光学信息处理 第四章 非相干光学信息处理
《光学信息处理技术》课件
光学信息处理技术在理论和实践 中得到了广泛研究和应用。
光学信息处理技术的发展 趋势
光学信息处理技术将更加智能化、 高效化和便捷化,推动科技进步 和应用创新。
结语
通过本课程,我们总结了光学信息处理技术的基本原理和应用,并展望了未 来光学信息处理技术的发展可能性。
快速傅里叶变换是一种高效计算傅里叶变换的算法,可用于图像频谱分析和滤波。
数字图像处理技术
1 像素图像处理方法
像素图像处理方法以像素为基本处理单元,包括增强、滤波和分割等处理操作。
2 处理方法
数字图像处理方法包括变换、编码和压缩等技术,可用于图像编辑和图像信号分析。
3 区域处理方法
区域处理方法将图像分成不同区域,进行分割、特征提取和对象识别等操作。
光学信息处理技术广泛应用于图像处理、光学光学信息处理技术具有高速、高精度和免疫干扰等优点,但对环境光和噪声敏感。
基本光学信息处理技术
光学显微镜
光学显微镜是一种基于光学原理 的图像放大装置,可观察细小物 体及其结构。
光学干涉仪
光学衍射仪
光学干涉仪是一种利用干涉现象 测量物体形状和表面特性的仪器。
《光学信息处理技术》 PPT课件
本课程介绍了光学信息处理技术的基本原理和应用。通过本课程,你将了解 到光学信息处理技术的概述、基本方法、图像计算方法、数字图像处理技术、 光学识别技术以及其发展前景。
光学信息处理技术概述
定义
光学信息处理技术涉及使用光学原理和技术处理和传输信息的一系列方法和技术。
应用领域
光学衍射仪利用光的衍射现象处 理和分析光的信息,包括干涉、 衍射和散射。
光学信息处理的图像计算方法
1
赫尔曼-默里变换
相干与非相干光学处理
Optical Information Processing
光学信息处理
第九章
Incoherent Optical information Processing
非相干光学信息处理
: 光学信息处理从光源的空间和时间相干性来分类
0
i1
另外,不同噪声之间互不相关,因此有
N
E nin j
i1
0上面分析可知,单一通道上的信噪比为 s 2 / 2
当引入N个通道后,信噪比为 Ns 2 / 2
这这一一点点在在光光学学系系统统中中是是容容易易理理解解的的。。
扩扩展展光光源源引引入入的的多多余余通通道道
(1) 相干噪声和散斑噪声问题 (2) 输入和输出上存在的问题
(3) 对色彩信息难以处理
(1)相干噪声和散斑噪声问题.
在光学系统中,透镜、反射镜和分束器等不可避免地存在一些缺陷,如气泡、 擦痕以及尘埃、指印或霉斑等.
当用相干光照明时,这些缺陷将产生衍射,而这些衍射波之间又会互相干涉,从 而形成一系列杂乱条纹与图像重叠在一起,无法分开.这就是所谓相干噪声。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
c.非相干光学处理系统的特征
照明光波场:非单色光
光学处理对象:光强 作用:完成运算(非负实函数运算处理)
特点:
1.无相干噪声,抗干扰能力强 2.系统简单,具有很强的灵活性
3.色彩信息量高。
。 混合处理系统,可以直接使用这类非相干信号
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
光信息处理[第3章]
加、减、乘、除、 微分、卷积等运算 频域综合 (有频谱面)
卷积、相关等运算 非相干频域综合 (无频谱面)
相干光处理的缺点:
1. 相干噪声和散斑噪声 相干噪声:来源于灰尘、气泡、划痕、指印、霉斑的衍射。 产生杂乱条纹,对图像叠加噪声。 散斑噪声:激光照射漫反射物体时(如生物样品,或表面粗 糙样品),物体表面各点反射光在空间相遇发生干涉,由于 表面的无规则性,这种干涉也是无规则的,物体表面呈现出 杂乱无章的斑点状图样。
光电探测器测得的是函数 g 和 h 在点 ( x x0,y y0 )
的相关。
应用:
h 模糊图像复原—— g( x,y ) 是模糊图像, ( x,y )
是消模糊的脉冲响应函数
图像特征识别—— h( x,y ) 是识别特定目标的掩膜板
g (x,y)
A
Dmn
多通道相关器
在第( m, n) 个探测器 Dmn 处得到的光强输出为:
三.沃耳特最小强度检出滤波器
在光瞳面上建立适当的相位分布,可改变系统的成像性质。 将矩形光瞳分为两半,一半蒸镀了 产生π 相位差的透明膜,这时光学系 统的光瞳函数为
1 0 x 0 P( x,y ) 1 0 x 0
光瞳函数
脉冲响应函数为
h( x) P( x,y )e
P(ξ,η)
2
dd
非相干空间滤波是改变输入光强频谱中各频率余弦 分量的对比度和相位关系,因此可根据要求的输入 - 输 出关系,提出系统所需的光学传递函数,完成非相干频 域综合。
衍射受限系统的光学传递函数(OTF)等于光瞳函数 的归一化自相关函数:
H 0 (ξ,η)
P(d i , d i ) ★ P(d i , d i )
光学信息处理
感谢观看
光学信息处理是在傅里叶光学基础上发展起来的。通常所谓的光学信息处理,或狭义的光学信息处理,指的 是光信息的频域处理,研究如何对各种光学信息进行光学运算(加、减、乘、除、相关、卷积、微分、矩阵相乘、 逻辑运算等);光学信息的提取、编码、存储、增强、去模糊、光学图像和特征识别;各种光学变换(傅里叶变 换、对数变换、梅林变换、拉普拉斯变换)等。有时光学信息处理也称为光学数据处理,它的发展远景是“光计 算”。实际上相干光处理系统是一个光学模拟计算机,具有二维并行处理的能力、极高的运算速度(光速)及极 大的容量等,但由于某些器件如实时空间光调制器的发展远未完善,从而限制了运算速度。此外,光学模拟处理 的精度较低,灵活性较差,使它在应用上受到了进一步的限制。
光学信息处理
光学术语
01 概念解释
目录
02 处理性质
03
联合傅里叶变换特征 识别
05
白光信息处理和相位 调制编码
04
半色调预处理和图像 假彩化
06 展望
光学信息处理(optical information proces-sing)是运用透镜的傅里叶变换效应,在图像的空间频域 (傅里叶透镜的焦平面)对光学图像信号进行滤波,提取或加强所需的图像(信号),滤掉或抑制不需要的图像 (噪声),并进行透镜傅里叶逆变换输出处理后的图像的全部过程。光学信息处理是在傅里叶光学的基础上发展 起来的。傅里叶光学的核心,在于运用透镜或其他器件产生二维图像的空间频谱,从而在频域对光信号进行处理。
早期的光学信息处理中输入图像和滤波器用照相干板记录,经处理的输出图像也用照相干板记录,需经过显 影、定影,全过程是非实时的,称为传统的或经典的光学信息处理。已开发出的各种电寻址的空间光调制器 (SLM),如液晶显示器(LCD)、磁光空间光调制器(MOSLM)等,这些器件是由许多像素单元构成的二维滤波 器件,具有行、列电极,可对像素进行寻址操作(称矩阵寻址),使不同位置的像素具有不同的透过率(或不同 的相位延迟),从而将计算机内预先存储的图像转移到调制器上。以空间光调制器SLM1代替照相干板置于4f系统 的输入平面或滤波平面上,激光器通过准直扩束镜照射SLM1,其光强透过率或相位受到调制。计算机内的输入图 像函数(如由电荷耦合器件CCD2拍摄的目标图像)显示在SLM1上。光波通过SLM1时其光强分布(或相位分布)就 受到调制,该图像通过透镜L1进行傅里叶变换。再将计算机内预先存储的滤波器函数通过第二个空间光调制器 SLM2显示在4f系统的谱平面上,对输入图像的空间频谱进行滤波。经滤波处理的谱通过透镜L2进行傅里叶逆变换, 用另一个电荷耦合器件CCD1或数码相机记录输出图像,送入计算机进行分析。全部输入、滤波和输出过程由计算 机控制,过程非常快,可近似认为是实时的,称为光电混合处理。
《光学信息处理技术》PPT课件
频谱面上的光场分布与物的结构密切相关,原点附近分布着物的低
频信息;离原点较远处,分布着物的较高的频率分量。
7
§7-1 空间滤波基本原理
二、阿贝—波特(Abbe—Porter)实验(1906)
相干单色平行光照明
实验装置
物平面 细丝网格状物 (正交光栅)
频谱面 放置滤波器
改变物的 频谱结构
像面 观察到各种 不同的像
T ( fx ) = ℱ [ t ( x1 ) ] 它的傅里叶变换—栅状物的夫琅和费衍射图样:
aB d
s
incBfx
sinc
a d
sincB
fx
1 d
sinc
a d
sincB
fx
1 d
......
