由此可知G是R到RPIªRPK的同态映射.又由于ker G= { r I R | r + I = I , 且r + K = K } = { r I R | r I I 且r I K }= { r I R | r I I HK } = I HK ,由c 的唯一性知I HK = { 0} , 即ker G= { 0} . 根据FHT,RPker G=RP{ 0} =RµRPIªRPK.参考文献:[ 1] 张禾瑞. 近世代数基础[ M] . 北京: 高等教育出版社, 1978. 75- 79; 113- 116.[ 2] 贺昌亭, 张同群. 近世代数基础[ M] . 长春: 东北师范大学出版社, 1978. 256- 273; 347- 355.。
环的定义及性质
注意:若 p不为素数,则Zp肯定不是域.
16/20
域中除法及其性质
在域F中可以引入除法,如果a,b ∈F, a ≠ 0
,
则b有被以a除下记性为质b:/a,且b/a=a-1b.
17/20
练习1
1. 在整数环中定义∗和◇两个运算, a,b∈Z 有 a∗b = a+b1, a◇b = a+bab.
以外都是域.
(2) 令2Z={2z | z∈Z},则(2Z,+,·)构成交换环和无 零
因子环. 但不是含幺环和整环.
(3) 设nZ, n2, 则n阶实矩阵的集合Mn(R)关于矩 阵
加法和乘法构成环,它是含幺环,但不是交换环
和
14/20
无零因子环
定理1 环R是无零因子环当且仅当在R中乘法满足
= (a2+ba+ab+b2)(a+b) = a3+ba2+aba+b2a+a2b+bab+ab2+b3 (ab)2 = (ab)(ab) = a2baab+b2
9/20
问题
初等代数中: ab=0 a=0或b=0 n≠0,na=0 a=0
环中: ab=0 a=0或b=0 ? n≠0,na=0 a=0 ?
或可换环.
(2) 若环中乘法 ·存在单位元,则称R是含幺环.
4/20
例1
环的实例
(1) 整数集、有理数集、实数集和复数集关于普通 的
加法和乘法构成环,分别称为整数环Z,有理数环
Q,实数环R和复数环C.
(2) n(n≥2)阶实矩阵的集合Mn(R)关于矩阵的加法和 乘法构成环,称为 n 阶实矩阵环.
近世代数复习要点
近世代数复习要点
1.掌握群的定义及众多例子
2.掌握置换群乘法、对称群与交错群,理解轮换含义,会写S3,
A4与S4
3.掌握子群及正规子群概念及判别条件。
4.掌握陪集概念及Lagrange定理。
5.给定具体群G,会求G的所有子群及正规子群,会写G对子
群的陪集分解式。
6.掌握群的同态、同态核、同态象、同构、自同构等概念,掌
握群同态基本定理。
给定同态映射,会求同态核。
7.掌握群中元素与子群的共轭概念及性质。
8.掌握环的定义及常见例子。
9.掌握子环、理想的概念及判别条件。
10. 掌握零因子、整环及主理想整环概念。
11. 掌握理想的各种运算,会写给定环的理想。
12. 掌握极大理想、素理想等概念及性质。
13. 掌握环同态、环同构、商环及环同态基本定理。
给定环同态
映射,会求同态核。
14. 掌握Euclid环、唯一分解整环概念及性质。
15. 掌握整环中不可约元概念,会求给定整环的不可约元和单位
群。
16. 掌握体与域的概念、常见例子、子域、扩张、域的同构、域
的特征及四元数的四则运算、域的特征。
近世代数第四章-环与域题解讲解
第四章环与域§1 环的定义一、主要容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.2.环中元素的运算规则和环的非空子集S作成子环的充要条件:二、释疑解难1.设R是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).三、习题4.1解答1.2.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§4.2 环的零因子和特征一、主要容1.环的左、右零因子和特征的定义与例子.2.若环R无零因子且阶大于1,则R中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.这就是说,阶大于l且无零因子的环的特征不是无限就是一个素数.有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子.二、释疑解难1.由教材关于零因子定义直接可知,如果环有左零因子,则R也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l中的元素⎪⎪⎭⎫⎝⎛1就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵),(Qyxyx∈∀⎪⎪⎭⎫⎝⎛对方阵普通加法与乘法作成的环.则易知⎪⎪⎭⎫⎝⎛0001是R 的一个右零因子,但它却不是R 的左零因子.2.关于零因子的定义.关于零因子的定义,不同的书往往稍有差异,关键在于是否把环中的零元也算作零因子.本教材不把零元算作零因子,而有的书也把零元算作零因子.但把非牢的零因子称做真零因子.这种不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异.大致有以下4种定义方法: 定义1 无零因子的交换环称为整环(这是本教材的定义方法). 定义2 阶大于l 且无零因子的交换环,称为整环. 定义3 有单位元且无零因子的交换环,称为整环.定义4 阶大于1、有单位元且无零因子的交换环,称为整环.以上4种定义中,要求整环无零因子、交换是共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1的方法也有很多原因,现举一例。
离散数学sec18 环和域
环的运算约定
• 加法的单位元记作0。 • 乘法的单位元记作1。 • 对任何环中的元素x,称x的加法逆元为负元,
记作-x。 • 乘法逆元称为逆元,记作x-1。 • 针对环中的加法,
– x-y表示x+(-y)。 – nx表示x+x++x,即x的n次加法幂。 – -xy表示xy的负元。 (P285 例18.1下)
是R的一个分类,称为R的模H的剩余类。 其中,x+H={x+h|h ∈H}
定义. 设H是环R的理想,则R/H={x+H|x∈R}在加乘 (x+H)+(y+H)=(x+y)+H, (x+H)(y+H)=xy+H 之下成为一个 环,这个环称为R关于H的商环,其元素通常记为x+H=[x].
例18.12 <Z/4Z, ,> 为模4的剩余类环
环与域
• 环的定义和性质 • 子环、理想、商环和环同态
1
环的定义
定义 设<R,+,·>是代数系统,+和·是二元运算.如果 满足以下条件:
(1) <R,+>构成交换群 (2) <R,·>构成半群 (3) ·运算关于+运算适合分配律 则称<R,+,·>是一个环.
设V=<S,>是代数系统,为二元运算,如 果运算是可结合的,则称V为半群 (semigroup)。
5
例子
例 在环中计算 (a+b)3, (ab)2 解 (a+b)3 = (a+b)(a+b)(a+b)= (a2+ba+ab+b2)(a+b) = a3+ba2+aba+b2a+a2b+bab+ab2+b3
同态基本定理
同态基本定理
在数论中, 同态定理是一个重要的结果,是古典几何中玻拉叶斯定理的一种推广。
这
个定理被人们称为“同态基本定理”,又称为“同态基本核定理”,它最初是由缪斯·坎
托尔派德(M. Cantor)和萨蒙·可拉维尔(S.Helewar)提出的,后来得到进一步的推广
和发展。
该定理指出,在一个几何空间中,同态映射能够保持某些特性,即不管任意两个
点如何变换坐标,同态映射可以将二者置换,并使他们在原几何空间中看起来一致。
同态基本定理首先被用来检验几何变换法则,如反射、投射、旋转等,即检查几何变
换法则到底是否真正有效,以及数学推理和计算时是否正确无误,具体的定理是:若f(x)是在某几何空间中具有某种性质的同态映射,则对所有x,x′,y,y′,使f(x)=f (y),也就是说,如果两个点之间存在某种同态映射,则它们可以同时被映射到任意另
外两个点上,而无论这两个点是在原几何空间中如何变换坐标和旋转的。
这一定理的思想
在很多数学家的文章里也反复出现,甚至可以代替传统的几何判断过程。
同态基本定理不仅在几何方面有着广泛的应用,而且也在几何的反像技术,代数方面
也有着应用。
现在,同态定理已经在很多学科中得到了应用,比如在地理学、景观学、地
形学、城市学和图像处理等方面,都应用了这一定理。
总之,同态定理是一个十分重要的结果,是古典几何中玻拉叶斯定理的一种推广。
这
个定理对几何理论和代数学等领域,有着重大的价值,在几何图形变换方面也有着应用。
环同态基本定理
6
前页 后页 目录 返回
二、环同态的一些简单性质
定理3.5.1 设 为环 R 到环R '的同态, 则 (1)(0R ) 0R' .( 0R为 R中零元,0R为' R '中零元) (2) (na) n(a) ,n Z,a R . (3) (an ) ((a))n ,n N.
由定义可知, 环同态就是环之间保持运算的映射.
