5.3.1 平行线的性质(第2课时)

合集下载

人教版七年级数学下册第五章《5.3.1平行线的性质》公开课课件 (2)

人教版七年级数学下册第五章《5.3.1平行线的性质》公开课课件 (2)

小结:
已知
判定 得到
同位角相等 内错角相等 同旁内角互补
得到
两直线平行
性质
已知
小结 平行线的性质
图形
同 位
a
角b
1 2 c
内 错
a3
角b
2
c
同 旁
a

42
角b
c
已知 a//b
结果
结论
两直线平行 1 2 同位角相等
a//b 3 2 两直线平行 内错角相等
a//b
2 4 180 两直线平行 (2与4互补) 同旁内角互补
作业:
• P22习题5.3第3、6题。
1 3
a
2 b
平行线的性质2
两条平行线被第三条直线所截,内错角相等 。 简单说成:两直线平行,内错角相等。
如图:已知a//b,那么2与 3有什么关系呢?
解: a//b (已知)
1= 2(两直线平行,同位角相等) c
1+ 3=180°(邻补角定义)
2+ 3=180°(等量代换)
a
2
例1 小青不小心把家里的梯形玻璃块打了, 还剩下梯形上底的一部分(如图)。要订造一块新
的玻璃,已经量得 A 115,D 100 ,你想一
想,梯形另外两个角各是多少度?
解:因为梯形上.下底互相平行,所以
A
D
A与B互补, D与C互补.
于是 B 180 -115 65,
C 180 100 80.
∵ ∠2=∠1 (对顶角相等)
∴ ∠2=∠1 =54° ∵ a∥b(已知) ∴ ∠4=∠1=54°(两直线平行,同位角相等)
2
b
4 3
∠2+∠3=180°(两直线平行,同旁内角互补)

相交线与平行线教案

相交线与平行线教案

5.3.1 平行线的性质(第1课时)平行线的性质(一)一.教学目标1.知识与技能:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.过程与方法:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

3.情感态度与价值观:培养学生合作交流意识和探索精神。

二.重点、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.三.教学过程(一)、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?(二)、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?c b a4321平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程. 因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 讲解按课本.(三)、巩固练习 1.课本练习(P22). (四)课堂小结: 经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算 (五)课堂作业:练习卷 (六)课堂反馈 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBAFEDC B A(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.D C BA3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).平行线的性质(第2课时)平行线的性质(二) 教学目标知识与技能:能够综合运用平行线性质和判定解题过程与方法.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论. 情感态度与价值观:推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么? 二、进行新课已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.E D CB AFEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行). 所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。

平行线的性质 优秀课件ppt

平行线的性质    优秀课件ppt

素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a

七年级数学下册教学课件《平行线的判定与性质的综合运用》

七年级数学下册教学课件《平行线的判定与性质的综合运用》

(2)由(1)可知AB∥EF, ∴∠3=∠ADE(两直线平行,内错角相等). 又∠3=∠B(已知), ∴∠ADE=∠B(等量代换). ∴DE∥BC(同位角相等,两直线平行). ∴∠EDG=∠BGD=55°(两直线平行,内错角相等). ∵DE平分∠ADG(已知), ∴∠ADG=2∠EDG=110°(角平分线的定义). 又AB∥EF, ∴∠1=∠ADG=110°(两直线平行,同位角相等).
(2)∵DE∥BC,∴∠C = ∠AED = 40°(两直线平行,
同位角相等)
4.已知:如图,∠1+∠B=∠C.试说明BD∥CE.
解:如图,作射线AP,使AP∥BD, ∴∠PAB=∠B(两直线平行,内错角相等). P 又∠1+∠B=∠C(已知), ∴∠1+∠PAB=∠C(等量代换), 即∠PAC=∠C. ∴AP∥CE(内错角相等,两直线平行). 又AP∥BD, ∴BD∥CE(如果两条直线都与第三条直线平 行,那么这两条直线也互相平行).
解:∵∠1=∠2(已知),∠2=∠DHE(对顶角相等), ∴∠1=∠DHE(等量代换). ∴AB∥CD (同位角相等,两直线平行). ∴∠B+∠D =180°(两直线平行,同旁内角互补). ∵∠D=50°(已知), ∴∠B=180°-∠D=180°-50°=130°.
②如图,已知AB∥CD,DA平分∠CDE,∠A =∠AGB.
拓展提升
如图 , 点E在AB上 , 点F在CD上 , CE , BF分别交AD于 点G,H.已知∠A =∠AGE,∠D=∠DGC. (1)AB与CD平行吗? 请说明理由. ( 2 ) 若∠2+∠1=180° , 且∠BEC=2∠B+30° , 求∠C 的度数.
解:(1)AB∥CD.理由如下: ∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC(对 顶角相等),∴∠A=∠D (等量代换). ∴AB∥CD (内错角相等,两直线平行).

