论正态分布的重要地位和应用

合集下载

正态分布的概念及应用

正态分布的概念及应用
正态分布的概念及应用
• 正态分布的简介 • 正态分布的性质 • 正态分布的应用场景 • 正态分布在数据分析中的应用 • 正态分布在机器学习中的应用 • 正态分布与其他统计分布的关系
01
正态分布的简介
正态分布的定义
01
正态分布是一种连续概率分布, 描述了许多自然现象的概率分布 形态,其概率密度函数呈钟形曲 线,且具有对称性。
贝叶斯推断
正态分布在贝叶斯推断中发挥了重要作用。通过贝叶斯定理,我们可以根据先 验知识和数据更新对未知参数的估计,而正态分布可以作为先验知识的分布形 式。
核方法和支持向量机
核方法
在支持向量机(SVM)等核方法中,正态分布作为核函数的一 种形式,用于将输入空间映射到高维特征空间,从而使得线性 不可分的数据变得线性可分。
在时间序列分析中,正态分布可用于描述时间序列数据的分布特征, 并建立预测模型。
05
正态分布在机器学习中的应用
概率模型和贝叶斯推断
概率模型
正态分布是一种常用的概率分布,在贝叶斯推断中,我们常常假设某些参数服 从正态分布,以便进行统计推断。例如,在朴素贝叶斯分类器中,特征的概率 分布被假设为正态分布。
考试成绩和测试评分
考试成绩和各种测试评分也经常呈现正态分布,因为大多数人的得分集中在平均分附近, 而高分和低分的人数较少。
气温、降雨量等气候数据
气温、降雨量等自然现象数据也可以用正态分布来描述,因为它们通常遵循类似的统计规 律。
科学研究和技术开发
01 02
实验结果和测量数据
在科学实验和测量中,很多数据呈现正态分布,如放射性衰变的半衰期、 化学反应速率等。这些数据反映了物质内部微观粒子的随机运动和相互 作用。
正态分布在统计学中的地位

正态分布在医学统计学中的应用

正态分布在医学统计学中的应用

正态分布在医学统计学中的应用
正态分布在医学统计学中的应用
正态分布,也称为高斯分布,是一种概率分布,它可以用来描述一些经典情况下随机变量的分布特征。

它被广泛应用于各种科学和工程领域,尤其是在统计学和数理金融中。

正态分布在统计学中的特殊地位使它成为医学统计学的重要概念。

在医学统计学中,正态分布被用来描述和分析人群特征,包括身高、体重、血压等生理指标。

此外,正态分布还被广泛用于评估治疗前后对病人的影响,以及分析疾病发病率和患病风险。

正态分布在医学研究中的应用可以帮助临床医生和科学家更准确地识别疾病或隐性疾病,以及更有效地采取治疗措施。

正态分布在医学统计学中的应用主要有三个方面:
一是诊断试验。

通过正态分布的概率分布,可以更准确地判断一个患者是否感染某种疾病,以及分析不同病人对治疗方案的反应情况。

比如,在肿瘤治疗中,可以通过正态分布模型来估计患者肿瘤标志物浓度的变化,便于评价患者的疗效。

二是疾病预测。

在医学研究中,正态分布可以用来评估一个疾病的发生率,以及病人对某种治疗方案的反应情
况。

比如,对某种疾病的风险因素可以用正态分布模型来分析,从而帮助临床医生精确预测患病的可能性。

三是病因分析。

正态分布也可以用来分析疾病的发病原因,以及特定病因对患病风险的影响程度。

比如,可以通过正态分布模型来分析肥胖对心血管疾病发病率的影响,从而提供准确的诊断和治疗方案。

正态分布在医学统计学中的应用可以更准确地评估疾病发生率、患病风险、治疗效果以及疾病发病原因,为临床医生和科学家提供准确的诊断和治疗措施,从而提高治疗效果和患病风险。

《数学教育测量与评价》第 2 章 正态分布在数学教育测量与评价中的应用

《数学教育测量与评价》第 2 章 正态分布在数学教育测量与评价中的应用

分数的平均数为0,标准差是1,因此,这组标准分数可视为
服从标准正态分布。
2.2 标准正态曲线下的面积比率及正态分布表
正态曲线 f (x) 与其底边(即横轴)所围成的面积称为正态
曲线下的面积,用定积分可知该面积大小为 R f (u) d u 1 ,
代表正态随机变量在 R 上取值的概率。曲线的对称轴将曲线 下的面积等分为两部分,两部分面积都为 1/2。
估计录取分数线
一 推求考试成绩中特定分数段的人数比率和理论人数
注意“推求”指的是对真实情况的估计,与真实值可能不 同。 例4 某区800学生的数学统考成绩服从正态分布,其平均成 绩为75分,标准差为5分,利用正态分布曲线下的面积推求60 分以下,70—80分,80—90分各分数段可能占总人数多大比 例?并估计各分数段各有多少人? 解:由于800名学生的数学成绩服从正态分布,因此我们在分 类整理统计各分数段人数之前,就可根据正态分布曲线下的 面积推求各分数段人数。步骤是:
《标准正态分布表》的使用
上图是《标准正态分布表》的一部分部分,表中 x 的值精确到2位小数,表的 第1列是x 的个位数和十分位数,第一行是 x 的百分位数,其余数据是(x) 的值,
精确到4位小数。
已知 x 的值,可以从表中查到(x) 的值,例如 x 0.26 时,在第一列找到 0.2 所在行,在第一行找到0.06所在列,二者相交处为0.6026,即为 (0.26) 的 值。若 x 取负值,利用(x) 1 (x) 先从表中查出(x),再计算 (x)。
(2.1.1)
其中,, 2 是正态分布的均值和方差,正态分布常常被记
为 (, 2)。
68.27% f(x)
μ−3σ μ−2σ
95.45%

统计学正态分布在统计学中的地位

统计学正态分布在统计学中的地位

统计学正态分布在统计学中的地位下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!统计学正态分布在统计学中的地位引言统计学作为一门重要的学科,广泛应用于各个领域,从经济学到生物学,都离不开统计学的方法与理论。

正态分布

正态分布
y (x)
密度函数
(x)
1 2
x
2
e
2
专用符 号
分布函数
( x)

x
1 2

x
2

e
2
dx
专用符 号
标准正态分布的性质
分布函数
( x ) P{ X x}
( x)
( x)

x
1 2

t
2

e
2
dt
x
( x) 1 ( x)
一般正态分布的标准化
定理
x 如果 X ~ N ( , ), 则 F ( x)
2
概率计算 若 X ~ N ( , 2 )
b a P (a X b)
a P( X a) 1
决定了图形的中心位置,
的陡峭程度.
决定了图形中峰
正态分布的分布函数
f (x) 1 2
(x ) 2
2 2
e

y
1
1 2
F ( x)
x
1 2

( x ) 2
2
2

e
dx
F(x)

x
计算概率?
P a X b F b F a
由 x 的单调性可得
k 18 2.5 0.91

k 20.275
正态分布的实际应用
某单位招聘155人,按考试成绩录用,共有526 人报名,假设报名者的考试成绩 X ~ N ( , 2 ) 已知90分以上的12人,60分以下的83人,若从高 分到低分依次录取,某人成绩为78分,问此人能否被 录取? 分析

正态分布在日常生活中

正态分布在日常生活中

正态分布在日常生活中正态分布,也称为高斯分布或钟形曲线,是统计学中最常见的概率分布之一。

它具有许多重要的性质,因此在日常生活中有着广泛的应用。

本文将探讨正态分布在日常生活中的几个方面。

一、身高分布正态分布在描述人类身高分布方面起着重要的作用。

根据统计数据,人类的身高大致符合正态分布。

在一个大的人群中,大多数人的身高集中在平均值附近,而离平均值越远的身高出现的人数越少。

这就是为什么我们经常听到“平均身高”这个概念。

正态分布在衡量身高的标准差和百分位数方面也发挥着重要的作用。

二、考试成绩分布在教育领域,正态分布被广泛应用于描述考试成绩的分布。

假设一个班级的学生在一次考试中的成绩符合正态分布,那么大多数学生的成绩将集中在平均分附近,而离平均分越远的成绩出现的学生人数越少。

这种分布可以帮助教师和学生更好地理解和评估学生的表现,并采取相应的教学措施。

三、产品质量控制正态分布在产品质量控制中也起着重要的作用。

假设一个工厂生产的产品尺寸符合正态分布,那么大多数产品的尺寸将集中在平均值附近,而离平均值越远的尺寸出现的产品数量越少。

通过对产品尺寸进行抽样检验,并根据正态分布的特性进行统计分析,工厂可以判断产品是否符合质量标准,并采取相应的措施来提高产品质量。

四、金融市场正态分布在金融市场中也有广泛的应用。

例如,股票价格的日收益率通常被认为是符合正态分布的。

基于这个假设,投资者可以使用正态分布的性质来评估风险和收益,并制定相应的投资策略。

此外,正态分布还被用于计算期权定价模型,如布莱克-斯科尔斯模型。

五、自然现象正态分布在自然现象中也有一定的应用。

例如,气温的日变化通常被认为是符合正态分布的。

根据这个假设,气象学家可以使用正态分布的性质来预测未来的气温变化,并制定相应的天气预报。

总结:正态分布在日常生活中有着广泛的应用。

它可以帮助我们理解和描述各种现象的分布规律,从而更好地进行决策和规划。

无论是在教育、工业、金融还是自然科学领域,正态分布都发挥着重要的作用。

第六章 正态分布及其应用

第六章 正态分布及其应用

一.正态分布

正态分布( 正态分布(normal distribution)也称
为常态分布, 为常态分布,是连续型随机变量概率分布的一 种,是在数理统计的理论与实际应用中占有最 重要地位的一种理论分布。 重要地位的一种理论分布。