又如果同态映射 是单映射, 则称 为单同态
(monomorphism); 如果 是满映射, 则称 为满同态
(epimorphism), 此时, 称环 R 与 R '同态, 记作:
: R ~ R' ; 如果 既是单同态, 又是满同态, 则称 为
|S (s) (s) s s x 所以 |S 为满同态. 而
24
前页 后页 目录 返回
Ker |S {s S |(s) 0}
{s S | s I} S I.
从而S I是S的理想, 且由环同态基本定理知, 有如
下的环同构
S /(S I ) (S I ) / I
因此, (e)是单位元, 由单位元的惟一性得(e) e' .
(2) 令r ' (e) , 则r ' 0 , 从而 r 'e' r ' (e) (ee) (e)(e) r '(e)
因为 R '无零因子, 所以消去律成立. 在上式两边消去r '
得(e) e'.
满同态, 则有环同构
%: R / Ker R'
证 (1) 记K Ker , 则为K 环R 的理想. 对任意
近世代数初步(第二版)课后习题答案(石生明)02
第二章 域 和 环1畅基本概念:域、子域、扩域、域的特征、素域.环、子环、理想、商环、同态、同构、同态基本定理.整环、极大理想.2畅商环的应用例子:爱森斯坦判别法的证明(整数环上多项式性质的证明)可化归到整数环的剩余类域上.3畅新域或新环的构造:复数域(作为实数域R上使x2+1=0有根的最小扩域);二元域;集合S在域F上生成的扩域;商环、剩余类环F[x]/(f(x))(包括构造F上添加任意不可约多项式f(x)的一个根的扩域)、Z/(n)(包括构造p个元素的域);理想的和、积;环的直和;整环的分式域.4畅域扩张的初步知识:代数扩张、有限扩张、单代数扩张、单超越扩张.集合S在F上生成的扩域的三种刻画: F(S)=f1(α1,α2,…,αt)f2(α1,α2,…,αt)橙t∈N(自然数),橙α1,α2,…,αt∈S,橙fi(x1,x2,…,xt)∈F[x1,x2,…,xt],i=1,2.f2(α1,α2,…,αt)≠0=由F及S的元尽可能地多次作加减乘除所得的元素的集合=含F及S的最小的域.单扩张的构造:F(α)=f1(α)f2(α)橙f1(x),f2(x)∈F[x],f2(α)≠0.若α为F上代数元,f(x)是以α为根的F上不可约多项式(α的极小多项式),其次数为n,则F(α)是F上n维线性空间,而1,α,…,αn-1是它的一组基.扩张次数[E:F]及性质:对域扩张E车H车F有[E:F]=[E:H][H:F].5畅域的应用举例:(1)二元域用于纠错码.(2)域的扩张次数的性质用于否定三大几何作图难题(给出了用圆规直尺作图作出的量满足的条件).6畅中国剩余定理.1畅这一章讲域、环的基本概念.主要是讲各种造新域和新环的方法,环是为·84·域起铺垫的作用.本章的内容充分体现总导引第一点中的思想.2畅体会造二元域的数学背景及如何用于构造纠一个错的码.思考一下能纠错的关键之点在哪里,随便指定一个矩阵H是否能起到纠错的作用?3畅体会对圆规直尺作图问题进行分析中的几个步骤:(1)用解析几何知识分析出能用圆规直尺作图作出的量(长度)满足的方程;(2)用扩域的语言表达上述作出的量所在的范围;(3)用扩张次数的性质来表达作出的量满足的条件.4畅这一章中我们充分地应用了引论章§2末尾的定理.即用了一般域上线性方程组、矩阵运算、线性空间、多项式等理论的大量性质.促进读者巩固高等代数的知识.5畅与其它近世代数教材相比,本书中域的内容(包括下一章的有限域的内容)放到整环的因式分解唯一性理论之前,并且替代它而成为教材的核心部分.内容也改变很多,加入纠错码的例子和三大几何作图难题的讨论这些应用内容,而舍去了可分扩张及分裂域等内容.由于目标明确(参看总导引第一条)且有应用内容,增加了学习的生动性.(1)造一个码长13,容量为29的能纠一个错的码集合.(2)证明上面的码一般不能纠两个错.(举例:考察码子X=(0,0,0,0,0,0,0,0,0,0,0,0,0)T错了两位成为Y=(1,1,0,0,0,0,0,0,0,0,0,0,0)T.能否用书中所述的译码方法由Y恢复成X?§1 域的例子,复数域及二元域的构造,对纠一个错的码的应用以下习题中打倡者为必作题,其余为选作题. 倡1畅令C0=ab-baa,b∈R,则(1)C0对矩阵的加法和乘法成为域.(2)C0中R0=a00aa∈R是同构于R的子域.·94· (3)干脆将R0与R等同,将a 00 a写成a,则可写ab-ba=a00a+b00b01-10=a+b01-10.作映射 CφC0a+bia+b01-10,橙a,b∈R,则φ是域同构.以下2-6题出现的运算是F2中元素的运算. 倡2畅计算1111001010110100101111110110111101100111010001110. 倡3畅求1111001111010111-1. 倡4畅解方程组x1+x2+x3+x4+x5+x6=1 x3+x4+0+x6=0x1+x2+0+x4=1 x2+x3+x4=0. 倡5畅计算(x4+x3+x+1)2,(x3+x2+1)(x5+x2+x+1). 倡6畅(1)以x2+x+1除x6+x4+x3+1,求商及余式.(2)求x2+x+1与x6+x4+x3+1的最大公因式d(x).(3)求u(x),v(x),使u(x)(x2+x+1)+v(x)(x6+x4+x3+1)=d(x).·05· 倡7畅求作一个13位0,1序列的码集合,其容量为29,有纠一个错的能力.8畅F为素数特征p的域,a,b,a1,…,an∈F,则(1)(a+b)p=ap+bp,而且无论p为奇偶皆有(a-b)p=ap-bp.(2)(a+b)pk=apk+bpk.(3)(a1+a2+…+an)pk=apk1+apk2+…+apkn.(参见引论章习题6)(4)映射 FφF,aap是F的自同态.且φ是同构当且仅当方程xp-b=0对所有b∈F都有解.1畅略.2畅111110001.3畅1001010110101110.4畅x1=x5+x6+1x2=x6+1x3=x5+x6x4=x5+1.5畅x8+x6+x2+1,x8+x7+x+1.6畅(1)x6+x4+x3+1=(x4+x3+x2+x)(x2+x+1)+x+1.(2)(x6+x4+x3+1,x2+x+1)=1.(3)x(x6+x4+x3+1)+(x5+x4+x3+x2+1)(x2+x+1)=1.7畅令H=10101010101010110011001100000111100001100000001111114×13,以HX13×1=0的解空间为码集.因秩H=4,未知数的数目为13,故解空间维数为13-4=9.由于码集合是F2上9维空间,共有29个解向量,即29个码子,码·15·集合的容量为29.与课文中例4一样有纠一个错的能力.8畅(1)由二项定理(参见引论章习题6),(a+b)p=ap+bp+∑p-1i=1Cipaibp-i.当1≤i≤p-1时,Cip=p(p-1)…2·1(p-i)!i!.而(p-i)!及i!中的素因子皆小于p,故p|Cip.题设F的特征为p,故∑p-1i=1Cipaibp-i=0.这证明了(a+b)p=ap+bp.对(a-b)p=ap+(-b)p=ap+(-1)pbp.当p为奇素数时,(-1)p=-1;当p=2时,(-1)2=1=-1.故(a-b)p=ap-bp.(2)(a+b)pk=((a+b)p)pk-1=(ap+bp)pk-1.利用归纳法可得(a+b)pk=(ap)pk-1+(bp)pk-1=apk+bpk.(3)(a1+a2+…+an)pk=apk1+(a2+…+an)pk.利用归纳法可得(a1+…+an)pk=apk1+apk2+…+apkn.(4)φ(a+b)=(a+b)p=ap+bp=φ(a)+φ(b).φ(ab)=(ab)p=apbp=φ(a)φ(b).故φ为F的自同态.又φ(a-b)=(a-b)p=ap-bp=φ(a)-φ(b),就有φ(a)=φ(b)当且仅当a=b.即φ是单射.由以上论证,φ是同构当且仅当φ是满射当且仅当对橙b∈F,有a∈F使φ(a)=ap=b也即方程xp-b=0有解.§2 域的扩张,扩张次数,单扩张的构造以下习题中打倡者为必作题,其余为选作题.1畅F炒E是域扩张.