《平行线的性质》相交线与平行线PPT免费课件(第2课时)

《平行线的性质》相交线与平行线PPT免费课件(第2课时)

课堂检测 拓广探索题
如图,AB∥CD,猜想∠A、∠P 、∠PCD的数
量关系,并说明理由.
解法一:作∠PCE =∠APC,交AB于E.
A
∴ AP∥CE ∴ ∠AEC=∠A,∠P=∠PCE.
∴ ∠A+∠P=∠PCE+∠AEC,
C
∵AB∥CD ∴ ∠ECD=∠AEC,
∴∠A+∠P =∠PCE+∠ECD=∠PCD.
A
B
A
B
A E1
B
E
E1
E2
E2
E3
C
D
C
D
C
D
当有一个拐点时: ∠A+∠E+∠C= 360°
当有两个拐点时: ∠A+∠ E1 + ∠ E2 +∠C = 540° 当有三个拐点时: ∠A+∠ E1 + ∠ E2 +∠ E3 +∠C = 720°
探究新知 若有n个拐点,你能找到规律吗?
A
B
E1
E2 …
【思考】在填写依据时要注意什么问题?
巩固练习
如图,AB∥EF,∠ECD=∠E,则∠A=∠ECD.
理由如下:
B
A
∵∠ECD=∠E, ∴CD∥EF( 内错角相等,两直线平行 又AB∥EF,
D
C
)E
F
∴CD∥AB(平行于同一直线的两条直线互相__平__行_ ).
∴∠A=∠ECD( 两直线平行,同位角相等 __ ).
= ∠ E1 +∠ E2
探究新知
若左边有n个角,右边有m个角,你能找到规律吗?
A
F1 F2 Fn-1
B E1

数学七年级人教版 5.3.1 平行线的性质 课件(共16张PPT)

数学七年级人教版 5.3.1 平行线的性质 课件(共16张PPT)

如图:已知a//b, 那么2与 3有什么关系呢?
c
a
2
3
b
1
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
平行线的性质 (1)两条平行线被第三条直线所截,同位角相等; (2)两条平行线被第三条直线所截,内错角相等; (3)两条平行线被第三条直线所截,同旁内角互补。
平行线的性质
:

授 者
路 井


王 杰
中 学
问题1:判定两条直线平行,我们学过 的方法有哪几种?
方法1:同位角相等,两直线平行.
方法2:内错角相等,两直线平行. 方法3:同旁内角互补,两直线平行.
问题2:根据同位角相等可以判定两 直线平行,反过来如果两直线平行同 位角之间有什么关系呢?内错角,同 旁内角之间又有什么关系呢?
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月2021/8/112021/8/112021/8/118/11/2021
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021/8/112021/8/11August 11, 2021
得到
判定
得到
两直线平行
性质 已知
小结
平行线的性质
图形
同 位
a
角b
1 2 c
内 错
a3
角b
2
c
同 旁
a