正态分布由棣.莫弗于1733年发现的。 正态分布由棣.莫弗于1733年发现的。拉 1733年发现的
无限延伸,但永不与基线相交。 无限延伸,但永不与基线相交。 差为1。从Z=-3至Z=+3之间几乎分布着全 Z=-3 Z=+3 部数据。 部数据。

拐点为正负一个标准差处 ⑸.曲线的拐点为正负一个标准差处。 曲线的拐点为正负一个标准差处。
二.标准正态分布表及使用
1.标准正态分布表

利用积分公式可求出正态曲线下任何
2σ 2
公式所描述的正态曲线, 两个参数决定。 公式所描述的正态曲线,由σ和μ两个参数决定。
2.标准正态分布曲线
将标准分数代入正态曲线函数 并且, 并且,令σ=1 则公式变换为标准正态分布函数: 则公式变换为标准正态分布函数:
1 Y= ⋅e 2π
Z2 − 2

以Z为横坐标,以Y 为横坐标,
为纵坐标,可绘制标准正 为纵坐标, 态分布曲线。 态分布曲线。

标准正态分布曲线的
纵线高度Y为概率密度, 纵线高度Y为概率密度, 曲线下的面积为概率。 曲线下的面积为概率。
3.标准正态分布曲线的特点
♦ ♦ ♦ ♦
⑴.曲线在Z=0处达到最高点 曲线在Z=0 Z= ⑵.曲线以Z=0处为中心,双侧对称 曲线以Z=0处为中心, Z= ⑶.曲线从最高点向左右缓慢下降,向两侧 曲线从最高点向左右缓慢下降, 平均数为 ⑷.标准正态分布曲线的平均数为0,标准 标准正态分布曲线的平均数

如何理解正态分布的重要性和它在实践中的重要意义?请结合正态分布在现实生活中的具体应用加以说明。

如何理解正态分布的重要性和它在实践中的重要意义?请结合正态分布在现实生活中的具体应用加以说明。

如何理解正态分布的重要性和它在实践中的重要意义?请结合正态分布在现实生活中的具体应用加以说明。

《概率论与数理统计》正态分布是最重要的一种概率分布。

正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。

高斯是一个伟大的数学家,重要的贡献不胜枚举。

但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。

这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。

作业名称:如何理解正态分布的重要性和它在实践中的重要意义?请结合正态分布在现实生活中的具体应用加以说明。

作业要求:1、以小论文的形式书写;2、请先给出正态分布的定义,再对其重要性和意义进行阐述;3、字数在600字左右;4、关于其重要性和意义的论述没有统一答案,请勿抄袭!浅谈正态分布正态分布又名高斯分布,之所以这样命名是因为德国数学家高斯对于正态分布的形成与发展有着举足轻重的地位。

一、正态分布的重要性及意义为什么说正态分布非常重要呢?主要有以下三点原因:一、许多实际问题中的变量都服从或者近似服从正态分布;二、正态分布的密度函数和分布函数具有各种优良性质;三、一些重要分布的极限分布为正态分布。

四、一般正态变量都可以变换为标准正态变量,而人们制定了标准正态变量的分布函数值以供查询,这给有关正态分布的计算问题带来了极大的方便。

越简单的模型越是常用,因为它们能够被很好的解释和理解。

正态分布非常简单,这就是它是如此的常用的原因。

正态分布只依赖于数据集的两个特征:样本的均值和方差。

均值——样本所有取值的平均方差——该指标衡量了样本总体偏离均值的程度正态分布的这种统计特性使得问题变得异常简单,任何具有正态分布的变量,都可以进行高精度分预测。

正态分布的重要性及应用

正态分布的重要性及应用

正态分布的重要性及应用正态分布,又被称为高斯分布,是统计学中最为常见的概率分布之一。

它的形状呈钟形曲线,以均值为中心对称,具有许多重要的性质和广泛的应用。

本文将介绍正态分布的重要性及其在各个领域的应用。

什么是正态分布?正态分布是一种连续型的概率分布,在数理统计学和概率论中扮演着重要角色。

它的特点是以均值为中心,标准差为衡量单位,呈现出典型的钟形曲线。

正态分布具有良好的对称性和稳定性,使得许多自然现象和人类行为能够很好地描述和解释。

正态分布的重要性正态分布在统计学中具有重要性,主要体现在以下几个方面:1.数据分布模型许多实际数据的分布可以被近似看作是正态分布,尤其是当样本量较大时。

在数据分析和预测中,我们经常会假设数据服从正态分布,这有助于进行精确的推断和预测。

2.中心极限定理中心极限定理指出,大量独立同分布的随机变量的和经过适当标准化之后,其分布趋近于正态分布。

这个定理在统计学和概率论中具有广泛的应用,为许多统计推断提供了理论基础。

3.参数估计和假设检验在参数估计和假设检验中,正态分布被广泛应用。

通过对样本数据的分布进行检验和推断,可以对总体参数进行推断,从而进行科学的决策和预测。

4.数据处理和分析许多统计方法和机器学习算法都建立在正态分布的基础之上,通过对数据的正态化处理,降低偏度和峰度,可以提高数据的稳定性和可解释性。

正态分布的应用领域正态分布不仅在统计学理论中被广泛应用,也在各个实际领域中发挥着重要作用,例如:1.金融领域股票价格、汇率变动、利率波动等金融数据通常服从正态分布,通过对这些数据的建模和分析,可以进行风险评估、投资组合优化等工作。

2.医学领域许多生物学指标和医疗数据的分布具有一定的正态性,通过对患者数据的统计分析,可以帮助医生做出合理的诊断和治疗方案。

3.工程领域在工程领域,正态分布常被用于设计和控制系统的参数优化,通过对系统性能数据的分析,可以实现工程目标的精准调控。

正态分布作为统计学中的重要概率分布,不仅在理论研究中具有重要地位,也在各个领域的实际应用中发挥着关键作用。

统计学正态分布

统计学正态分布

统计学正态分布统计学是一门研究收集、整理、分析和解释数据的学科。

在统计学中,正态分布是最为重要和广泛应用的一种概率分布。

本文将介绍正态分布的定义、特点、应用以及与其他分布的比较。

正态分布,又称高斯分布或钟形曲线分布,是一种对称的连续概率分布。

它的概率密度函数(PDF)可以用以下公式表示:f(x) = 1 / (σ * √(2π)) * e^(-(x-μ)^2 / (2σ^2))其中,μ是均值(期望),σ是标准差。

正态分布的均值决定了曲线的位置,标准差决定了曲线的形状。

当μ=0,σ=1时,称为标准正态分布。

正态分布具有许多重要的特点。

首先,它是对称的,即曲线的左右两侧是镜像关系。

其次,大部分数据集都可以近似地用正态分布来描述。

这是由中心极限定理保证的,即当样本容量足够大时,样本均值的分布会趋于正态分布。

因此,正态分布在统计推断中扮演着重要的角色。

正态分布在许多领域中都有广泛的应用。

首先,它可以用来描述许多自然现象,如身高、体重等。

在人群中,身高和体重的分布通常近似于正态分布。

其次,正态分布在工程和质量控制中也起着重要的作用。

例如,在制造过程中,产品尺寸的分布通常可以用正态分布来描述。

通过分析正态分布,可以评估产品的质量水平和生产过程的稳定性。

除了正态分布,在统计学中还有许多其他的概率分布。

例如,均匀分布、指数分布、泊松分布等。

与这些分布相比,正态分布具有许多独特的优点。

首先,正态分布是连续的,可以表示任意小的概率。

其次,正态分布具有良好的数学性质,便于进行推导和计算。

最重要的是,许多统计推断方法是基于正态分布的假设建立的,因此正态分布在统计学中具有特殊的地位。

尽管正态分布在统计学中具有重要地位,但也存在一些限制。

首先,正态分布假设数据呈正态分布,但实际数据往往不完全符合这个假设。

因此,在使用正态分布进行统计推断时,需要进行适当的检验和修正。

其次,正态分布对异常值比较敏感,当数据中存在异常值时,正态分布的拟合效果会受到影响。

正态分布的说法

正态分布的说法

正态分布的说法正态分布(Normal Distribution),又称高斯分布(Gaussian Distribution),是统计学中最重要的分布之一,也是自然界中常见的概率分布。