(1)α1,α2,…,αs∈E,则F(α1,α2,…,αs)=f1(α1,…,αs)f2(α1,…,αs)f1,f2∈F[x1,…,xs],f2(α1,…,αs)≠0.·25·(2)S炒E,则F(S)=∪S0炒SS0有限集F(S0). 倡2畅计算[Q(2,3):Q],[Q(2+3):Q].证明Q(2,3)=Q(2+3). 倡3畅F炒E是域扩张,且[E:F]=p是素数,则任意α∈E\F,有E=F(α). 倡4畅E车F为域扩张,α1,α2,…,αt∈E,[F(αi):F]=ni,i=1,2,…,t,则[F(α1,…,αt):F]≤n1n2…nt. 倡5畅F炒E为有限次域扩张,则必为代数扩张. 倡6畅F炒E为有限次域扩张,则有α1,…,αt∈E,使得E=F(α1,…,αt).7畅F炒E为域扩张,S炒E且S中每个元皆是F上代数元,则F(S)是F上代数扩张.进而,E中全部代数元作成F的一个扩域. 倡8畅令E=Q(u).(1)设u3-u2+u+2=0.试把(u2+u+1)(u2-u)和(u-1)-1表成au2+bu+c的形式,a,b,c∈Q.(2)若u3-2=0,把u+1u-1表成au2+bu+c的形式,a,b,c∈Q.9畅令E=F(u),u是极小多项式为奇数次的代数元.证明E=F(u2).10畅求32+5在Q上的极小多项式.11畅E车F,E是环,F是域,s∈E是F上代数元,则s可逆当且仅当有F上多项式f(x),其常数项不为零使f(s)=0.并且s-1=g(s),g(x)是F上多项式.12畅E是F上的代数扩张,则E的含F的子环都是子域.13畅设[E:F]=n,则不存在子域G,使E车G车F及[G:F]与n互素. 倡14畅R(实数域)上任意代数扩张E若不为R,则同构于C.特别地,R上除二次扩域外没有其它有限次扩域.(这正是Hamilton等数学家找不到“三维复数”的原因).1畅(1)这几令S={α1,…,αs},按命题2下面一段的约定F(α1,α2,…,αs)就是F(S).命题1中的(2)式定义了F(S).易看出本题所设的集合与F(S)的定义集合是一致的.(2)比较(1)的结果和命题1中(2)式在一般集合S下F(S)的定义即得F(S)={F(α1,…,αk)|橙{α1,α2,…,αk}炒S}·35·=∪S0炒SS0有限集F(S0).2畅易看出Q(2,3)=Q(2)(3)={(a1+b12)+(a2+b22)3|ai,bi∈Q}.我们来证1,3在Q(2)上是线性无关的.设(a1+b12)+(a2+b22)3=0,若a2+b22≠0,则3=-a1-b12a2+b22∈Q(2).令3=a+b2,a,b∈Q.将两边平方,得到3=a2+2ab2+b2.因2不是有理数,则a,b之一为零.若a=0,则32=2b2=2q2p2,(p,q)=1.又因左边为整数,必须p2|2,只能p=1,由32=2q2,必须2|32,这也不可能.若b=0,则3=a2,3=a是有理数,这也不可能.这些矛盾推出a2+b22=0,a1+b12也就为零,说明1,3在Q(2)上线性无关.因而[Q(2)(3):Q(2)]=2.结果[Q(2)(3):Q]=[Q(2)(3):Q(2)][Q(2):Q]=2×2=4.再证[Q(2+3):Q]=4.这只要证Q(2)(3)=Q(2+3).首先显然有Q(2+3)彻Q(2,3).又从3-2=12+3得3=12(3-2+3+2)=1213+2+3+2∈Q(2+3).同样可得2∈Q(2+3).这就证明了Q(2,3)彻Q(2+3).于是Q(2,3)=Q(2+3).3畅[F(α):F]|[E:F],[E:F]=p.故[F(α):F]=1或p.但α∈E\F,[F(α):F]>1.故[F(α):F]=p.因此F(α)=E.4畅[F(α1,…,αt):F]=[F(α1,…,αt):F(α1,…,αt-1)][F(α1,…,αt-1):F(α1,…,αt-2)]…[F(α1):F].由于αi在F中的极小多项式次数为ni.F上的这个极小多项式也是F(α1,…,αi-1)中的多项式,这个次数ni比αi在F(α1,…,αi-1)上的极小多项式的次数低.故[F(α1,…,αi-1,αi):F(α1,…,αi-1)]≤ni.因而[F(α1,…,αt):F]≤ntnt-1…n1=n1n2…nt.5畅F彻E是k次扩张.任一元α∈E,1,α,…,αk是E中k+1个元,必在F上线性相关.即有F上不全为零的a0,a1,…,ak使a0+a1α+…+akαk=0.由此知α满足F上的次数≤k的一个多项式.故α是F上代数元,因而E是F上代数扩张.6畅取E的F基α1,…,αt,则E=钞ti=1liαi|li∈F彻F(α1,…,αt)彻E,·45·故E=F(α1,…,αt).7畅设S中每个元皆为F上代数元.对α∈F(S),必有α1,…,αk∈S使α=f1(α1,…,αk)f2(α1,…,αk)∈F(α1,…,αk).因αi为代数元,令[F(αi):F]=ni.由习题4,[F(α1,…,αk):F]≤n1n2…nk.故F(α1,…,αk)是F上有限扩张,再由习题5,它是F上代数扩张.这就证明了任意α∈F(S)是F上代数元,于是F(S)也是F上代数扩张.现令E中全体F上代数元的集合为S.则F(S)是代数扩张,F(S)中每个元皆为F上代数元.于是F(S)彻S,即有S=F(S).故S是F上扩域.8畅(1)(u2+u+1)(u2-u)=u4-u=(u+1)(u3-u2+u+2)-4u-2=-4u-2.由于(u-1)(u2+1)-(u3-u2+u+2)=3,故(u-1)(u2+1)=3.因此(u-1)-1=13(u2+1).(2)由(u-1)(u2+u+1)=u3-1=(u3-2)+1=1,故u+1u-1=(u+1)·(u2+u+1)=u3+2u2+2u+1=(u3-2)+2u2+2u+3=2u2+2u+3.9畅设u2=a∈F(u2),则u2-a=0.故[F(u):F(u2)]≤2.因[F(u):F(u2)]|[F(u):F],及[F(u):F]=奇数,[F(u):F(u2)]≠2.所以[F(u):F(u2)]=1,即E=F(u)=F(u2).另一证法,设u在F中极小多项式是f(x).f(x)为2l+1次,满足f(u)=0,设为a2l+1u2l+1+a2lu2l+…+a1u+a0=0,ai∈F,则u(a2l+1u2l+a2l-1u2(l-1)+…+a1)+(a2lu2l+…+a0)=0.由f(x)的极小性,第一括弧不为零,所以u=a2lu2l+a2(l-1)u2(l-1)+…+a0a2l+1u2l+a2l-1u2(l-1)+…+a1∈F(u2).故F(u)=F(u2).10畅令u=32+5.则32=u-5,(u-5)3=2.于是u3-3·u2·5+3u(5)2-(5)3=u3+15u-(3u2+5)5=2.移项后得u3+15u-2=(3u2-5)5.两边平方,得到(u3+15u-2)2=(3u2-5)2·5.这是u满足的Q上6次方程,故[Q(u):Q]≤6.又(u-5)3=2,可得5∈Q(u).由[Q(5):Q]=2,及[Q(5):Q]|[Q(u):Q],知2|[Q(u):Q].而由32=5-u知32∈Q(u,5)=Q(u).又·55·[Q(32):Q]=3及[Q(32):Q]|[Q(u):Q],得3|[Q(u):Q].于是6|[Q(u):Q],因而[Q(u):Q]=6.由于(u3+15u-2)2-(3u2-5)2·5=0,故6次多项式(x3+15x-2)2-5(3x2-5)2是u在Q上的极小多项式.11畅设s为可逆的代数元,则有F上多项式f(x),使f(s)=aksk+ak-1sk-1+…+a1s+a0=0,其中k≥1,ak≠0.设a0,a1,…,ak-1,ak中不为零的最小脚标为i.则i≠k,否则aksk=0,由s可逆,得ak=0.矛盾.故i<k.用s-i乘它,则得aksk-i+…+ai=0.于是g(x)=akxk-i+…+ai满足g(s)=0且常数项ai≠0.反之,设s满足某多项式方程f(s)=aksk+…+a1s+a0=0,且a0≠0.令g(x)=-(akxk-1+…+a1),则g(s)·s=a0≠0.故s-1=1a0g(s).1a0g(x)是F上多项式.12畅设E车H是含F的子环.