42
角b
c

七年级数学下册教学课件《平行线的性质》

七年级数学下册教学课件《平行线的性质》

d
c
21 a
34
65 b
78
对应训练
1.如图,直线a∥b,c是截线,若∠1=60°,则∠2的度数为 __1_2_0_°_.
2.如图,已知AB∥CD,BC是∠ABD 的平分线,若∠2=64°, 则∠3=__5_8_°__.
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
两条直线平行
21 a
34
同位角相等
转化
内错角相等
65 b
78
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
解:∵a∥b(已知), ∴∠1=∠5(两直线平行,同位角相等).
21 a
34
又∵∠1=∠3(对顶角相等),
∴∠3=∠5(等量代换).
拓展提升
我们生活中经常接触的小刀刀柄外形是一个直角梯形(下底 挖去一小半圆),刀片上、下是平行的.把处于闭合状态的 刀片打开,得到如图所示的图形. (1)若∠1=55°,求∠2的度数; (2)在刀片打开过程中,若∠2始终为钝角,试说明 ∠2=∠1+90°.
解:(1)如图,延长CB交AD于点E. 由题意可知∠BAG=90°,AG∥CE, ∴∠EAG=∠1+∠BAG=55°+90°=145°, ∠EAG=∠DEC. ∴∠DEC=145°. ∵刀片上、下是平行的,即AD∥CF, ∴∠2=∠DEC=145°. (2)由(1)可知 ∠DEC=∠DAG=∠1+∠BAG=∠1+90°, ∠2=∠DEC,∴∠2=∠1+90°.
21 a

5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °,∠ 2 = 70 °(等量代换).
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
当堂巩固
1. 填空:如图,
A
(1)∠1=∠2 时,AB∥CD.
1
(2)∠3= ∠5 或∠4 时,AD∥BC. B
D
5 2
3 C
4 F
解:过点C作CF∥AB,
A
则 _∠__B_=_∠__1( 两直线平行,内错角相等 )
C
又∵AB∥DE,AB∥CF,
D
∴___C_F__∥__D_E___(平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B 1F 2
感受中考
2.(3分)(2021•包头8/26)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B, 过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于( )
A.80°
B.70°
C.60°
D.50°
【 分 析 】 由 题 意 得 , ∠ 2=60° , 由 平 角 的 定 义 可 得 ∠5=70°,再根据平行线的性质即可求解.
c 图1
b
c
a 图2
3. 运用平行线的性质填一填
图形
同a 位 角b
1 2 c
内 错 角
a 3
b
2
c
同 旁
a
内 角
b
42 c
已知 a//b
结果 ∠1 = ∠2

《平行线的性质》课件(共33张PPT)000

《平行线的性质》课件(共33张PPT)000

如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=110°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
桃子题:
如图,梯子的各条横档互相平行, ∠1=1000,求∠2的度数。
解:∠1=∠3; ∠2 =∠4 理由如下:
∵AB∥DE (已知) A
DC
F
∴∠1=∠3(两直线平行, 同位角相等) ∵ ∠1=∠2 ,∠3=∠4
1
23
4
B
E
∴ ∠2=∠4 (等量代换)
(2 )反射光线BC与EF也平行吗?
平行:∵ ∠2=∠4 ∴ BC∥EF(同位角相等,两直
线平行)
比一比 、乐一乐:(分组比赛)
4
31
56
8
7
∠1=∠5
a b
探索新知
①已知直线a,画直线b,使b∥a,c
②任画截线c,使它与a、
11718°25°8°b
b都相交,则图中∠1与 ∠2是什么角?它们的 大小有什么关系?
21185728°° a
③旋转截线c,同位角
∠1与∠2的大小关系又
如何? ∠1=∠2
通过上面的实验测量,可以得到性质1(公理):
3 2
目前,它与 地面所成的 较小的角
为∠1=85º
1
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
杨梅
草莓题:
1 A
D
B
C
1、如果AD//BC,根据___________ 可得∠B= _______

人教版七年级数学下册课件第五章相交线与平行线平行线的性质(第二课时)