它由数学家卡尔·费里德里希·高斯于1809年首次提出,因此也被称为高斯分布。

正态分布在统计学和自然科学的各个领域都有广泛的应用。

尤其在金融学、天文学、心理学、生物学等领域中,正态分布被广泛用于建模和分析。

正态分布是一种钟形对称分布,其概率密度函数的图像呈现出一个均值为μ、方差为σ^2的标准正态分布,即N(0,1)。

正态分布的参数可以控制其均值和方差,使其适应各种数据的分布情况。

正态分布的概率密度函数为:```f(x) = 1/σ√(2π)exp(-(x-μ)²/2σ²)```其中,μ是均值,σ是标准差,π是圆周率。

正态分布具有以下几个重要特性:1.对称性:正态分布是一个关于均值μ对称的分布,其左右两端的概率密度相等。

这也就意味着均值处有最大的概率密度。

2.唯一性:正态分布可以通过其均值和方差完全确定。

3.中心极限定理:正态分布在统计学中具有重要的地位,其中最主要的原因之一是中心极限定理。

中心极限定理指出,当样本容量足够大时,无论原始总体是什么分布,样本均值的分布都近似于正态分布。

4.可加性:两个正态分布的和仍然是一个正态分布。

换句话说,如果X和Y分别服从正态分布N(μ1, σ1^2)和N(μ2, σ2^2),那么X+Y服从正态分布N(μ1+μ2, σ1^2+σ2^2)。

正态分布在实际应用中具有广泛的意义和价值。

首先,正态分布常常用于描述自然界中各种现象的变量。

例如,人的身高、体重、智商等等,往往服从正态分布。

其次,正态分布在统计学中用于描述测量误差、采样误差等。

再者,正态分布在建立概率模型和预测模型时也很有用。

许多统计学和机器学习方法都假设数据服从正态分布,以便进行有效的推断和预测。

正态分布的特点和应用

正态分布的特点和应用

正态分布的特点和应用正态分布(也称为高斯分布)是一种在统计学中应用广泛的概率分布,具有以下特点:1.对称性:正态分布呈现出钟形曲线的形状,以均值为中心对称分布,即左右两侧的面积相等。

2.唯一性:对于一组给定的参数(均值和标准差),正态分布是唯一确定的。

3.平均值与中位数和众数相等:在正态分布中,这三个统计量是相等的。

4.68-95-99.7法则:根据正态分布的特点,约68%的观测值位于均值的一个标准差范围内,约95%的观测值位于均值的两个标准差范围内,约99.7%的观测值位于均值的三个标准差范围内。

正态分布在各个领域中有广泛的应用:1.自然科学:在物理学、化学、生物学等领域中,正态分布常用于描述实验测量结果的误差、测量仪器的精度和精确性。

2.社会科学:在统计学、经济学、心理学、社会学等领域中,正态分布被广泛地用于分析人口统计数据、经济数据、心理测试结果等。

3.假设检验:在统计学中,正态分布常用于进行假设检验。

通过比较样本数据与以正态分布为基础的假设分布,可以判断样本是否来自该分布或者进行参数估计等。

4.风险和投资分析:在金融学中,正态分布被广泛用于描述股票价格、汇率变动、资产收益波动等。

利用正态分布的特性,可以进行风险评估和投资组合优化。

5.质量控制:在工程学中,正态分布用于描述产品质量的统计性质,如产品尺寸、强度等。

可以通过正态分布的性质来判断是否需要调整生产过程,以提高产品的质量。

6.人口统计学:正态分布常用于描述人口统计数据,如身高、体重等指标的分布情况。

7.随机变量模拟:正态分布是在模拟过程中最常用的分布之一,可以用于生成服从正态分布的随机数,用于各种模拟实验。

总的来说,正态分布在统计学和概率论中有着重要的地位和应用。

由于其许多性质的特殊性质,使得它成为许多实际问题的重要数学工具,有助于我们理解和处理复杂的现实问题。

正态分布及其实际应用

正态分布及其实际应用

正态分布及其实际应用正态分布是概率论和数理统计中最为重要的分布之一,广泛应用于各个领域,如物理学、化学、生物学、医学、社会科学等。

本文将介绍正态分布的概念、性质、实际应用及其意义。

1.概念$f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$x为随机变量,μ为均值,σ为标准差,e为自然对数的底数,π≈3.14。

2.性质(1)对称性:正态分布的概率密度函数关于均值轴呈对称分布,即在μ左右相同。

(2)峰度:正态分布的峰度为3,表示相对于正态分布而言,它的峰度较低、扁平。

(3)尾部:正态分布的尾部非常长,远远超过其他分布。

(4)标准正态分布:当μ=0,σ=1时,称为标准正态分布(Standard Normal Distribution),记作Z。

(5)标准化:任何正态分布都可以通过标准化将其转化为标准正态分布。

3.实际应用(1)自然科学领域:在自然科学领域,正态分布是最常见的分布之一,如测量误差、实验误差、天文观测误差等都可以用正态分布来描述。

(2)社会科学领域:在社会科学领域,正态分布被广泛应用于家庭收入、身高体重等数据分析中,也可以用来解释一些现象,如IQ分布、心理测试分数分布等。

(3)金融领域:在金融领域,正态分布所具有的对称性、峰度和长尾等特征,被广泛用来描述股价变动、货币汇率变动等现象。

(4)医学领域:在医学领域,正态分布被用来描述许多生理指标的分布,如体温、心跳率、血压等,也可以用来评估一些医学实验数据。

4.意义正态分布在统计学中占有着重要的地位,其背后有着深刻的意义。

正态分布可以看作是各种复杂过程的近似,而且许多自然界的随机现象都可以近似地看成正态分布。

通过对正态分布的深入研究,我们能够揭示自然界中普遍存在的规律,并开发出一系列实用的工具方法,如最小二乘法、置信区间、假设检验等。

正态分布被认为是统计学的基础和核心之一。

5.结论正态分布是一种非常重要的分布,具有对称性、峰度和长尾等特征,应用广泛。

追本溯源,读懂正态分布

追本溯源,读懂正态分布

追本溯源,读懂正态分布【摘要】正态分布作为统计学中最重要的概率分布之一,具有广泛的应用。

本文将追溯正态分布的起源,探讨其特征和数学原理,以及在现实生活中的应用。

正态分布以其钟形曲线和均值、标准差两个参数为特征,被广泛应用于自然科学、社会科学等领域。

掌握正态分布的原理和性质,有助于我们更好地理解统计学中的概念和方法,提高数据分析的准确性和科学性。

正态分布的普适性使其成为统计学研究的基础,对于数据处理、风险评估等领域起到关键作用。

深入理解和掌握正态分布对于统计学相关领域的研究和实践具有重要意义。

【关键词】正态分布、起源、特征、应用、数学原理、参数、性质、重要性、统计学、普适性1. 引言1.1 追本溯源,读懂正态分布正态分布是统计学中最为重要的概率分布之一,被广泛应用于各个领域的数据分析和建模中。

但是为什么正态分布如此受到重视?为了更深入地理解和应用正态分布,我们需要追本溯源,了解其起源和特征,探讨其在现实生活中的应用,深入研究其数学原理以及参数和性质。

追本溯源,读懂正态分布,就是要通过对正态分布的深入探讨和研究,揭示其背后的原理和规律,进而更好地应用于实际问题的解决中,提高数据分析和预测的准确性和效率。

只有真正理解了正态分布的基本概念和特征,才能更好地利用其优势,充分发挥其在统计学和数据科学中的作用。

通过本文的探讨和分析,我们将深入了解正态分布的起源、特征、应用、数学原理、参数和性质,从而更加全面地认识和理解这一重要的概率分布。

正态分布在统计学中的地位和普适性也将在结论部分进行进一步探讨,帮助读者更加全面地了解和掌握正态分布的重要性和应用前景。

部分结束。

2. 正文2.1 正态分布的起源正态分布,又称高斯分布,是概率论和统计学中最重要的分布之一。

它在自然界和人类社会中广泛存在。

正态分布的起源可以追溯到18世纪,由德国数学家高斯(Carl Friedrich Gauss)首次提出并研究。

高斯是一位杰出的数学家和物理学家,他在研究天文数据时发现了正态分布的规律,并将其应用于测量误差的理论。

概率论 正态分布

概率论 正态分布

概率论正态分布概率论:正态分布第四章正态分布第一节第二节第三节第四节第五节正态分布的密度函数正态分布的数字特征正态分布的线性性质二维正态分布中心极限定理正态分布的密度函数正态分布是实践中应用最为广泛,在理论上研究最多的分布之一,它在概率统计中占有特别重要的地位.比如,考察一群人的身高,个体的身高作为一个随机变量,其取值特点是:在平均身高附近的人较多,特别高和特别矮的人较少.一个班的一次考试成绩、测量误差等均有类似的特征.高斯在研究误差理论时曾用它来刻画误差,因此很多文献中亦称之为高斯分布. 进一步的理论研究表明,一个变量如果受到大量独立的因素的影响(无主导因素),则它一般服从正态分布,这是中心极限定理探讨的问题.一. 一般正态分布1. 定义若随机变量X的密度函数为1 2 2 f ( x) e 2其中 x ( x )2式中为实数, >0 .则称X服从参数为 ,2的正态分布,亦称高斯分布.记为N(, 2).可表为X~N(, 2). 图象见右上角正态分布有两个特性: (1) 单峰对称密度曲线关于直线x=对称1 f()=maxf(x)= 2(2) 的大小直接影响概率的分布越大,曲线越平坦; 越小,曲线越陡峻. 正态分布也称为高斯(Gauss)分布N ( 4,3 / 5)N ( 4,1)N ( 4,7 / 5)二. 标准正态分布参数=0,2=1的正态分布称为标准正态分布,记作X~N(0, 1)。