任取0≠s∈H.s在E中有逆,由习题11知,s-1=g(s),g(x)是F上多项式.H是子环,因此g(s)∈H.故H是E的子域.13畅设G是域,使EGF.则[G:F]|[E:F],故[G:F]不能与n=[E:F]互素.14畅设R炒E是代数扩张.任取α∈E,α是R上不可约多项式f(x)的根.R上只有1次或2次不可约多项式.若为1次,则α∈R.若E中有α碒R,则它是R上2次不可约多项式的根,设α满足α2+bα+c=0,b,c∈R.则α-b22=14(b2-4c).因α碒R,故b2-4c<0.因此b2-4c=4c-b2-1∈R(α),而有-1∈R(α).显然R(-1)=R(α),即C臣R(α).又任β∈E是R上代数元,由C是代数封闭域知R(-1)也是.于是β∈R(-1),即得E=R(-1).上面证明了代数扩域E车R,只能是E=R或E=R(-1).它们是1次和2次扩域,R上没有3次扩域.§3 古希腊三大几何作图难题的否定以下习题中打倡者为必作题,其余为选作题.·65· 倡1畅设已知量a,b及r皆大于0且a>b.试用圆规直尺作图作出a±b,ab,ar,r. 倡2畅下列哪些量可以用圆规直尺作图作出:(1)45+26 (2)21+7(3)1-527 倡3畅下列多项式中哪些多项式的实根可用圆规直尺作图作出:(1)x2-7x-13(2)x4-5(3)x3-10x2+1(4)x5-9x3+3(5)x4-2x-34畅证明:实数α可用圆规直尺作图作出当且仅当有实数的域的序列E0炒E1炒…炒En-1炒En,使α∈En,且[Ei:Ei-1]=2,1≤i≤n,其中E0是已知量的域.1畅运用中学几何作图知识来作出要求的量.2畅(1)可以.(2)可以.(3)不可以.证明 令x=527,它满足x5-27=0.再令y+2=x,则(y+2)5-27=y5+5y4·2+10y3·22+10y2·23+5y·24+25-27=y5+10y4+40y3+80y2+80y+5=0.用艾森斯坦判别法,它是y的Q上5次不可约多项式方程,527-2是它的根,于是[Q(527-2):Q]=[Q(527):Q]=5.若527能用圆规直尺作图得到,则它落在Q的某扩域E中,且[E:Q]=2l.但[Q(527):Q]嘲[E:Q],故527,因而1-527不能落在这样的域中,它们不能这样作出.3畅(1)可以.(2)可以,令x=±45=±5.5是可作的,故5也可作.(3)我们证明x3-10x2+1是Q上不可约多项式.实际上只有±1可能是它的有理根,但它们不是.因此x3-10x2+1在Q[x]中没有一次因式,故不可约.令它的实根为α,则[Q(α):Q]=3.α不属于Q的任何扩张域E,使E满足[E:Q]=2l.故α不能用圆规直尺作图作出.(4)用艾森斯坦判别法,x5-9x3+3在Q上不可约.对它的实根α,[Q(α):Q]=5.与习题1中(3)的证明类似,知α不可作.·75·(5)x4-2x-3=(x+1)(x3-x2+x-3).第二个因式的有理根只可能是±3,±1,但都不是根.因而是Q上三次不可约多项式、与本题(3)的证明一样可知,它的实根不可作,但第一因式的根为-1,是可作的.4畅课文中已证明由E0作为已知量出发,用圆规直尺作图能作出的量α一定属于某个具有题目所设性质的扩域En中.反之,设α属于具有上述性质的扩域En中.我们对n作归纳法.首先对橙i,[Ei:Ei-1]=2,即Ei是Ei-1上2维向量空间.取βi∈Ei/Ei-1.则1,βi对域Ei-1为线性无关,因而是Ei作为Ei-1上线性空间的基,故Ei=Ei-1(βi).又β2i∈Ei,它是1,βi的线性组合,因此有bi,ci∈Ei-1使β2i+biβi+ci=0,βi=-bi±b2i-4ci.n=0,E0中的任一个量显然可用圆规和直尺经有限步作出.2设En-1中任一量已可用圆规和直尺经有限步作出,即bn,cn可用有限步作出.于是b2n-4cn以至βn皆能作出.En中任一量α都是1,βn的线性组合α=a+bβn,a,b∈En-1.a,b,βn皆能用圆规直尺经有限步作出,则α也能.完成了归纳法.§4 环的例子,几个基本概念以下习题中打倡者为必作题,其余为选作题. 倡1畅举出Z/6Z=Z6中的零因子的例子. 倡2畅令Z[i]={a+bi|a,b∈Z},它是整环.2Z[i]={2a+2bi}是Z[i]的主理想.问Z[i]/2Z[i]中是否有零因子? 倡3畅写出下列商环的全部元素.(i)Z2=Z/2Z,检查它与F2是否同构.(ii)Z3=Z/3Z,检查是否是域.(iii)F2[x]/(x2+x+1),检查是否有零因子.(iv)Z3[x]/(x2+x+2),检查是否是域. 倡4畅R是环.若R的加群是循环群,则(i)R是交换环;(ii)R的子环只有R;(iii)当R的元素有无限多个时,它的任一理想也有无限多个元;(iv)当R的元素有限时,设I为它的理想,则|I|||R|;(v)R的加法子群都是R的理想.5畅找出Z6,Z8的全部理想.哪些是极大理想?对所有极大理想K,写出Z6/K及Z8/K的全部元素、加法表和乘法表.··856畅设K为交换环,M是它的理想,M作为K的加法子群满足[K:M]=素数,则商环K/M是域.7畅试将第一章§10习题6中关于群同态的结论推广到环同态的情形.8畅设f(x)=fr11(x)fr22(x)…frkk(x)是域F上的不可约多项式的乘积,且f1(x),…,fk(x)互不相伴,令R=F[x]/(f(x))是商环.(i)求出R的全体理想.(ii)这些理想中哪些是极大理想?(iii)设珡K是R的理想,K是珡K在F[x]中的原象.检验F[x]/K碖R/珡K.9畅证明Z[i]/(1+i)是域.1畅2+6Z≠0,3+6Z≠0,都是Z6中的零因子.2畅由(1+i)2=2i,((1+i)+2Z[i])2=2i+2Z[i]=0.故(1+i)+2Z[i]是Z[i]/2Z[i]中的零因子.3畅(i)Z2=Z/2Z={0+2Z,1+2Z}={0,1}.它的加法表和乘法表如下: +01001110,×01000101.建立映射Z2F20011.这是双射,且保持加法和乘法.故是同构.(ii)Z3=Z/3Z={0,1,2}.这是交换环,又(1)-1=1,(2)-1=2.故Z3是域.(iii)因0,1不是x2+x+1的根,故x2+x+1在F2[x]上不可约.因此F2[x]/(x2+x+1)是域,故无零因子.(iv)由于0,1,2都不是x2+x+2的根,故它在Z3[x]中不可约.因此Z3[x]/(x2+x+2)是域.4畅由于R是加法循环群,可设R=Za,a∈R.(i)R中任意两元可写为ma,na,而(ma)(na)=mna2=(na)(ma),故R是交换环.(ii)设1=ka,又设a2=la.则a=1·a=ka2=kla=lka=l·1.因R的子·95·环含1,就含有l1=a.故子环含Za=R.即子环必是R.(iii)R=Za有无限多个元,则它是无限循环加群.于是当m,n∈Z,m≠n时有ma≠na.设I是R的非零理想,它就是R的非零子加群,必为无限群.故I有无限个元.(iv)当R的元素有限时,它作为加群是有限循环群.而R的理想I是它的子加群,由Lagrange定理,知|I|||R|.(v)设I是R的加法子群,它也是循环群.设I=Z(ka).任ma∈R,(ma)I=Z(na)(ka)=Z(mkla)彻Z(ka)=I.故I是R的理想.5畅Z6的全部理想为Z6,2Z6,3Z6,0·Z6.其中2Z6,3Z6是Z6的极大理想.Z8的全部理想为Z8,2Z8,4Z8,0·Z8,其中2Z8是极大理想.Z6/2Z6={0,1},Z6/3Z6={0,1,2},Z8/2Z8={0,1}.它们的加法表和乘法表:Z6/2Z6: +01001110,×01000101.Z8/2Z8碖Z6/2Z6,它们有相同的加法表和乘法表.Z6/3Z6:+012001211202201×0120000101220216畅K/M是商环,作为加法商群[K:M]=素数.对K的任一理想N,若M彻N彻K、则从加法方面看N/M是K/M的子群.后者是素数阶群,故N/M是单位元群或K/M本身.因此N=M或N=K,即M是K的极大理想.于是K/M是域.7畅群同态的结论推广到环同态,结论如下:设环G到环珚G有满同态f.令N=Kerf.