零级谱
正、负一级谱
高级频谱
强度呈现为一系列亮点,每个
亮点是一个sinc2函数
幅值受单缝衍射限制,包络
带通滤波器:
用于选择某些频谱分量通过,阻挡另一些分量 例:正交光栅上污点的清除
滤波后可在像面 上得到去除了污 点的正交光栅
29
§7-3 空间滤波应用
例: 疵点检查——方向滤波器
印刷电路掩膜的 频谱沿轴分布, 疵点的频谱比较 分散。
此滤波器可提取 出疵点的信息
在输出面上得到 疵点的图像
30
§7-3 空间滤波应用
滤波器:放置在频 谱面中心的孔,仅 让0级谱通过
综合出的像:
仅有边框,不 出现条纹结构
零频分量是一个直流分量,它只代表像的本底
12
原物
通过的频谱 综合出的图像
阻挡零频分量,在一定条件下可使像的衬度发生反转 13
原物
通过的频谱 综合出的图像
光学信息处理
光学信息处理
嘿,你有没有想过,为什么我们用手机拍照能把远处的风景拍得那么清楚呢?这里面可藏着一个神奇的学问,那就是光学信息处理。
那啥是光学信息处理呢?简单来说,就是用光学的方法来处理信息。
有点懵?没关系,咱慢慢说。
你看啊,光就像一个神奇的快递员,它带着各种信息跑来跑去。
而光学信息处理呢,就是想办法让这个快递员送的信息更清楚、更有用。
比如说,我们拍照的时候,相机里面就有很多光学元件在进行光学信息处理呢。
镜头就像一个大漏斗,把光收集起来,让它照在相机里面的感光元件上。
这个感光元件就像是一块神奇的画布,把光带来的信息画下来。
但是如果没有光学信息处理,这画可能就不那么清楚啦。
再比如说,医生看病的时候用的一些仪器,也用到了光学信息处理。
那些仪器可以通过光来看看我们身体里面的情况。
如果没有光学信息处理,医生可能就看不清楚身体里面的小毛病了。
还有啊,我们看3D 电影的时候,也有光学信息处理的功劳。
它能让我们感觉电影里的东西好像真的在我们眼前一样。
所以啊,光学信息处理可重要啦。
它让我们看到的世界更清楚、更精彩。
现在你知道为什么我们的手机拍照那么清楚,为什么医生能看清我们身体里面的情况,为什么3D 电影那么逼真了吧?没错,都是因为有光学信息处理这个神奇的学问在发挥作用呢。
下次你再用手机拍照或者看电影的时候,就可以想想光学信息处理的神奇之处啦。
光学信息处理
线扩散函数 Li (xi )
Li(xi) 21aexp2xa22
Li
(xi
)
1rectxi d d
Li(xi) 21qexp2qx2i2
(f)ex 2 p2[2 o m 2f2]
线响应RL(x)的一维傅里叶变换等于系统传递函数沿fx 轴的截面分布
相干光处理的缺点:
1、相干噪声大
2、输入和输出设备的通用性问题
光学滤波系统——双透镜系统
输入面
频谱面
输出面
优点:频域大小、物像倍率可调
缺点:频谱面相位弯 曲
光学滤波系统——三透镜系统
输入面
频谱面
输出面
优点:高频损失小 缺点:。。。。。。
光学相关系统
光学相关系统
光电混合系统
相干光学反馈系统
优点: 1、方便产生复值滤波器
2、扩大动态范围
相干光学反馈系统
2
2
2
第六章 光学图像和信号处理
2
73
感谢您的聆听与 观看
共同学习相互提高
用相干系统实现的基本运算
实
加减运算
现
加
减
运
算
的
马
赫
干
涉
仪
在 P上光振动的复振幅分布为
P (x ,y ) P 1 (x ,y ) P 2 (x ,y )e j
P (x ,y ) P 1 (x ,y ) P 2 (x ,y )
当 2n 时
P (x ,y ) P 1 (x ,y ) P 2 (x ,y )
55
问题:
一、单色光照明,画出频谱面上图样分布,在以下情况下:
1、输入面上无输入图像,无正弦光栅; 2、输入面上无输入图像,有正弦光栅; 3、输入面上有输入图像,无正弦光栅; 4、输入面上有输入图像,有正弦光栅; 二、白光照明,。。。。。。?