(x) 其密度函数为1 (x)2 ( x )x2 e 24 2 0(1) (0)=0.5( x ) P { X x}t2 x 1 e 2 2(2) (+∞)=1;dt , xf ( x) 1 e 2(3) (x)=1-(-x). 一般的概率统计教科书均附有标准正态分布表供读者查阅(x)的值.(P328附表1)如,若 X~N(0,1),(0.5)=0.6915, P{1.32正态分布的数字特征 (一) 一般正态分布N(, 2)( x)2 2 21 X ~ f (x) e 2, xE( X )xf ( x)dxt ( xt2 2 e dt 2x e 2( x )2 2 2D( X )) f ( x )dx(二)标准正态分布N(0, 1)X ~ f ( x)E( X )x2 e 2, xx2 e 2 dxxf ( x ) dx0(奇函数 )D( X ) E{[ X E ( X )] }2 x[ xE ( X )] f ( x)dxx2 e 2 dx三. 一般正态分布概率的计算若X~N(,2),>0,则有F ( x ) P { X x}x 1 e 2 (t ) 2 2 2x }F ( x) P{X x} P{ P{Z ( x ).} ( x ) /t2 1 e 2 dt 2一般地,有例1 设随机变量 X ~ N (1, 2 ) , 求 P{ 1.6 X 2.4} 解 P{ 1.6 X 2.4} P{ 1.6 1 X 1 2.4 1} P{ 2.6 X 1 1.4}P{ 2.6 / 2 ( X 1) / 2 1.4 / 2} P{ 1.3 ( X 1) / 2 0.7}(0.7) ( 1.3)(0.7) [1 (1.3)] 0.7580 [1 0.9032] 0.6612 .P{a X b} P{a X b } a b a Xb P{ } P{ Z } b a P{Z } P{Z } Z ~ N (0,1) b a( ) ( ) 2例2. 设 X N(,2),求P{-3解 P{ 3 X 3 } P{( 3 ) X( 3 ) } P{3 X 3 } P{ 3 X3 } P{ 3 ( X ) / 3} (3) ( 3)(3) [1 (3)] 2 (3) 1 0.9973本题结果称为3原则.在工程应用中,通常认为P{|X|≤3} ≈1,忽略{|X|>3}的值.如在质量控制中, 常用标准指标值±3作两条线,当生产过程的指标观察值落在两线之外时发出警报,表明生产出现异常.例 3 设随机变量 X ~ N ( 2, 2 ) , 且 P{2 X 4} 0 .3, 求 P{ X0}. 随机变量解 P{2 X 4} P{0 ( X 2) / 2 / } 标准化(2 / ) (0) 0.3, (2 / ) 0.3 (0) 0.8P{ X 0} P{( X 2) / 2 / } ( 2 / ) 1 (2 / ) 1 0.8 0.2 例 4 设随机变量 X ~ N ( 3, 4 ) , 且常数 C 满足 P{ X C } P{ X C }, 求常数 C . 解由P{ X C} P{ X C}, 即 1 P{ X C} P{ X C} 所以 P{ X C} 0.5 X 3 C 3 C 3 另一方面 , P{ XC} P{ } ( ) 0.5 2 2 2 C 3 0 , C 3. 2例 4(2021年) ( A)设 X ~ N (0 , 1), 对于给定的 (0,1), 数 ( B)满足 P{ X } . 若 P{ X x} , 则 x 等于( D) 1解 P { X x} P { x X x}1 P{ X x}2 故 x 1一种电子元件的使用寿命X(小时)服从正态分布N(100,152),某仪器上装有3个这种元件,三个元件损坏与否是相互独立的.求:使用的最初90小时内无一元件损坏的概率. 解:设Y为使用的最初90小时内损坏的元件数,则Y~90 100 ) (0.67) 0.2514 其中 p P{ X 90} ( 15P{Y 0} (1 p ) 3 0.4195 故2 (2021年) 设随机变量X ~ N ( 1 , 12 ), Y ~ N ( 2 , 2 ),且 P{ X 1 1} P{ Y 2 1}, 则必有 ( A) 1 2 . ( B ) 1 2 . (C ) 1 2 . ( B) 1 2 .第二节正态分布的数字特征一. 一般正态分布N(, 2)( x)2 2 21 X ~ f (x) e 2, xE( X )xf ( x)dxt ( xt2 2 e dt 2x e 2( x )2 2 2D( X )) f ( x )dx标准正态分布N(0, 1)X ~ f ( x)E( X )x2 e 2, xx2 e 2 dxxf ( x ) dx0(奇函数 )D( X ) E{[ X E ( X )] }2 x[ xE ( X )] f ( x)dxx2 e 2 dx例1 已知随机变量X的密度函数为 1 x 2 2 x 1 f ( x) e ,x 求 E ( X )、D ( X ) .f ( x)x 2 x 11 e2 (1/ 2)( x 1) 2 2(1/ 2 ) 21 故 1, 2例2 设X服从N(0,1)分布,求E(X2),E(X3)1 解 f (x) e2 x2 x2 2 E ( X 2 ) x 2 f ( x)dxe dx 2 2 2x de 2x 2x 2 eE( X )3 xf ( x) dxx2 x3 2 e dxx2 e 2 dx 12021年(数一) 设随机变量X的分布函数为F ( x) 0.3 ( x) 0.7 ( 其中 ( x)为标准正态分布函数, 则EX ( A)0. ( B )0.3. (C )0.7. ( D)1.x 1 ), 2分析 : EX xf ( x )dx ,因此先求随机变量 X的概率密度函数 f ( x ).解 f ( x ) F ( x ) [ 0 . 3 ( x ) 0 . 7 (0 .7 x 1 0 . 3 ( x ) ( ) 2 2于是 EXx 1 ) ] 2xf ( x ) dxx[0.3 ( x )0 .7 x 1 ( )]dx 2 20.7 x 1 0.3 x ( x)dx x ( )dx 2 21 0 .3 x e 20 .7 dx x 21 x 12 ( ) 2 21 x 12 ( ) 1 2 2 e dx 20 .7 1 x 2 e 21 x 12 ) ( 0 .7 1 2 2 dx dx x 2 e 2x 1 令 t , 则dx 2dt , x 2t 1. 代入上式得 20 .7 1 x 2 e 21 x 12 ) ( 2 20 .7 1 dx (2t 1) 2 e 21 0 .7 2t e2 22 dt0 .7 1 2 e 20. 7 10 2 e 22dt 0.7dt 0.7.设随机变量 X与 Y相互独立 , 且 X服从标准正态分布 ,1 Y的概率分布为 P{Y 0} P{Y 1} .记 FZ ( z )为随机变量2 Z XY 的分布函数 , 则函数 FZ ( z )的间断点个数为 ( A) 0 . ( B )1. (C ) 2 . ( D )3 .解 FZ (z) P{Z z} P{XY z}P{Y 0}P{XY z | Y 0} P{Y 1}P{XY z | Y 1}1 [ P{ XY z | Y 0} P{ XY z | Y 1}]2 1 [ P{ X 0z | Y 0} P{ X 1 z | Y 1}] 2 为什么? 1 [ P { X 0 z }P { X z }] 21 (1)当z 0时, FZ ( z ) [ P{ X 0 z} P{ X z}] 21 1 [ P( ) P{ X z}] [0 P{ X z}]2 21 1 P{ X z} ( z )2 2 1 (2)当z 0时, FZ ( z ) [ P{ X0 z P{ X z}] 21 1 [ P() P{ X z}] [1 P{ X z}]2 2所以 , z 0为函数 FZ ( z )的间断点 . ( B )正确 .1 [1 ( z )] 2例 3 某地抽样调查结果表明 , 考生的外语成绩 (百分制) 近似服从正态分布 , 平均成绩为 72 分, 而 96以上的考生占总数的 2.3%, 求考生的外语成绩在 60 分至 84 分之间的概率 . 解设 X —考生的外语成绩, 依题设知X ~ N ( , 2 ), 其中72, 下求方差 2 X 96 由题设 P{ X 96} 0.023 P{ } 0.023 X 96 96 1 P{ } 0.023, 即 1 ( ) 0.023) 0.977,96 96 72 2, 12 2 2于是 , P{60 X 84 } P{60 72 X 84 72 X 1} P{ } P{ 1 12 12(1) (1) (1) [1 (1)]2 (1) 1 2 0.841 1 0.682例 4 假设测量的随机误差 X ~ N ( 0,10 2 ).试求在 100 次独立重复测量中 , 至少有三次测量的绝对值大于 19 .6 的概率 ,并利用泊松分布求出的近似值 . 解先求每次测量误差的绝对值大于19.6的概率 p p P{ X 19.6} 1 P{ X19.6} 1 P{19.6 X 19.6}1 P{ 19.619.6 0 X 19.6 0 } 1 P{ 10 10 X1 P{ 1.96 1.96} 1 [ (1.96) ( 1.96)]1 [ (1.96) ( 1.96)] 1 (1.96) [1 (1.96)]2 2 (1.96) 2 2 0.975 2 1.95 0.0519.6设 Y — 100次测量中绝对值大于19.6, 则Y ~ B (100,0.05)于是所求的概率为 P{Y 3} 1 P{Y 0} P{Y 1} P{Y2}0 1 1 C100 (0.05) 0 (0.95)100 C100 (0.05)1 (0.95)99 2 C100 (0.05) 2 (0.95)98np 100 0 .05 5, 故由泊松分布得52 1 e (1 ) 1 e 5 (1 5 ) 0.87 2 2习作题 1.设随机变量X N(0,1),Y U(0,1),Z B(5,0.5),且 X,Y,Z独立,求随机变量U=(2X+3Y)(4Z-1)的数学期望答:27 E (U ) E (2 X 3Y ) E (4 Z 1) 22 设随机变量 X 1 ,..., X n 相互独立,且均服从 N ( , 2 )1 n 分布,求随机变量 X X i 的数学期望 n i 1 1 n 答: E ( X ) E ( X i ) n i 11. 设随机变量X B(12,0.5),Y N(0,1), COV(X,Y)=-1,求V=4X+3Y+1与W=-2X+4Y 的方差与协方差.2. 某单位招聘2500人,按考试成绩从高分到低分依次录用,共有10000人报名.假定报名者的考试成绩X 服从正态分布 N ( , 2 ), 现已知90分以上有359人, 60分以下的有1151人,求被录用者中的最低分数.第三节正态分布的线性性质一. 线性性质例1 设随机变量X服从标准正态分布,求随机变量 Y a X b ~ N (b, a2 ) Y=aX+b的密度函数,且有y b 解: Y=ax+b关于x严单,反函数为 h( y ) ay b fY ( y) f X ( ) h( y) 1 a 2E (Y )y b a 2 e( y b ) 2 2a2y e 2 a( y b ) 2 2a 2dyax b 2x2 e 2 dxD (Y ) E{[YE (Y )]2 } [ y E (Y ) ]2 f ( y ) dy( y b)2 2 a 2 2 e dy a 2 a 直接由Y的密度函数,可观察到Y的数学期望与方差1 2a2 , 由 f ( y) e 2 a 可知随机变量Y服从正态分布, ( y b) 2( y b)2而且 E (Y ) b , D (Y ) a 2定理1 设随机变量X 服从正态分布N(, 2),则X的线性函数 Y a b X 也服从正态分布,且有 Y a bX ~ N ( a b , a 2 2 )已知X N(,2),求 Y解 Y X 关于x严格单调,反函数为 h( y) y 故 fY ( y) f X [h( y)] | h( y) | f X (y )y 2你能用正态分布的线性性质求解吗?二. 正态分布的可加性定理2 设随机变量X1,X2 相互独立且Xi 服从正态分布N(i ,i2),i=1,2, 则 2 2 2 2 a1 X 1 a2 X 2 ~ N (a1 1 a2 2 , a1 1 a2 2 ) 定理3 设随机变量X1, X2,..., Xn独立且Xi 服从正态分布N(i ,i2),i=1,...,n, 则a i X i ~ N ( a i i , a i2 i2 )i 1 i 1例1. 设随机变量X与Y独立且均服从标准正态分布,求证:Z=X+Y服从N(0,2)分布.解依题设 X ~ N ( 0,1) , Y ~ N ( 0,1) ; 故有E ( X ) 0 , D ( X ) 1 , E (Y ) 0 , D (Y )于是由定理 2可知 X Y服从正态分布 , 且有E ( X Y ) E ( X ) E (Y ) 0 0 0D ( X Y ) D ( X ) D (Y ) 1 1 2,即 X Y ~ N (0 , 2 )例2. 设随机变量X与Y独立,且X~ N(1,2),Y~N(0,1). 求证:(1)Z=2X-Y+3的密度函数;(2)P{2D ( Z ) D ( 2 X Y 3) 4 D ( X )E (Y ) 8 1 9Z 2 X Y 3 ~ N (5,9) 2 Z 8 Z (2) P{2 Z 8} P{ } P{ 1 1} (1) (1) (1) [1 (1)] 即2 (1) 1 2 0.8413 1 0.6826一. 密度函数若随机变量(X,Y)的密度函数为f ( x, y )1 212 11 ( x 1 )2 ( x 1 )( y 2 ) ( y 2 ) 2 [ ] 2 22 2 1 2 2( 1 ) 2 1其中,1、2为实数,1>0、2>0、| |( X , Y ) ~ N ( 1 , 2 , , , )2 1 2 2二、边缘密度函数 2 设(X, Y)~f(x,y),(x,y)R ,则称 f X ( x) f ( x, y )dy 为(X,Y)关于X的边缘密度函数;同理,称 fY ( y ) f ( x,y )dx为(X, Y)关于Y的边缘密度函数。