记f-1(珡K)为珚G的子集珡K对于f的原象.则(1)若珡K是珚G的子环,则N炒f-1(珡K),且f-1(珡K)是子环.(2)有映射{G的含N的子环}φ{珚G的子环}·06·Hf(H).它还是双射,且保持包含关系.(3)若珡K是珚G的理想,则f-1(珡K)是G的含N的理想,于是{G的含N的理想}{珚G的理想}Kf(K)是双射.(4)设珡H是珚G的理想,则有同构G/f-1(H)碖珚G/珡H.(5)G是环,N是理想.令珚G=G/N,π是自然同态GπG/N=珚G,则π建立了{G的含N的子环}到{珚G的子环}上的双射:π(H)=珡H=H/N,且保持包含关系.同时建立了{G的含N的理想}到{珚G的理想}上的双射,且有同构G/H碖珚G/珡H=G/N/H/N.证明 由于环是加群,子环、理想是子加群,环同态的核正是加群同态的核.如能证明(i)若H是G的子环(或理想),则f(H)是珚G的子环(或理想),(ii)珡H是珚G的子环(或理想),则f-1(珡H)是G的包含N的子环(或理想).再利用群同态的结论就给出上面(1)到(5)的结论都成立.对结论(i),易知子环(或理想)的满同态的象是子环(或理想),故成立.对(ii),设珡H是子环(或理想),它是珚G的子加群,故f-1(珡H)是G的子加群.又对l,k∈f-1(珡H)(或取l∈G),f(l),f(k)∈珡H(或f(l)∈珚G).由珡H是子环(或理想),f(l)f(k)=f(lk)∈珡H,故lk∈f-1(珡H).这证明了f-1(珡H)是G的子环(或理想).8畅(i)F[x]是主理想环,它的同态象R=F(x)/(f(x)).由7题,R的任一理想为J/(f(x)),其中J为F[x]的理想.J为主理想,设为J=g(x)F[x].于是R的任一理想I必有形式:I=g(x)F[x]/(f(x))是R的一个主理想.令(g(x),f(x))=m(x),g(x)=h(x)m(x).由(h(x),f(x))=1,有u(x),v(x)∈F[x],使u(x)h(x)+v(x)f(x)=1.即u(x)h(x)+(f(x))=1+(f(x)).于是m(x)F[x]/(f(x))=u(x)h(x)m(x)F[x]/(f(x))彻g(x)F[x]/(f(x))=I彻m(x)F[x]/(f(x)),故I=m(x)F[x]/(f(x)).这说明R的任一理想必为m(x)F[x]/(f(x)),其中m(x)|f(x).再设Ii=mi(x)F[x]/(f(x)),mi(x)|f(x),i=1,2都是R的理想.来证I1=I2当且仅当m1(x)与m2(x)相伴.首先设m1(x)=cm2(x),c≠0是F的元,则··16I1=m1(x)F[x]/(f(x))=cm2(x)F[x]/(f(x))=m2(x)·cF[x]/(f(x))=m2(x)F[x]/(f(x))=I2.反之,设I1彻I2.由m1(x)+(f(x))∈I1彻I2=m2(x)F[x]/(f(x)),有h2(x)∈F[x]使m1(x)+(f(x))=m2(x)h2(x)+(f(x)).进而有g2(x)使m1(x)+g2(x)f(x)=m2(x)h2(x).因m2(x)|f(x),可得m2(x)|m1(x).当I1=I2时,同样有m1(x)|m2(x).就证明了m1(x),m2(x)相伴.写gi1…ik(x)=(f1(x))i1(f2(x))i2…(fk(x))ik,其中i1,…,ik可独立地遍取1≤i1≤r1,1≤i2≤r2,…,1≤ik≤rk.则{gi1…ik(x)}是f(x)的全部不相伴的因式,而gi1…ik(x)F[x]/(f(x))是R的全部的理想.(ii)取Ji=fi(x)F[x]/(f(x)).由(i)第二部分的证明只有理想1·F[x]/(f(x))及fi(x)F[x]/(f(x))能包含Ji.故Ji是R的极大理想.R的任一理想若非Ji之一和R本身,则它是m(x)F[x]/(f(x)),其中m(x)是f1(x),…,fk(x)中至少两项的乘积.设m(x)=fi(x)fj(x)….则fi(x)|m(x),但任意一个fi(x)与m(x)不相伴.由(i)中第二部分的证明m(x)F[x]/(f(x))彻Ji,但它们不相等,故前者不是极大理想.因此R的全部极大理想为Ji,i=1,2,…,k.(iii)设珡K=m(x)F[x]/(f(x))是R的理想,其中m(x)|f(x).显然m(x)F[x]在R中的象是珡K.又任意g(x)∈F(x),若g(x)+(f(x))∈m(x)F[x]/(f(x)),用(i)中第二部分的证明可得m(x)|g(x).故g(x)∈m(x)F[x].这证明了珡K在F[x]中的原象K是m(x)F[x].作映射F[x]/m(x)F[x]πR/珡Kg(x)+m(x)F[x][g(x)+(f(x))]+珡K.首先要证明它确实规定了映射,即象元与g(x)+m(x)F[x]中的代表的选择无关,实际上g1+m(x)F[x]=g2+m(x)F[x]当且仅当g1-g2∈m(x)F[x]当且仅当(g1-g2)+(f(x))∈m(x)F[x]/(f(x))=珡K当且仅当[g1+(f(x))]与[g2+(f(x))]属于珡K的同一陪集当且仅当[g1+(f(x))]+珡K=[g2+(f(x))]+珡K.这就证明了映射是意义的,而且是单射.π显然是满射,因而是双射.又π((g1+m(x)F[x])+(g2+m(x)F[x]))=π((g1+g2)+m(x)F[x])=[(g1+g2)+(f(x))]+珡K=[(g1+(f(x)))+(g2+(f(x)))]+珡K=(g1+(f(x)))+珡K+(g2+(f(x)))+珡K=π(g1+m(x)F[x]) +π(g2+m(x)F[x]).·26·同样可证π((g1+m(x)F[x])(g2+m(x)F[x]))=π(g1+m(x)F[x])π(g2+m(x)F[x]).故π是环同构.9畅先计算Z[i]/(1+i)的全部元素.记剩余类a+bi+((1+i))为a+bi,其中a,b∈Z.我们有a+bi=a-b+b(1+i)=a-b.又(1+i)2=-2,故2=2+(1+i)2=0.于是Z[i]/(1+i)={0,1}={0+((1+i)),1+((1+i))}碖Z2.故它是域.§5 整数模n的剩余类环,素数p个元素的域以下习题中打倡者为必作题,其余为选作题.1畅求出Z8中可逆元的群及其乘法表. 倡2畅求出Z9中可逆元的群及其乘法表. 倡3畅写出Z3[x]/(x2+1)的全部元素.求出x+1与全部元素的乘积以及它的逆元素. 倡4畅427≡?(mod3) 7123≡?(mod5) 827≡?(mod6) 倡5畅p是素数,则域Zp中全部元素是方程xp-x=0的全部根.因而映射ZpZpaap是恒等自同构.1畅Z8的可逆元群是{1+8Z,3+8Z,5+8Z,7+8Z}.乘法表略.2畅Z9的可逆元群是{1+9Z,2+9Z,4+9Z,5+9Z,7+9Z,8+9Z}.乘法表略.3畅记剩余类f(x)+((x2+1))为f(x).则Z3[x]/(x2+1)={0,1,2,珔x,x+1,x+2,2x,2x+1,2x+2}.(x+1)Z3[x]/(x2+1)={0,x+1,2(x+1)}x+1的逆元素为x+24畅427≡127=1(mod3).7123≡2123≡2120·23(mod5)≡23(mod5)(因24≡1,2120=(24)30≡1)≡3(mod5).··36827≡((23)3)3≡(23)3≡23≡2(mod6).5畅Zp\{0}是p-1阶乘法循环群,故任0≠a∈Zp,满足ap-1=1.于是ap=a.又0p=0,所以Zp中全部元是xp-x=0的全部根.这就证明了ZpZpaap是恒等自同构.§6 F[x]模某个理想的剩余类环,添加一个多项式的根的扩域以下习题中打倡者为必作题,其余为选作题. 倡1畅Z3[x]中计算(x2+x+1)(x3+2x+1)及(x4+2x+1)(x3+x+1) 倡2畅证明x2+1,x3+2x+1是Z3[x]中不可约多项式.问Z3[x]/(x2+1),Z3[x]/(x3+2x+1)分别是几个元素的域.3畅写出Z3[x]/((x2+1)(x3+2x+1))中的全部理想和极大理想. 