光学信息处理
一意义及现状1光学信息处理的描述光学信息处理(Optical Information Processing) 起源于1873年阿贝的衍射成象理论,他在理论中引进了频谱概念之后,于1906年波特根据阿贝理论对网格频谱进行了极为成功的滤波实验,从而开辟了光学信息处理的新纪元。
长期以来,这门学科虽然有了一些发展,但是由于性能良好的相干光源难以解决,进展仍然缓慢。
六十年代初出现了激光,为光学信息处理提供了极好的相干光源,因此,十多年来,光学信息处理发展很快,已成为近代光学领域一个崭新的分支。
光学信息处理就是利用光学方法处理二维图象信息,它主要处理由光学、电子学和声学所获得的图象和数据,从中提取我们所期望的信息。
它的内容主要包括两方面:1.在光学信息处理系统的频谱面上放置滤波器,降低或消除影响成象的各种因素,改善光学系统的传递函数,提高成象质量。
2.用匹配滤波和光学相关的方法,把淹没在各种噪声中的有用信息提取出来,用于图象识别,文字辨认和信号探测等。
因此光学信息处理在国民经济建设、国防建设以及文教、卫生各个方面都有广泛的应用。
信息处理的方法包括光学处理和电子学处理两种, 光学信息处理较之电子学处理,具有速度快、容量大、二维并行处理以及结构简单可靠等优点,近十年来引起各国极大重视,得到很快发展。
光学信息处理的理论基础是付里叶光学。
它用付里叶分析的方法研究光的传播现象,既包括古典光学的内容,比如光的衍射、干涉,也包括羌学传递函数、频谱分析、光学滤波、光学相关、全息照相等近代光学内容,构成了比较完整的近代光学体系。
光学信息处理是一门光学和无线电电子学紧密结合的边缘科学。
从本质上来说,光和电都是电磁波,具有共同的基本特性,如电子网络和光学成象系统都具有线性性和不变性,这两门科学都可以用同样的数学方法—付里叶分析来描述。
因此,从本世纪三十年代起,光学和无线电通讯这两门科学的联系越来越密切了。
付里叶光学中的许多概念,诸如频谱、滤波、载波、调制、相关、卷积等等,就是从无线电通讯中引进来的。
8.6 非相干光学处理
天狼星离我们8.6光年, 光年, 天狼星离我们 光年 是第五近的恒星。 是第五近的恒星。因 为它本身发光很强, 为它本身发光很强, 又距离近, 又距离近,才显得很 明亮耀眼. 明亮耀眼
希腊诗人埃斯库罗斯 (Aeschylus)称天狼 ) 星为‘炽热的犬’ 星为‘炽热的犬’,因 为它是大犬星座α星 为它是大犬星座 星, 在最热的七八月份黎明 前升起。 前升起。 古埃及人称它为索提斯 ),意为 (sothis),意为‘水 ),意为‘ 上之星’ 上之星’
2
功率谱相关器的优点:见教材P 功率谱相关器的优点:见教材P334。 。
光瞳平面上放透过率为t 光瞳平面上放透过率为 2的透明片
x y h1 ( x, y) ∝ T2 , λf λf
2
系统最终输出为
I i ( x , y ) = I g ( x , y ) ∗ h1 ( x , y ) ξ η x − ξ y −η = ∫∫ T1 λ f , λf ⋅ T2 λ f , λf dξdη
在非相干光学处理系统中,我们也同样 在非相干光学处理系统中, 可以在频域综合出所需要的OTF,即实现 可以在频域综合出所需要的 , 各种形式的滤波。 各种形式的滤波。
OTF等于光瞳函数的归一化自相关函数,即 等于光瞳函数的归一化自相关函数, 等于光瞳函数的归一化自相关函数
∫∫ P (λd α , λd β )P (λd (ξ + α ), λd (ξ + β ))dαdβ Η (ξ ,η ) = ∫∫ P (λd α , λd β ) dαdβ
i i i i 2 i i
是系统的出瞳到像面的距离。 式中di 是系统的出瞳到像面的距离。对半径为a 的圆形光瞳,其光学传递函数如图所示: 的圆形光瞳,其光学传递函数如图所示:
《光学信息处理》 isbn -回复
《光学信息处理》isbn -回复光学信息处理是一门研究光学和信息处理相结合的学科,通过利用光学技术进行信息的传输、存储和处理。