人教版七年级数学下册课件第五章相交线与平行线平行线的性质(第二课时)
形的另外两个角 分别是多少度?
解:因为梯形上、下两底AB与DC互相平行, 根据“两直线平行,同旁内角互补”,可得∠A与 ∠D互补, ∠B与∠C互.补
于是
∠D = 180°-∠A=180°-100°=80°, ∠C = 180°-∠B=180°-115°=65° .
所以梯形的另外两个角分别是80°,65°.
例6:如图,若AB//CD,你能确定∠B、∠D与 ∠BED 的大小关系吗?说说你的看法.
解:过点E 作EF//AB.
A
∴∠B=∠BEF.
∵AB//CD.
∴EF//CD.
C
∴∠D =∠DEF.
∴∠B+∠D=∠BEF+∠DEF
=∠DEB.
即∠B+∠D=∠DEB.
B
E
F
D
变式1:
如图,AB//CD,探索∠B、∠D与∠DEB的大小关系 .
能推出什么结论, 一直推导出要说明的结论为止; (如导引 2) 3. 两头凑:当遇到复杂问题的时候,我们常常将分析法和综
合法同时进行,即由两头向中间推,寻找到中间的结合点.
例4 光线从空气射入水中时,传播方向会发生改变,这种 现象叫做光的折射现象.同样,光线从水中射入空气中时,也会 发生折射现象,一束光线从空气射入水中再从水中射入空气中时,
如图④,∵AB∥DE,∴∠ABC=∠EPC. ∵BC∥EF,∴∠EPC+∠DEF=180°. ∴∠ABC+∠DEF=180°. 综上可知,∠ABC与∠DEF相等或互补.
本题易错之处在于学生往往只考虑到其中两 种情况,而漏掉另外两种情况.
易错点:画图考虑不周导致漏解.
【课后练习】
● 1.一辆汽车在笔直的公路上,两次拐弯后,仍在原来的方向上平行前进,则这两

七年级数学下册第五章相交线与平行线5.3平行线的性质5.3.1平行线的性质第2课时平行线的性质和判定及其综合

七年级数学下册第五章相交线与平行线5.3平行线的性质5.3.1平行线的性质第2课时平行线的性质和判定及其综合

第2课时平行线的性质和判定及其综合运用1.掌握平行线的性质与判定的综合运用;(重点、难点) 2.体会平行线的性质与判定的区别与联系.一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE =180°,∠1+∠2=180°,可得∠2=∠DCE ,即可证明CE ∥DF ;(2)由平行线的性质,可得∠CDF =50°.由DE 平分∠CDF ,可得∠CDE =12∠CDF =25°.最后根据“两直线平行,内错角相等”,可得到∠DEF 的度数.解:(1)CE ∥DF .理由如下:∵∠1+∠2=180°,∠1+∠DCE =180°,∴∠2=∠DCE ,∴CE ∥DF ;(2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE=180°-130°=50°.∵DE 平分∠CDF ,∴∠CDE =12∠CDF =25°.∵EF ∥AB ,∴∠DEF =∠CDE =25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF ∥AC ,∠C =∠D ,CE 与BD 有怎样的位置关系?说明理由.解析:由图可知∠ABD 和∠ACE 是同位角,只要证得同位角相等,则CE ∥BD .由平行线的性质结合已知条件,稍作转化即可得到∠ABD =∠C .解:CE ∥BD .理由如下:∵DF ∥AC ,∴∠D =∠ABD .∵∠C =∠D ,∴∠ABD =∠C ,∴CE ∥BD .方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB ∥CD ,E ,F 分别是AB ,CD 之间的两点,且∠BAF =2∠EAF ,∠CDF =2∠EDF .(1)判定∠BAE ,∠CDE 与∠AED 之间的数量关系,并说明理由;(2)∠AFD 与∠AED 之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线. 解:(1)∠AED =∠BAE +∠CDE .理由如下:如图,过点E 作EG ∥AB .∵AB ∥CD ,∴AB ∥EG ∥CD ,∴∠AEG =∠BAE ,∠DEG =∠CDE .∵∠AED =∠AEG +∠DEG ,∴∠AED =∠BAE +∠CDE ;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补判定性质两直线平行本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质。