正态分布的背景及正态分布概率密度的推导过程

正态分布的背景及正态分布概率密度的推导过程

正态分布的背景及正态分布概率密度的推导过程一、背景介绍正态分布是概率论和统计学中最重要的分布之一,也称作高斯分布或钟形曲线。

它广泛应用于自然科学、社会科学和工程领域。

正态分布的背景早在18世纪即开始引起人们的兴趣,由德国数学家高斯在他的研究中首次提出,并开创了概率论的新篇章。

正态分布的定义如下:若连续型随机变量X的概率密度函数为f(x) = (1/σ√(2π)) * e^(-(x-μ)²/2σ²)其中,μ是均值,σ是标准差,e是自然对数的底数。

二、正态分布概率密度函数的推导过程正态分布概率密度函数的推导可通过以下几个步骤完成:2.1 正态分布基本概念在推导正态分布的概率密度函数之前,我们先来了解一些正态分布的基本概念。

2.1.1 均值均值(μ)是正态分布曲线的中心位置,也即期望值。

正态分布的均值位于曲线的对称轴上。

2.1.2 方差方差(σ²)是一种描述数据变化程度的统计量。

方差越大,数据的分布越分散。

方差的平方根被称为标准差(σ)。

2.2 推导过程为了推导正态分布的概率密度函数,我们需要用到一些数学工具,如积分和高斯积分等。

2.2.1 标准正态分布标准正态分布是均值为0,标准差为1的正态分布。

对于标准正态分布,我们记为Z,其概率密度函数为:φ(x) = (1/√(2π)) * e^(-x²/2)2.2.2 正态分布与标准正态分布的关系对于正态分布的任意随机变量X,可以通过线性变换将其标准化为标准正态分布。

线性变换的公式如下:Z = (X-μ)/σ其中,Z是标准正态分布的随机变量,X是正态分布的随机变量,μ是均值,σ是标准差。

2.2.3 推导过程利用线性变换的公式,我们可以将正态分布的概率密度函数转换为标准正态分布的概率密度函数。

具体推导过程如下:1.根据线性变换的公式,可以得到X和Z的关系式:X = Zσ + μ2.利用概率密度函数的性质,将Z的概率密度函数代入到X的概率密度函数中,得到:f(x) = φ((x-μ)/σ) * (1/σ)3.将标准正态分布的概率密度函数代入到上式中,可以得到:f(x) =(1/σ√(2π)) * e^(-(x-μ)²/2σ²)至此,我们完成了正态分布概率密度函数的推导过程。

石大医学统计学讲义04正态分布及其应用

石大医学统计学讲义04正态分布及其应用

第四讲正态分布及其应用一、正态分布的概念和特征根据频数表资料绘制成直方图,可以设想,如果将观察人数逐渐增多,线段不断分细,图中直条将逐渐变窄,其顶端将逐渐接近一条光滑的曲线,这条曲线称为频数曲线或频率曲线,略呈钟型,两头低,中间高,左右对称,近似于数学上的正态分布(normaldistribution)o由于频率的总和等于100%或1,故横轴上曲线下的面积等于100%或1。