本文将一步一步地回答关于《光学信息处理》这一主题的问题。
第一步:什么是光学信息处理?光学信息处理是指利用光学技术进行信息的传输、存储和处理的过程。
它涉及到多个学科领域,包括光学、电子学、计算机科学和信号处理等。
通过光学器件和光学系统,光学信息处理可以实现对图像、信号和数据的采集、传输、存储和处理。
第二步:光学信息处理的基本原理是什么?光学信息处理的基本原理是利用光波的波动、干涉和衍射等特性来进行信息的处理。
光波的幅度、相位和频率等信息可以通过光学器件和技术进行采集和转换。
通过光学系统的传输和处理,可以实现对图像、信号和数据的加工和重构。
第三步:光学信息处理的应用领域有哪些?光学信息处理广泛应用于多个领域。
在通信领域,光学信息处理可以实现高速、大容量的光纤通信系统。
在图像处理和计算机视觉领域,光学信息处理可以提供高分辨率、高质量的图像采集和处理技术。
在医学影像和生物信息处理领域,光学信息处理可以实现对生物组织和细胞的高分辨率成像和分析。
第四步:光学信息处理的主要方法有哪些?光学信息处理的主要方法包括光学成像、光电转换、光学存储和光谱分析等。
光学成像可以利用透镜、光栅和干涉仪等光学器件,实现对光学信号的采集和重构。
光电转换则是利用光敏材料和光电传感器,将光信号转换为电信号进行处理。
光学存储可以利用光敏材料的储存特性,实现对数据的高密度存储。
光谱分析则是利用光波的频率和波长信息,对物质的成分和性质进行分析。
第五步:光学信息处理的发展趋势是什么?随着科技的发展和进步,光学信息处理正朝着更高效、更便捷和更精确的方向发展。
一方面,光纤通信、光学传感和光学存储等领域将继续进行技术突破,以满足日益增长的信息处理需求。
另一方面,在图像处理和计算机视觉领域,深度学习、人工智能和虚拟现实等新技术将进一步推动光学信息处理技术的发展。
信息光学非相干光学处理
大量旳光学仪器是采用非相干光或自然光或白光光源,如 摄影机、望远镜、显微镜、投影仪、制版设备等。有必要研究非 相干处理措施。因为非相干照明下光场分布用光强分布表达,所 以输入函数和脉冲响应函数都是非负实函数。与相干照明系统相 比,非相干系统没有相干噪声。仍有研究价值。
10.1相干与非相干光学处理
相干与非相干光学处理
将透明片作为一种线性系统旳输入, 用相干光照明,因为 输入图像中每一点旳复振幅在输出面上会产生相应旳输出,这些 输出旳集合(叠加)构成输出图像。
U (x, y) Ui (x, y)
i
人眼、感光胶片、CCD等感知旳是光强信息。即合成振幅旳绝对
值平方。
I (x, y) | U (x, y) |2 | Ui (x, y) |2
先考虑f(x,y)上一种单位强度旳点光源在P平面上旳脉冲响应。
在几何光学近似下,离焦面Δ处旳旳分布即为h(x,y)
旳一种缩小旳倒像,其投影中心坐标
a 1 ( / 2 f ) x, b 1 ( / 2 f ) y
考虑到投影时h(x,y)旳方向将发 生几何反射,于是 f (x,y)上旳一点在
离焦面Δ上产生一种h 旳缩小图像
i
Ui (x, y) |2 Ui (x, y)U * j (x, y)
i
i j
Ii
U
iHale Waihona Puke (x,y)U
* j
(
x,
y)
i
i j
用完全非相干光照明,输入面上各点旳光强在输出面产生相
应旳光强输出,因为这些输出是互不有关旳,所以总旳图像输出
是各光点光强输出旳叠加。因为各点振动旳随机性,其振幅和相
发出光经L1后变成平行光, 把第一张胶片f (x , y)投影 到h上,经过L2把光束会
非相干光学信息处理
输入的二维物体 大量点源的连续分布输 出的复振幅是所有点源对应的h(x,y)的叠加. 输入物体的复振幅分布为 f (x,y)
输出像的复振幅分布为 g(,) = f(,) * h(,), 在频域中的表达式为 G(u,v) = F(u,v)H(u,v) 输出的光强分布为 | g(,) |2
第2页/共82页
3.1 杨氏干涉仪和空间相干性