平行线的性质习题课

平行线的性质习题课

3.应用迁移,拓展升华
已知 ∠ADE=60 ° ∠B=60 °∠AED=40°
求证:(1)DE∥BC
(2) ∠C的度数 (1)∵∠ADE=60 ° ∠B=60 ° (已知)
∴∠ADE=∠B (等量代换)
∴DE∥BC
(同位角相等,两直线平行)
行,同位角相等) 考
答:相等.根据两直线平行,内错角相等.
DF 2
C
A
13
E
B
1.梳理旧知,归纳方法
(2)结合图形回答问题: ②如果DE∥FB,能得到∠1与∠3的关系吗?为什么?
答:∠1=∠3.根据两直线平行,同位角相等.
DF 2
C
A
13
E
B
1.梳理旧知,归纳方法
(2)结合图形回答问题: ③根据哪两条直线平行可以得到∠A+∠ ABC=180º? 为什么?
3.应用迁移,拓展升华
已知条件:如图,AB∥CD,∠1=∠2,∠3=∠4. 猜想:∠2和∠3有什么关系,并说明理由; 试说明:PM∥NQ.
答:∠2=∠3. 理由如下:
∵ AB∥CD ,
∴ ∠2=∠3(两直线平行,内错角相等).
问题5、如图,当∠1=∠2时, AB 与CD平行吗?为什么?
分析和处理 (1)由已知条件∠1=∠2,你可以得到什么? (2)结合图形,你可以得到什么? (3)要说明AB∥CD,只需要满足什么条件?
A G1D
∴ GD∥BC.
E
∵∠1和∠3是内错角,
C3 2
F
B
∴∠1=∠3(两直线平行,内错角相等).
∵∠1=∠2,
∴∠2=∠3.
∵∠2和∠3是同位角,
∴ CD∥EF(同位角相等,两直线平行).