正态分布是一种横重要的连续型分布,在生物统计学中,占有极其重要的地位。

许多生物学现象所产生的数据,都服从正态分布。

1、正态分布的图形有了正态分布的密度函数f(X),即正态分布的方程,就可给出图形上式中右μ为均数,o为标准差,X为自变量。

当X确定后,就可由此式求得其密度函数f(X),也就是相应的纵坐标的高度。

所以,已知μ和o,就能绘出正态曲线的图形。

2、正态分布的特征(1)正态分布以μ为中心,左右对称。

(2)正态分布有两个参数,即μ和o。

μ是位置参数,当o恒定后,μ越大,则曲线沿横轴越向右移动;μ越小,则曲线沿横轴越向左移动。

σ是变异参数,当μ恒定时,σ越大,表示数据越分散,曲线越“胖”;σ越小,表示数据越分散,曲线越“瘦二(3)正态分布的偏斜度γι=0,峭度γ2=0为了应用方便,常将上式作如下变换,也就是将原点学到μ的位置,使横轴尺度以σ为单位,使μ=0,σ=l,则正态分布变换为标准正态分布。

(standardnormaldistribution),U 称为标准正态离差(standardnormaldeviate)标准正态分布的密度函数为:1 -Vφ(u)=-f=e 2 √2^^一般用N(μ,σ2)表示均方为μ,方差为M 的正态分布。

于是标准正态分布用N(0,1)表示。

标准正态分布有以下特征:(1)在U=O 时,φ(u)达到最大值。

(2)当U 无论向哪个方向远离。

时,φ(u)的值都减小。

(3)曲线关于Y 轴对称,即φ(u)=φ(-u)0(4)曲线和横轴所夹的面积等于1。

正态分布的重要性及应用

正态分布的重要性及应用

正态分布的重要性及应用正态分布,也称为高斯分布或钟形曲线,是统计学中最重要的概率分布之一。

它在自然界和社会科学中的应用非常广泛,对于理解和解释各种现象具有重要意义。

本文将探讨正态分布的重要性及其在不同领域的应用。

一、正态分布的重要性正态分布在统计学中具有重要的地位,主要体现在以下几个方面: 1. 中心极限定理的基础:中心极限定理是统计学中最重要的定理之一,它指出当样本容量足够大时,样本均值的分布将近似于正态分布。

中心极限定理的应用使得正态分布成为了许多统计推断方法的基础,如假设检验、置信区间估计等。

2. 参数估计的基础:正态分布在参数估计中起到了重要的作用。

许多统计模型假设数据服从正态分布,通过对样本数据进行参数估计,可以得到对总体参数的估计值。

例如,线性回归模型中的最小二乘法就是基于正态分布的假设。

3. 数据分析的基础:正态分布在数据分析中具有广泛的应用。

通过对数据的分布进行正态性检验,可以判断数据是否符合正态分布假设,从而选择合适的统计方法。

此外,正态分布还可以用于描述和分析各种现象,如身高、体重、考试成绩等。

二、正态分布的应用正态分布在各个领域都有广泛的应用,下面将介绍几个常见的应用场景:1. 自然科学:正态分布在自然科学中的应用非常广泛。

例如,在物理学中,正态分布可以用于描述粒子的速度分布、能量分布等;在生物学中,正态分布可以用于描述生物体的身高、体重、血压等指标。

2. 金融领域:正态分布在金融领域的应用非常重要。

例如,在股票市场中,股票价格的变动通常符合正态分布,通过对股票价格的正态分布进行建模,可以进行风险评估和投资决策。

3. 质量控制:正态分布在质量控制中起到了重要的作用。

例如,在制造业中,产品的尺寸、重量等指标通常服从正态分布,通过对产品指标的正态分布进行分析,可以判断产品是否合格,从而进行质量控制。

4. 社会科学:正态分布在社会科学中的应用也非常广泛。

例如,在教育领域,学生的考试成绩通常符合正态分布,通过对考试成绩的正态分布进行分析,可以评估学生的学习水平和教学效果。

正态分布在生活中的应用资料

正态分布在生活中的应用资料

正态分布在生活中的应用正态分布在生活中的应用摘要:正态分布和概率论在统计学中占有非常重要的地位,它广泛存在于自然现象、生产、生活以及科技领域,本文运用正态分布理论对现实生活中的一些问题进行详细解答。

在概率论与数理统计中,最重要的分布就是正态分布。

正态分布的重要性在于:实际生活中有许多随机变量服从或近似服从正太分布(如一个人群中成年男子的身高、体重,工件的测量误差,气象学中的温度、湿度等);正态分布的密度函数与分布函数具有许多良好的性质;正态分布是许多分布的极限分布;正态分布在数理统计中的基础作用等。

所以,许多实际问题与理论问题的解决,都离不开正态分布。

一、安排座位数量问题某学院有学生1600人,午餐时间到学院食堂就餐人数最多,约占学生人数的3/4,问学院食堂最多安排多少座位,使空座位超过100个的概率不超过0.01?解:设X表示午餐时就餐人数,则X~B(1600,3/4),np=1200,npq=300,近似地有X~N(1200,300).设应安排N个座位,因为(N-100-1200)/ √300~N(0,1),则P(X≤N-100)≈Φ[(N-100-1200)/√300]≤0.01查表得Φ(-2.33)=0.01,故有(N-1300)/√300 ≤ -2.33从而有N≤1259.64,即最多安排1259个座位。

二、学生考试问题某专业招收研究生20名,其中有10名免费,报考人数为1000人,考试满分为500分。

经过考试后才知道此专业考试总平均成绩为μ=300分,如果招收研究生的分数线确定为350分,试问,现在某人考360分,他有没有可能被录取为免费生?解:研究生考试成绩X~N(μ,σ²),由已知μ=300,而σ未知。

研究生考试分数超过350分的考生频率应该近似等于事件(X≥350)的概率,所以有P(X≥350)=20/1000=0.02,即P(X<350)=0.98,即Φ((350-300)/σ)=0.98 查标准正态分布表Φ(2.05)=0.9798≈0.98所以取50/σ = 2.05,解得σ=50/2.05此人能否被录取为免费生,需估计一下他的排名,也就是算一下分数高于360分的概率,再乘以总人数就可以知道他的排名情况因为P(X≥360)=1-P(X<360)=1-Φ(60/σ)=1-Φ(60×2.05/50)=1-Φ(2.46)=1-0.9931=0.0069,所以研究生考试分数不低于360分的考生大概有:1000×0.0069=6.9≈7(人)因此,在研究生考试中,该考得360分的考生大约排第7名,所以他有可能是免费生。

浅谈正态分布论文

浅谈正态分布论文

正态分布浅谈摘要正态分布在概率论与数理统计中占有很重要的地位,是许多概率形成的理论基础,它是不以人的主观思想而转移的。

正态分布有统一的表达式,通过表达式我们可以发现正态分布是一个怎样的分布。

在自然界和人类活动的范畴里,大量的随机变量都服从正态分布,如测量误差、产品的各类质量指标、人的身高、某一区域的成绩、计算机大量的数据处理和内部的算法运行等等都趴在了正态分布的曲线图上,可以说,服从正态分布的随机变量应用已经是自然的规律,所以多年来科学家对正态分布的探究是非常值得的。

本文通过对正态分布的基础入手,阐述正态分布在各行业所起的作用,如机械设计、医疗统计、水平测试等。

关键词正态分布;表达式;应用1、正态分布的由来和发展正态分布是最重要的一种概率分布。

正态分布概念是由德国的数学家和天文学家(棣莫佛)于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布。

高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。

高斯是一个伟大的数学家,重要的贡献不胜枚举。

但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。

这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。

在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。

这要到20世纪正态小样本理论充分发展起来以后。

拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。

这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。

后来到1837年,海根在一篇论文中正式提出了这个学说。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论正态分布的重要地位和应用Company number:【0089WT-8898YT-W8CCB-BUUT-202108】本科毕业论文(设Array计)题目:论正态分布的重要地位和应用学部:工学部学生姓名:王梅影年级:2011级专业班级:信息与计算科学指导教师:赵姣珍职称:讲师完成时间:2015/5/15中国·贵州·贵阳成果声明本人的毕业论文是在贵州民族大学人文科技学院赵姣珍老师的指导下独立撰写并完成的。

毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本声明的法律结果由本人承担。

论文作者签名:日期年月日目录摘要:正态分布是一种最常见的连续型随机变量的分布,是概率论中最重要的一中分布.在理论上和实际生活中正态分布具有重要地位,数理统计中的正态分布是很多重要问题的解决的基础,在理论研究中占有举足轻重的地位.本文首先针对正态分布这一理论研究与实际应用都占有重要地位的概率分布展开分析研究,从其基本概念出发,然后分析其特性以及各种应用价值,最后通过一系列研究给出正态分布具有重大作用的理论依据.关键词:正态分布标准正态分布方差标准差Abstract: The normal distributionis the most common distribution of acontinuous random variablewhether in theoretical research orpractical application. It occupiespride of placein that ithas awideapplication in the field . It cansolve many important problemsin the mathematical statisticswhich based on the normal distribution forthe normal distribution,soin theory to studythe normal paper analysis the normal probability distributionaccording to thetheoretical research and practical application which occupy an important position in many science fields from the basicconcept,analysis andapplication value of itscharacteristics.The theoretical basisis giventhrough a series ofstudies onthe normal distributionhas a significant role.Key words: The normal distribution Standard distribution Thecurve Standard deviation1绪论研究背景随机现象存在于自然界和人类生活中的每一个角落,因此概率论在现实中的应用非常之广泛,而在概率论中的最主要的一个分支就是正态分布(Normal distribution),正态分布不仅在金融、精算以及保险等新型领域中占有重要地位,而且对于医学、物理学、生物学等领域的影响也是不可忽略的.正态分布又被称为高斯分布,正态分布在统计学科、数学领域、自然生物领域都有着极其关键作用的概率分布.我们假设连续性随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2).μ决定了正态分布的期望值,其标准差σ决定了分布的幅度.由于正态分布的曲线也称为钟形曲线.在日常的学习研究之中,标准正态分布,它是μ = 0,σ = 1的正态分布.正态分布是我们生活中不可或缺的一部分,如果能够充分理解它,它能够带来的利益也是无法估量的.作为新时代的大学生,很好地掌握正态分布的原理并能够将其运用于社会生活中,是我们的一个任务,为此对正态分布进行系统的学习和研究.研究目的正态分布是统计方法的理论中最为基础的部分,是不以人类的意志而转移的统计规律,具有统一的函数表达式.正态分布在实际生活中,存在着很多服从正态分布的例子,.比如测量产品的误差、产品质量的测量,农业作物的产量等.服从正态分布的随机变量应用非常之广.没有任何一种随机变量可以相比较.所以,我们需要对正态分布进行深入广泛的研究.为了能够更好地掌握正态分布,让其能够更好地被应用生活之中,为人类谋取更多的福利,对其在理论和应用方面进行了系统的研究以求进一步的了解正态分布的奥秘.研究现状正态分布概念首先由数学家De Moivre发现引入并提出,然后直到1809年,德国数学家Gauss将其应用于自然科学的广泛研究,因此又被称作高斯分布.正态分布最早是通过进行误差分析而发现的.进入近代统计时代,拉普拉斯首次提出了概率论的古典定义,把概率论的理论作为基本理论,再次进行了中心极限定理的证明,进一步完善了观测误差论,在前人的基础上进行了一次伟大的改革.19世纪50年代凯特莱运用大量的概率论原理对自然和社会现象进行测量,然后统计出大数据,这些数据反映出来的规律可以体现事物的变化,甚至可以预测未来事件发生的可能性.随后凯特莱有对正态曲线进行了拓展,高尔顿对正态分布进行了创新.19世纪起,以马尔可夫和切比雪夫为代表的数学家通过引入随机变量的盖帘,建立了随机变量的独立性和非独立性的标准,提出了收敛到正态分布的充要条件.到达20世纪,通过哥赛特,费歇尔等人的努力,小样本理论诞生了,正态分布的地位得到了进一步的巩固.20世纪后,统计学家在实验中获得的数据越来越精确,由统计分析得到的结论得到了普遍认可.研究意义正态分布具有极其广泛的实际应用背景,在人们的各种生产生活以及科学实验当中,有大量的随机变量的概率分布特性都可以近似的用正态分布来描述.当我们描述某一件事或者某一个要达到的目标时,大部分的个体所发挥出来的特性都能够很好地服从正态分布.这也就是说,对于大量的个体的特性统计分析,可以尝试利用正态分布来估量.除此之外,正态分布也可应用到解决现实生活问题,产品质量管理、人体生理的特征及学生的综合素质等多领域都可以用正态分布进行研究.因此,正态分布作为一种最常见的连续型随机变量的分布,不仅在概率论和数理统计的理论研究中有重要地位,而且在实际应用上也有着重要研究价值.充分研究正态分布在理论和应用中的重要定位,可以让我们充分学习到正态分布的理论知识,站在前人的肩膀上获得最好的研究成果.有利于在今后的研究中少走弯路,为今后研究打好基石.2 正态分布相关知识介绍正态分布的概念正态分布又被称作高斯(Gauss )分布或常态分布.正态分布曲线的两边低,中央是高峰,逐渐下降至两侧,左右呈现对称的,曲线不与横轴相交.设连续型随机变量ξ的密度函数为:()()22221σμπσϕ--=x ex ()x -∞<<+∞(其中μσ、是常数,且 0σ>,μ为所研究的正太总体平均值,σ为标准差,x 为随机抽取得正态分布中的样本值).则称随机变量ξ服从参数为μσ、的正态分布,记作()2,~σμξN ,正态分布密度函数的图形如下图所示,这条曲线应称作“正态分布曲线”.图2-1 正态密度曲线分布图正态分布曲线特性对上式()进行一定的数学计算处理: 对式()求导,可得:)(21)(222)(3μπσϕσμ-⋅-='--x ex x ()令()0='x ϕ,则有x μ=,即当x μ=时, ()x ϕ有极大值max ()2x ϕσπ=对式()求导有:()()()[]22252221σμπσϕσμ--⋅=''--x ex x令()0=''x ϕ,则有()22x μσ-= ,即曲线在:x μσ=±可以看到拐点,而且有两个.表2-1 正态曲线的特性表0 - - -0 - -- 0曲线凹拐点凸极大值 凸拐点 凹对正态分布整体特性做了一定的介绍之后,下面对参数当μ和σ的意义进行阐释,当它们确定后,正态曲线就几乎能够得到了完全的确定.μ和σ 不同,μ的大小决定曲线的“高”、“矮”、“胖”、“瘦”,如果μ不变,改变σ,则曲线在x 轴上的位置不变,形状会变化,σ愈小,曲线愈“高瘦”;σ越大,曲线越“矮胖”,如图2-3所示; 如果σ不变,改变μ,那么曲线形状不变,只在x 轴上平行移动如图2-2所示:图2-2 正态曲线的特性图图2-3 正态曲线的密度函数图我们从几何的角度对上图进行分析,在上图中,μ是高斯曲线取得极大值的横坐标、σ是曲线中拐点横坐标与极大值坐标μ间的距离,也能够说σ是凸、凹曲线的连接点在横坐标轴的位置;从物理的角度对上图进行分析,在上图中,μ是正态曲线与x 轴之间所构成的平面图形重心的横坐标.在计量学科中,μ是被测量的随机变量的真值,σ是表征随机变量对象测量值分散特性的一个评价尺度因素.在数理统计学科中,μ被称为数学期望也就是平均值,σ是随机变量的标准偏差.当σ的值越小,说明观测值落在μ所在横坐标左右范围的概率越大,观测值较集中,测量精度相对较高;σ的值越大,说明观测值落在μ所在横坐标左右范围内的概率越小,观测值较分散,测量精度偏低.综上所述,正态分布的参数μ代表着随机变量样本观测值的集中的趋势,参数σ反映了随机变量样本观测值的分散程度.标准正态分布称1,0==σμ的正态分布为标准正态分布,将1,0==σμ代入式可以得到:()2221x e x -=πϕ ()x -∞<<+∞式为标准正态分布的密度函数,服从标准正态分布的随机变量()2,~σμξN通过对概率论的学习告诉我们,标准正态分布的分布函数(也叫概率分布函数)为:()()()()dt e dt t x P x P x F t x x 2221-∞-∞-⎰⎰==<<∞-=<=πϕξξ通常用()x Φ表示标准正态分布的分布函数,即:()()()()dt e dt t x P x P x t x x 2221-∞-∞-⎰⎰==<<∞-=<=Φπϕξξ取不同的x 的值,式的几何意义是在区间(),x -∞内正态曲线与x 轴之间所围曲边梯形的面积,如图所示,图2-4 标准正态分布的分布函数图这也是将“正态分布表”称作“正态概率曲线下的面积”的道理.