干涉仪是产生光波干涉的仪器或装置,仅仅 相干光才能产生干涉效应,因此干涉仪是研究光 的干涉性的恰当的设备。常见的杨氏干涉仪是由 双狭缝或双孔构成的。
图3.1 同轴点光源杨氏干涉仪 光源相干性:如果在屏上能得到相干的条纹的话,
就说照明小孔的光波是相干的。 第3页/共82页
即|f|2 和|g|2 的相关.因而当f 与g 全同时相关峰出
现 在 (-b,0) 处 , 也 就 是 相 干 光 处 理 器 的 相 关 峰 位
置.
第14页/共82页
然而在非相干情形下联合傅里叶变换
器(JTC,参见节4.8)不起作用.联合傅里
叶变换器实际上相当于杨氏干涉仪,而且
两个小孔(或两个狭缝)
第17页/共82页
3.6 傅里叶变换光谱仪
考虑屏上的一个点,
图
称为观察点.该点的相位
迈
差取决于两光路的光程差
克
p.由图3.5 有
耳 孙
p=2(b–a)
干
相干叠加的光强度为
涉
I(p, )=S()[1+cos(2p/c)]
仪
式中S()是产生干涉前的光强,称初始光强.S()
表征了光波中的频率成分含量,正是我们感兴趣的
光学信息处理及其应用
光学信息处理及其应用摘要:光学信息处理是一个广泛的领域,是现代信息处理技术中一个重要的组成部分。
所谓光学信息,是指光的强度(振幅)、相位、颜色(波长)和偏振态等。
本文限定两个方面,一方面是基于空间频域分析,就用傅里叶综合技术,通过空域或频域调制,借助空间滤波技术对光学信息进行处理的过程。
较多用于二维图像的处理。
另一方面用光学方法对信息进行处理,如实现各种变换和运算。
从所处理的系统是否满足线性条件,可分为线性处理技术和非线性处理技术。
从实用的光源相干性可分为相干光处理技术、非相干光处理技术和白光处理技术。
本文主要从这几个方面讨论光信息处理的原理及应用。
关键词:光学信息处理空间滤波相干光非相干光白光光计算一.光学信息处理发展简介光学信息处理是用光学的方法实现对输入信息的各种变换或处理。
光学信息处理是近年来发展起来的一门新兴学科,它以全息术、光学传递函数和激光技术为基础。
透镜的傅里叶变换效应是光学信息处理的理论核心。
与其他形式的信息处理技术相比,光学信息处理具有高度并行性和大容量的特点。
这一学科发展很快,现在已经成为信息科学的一个重要分支,在许多领域进入了实用阶段。
光学信息处理是基于光学频谱分析,通过空域或频域调制,借助空间滤波技术对光学信息进行处理的过程,较多用于对二维图像的处理。
光学信息处理的发展有迹可循。
多名科学家为它的形成付出了努力:1873年,德国科学家阿贝(Abbe)创建了二次衍射成像理论,认为相干照明下显微镜成像过程可分作两步:首先,物平面上发出的光波在物镜后焦面上得到第一次衍射像;然后,该衍射像发出次波干涉而构成物体像,称为第二次衍射像。
显微镜的相对孔径越大,系统的通频带越宽,物体中所包含的高频信息在成像过程中的损失就越少,像的质量就越高。
相对孔径越小,在传递过程中高频信息的损失就越大,像的失真或畸变就越严重,清晰度或分辨率越低。
1935年,物理学家泽尼克发明了相衬显微镜。
1963年,范德拉格特(A. Vander Lugt)提出了复数空间滤波的概念,使光学信息处理进入了一个广泛应用的新阶段。
光学信息处理
实验简介光学信息处理是用光学的方法实现对输入信息的各种变换或处理。
光学信息处理是近年来发展起来的一门新兴学科,它以全息术、光学传递函数和激光技术为基础。
透镜的傅里叶变换效应是光学信息处理的理论核心。
与其他形式的信息处理技术相比,光学信息处理具有高度并行性和大容量的特点。
这一学科发展很快,现在已经成为信息科学的一个重要分支,在许多领域进入了实用阶段。
光学信息处理的内容十分丰富。
本实验介绍两个基本的光学信息处理实验:图像相减和图像识别。
实验原理⏹原理图●原理图如下:上图为典型的光学信息处理系统示意图,S为对激光进行扩束的短焦距透镜,L0为使扩束后的激光束变为平行光的准直透镜。
(x1,y1)为物平面,L1为第一个傅里叶变换透镜,它从物面发出的衍射光并在后焦面(x,h)上形成物体的频谱。