倡4畅证明Q[x]/(x2-2)与Q(2)={a+b2|a,b∈Q}都是域,且互相同构.1畅(x2+x+1)(x3+2x+1)=x5+x4+1.(x4+2x+1)(x3+x+1)=x7+x5+x3+2x2+1.2畅x2+1,x3+2x+1在Z3中无根,于是在Z3[x]中无一次因式,因此不可约.Z3[x]/(x2+1)是有9个元的域,Z3[x]/(x3+2x+1)是有27个元的域.3畅用§4习题8,它的全部理想为零理想及Z3[x]/((x2+1)(x3+2x+1)),(x2+1)Z3[x]/((x2+1)(x3+2x+1)),(x3+2x+1)Z3[x]/((x2+1)(x3+2x+1)).后面两个理想是极大理想.4畅Q[x]/(x2-2)与Q(2)都是域,略证.作映射Q[x]φQ(2)p(x)p(2)·46·这是同态映射,且是满射.Kerφ={p(x)|p(2)=0}.由于x2-2是2的极小多项式,故Kerφ=(x2-2)Q[x]=((x2-2)).由同态基本定理得Q[x]/((x2-2))碖Q(2).§7 整环的分式域,素域以下习题中打倡者为必作题,其余为选作题.1畅证明:有限整环是域. 倡2畅R是交换环,P≠R是R的理想,则RP是整环当且仅当P有性质:若a,b∈R满足ab∈P,则a∈P或b∈P.有这种性质的理想P称为素理想. 倡3畅R是交换环,则R的极大理想必为素理想. 倡4畅设n∈Z,n>1,Z中主理想(n)=nZ是素理想当且仅当n是素数. 倡5畅设R是一个域,则R的分式域就是自身. 倡6畅令Z(2)={a+b2|a,b∈Z},Q(2)={α+β2|α,β∈Q}.证明Q(2)是Z(2)的分式域.7畅令Z[i]={a+bi|a,b∈Z},Q[i]={α+βi|α,β∈Q}Z.证明Q[i]是Z[i]的分式域.8畅域F上多项式f(x)的次数≥1.F[x]中主理想(f(x))是素理想当且仅当f(x)是不可约多项式.1畅设R是有限整环,R={r1,…,rt}.令rt=0.橙0≠r∈R,当ri≠rj时有rri≠rrj.故rr1,…,rrt-1是R的全部非零元,必有某rj使rrj=1,即rj为r的逆元.R的每个非零元都有逆,故是域.2畅设R/P为整环.橙a,b∈R,若ab∈P,则(a+P)(b+P)=ab+P=0.于是a+P=0或b+P=0,即a∈P或b∈P.故P为素理想.反之,设P是素理想,橙a,b∈R,若ab∈P则a∈P或b∈P.现设R/P中(a+P)(b+P)=ab+P=0.即ab∈P,于是a∈P或b∈P,即a+P=0或b+P=0.故R/P是整环.3畅设I是R的极大理想,则R/I是域,当然是整环.由习题2,I是素理想.·56· 4畅设Z中(n)=nZ是一个理想.若n不是素数,则n=ab,a,b为大于1的正整数.由于a和b都不是n的倍数,故a∈(n),b∈(n).但ab=n∈(n),故(n)不是素理想,这就证明了(n)是素理想则n为素数.当n是素数时,对ab∈(n),则n|ab.若n嘲a,则(n,a)=1.于是n|b.即a∈(n)或b∈(n),(n)是素理想.5畅R是域,则也是整环.它的分式域F以R为子环,且F中的元是R的元的商.由于R是域,它的元的商仍在R中,故R=F.6畅我们已知Q(2)是域.对任意α+β2∈Q(2),可写α=ac,β=bc,a,b,c∈Z.则α+β2=a+b2c是Z(2)中两元素的商.又Z(2)中两元素的商为:a+b2c+d2=(c-d2)(a+b2)c2-2d2=ac-2bdc2-2d2+bc-adc2-2d22∈Q(2).现在Z(2)是Q(2)的子环,且Q(2)是由Z(2)中两元素的商组成,故Q(2)是Z(2)的分式域.7畅易证Q[i]是域.对任意α+βi∈Q[i],可写α=ac,β=bc,则α+βi=a+bic是Z[i]中两元素的商.又Z[i]中两元素的商为a+bic+di=ac+bdc2+d2+bc-adc2+d2i∈Q[i].即Q[i]由Z[i]的两元素的商组成.故Q[i]是Z[i]的分式域.8畅完全可仿照习题4的证明.设(f(x))是F[x]中理想,f(x)的次数≥1.若f(x)=g(x)h(x),g(x)及h(x)的次数皆大于等于1,这时g(x),h(x)皆不是f(x)的倍数,故g(x),h(x)∈(f(x)),但g(x)h(x)∈(f(x)).即(f(x))不是素理想.故若(f(x))是素理想,则f(x)不可约.反之,若f(x)不可约.对g(x)h(x)∈(f(x)),则有g(x)h(x)=f(x)k(x).若f(x)|g(x)则g(x)∈(f(x)).若f(x)嘲g(x),则(f(x),g(x))=1,于是f(x)|h(x).即有h(x)∈(f(x)),故(f(x))是素理想.§8 环的直和与中国剩余定理以下习题中打倡者为必作题,其余为选作题. 倡1畅解同余方程组.·66·(i)x≡1(mod2)x≡2(mod5)x≡3(mod7)x≡4(mod9) (ii)x≡5(mod7)x≡4(mod6) 倡2畅韩信点兵问题:有兵一队,若列5列纵队,则末行1人.成6列纵队,则末行5人.成7列纵队,则末行4人.成11列纵队,则末行10人.求兵数. 倡3畅R1,…,Rs是环.U1,…,Us分别是它们的可逆元的群.证明R1磑…磑Rs的可逆元群为U=U1×U2×…×Us(见第一章§4定义2).4畅设n=m1m2…ms,mi两两互素.令U(Zm)表Zm的可逆元群,则Z/nZ=Zn的可逆元群同构于U(Zm1)×…×U(Zms).进而有,φ(n)=φ(m1)φ(m2)…φ(ms),这里φ(n)是欧拉函数.当n=pes1…pess,pi为不同素数时,φ(n)=n1-1p1…1-1ps.(见第二章§5定义1及最后一段).1畅(i)解为157(mod630)(ii)解为40(mod42)2畅2111(mod2310)3畅(a1,a2,…as)是R1磑…磑Rs的可逆元当且仅当有(b1,…,bs)使(a1,…,as)(b1,…,bs)=(a1b1,…,asbs)=(1,…,1)当且仅当aibi=1,i=1,2,…,s当且仅当ai∈Ui,i=1,2,…,s当且仅当(a1,…,as)∈U1×…×Us.4畅这时Zn碖Zm1磑…磑Zms.Zm的可逆元群U(Zn)={k+nZ|(k,n)=1}.故|U(Zn)|=φ(n).(见第二章§5定义1).由习题3,U(Zn)碖U(Zm1)×…×U(Zms).|U(Zmi)|=φ(mi),i=1,2,…,s.故得φ(n)=φ(m1)…φ(ms).对素数幂pk,1,2,…,pk-1中与pk不互素的数为p的所有倍数lp,1≤l≤pk-1-1.故此中与pk互素的数共(pk-1)-(pk-1-1)=pk-pk-1=pk1-1p(个).即φ(pk)=pk1-1p.当n=pe11pe22…pess时,φ(n)=φ(pe11)φ(pe22)…φ(pess)=pe11…pess1-1p1…1-1ps.·76·。
商环与环同态基本定理
从定理 3 的证明中可知:除了(ⅱ)需要 是满环同态外,其余情况都不需要
证明 (ⅰ)对加法而言, 显然是一个加群满同态,由群的知识有 I R .
下面只需证明吸收律也成立即可.
k I,r R.那么(rk) (r)(k) (r)0 0,因此 rk I . 同 理 kr I .所以 I R .
(ⅱ)由群同态基本定理知,存在 ,使 R I R .作为群同构,其中 ([a]) (a). [a] R I .
的子环.又因为 是满射,所以 i (I ), i I使i (i) ,
a R, a R,使a (a) ,又因为 I R ,因此 ia I, ai I , 从而 ia (i)(a) (ia) (I ) , ai (a)(i) (ai) (I ) , 故(I ) 是 R 的理想.
(ⅲ) a,b 1(s) ,有(a),(b) S , 从而知(a) (b),(a)(b) S , 所以(a b) (a) (b) S, 即 a b 1(s);(ab) (a)(b) S, 即 ab 1(s) ,故 1(s) 是 R 的一个子环. (ⅳ) a 1(s), 则(a) S;r R,则(r) R .因为 S R ,所以
2.商环的定义
定义 1 环 称为环 关于理想 的商环.
• 如 为交换环, 则 也是交换环.
• 如 有单位元, 则 也有单位元, 且
.