由于密度函数()x ϕ可以在整个x 轴上取值,密度函数性质得:即迎合了正态曲线的一个性质:线与x 轴所围面积为l.3 正态分布的应用正态分布应用实例3.1.1 正态分布在生产中的应用正态分布实际应用很广,在很多产品生产及科学实验中,随机变量的概率分布特性都可以近似的用正态分布来描述.对于大量的个体的特性统计分析,可以尝试利用正态分布来估量.例 有一种螺纹量规平均可使用5年,其标准差为年.假设螺纹量规的使用寿命服从正态分布,试求以下概率:1)使用期不到4年;2)使用期超过6年.解 设量规使用期为随机变量ξ,由题意知()28.0,5~N ξ,本题求()()46P P ξξ<>和1) 根据公式有:()()()44544 1.250.10560.8P P μξξσ--⎛⎫⎛⎫<=-∞<<=Φ=Φ=Φ-= ⎪ ⎪⎝⎭⎝⎭, 或由公式可得()()()()4045054040.80.81.25 6.250.105600.1056P P μμξξσσ----⎛⎫⎛⎫⎛⎫⎛⎫<=<<=Φ-Φ=Φ-Φ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=Φ--Φ-=-=,2) 根据公式有()()()6561611 1.2510.89440.10560.8P P ξξ-⎛⎫>=-≤=-Φ=-Φ=-= ⎪⎝⎭. 例 某车间加工一批轴,其直径服从正态分布,平均直径μ=l0mm ,标准差σ=mm .规定直径在(10±mm 范围内为合格品.求:1)不合格品的概率;2)合格品的概率.解 设这批轴的直径为随机变量ξ,由题意知()015.0,10~N ξ.03.10>ξ和97.9<ξ为不合格品.1) ()()()9.97109.9710.03110.030.015不合格P P P P ξξξ-⎛⎫=<+>=Φ+-≤⎡⎤ ⎪⎣⎦⎝⎭2) ()10.03109.97109.9710.030.0150.015合格P P ξ--⎛⎫⎛⎫=<<=Φ-Φ ⎪ ⎪⎝⎭⎝⎭()()()2222120.9772510.9545=Φ-Φ-=Φ-=⨯-=,或 110.04550.9545P P =-=-=合格不合格.即975.002.0=⎪⎭⎫ ⎝⎛Φd .3.1.2正态分布在日常生活中的应用在自然界以及人类自然生活中,很多的实践经验证实,正态分布这种随机变量的概率分布的应用是十分广泛的,十分常见.例如:人的身高、体重、生物的生理尺寸等外观评估指标.随机测量误差指标等,都能够看作是近似服从的正态分布.(1)已知某条件下的概率,求参数 和例 有一群男子,4%的身高在m 608.1以下,有52%在m 608.1到m 753.1之间.若身高成正态分布,求这一分布的平均值和标准差.解 由题意得:()()⎪⎪⎩⎪⎪⎨⎧=+=⎪⎭⎫ ⎝⎛-Φ=<=⎪⎭⎫ ⎝⎛-Φ=<56.052.004.0753.1753.104.0608..1608.1σμξσμξP P , 由概率值和反查正态分布表得: ⎪⎩⎪⎨⎧=--=-15.0753.175.1608.1σμσμ, 化为:⎩⎨⎧=--=+-015.0753.1075.1608.1σμσμ, 解得:()()⎩⎨⎧==m m 742.1076.0μσ, 即这群男子平均身高为m 742.1,标准差为mm 076.0.(2)已知 , 和区问(a,b)内的变量数,求总变量数例 某天中午一餐厅所有顾客吃饭用的钱服从正态分布,平均数为元,标准差为元.这天中午有420人吃午饭用了元或更多,问一共来了多少顾客解 ()()()5793.04207.012.012.174.85.815.815.8=-=-Φ-=⎪⎭⎫ ⎝⎛-Φ-=≤-=>ξξP P 故总顾客数为: 7255793.0420=÷=ξ(人).3.1.3正态分布在销售分类中的应用例 某水果重量成正态分布,现进行分级,20%为小的,55%为中等,15%为大,10%为特大.所有水果平均重量为g ,标准差为60g ,求中等水果的下限与上限的重量.解 由题意知,中等水果下限下x 以下的概率为,上限为上x 以下的概率为+=,于是有:反查正态分布表得:即中等水果下限重量为191g ,上限为282g .3.1.4正态分布在工作学习中的应用正态分布不仅是概率论与数理统计的一种基本研究工具,也可以将它应用到解决考试成绩与学生综合素质研究的现实生活问题当中.例 某公司对职工进行基本理论考试,决定给14% 的人以优.由以往经验知考试成绩成正态分布,平均分数为80分,标准差为14分,问职工至少考多少分方能得优解 设至少考x 分方能得优,由题意:()()14.0148011=⎪⎭⎫ ⎝⎛-Φ-=<-=≥x x P x P ξξ, 86.014.011480=-=⎪⎭⎫ ⎝⎛-Φx . 反查正态分布表得:08.11480=-x ,9508.11780=⨯+=x (分)即考生至少得95分方能得优.3.1.5 正态分布在仪器测量中的应用正常情况下测量(或实验)误差服从正态分布(或近似正态)分布指标以及可以通过转换后服从正态分布的指标. 可以制定参考值范围.(1)已知 ,及各范围内的概率,求某范围的上、下限例 用某量具测量±d)mm 这一尺寸.已知测量值平均数为mm ,标准差为mm ,测量值服从正态分布.要使测量值的95%都在公差范围内,问d 值应定为多少解 本题是求概率为的尺寸范围.设测得的值为随机变量ξ,则()202.0,26.5~N ξ.由题意得() 5.26 5.26 5.26 5.265.26 5.260.020.02210.950.020.020.02d d P d d d d d ξ+---⎛⎫⎛⎫-<<+=Φ-Φ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=Φ-Φ-=Φ-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 反查正态分布表得:96.102.0=d , 故有mm 0392.002.096.1=⨯=σ.(2)用标堆差确定所需测量次教例 用某仪器测一尺寸L,已知该仪器标准差 m μδ1=,尺寸允许的测量极限误差m μδ4.1±=,问测量一次能否达到要求解 因δ=<3σ=3,故测量一次达不到精度要求,应进行多次测量,得559.44.13322≈=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛≥δσn , 可见,至少要测量5次. 正态分布的应用价值正态分布理论有很多重要的理论和应用价值:(1)估计频数分布,一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例.(2)制定参考值范围.(3)质量控制.(4)制定医学参考值范围:医学现象中,如同质群体的身高、红细胞数,及实验中的,呈现为正态或近似正态分布;有些指标虽服从,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理.总 结正态分布不仅是概率论与数理统计的一种基本研究工具,也可以将它应用到解决一些现实生活问题当中.医学遗传分析、考试成绩与学生综合素质研究以及质量管理和控制等诸多领域都可以利用正态分布进行研究.正态分布是统计方法的理论中最为基础的部分,具有统一的函数表达式.正态分布在实际应用中也扮演着不可或缺的角色.在自然界和社会中,存在着很多服从或近似服从正态分布的例子,如测量产品的误差、各类质量指标的测量,经济学中的股票价格走向的估计,生物学中农业作物收获量的猜测等等.服从正态分布的随机变量应用之广是任何一种随机变量不可比拟的.为此,对正态分布进行更深入更广泛的研究也是必不可少的.为了能够更好地掌握正态分布,让其能够更好地被应用生活之中,为人类谋取更多的福利,对其在理论和应用方面进行了系统的研究以求进一步的了解正态分布的奥秘.参考文献[1] 概率论与数理统计(第三版)高等教育出版社.[2] 龚光鲁.概率论与数理统计.清华大学出版社.[3] 胡细宝.概率论与数理统计与随机过程.北京邮电大学出版社.[4] 上海交大应用数学系.概率论与数理统计初步.上海交太出版社,.[5] 沈恒范.概率论讲义[M].第2版.人民教育出版社,.[6] 等.概率论与数理统计[M].第3版.高等教育出版社,.[7] 范金城等.概率论与数理统计[M].西安交大出版社,月.[8] 周富臣等.机械制造计量检测技术手册[J].机槭工业出版社. .[9] 王梓坤着.概率论基础及其应用[M].北京师范大学出版社,1996.[10] 李逢高着.概率统计应用与提高[M].科学出版社,2005.[11] 朱燕堂等着.应用概率统计方法[M].西北工业大学出版社,1997.致谢在历时三个月时间的努力下,我终于顺利写完了毕业论文.在这篇充满奋斗的历程中,带给我的学习生涯无限的激情和收获.在我的论文的写作的过程中,虽然遇到了一些困难和阻碍,不过感谢在同学和老师的帮助下我都度过了.不管是在图书馆收集查找资料还是借阅书籍文献的时候,图书馆的老师都给了我许许多多的帮助.在此,我要特别感谢我的论文指导老师——赵姣珍老师,感谢她在论文写作这三个月期间对我进行了无微不至的帮助,一次一次不厌其烦的为我进行论文的修正与改进,如果没有赵老师的悉心指导,我想我也将不会顺利的完成我的论文.同样我向所有指导过以及帮助过我的老师们表示最由衷的感谢!同时,我也要感谢本论文所引用的众多学者的着作,若没有这些学者的研究成果的启发和引导帮助,我也将无法完成我的论文.我还要感谢我的同学和朋友们,是你们给我打气给我鼓励,还给予我有价值的论文相关资料,在论文的排版及撰写过程中给予我的支持与热情的帮助!最后,由于我的专业学术水平有限,所写论文也许有些许不足,诚恳殷切地希望老师们和同学们能够给予我批评与指正!谢谢!。

相关文档
最新文档