(x,h)上可以放上各种空间滤波器以完成光学信息处理的任务。
L2为第二个傅里叶变换透镜,它的作用是对经处理后的物的频谱在进行一次傅里叶变换(相当于一次逆傅里叶变换只是坐标反转了)。
这样就可以得到经特殊处理的图像。
实验重点⏹相干光信息处理系统的主要特点。
⏹实验的技巧:光路调整和制作全息滤波器等。
实验难点⏹光信息处理实验对于光学元件、光路调整和环境要求很高,实验中必须非常细心。
在非实时的光学信息处理实验中,用全息法制作滤波器要用原位显影的方法。
自测题⏹相干光信息处理系统与非相干光信息处理系统的主要区别是什么?答案:照明光源不同。
相干光信息处理系统使用激光等单色性很好的光源,非相干光信息处理系统使用白光光源。
相干光信息处理系统处理的是光信号的复振幅,相干光信息处理系统处理的是光信号的强度。
⏹散斑图像相减实验中滤波用的狭缝的宽度如何计算?答案:狭缝的宽度杨氏条纹的暗纹宽度。
而暗纹的宽度,,为两次曝光时图像移动量。
⏹衍射光栅法是不是实时的光学信息处理系统?如果光学系统可以通过的图像的最大尺寸为D,则它可以对多大的图像进行相减?对这样的两个图进行相减时,要制作的正弦光栅的周期的大小?答案:是,D/2,设两个图案的中心距离为b<D/2,则正弦光栅的周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而相位 则记为PTF = ,
PTF称为相位传递函数(phase transfer function).
非相干成像系统的MTF可以借助于输入平 面上的余弦光栅来测量. 余弦光栅的光强分布为 i (x) = 1 + cos(2po x) (1) 设系统的输出为 o (x) = 1 + m cos(2po x + ) (2) 式中反差度即调制度m可如下测出
变换,H(u,v)又称成像系统的相干传递函数, 简写
为CTF(coherent transfer function)
复振幅的脉冲响应仍是h(x,y),相应的强
度分布为| h(x,y) |2 .
由于照明光为非相干光,从各个点光源
辐射的光波彼此是不相干的,各点光源的像也
是彼此不相干的,输出像是输入平面物体上各 点的像的强度叠加,其强度分布为
HI(u,v) = ∞-∞ H*(p,q) H(p+u,q+v) dpdq 上式表明OTF是CTF 的自相关.OTF通常是复函 数,可表为
OTF = |OTF|exp(i) = MTF exp(i)
记 MTF = |OTF|.
MTF称为调制传递函数(modulation transfer function);
+ OTF(-po) (p + po)/2
通常的归一化手续规定 OTF(0) =1
o (p) = (p) + OTF(po) (p - po )/2
+ OTF(-po) (p + po)/2
由于OTF是自相关函数,具有对称性,所以有
OTF(-po) = OTF(po) = MTF (po) exp(i) o (p) = (p)+MTF(po)exp(i)[(p-po)+(p+po)]/2 上式的傅里叶逆变换为
在非相干光处理系统中,我们总是假定空间相干 宽度为零;
而在部分相干光处理系统中,假定空间相干宽度 大于零,并小于系统的特征尺度。
1、相干光的成像过程 (相干光的照明)
设在输入平面上有一点光源(x,y),在输出 平面上的像即系统的脉冲响应为h(x,y),相应的强 度分布为| h(x,y) |2 .
o (x) = 1 + MTF (po)cos(2po x + )
m o(x)max o(x)min
在频域中,输入函o数(x可)m表ax 为o(x)min
I(p) = (p) + (p - po )/2 + (p + po)/2 (4) 输出信号可写作 o (p) = I(p) OTF(p)
= OTF(0) (p) + OTF(po) (p - po )/2
输入的二维物体 大量点源的连续分布输 出的复振幅是所有点源对应的h(x,y)的叠加.