《平行线的性质和判定及其综合运用》教案

《平行线的性质和判定及其综合运用》教案

板书设计
5.3.1 平行线的性质(2)
错误!两直线平行
教学设计流程 图
导入新课
明确目标
研读课文
知识体验
基础训练
强化训练
归纳小结
课堂检测
教学反思
本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“ ∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻 辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容 的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于 学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别 和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已 知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平 行,得出角的关系,就是平行线的性质
教学目标 教学重难点
1.分清平行线的性质和判定.
2.已知平行用性质,要证平行用判定.
3.能够综合运用平行线性质和判定解题.
重点
平行线性质和判定综合应用
难点
平行线性质和判定灵活运用
本节课我的设计理念是:重组教材,恰当的创设情境,激发学生对教学内容
教学策略与
设计说明
的好奇心和 求知欲,通过独立思考,不断发问和提出问题,让学生在探究
授权书
本人对执教课例《初中数学
人教版
5.3.1平行线的性质
第2课时》拥有全部著作权,同意授权北京继教网教育科技发展有限公司永久使用。使用范
围:北京继教网教育科技发展有限公司所有经营范围(包括但不限于:其他专家主讲课程 中作为课例使用,在资源平台中展示等)。
本授权书自本人签字之日起生效。 授权人(签字): 2018 年 4 月 26 日
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
F ∵ AB∥CD, 2 ∴∠ABC=∠BCD. D C ∴∠1=∠2. ∵∠1和∠2是内错角, ∴ BE∥CF(内错角相等,两直线平行).
2.综合运用,巩固提高
练习2 已知:如图,∠AGD=∠ACB,
∠1=∠2,CD与EF平行吗?为什么?
答:CD∥EF.
G A 1 2 F D E C B
2.综合运用,巩固提高
学习重点:
综合应用平行线的性质与判定解决问题.
1.梳理旧知,引入新课
问题1 (1)平行线的性质是什么?
这三个性质中条件和结论分别是什么? 性质1 两直线平行,同位角相等. 性质2 两直线平行,内错角相等. 性质3 两直线平行,同旁内角互补.
1.梳理旧知,归纳方法
(2)结合图形回答问题: ①如果AB∥CD ,∠1与∠2相等吗?为什么? 答:相等.根据两直线平行,内错角相等.
5.3.1 平行线的性质 (第2课时)
课件说明
本课学习是通过对例题、练习的分析和 讲解,巩固平行线性质和判定,培养学生的
推理能力,渗透分析问题的方法.
课件说明
学习目标: (1)平行线的性质与判定的应用. (2)经历例题的分析过程,从中体会转化的思 想和分析问题的方法,进一步培养推理能力,体 会数学在∠C =180º -∠B
=180º -115º =65º .
所以,梯形的另外两个角分别是80º ,65º .
1.梳理旧知,归纳方法
问题3 对比平行线的性质和判定方法,你能说出 它们的区别吗?
判 定 性 质
条件 同位角相等 内错角相等 同旁内角互补 两直线平行
D
F 2 1 E 3 B
C
A
1.梳理旧知,归纳方法
(2)结合图形回答问题: ②如果DE∥FB,能得到∠1与∠3的关系吗?为什么? 答:∠1=∠3.根据两直线平行,同位角相等.
D
F 2 1 E 3 B
C
A
1.梳理旧知,归纳方法
(2)结合图形回答问题: ③根据哪两条直线平行可以得到∠A+∠ ABC=180º ? 为什么? 答: AD∥CB .根据两直线平行,同旁内角互补.
结论 两直线平行 同位角相等 内错角相等 同旁内角互补
2.综合运用,巩固提高
问题4 已知,如图,∠1=∠2,CE∥BF,
试说明: AB∥CD.
理由如下: ∵ CE∥BF, E A B 1 ∴∠1=∠B. ∵∠1=∠2 , 2 C D F ∴∠2=∠B. ∵∠2和∠B是内错角, ∴ AB∥CD(内错角相等,两直线平行).
理由如下:
A G 1 2 F D E C
∵ ∠AGD =∠ACB ,
∴ GD∥BC. ∵∠1和∠3是内错角, ∵∠1=∠2, 3
B
∴∠1=∠3(两直线平行,内错角相等).
∴∠2=∠3.
∵∠2和∠3是同位角, ∴ CD∥EF(同位角相等,两直线平行).
3.应用迁移,拓展升华
问题5 如图,潜望镜中的两面镜子是互相平行放置 的,光线经过镜子反射时,∠1=∠2,∠3=∠4, ∠2和∠3有什么关系?为什么进入潜望镜的光线 和离开潜望镜的光线是平行的?
4.归纳小结 (1)平行线的性质与判定的区别是什么?
(2)在解决具体问题过程中,你能区别
什么时候需要使用平行线的性质,什么时 候需要使用平行线的判定吗?
5.布置作业 教科书 习题5.3 第7、8、14题, 复习题5 第6题
2.综合运用,巩固提高
练习1 如图,AB∥CD,BE平分∠ABC,CF平分
∠BCD,你能发现BE与CF的位置关系吗?说明理由. 答: BE∥CF.
A E F C D B
2.综合运用,巩固提高
理由如下:
∵ BE平分∠ABC,
1 ∴ 1 2 ABC. 1 同理 2 BCD. 2
A E B
D
F 2 1 E 3 B
C
A
1.梳理旧知,归纳方法
问题2 如图,是一块梯形铁片的残余部分,量得
∠A=100º ,∠B=115º ,梯形的另外两个角分别是 多少度?
1.梳理旧知,归纳方法
解:因为梯形上、下两底 AB∥CD , 根据“两直线平行,同旁内角互补”, 可得∠A+∠D =180º ,∠B+∠C =180º . 于是∠D =180º -∠A
3.应用迁移,拓展升华
已知条件:如图,AB∥CD,∠1=∠2,∠3=∠4. 猜想:∠2和∠3有什么关系,并说明理由; 试说明:PM∥NQ.
答:∠2=∠3. 理由如下: ∵ AB∥CD , ∴ ∠2=∠3(两直线平行,内错角相等).
3.应用迁移,拓展升华
已知条件:如图,AB∥CD,∠1=∠2,∠3=∠4. 试说明:PM∥NQ. 理由如下: ∵∠1=∠2 ,∠3=∠4, 又∵∠2=∠3. ∴∠1=∠2 =∠3=∠4. ∵∠1+∠2 +∠5=180º ,∠3+∠4 +∠6=180º , ∴∠5=∠6. ∵∠5和∠6是内错角, ∴ PM∥NQ (内错角相等,两直线平行).
相关文档
最新文档