定义1 设 R 为任意一个环,而 I R .那么 R I , • 称 作 R 关于理想 I 的剩余类环(也叫商环或 差环),其中 R I 中 每个元素叫作模 I 的剩余类. 例 1 设 R Z 为整数环,而使 I 6Z {6n | n Z} 那么
高等代数环的定义与性质
一、 环的定义与基本性质(一) 环的定义:1、 定义1:交换群称为加群(Aβελ群),其运算叫做加法,记为“+”。
2、 定义2:代数系统),;A (⋅+称为环,若1)(A ,+)是加群;2)代数系统);A (⋅适合结合律;3)乘法);A (⋅对加法+的分配律成立。
3、 例子(1)),;Z (⋅+、),;Q (⋅+、),;R (⋅+、),;C (⋅+都是环,均称为数环。
(2)Z[ι] ={α+βι | α、β∈Z ,ι2=-1 },则),];i [Z (⋅+也是数环,称之为高斯整环。
(3)设Φ是任一数环,则Φ[ξ]关于多项式加法与乘法作成一个多项式环。
(4)Z ν={所有模ν剩余类},则),;Z (n ⋅+是模ν剩余类环,这里[α]+[β] = [α+β],]b []a [⋅ = [αβ].(5)设(A ,+)是加群,规定乘法如下:,A b ,a ∈∀αβ=0,则),;A (⋅+作成一个环,称之为零环。
(二)环的基本性质:(1)0x a a x =⇒=+。
(2)a x x a -=⇒=+0。
(3)c b c a b a =⇒+=+。
(4)nb na )b a (n +=+。
(ν为整数)(5)na ma a )n m (+=+。
(μ、ν为整数)(6))na (m a )mn (=。
(μ、ν为整数)(7),A a ∈∀ 000=⋅=⋅a a 。
(8)ab )b (a b )a (-=-=-。
(9)ab )b )(a (=--。
(10)ac bc c )a b (,ac ab )c b (a -=--=-。
(11)j m i n j i n j j m i i b a b a ∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1111 。
(12))ab (n )nb (a b )na (==。
(ν为整数)。
(13)若环中元a 、b 满足ba ab =,则()k n k n k k n n b a C b a -=∑=+0(14)mn n m n m n m a )a (,a a a ==⋅+。
§6.7 环 同 态(离散数学)
为整数环I, ( ) 例. 设R为整数环 ,N=(m)=mI,则 为整数环 , a≡b(mod N) iff a=b+n, n∈N ( ) ∈ iff a=b+mk iff m∣a-b ∣ iff a≡b(mod m)。 ( ) I的关于 的陪集即是模 的剩余类。 的关于N的陪集即是模 的剩余类。 的关于 的陪集即是模m的剩余类
主理想
定义. 是有壹的交换环, ∈ , 定义 设R是有壹的交换环,a∈R,则 aR 是有壹的交换环 称为由a生成的主理想,记为( )。 称为由 生成的主理想,记为(a)。 生成的主理想 显然,( ) 显然,(0)={0}, (1)=R。 ,( , ) 。 结论5. 的主理想( ) 中包含a的理想 结论 环R的主理想(a)是R中包含 的理想 的主理想 中包含 中最小(在集合包含关系下)的理想。 中最小(在集合包含关系下)的理想。 证明: 中包含a的任一理想 证明:设N是R中包含 的任一理想,往证 是 中包含 的任一理想, ∈(a), ∈ , (a) N。任取 ∈( ,即x∈aR,则存在 ) 。任取x∈( r∈R,使得 ∈ ,使得x=ar。由a∈N, r∈R,N是理想 。 ∈ , ∈ , 是理想 ,(a) 知,ar∈N,即x∈N。所以,( ) N。 ∈ , ∈ 。所以,( 。
理想的例
为整数环, 是 的子环 且是I的 的子环, 例. 设I为整数环,mI是I的子环,且是 的 为整数环 理想。因为: 理想。因为: mI非空; 非空; 非空 若a∈mI,b∈mI,则a-b∈mI; ∈ , ∈ , ∈ 若a∈mI,x∈I, 则aх∈mI,хa∈mI。 ∈ , ∈, ∈ , ∈ 。
6.7.3 环同态与同构
定义. 是一个环, 是有加、 定义 设R是一个环 S是有加、乘两种运算的系统,称 是一个环 是有加 乘两种运算的系统, 中的同态映射, R到S中的映射 是环R到S中的同态映射,如果 到 中的映射 中的映射σ是 到 中的同态映射 σ(a+b)=σ(a)+σ(b),σ(ab)=σ(a)σ(b)。 , 。 R到R’上有一个同态映射 则称R与R’同态 记为R~R′。 上有一个同态映射,则称 同态,记为 若R到R’上有一个同态映射,则称R与R’同态,记为R~R′。 定义. 是环R到 上的一对一的同态映射 上的一对一的同态映射, 定义 若σ是环 到R’上的一对一的同态映射,则 上的同构映射或同构对应。 称σ是R到R’上的同构映射或同构对应。 到 上的同构映射或同构对应 若R到R′上有一个同构映射,则称 与R′同构,记为 到 ′上有一个同构映射,则称R与 ′同构, R R′。 ′
高等代数环的例子
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
环的几个例子
回忆引论章中环 R 的定义:R 是非空集合,有两个代数运算,称为 加法和乘法.R 对于加法成为交换群,R 对于乘法成为幺半群,R 的乘法对于加法有分配律.
. . . .... .... .... . . . . .... .... .... . .
例 以 Q 表全体整数的集合. 它对于数的加法、减法和乘法是封闭的, 但除法不封闭,整数在 Z 中一般没有乘法逆元.Z 是一个环.
例 域 F 上全体多项式的集合 F[x],在多项式的加法、减法和乘法下是 封闭的,多项式在 F[x] 中一般没有乘法逆元.F[x] 是一个环.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
交换环、子环
定义 设 R 是环,若它的乘法满足交换律,则称为交换环.
定义 R 是环.S 是 R 的子集,它含有 R 的乘法单位元 1,且对于 R 的运 算仍成为环,则称 S 是 R 的子环.
注 定义中要求环 R 与子环有同一个乘法单位元.
例 域 F 是环. 若它的子环 S 是域,则 S 是 F 的子域.
本节的知识体系
本节先介绍环的几种典型例子,然后介绍子环、同态、理想、商环 (也称剩余类环)、同态基本定理. 这些基本概念是群中有关的概念
在环中的推广. 在某些情形下商环是域,这就提供了一种构造新域 的方法. 用此方法可以造出有限个元的域,也可对于某域 F 上的多 项式造出该域的一个扩域,使得此扩域中是该多项式有根, 我们知 道在整数环作所有的分式就可得有理数域,推广到一般整环也能构 造它的分式域.
20 代数学基础(4)环和域
例
• 对于二次多项式f(x)=x2 - 2x+2:
.
(1)在复数域上可约;
(2)在实数域上不可约;
(3)在F3上不可约.
利用不可约多项式构造域
• 定义: F[x]是域F上的多项式环, f,g,r∈F[x], g≠0, 满足f = gq + r, deg(r)<deg(g), 称r为f除以g的 余式, 记为r≡f (mod g).
• 考虑F[x]中所有多项式模g(x)的余式, 将这些集合 称为F[x]模g(x)的多项式, 记为F[x]/g(x).
利用不可约多项式构造域
• 令F是一个域,f(x)是F[x]中的一个非零多项式, 那么F[x]/f(x)是一个环,当且仅当 f(x)在F上不 可约时, F[x]/f(x)是一个域.
• f(x)是F[x]中的一个不可约多项式, 当F是域时, F[x]/f(x)是一个域. 将f(x)称为域F[x]/f(x)的 定义多项式.
定理
• 令F为含有p个元素的域,f(x)是F上的n次不可约 多项式,那么域F[x]/f(x)中元素的个数是pn.
▫ F[x]/f(x)是F[x]中所有次数小于deg(f)=n、系数取遍F中所有p个 元素的多项式全体构成的集合. 共有pn个这样的多项式.
• 多项式环 Z[x]
环中的零元
• 对于环中的任意元素a, 都有0a=a0=0
• 一般地,0与1不相等,否则1a=a, 而0a=0,这 表明环中只有一个元素,平凡情形,一般不考 虑
• 所以0关于乘法没有可逆元
环的几个性质
设R是一个环, ∀a,b ∈ R, 有: • a(-b)=(-a)b=-(ab) • (-a)(-b)=ab
注: 0是抽象的写法,不同于整数中的0. “+”和“∘”是抽象的运算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 环与域
§6 商环与环同态基本定理
一、 商环的定义与性质
1 商环的构造: (1) (2) 则 的加法与乘法: , , . 设 为环, 为 的理想.