输入物体的复振幅分布为 f (x,y)
输出像的复振幅分布为 g(,) = f(,) * h(,), 在频域中的表达式为 G(u,v) = F(u,v)H(u,v) 输出的光强分布为 | g(,) |2
其中G,F 和 H 分别是 g,f 和 h 的傅里叶
就说照明小孔的光波是相干的。
如果点光源位于轴外,则干涉条纹也将发生位
移,亮纹将在W,V 等处出现,如图4.2所示.此时
仍然有(a+c)=(b+d),和(b+f)=(a+e+).
图4.2离轴点光源杨氏干涉仪 如果S1和S2同时存在,将看到两个独立的干 涉图样的非相干叠加,因为S1和S2是非相干的。
| g(,) |2 = ∞-∞ | f(x,y) |2 | h(-x,-y) |2 dxdy 在频域中: GI(u,v) = FI(u,v) HI(u,v)
式中GI,FI和HI分别表示|g|2,|f|2和|h|2的傅里
叶 变 换 . |h(x,y)|2 又 称 点 扩 散 函 数 , 记 为 PSF
杨氏干涉仪可以用来研究光波的相干性。
通过P1和P2两个小孔是否在屏上产生干涉条纹来 确定照明这两点的光波是否相干。
若屏上出现高反差的条纹,光波就是相干的;
若屏上出现均匀的照明,光波就是非相干的;
若屏上出现低反差的条纹,光波就是部分相干的。
以P1、P2的位置为函数的相干性表征光波
在P1、P2 的相干的程度,称为空间相干性。
也是光学信息处理的重要应用,在这个意义上,
非相干光学信息处理的基本概念仍然有必要加
以研究,这些概念已广泛应用于非相干光成像
之中.
干涉仪是产生光波干涉的仪器或装置,仅 仅相干光才能产生干涉效应,因此干涉仪是研究 光的干涉性的恰当的设备。常见的杨氏干涉仪是 由双狭缝或双孔构成的。
图4.1 同轴点光源杨氏干涉仪 光源相干性:如果在屏上能得到相干的条纹的话,
我们可以改变 P1 和 P2 的间距来测量空间
相干性。间距增大时,发生两个效应,一个是条
纹间距的变小,另一个是条纹反差度的下降。条
纹反差度决定了空间相干性。
如果小孔的间距大于某一极限后屏上的条
纹不再出现,则称此极限间距为空间相干宽.
在相干光处理系统中,我们总是假定空间相干宽 度大于光学系统的横向特征尺度;
(point spread function),而HI(u,v)则称为非相干
成像系统的传递函数,简称光学传递函数,简
写为OTF(optical transfer function).
由于H(u,v)是h(x,y)的傅里叶变换,根据傅里 叶变换的法则, |h(x,y)|2的傅里叶变换为H(u,v)的 自相关,亦即
光学信息处理已变得不那么重要了,与相干光
学信息处理相比,非相干光学信息处理的优势
很少.现在很少有人试图去建立一个非相干光
学信息处理器,例如非相干光学相关器(参见第
四章).尽管如此,大量光学仪器仍是采用非相
干光或自然光作为光源的,其中大多数是成像
仪器,例如照相机、显微镜、望远镜、投影仪、
制版设备等等.应当说,常规意义下的成像,
非相干光学信息处理
4.1 杨氏干涉仪和空间相干性 4.2 非相干像的形成 4.3 MTF的测量 4.4 非相干空间滤波 4.5 迈克耳孙干涉仪和时间相干性 4.6 傅里叶变换光谱仪 4.7 投影显示的消像素技术 4.8 计算层析技术 4.9 结论
由于廉价的激光器的广泛应用,非相干