关于如上所定义的运算构成环. 为环, 必须证明下列几点:
的代数运算.
说明 要证明
(1) "+"和"."为 (2)
为交换群.
(3) 乘法满足结合律. (4) 乘法对加法满足分配律.
五、 整环的商域
(一)商域的概念 定义 1 设 是一个域, , 使得
是
的子环. 如果对任意的 为 的商域.
, 存在
, 则称
只有无零因子的交换环才可能有商域. 由一个环得到一个域的第二种方法---商域 的商域就是 .
例 4
例 5 域
的商域就是它本身.
例 6 求高斯整环 解 设 又因为任给 , 而 例 7 设 , 为域, 为
这说明, 从同构的观点看,
类似地可以证明, 当 时,
为无零因子的交换环, 且
也有商域 (见张禾瑞 《近世代数基础》 119 页定理 1) .
习 题 课 习题 1 在 中规定 证明:1.证
(1)封闭 (2)结合律成立 为加群
, 证明 关于 , 成环。
(3)零元 1, (4)负元 (5)交换律
2.证 对乘法为半群 (1)封闭 (2)结合律
的商域. , 则 , 因 为域. , 故存在 , 使得
. 于是 , 所以 为 的商域. 的商域为
上的未定元, 则
称域 设
为
上的有理分式域. , , 方程 在 中都有解.
为 的商域, 则任给
(二)商域的构造 设 为整环. 下面由 . 当且仅当 出发, 构造 的商域.
1. 构造集合 2. 在
上规定关系 上的等价关系.
所以 : R I R 是环同构.即 R I 定理 3.6.2
R.
设 R 是一个环而 I R ,那么必有环同态 : R R I .
使得 是满同态且核 Ker I .称这样的 为环的自然同态 . 证明 令 : R R I ,其中 (a) [a] ,显然 是个满射.而且
(ⅲ) a, b 1 (s) ,有 (a), (b) S , 从而知 (a) (b), (a) (b) S , 所以 (a b) (a) (b) S , 即 a b 1 (s) ; (ab) (a) (b) S , 即 ab 1 (s) ,故 1 (s) 是 R 的一个子环. (ⅳ) a 1 (s),则 (a) S;r R,则 (r ) R .因为 S R ,所以
在前一节中我们已知,当 I 是环 R 的理想时,仅对加法而言知 I R ,得到加法商 群 R I {[a] | R},其中群 R I 中运算为 [a] [b] [a b] ,每个元素 a 都叫做
I 的一个剩余类环且 [a] [b] 当且仅当 a b I .
下面我们将说明在商加群 R I 中可以合理地引入一个乘法并使 R I ,, 做 成一环.这个乘法即前面定义的
习题 9 一个环 的非空子集 叫做 的一个左理想,假如 (i) (ii) 你能不能在有理数域 上的 解:考虑有理数域 上的 矩阵环里找到一个不是理想的左理想? 矩阵
是
的子环, 是
的左理想。
习 题 二 十 一
1.设 N 是环 R 到环 R 的同态满射 的核.证明:
是同构映射 N= 0 .
R I Z 6 {[0],[1],[2],[3],[4],[5]}
就是我们已经熟悉的“模 6 剩余类环”——这是整数的剩余类环..
例 2 设 商环 即商环 例3 设 解
为大于 1 的正整数, 则
为
的理想, 从而有
就是模
的剩余类环. . 。 , 如果 为偶数, 则 . 所以 , 如
为高斯整环, 试确定
以 [ab] [a b ] ,即 ab a b I .所以定义是合理的.
' '
' '
很容易验证 R I , 是一个环.
2.商环的定义 定义 1 环
称为环
关于理想 的商环. 也是交换环. 也有单位元, 且 .
如 如
为交换环, 则 有单位元, 则
定义 1 设 R 为任意一个环,而 I R .那么 R I , 称 作 R 关于理想 I 的剩余类环(也叫商环或 差环),其中 R I 中 每个元素叫作模 I 的剩余类. 例1 设 R Z 为整数环,而使 I 6Z {6n | n Z } 那么
理 kr I .所以 I R . (ⅱ)由群同态基本定理知,存在 ,使 R I R .作为群同构,其中
([a]) (a). [a] R I .
下面只需证明: [a],[b] R I , ([a][b]) ([a])([b]) .但
([a][b]) [ab] (ab) (a) (b) [a][b] .
5. 由 令
构作一个包含
的域
则 为单同态. 从而由环的扩张定理, 存在 . 因 为域, 所以 也是域, 这里 , 6. 对任意的 (i) 如果 , 则 .
的扩环
, 使得
(ii) 如果 x F ( D) ,则
,
,
. 那么在
内,
于是在 由此知,
内, 为 的商域.
所以,
综上,我们得到 定理 3.6.5 的子环;且 每一个没有零因子的交换环 D 都是一个域 Q ,这里 。
3.分配律成立
习题 2 在
中找出适合方程
的一切元素。
解:[1],[4],[11],[14] 习题 3 证明:由所有实数 证明: 1.证 为一个环 (1)加法 结合律成立。 零元为 的负元 (2)乘法 结合律成立。 (3)分配律成立 ( , 是整数)作成的集合
对于普通加法和乘法来说是一个整环。
2. 有单位元 3. 乘法的交换律成立 4. 无零因子 习题 4 证明:一个至少有两个元而且没有零因子的有限环 是一个除环。 证明:只要证 是一个群 对乘法封闭 (1) 无零因子,说明 (2)结合律成立 (3) 无零因子从而消去律成立。 满足消去律。
Q 显然是
a, b R, b 0
R 的一个商域。证毕。
(三)商域的同构唯一性定理 定理 3.6.6 设 与 为两个整环, 与 分别为它们的商域. 如果 : , 使得 .
, 则存在域的同构 :
证明 令 (1) 如果 这说明, 为 (2) 任给 , 则 到 , 则
,则 , 故 . 于是 .
(a) (r) S , (r) (a) S .
于是 (ar) (a) (r ) S , 即ar 1 (s); 又 (ra) (r) (a) S, 所以 1 (s) 满足吸收律. 即ra 1 (s), 又由(ⅲ)知, 1 (s) 是 R 的子环,于是 1 (s)R . 从定理 3 的证明中可知:除了(ⅱ)需要 是满环同态外,其余情况都不需要 是满射这个条件.
的映射. 即 ;
(3) 任给
所以,
为环同态. , 如果 , 即 . , 则
(4) 设
因为
为同构, 所以 , , 则
. 故 , 则
. 故
为单同态. , 使得
(5) 任给
为同构, 故存在 ,所以,
为满同态.
由此知: 为同构: : 当 时, 即 与
. 都是 的商域, 则有恒等同构
故由前定理知:
. 的商域是唯一的. 不为零
2. 设 R 是有单位元的整环(可换,无零因子).证明: 1)若 char R= ,则 R 有子环与 Z 同构; 2)若 char R=p(p 是素数),则 R 有子环与 Z p 同构. 3. 设 是环 R 到环 R 的一个同态满射,K 为其同态核,N R. 4. 令 R a bi a, b Q , R 由一切形如
定理 3.6.1
设R R 是一个环同态满射,令 I Ker .那么
(ⅰ) I R ; 证明
( ⅱ) R
I
R
(ⅰ)对加法而言, 显然是一个加群满同态,由群的知识有 I R .
下面只需证明吸收律也成立即可.
k I , r R. 那么 (rk ) (r ) (k ) (r )0 0 ,因此 rk I . 同
a R, a R, 使a (a) ,又因为 I R ,因此 ia I , ai I ,
从而 ia (i) (a) (ia) ( I ) , ai (a) (i) (ai) ( I ) , 故 ( I ) 是 R 的理想.
得 得 , .ቤተ መጻሕፍቲ ባይዱ, 从而 , 则
则 " " 为 证明
(1) 由
(2) 由 (3) 若
, 从而 , , 所以
.
, 消去
, 得
, 故
.
3. 由等价关系得商集 记
. , 即
所在的等价类为
令
则 当且仅当
说明 两等价类相等的充要条件 当且仅当 4. 规定 的加法与乘法运算 设 , 规定 当且仅当 .
则"+", "." 为的代数运算, 且关于这两个运算构成域.
1
证明 (ⅰ) a, b (S ), a, b S ,使 a (a),b (b). 所以 a b S ,于是 a b (a) (b) (a b) (S ) , 从而 ( S ) 是 R 的子群.另外 a , b (a) (b) (ab) (S ) 所以 ( S ) 是 R 的子环. (ⅱ)因为 I R ,所以 I 是 R 的子环,从而 ( I ) 是 R 的子环.又因为 是满射,所以 i ( I ), i I使i (i) ,