第17章-色谱分析概论PPT课件
合集下载
色谱分析法概论PPT课件
-
44
C ·u —传质阻力项
传质阻力包括气相传质阻力Cg和液相传质阻力CL即:
C =(Cg + CL)
Cg
0.01k2 (1 k)2
dp2 Dg
CL
2 3
k (1k)2
d2f DL
k为容量因子; Dg 、DL为扩散系数。
减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
-
45
2.载气流速与柱效——最佳流速
n=L/H 理论塔板数与色谱参数之间的关系为:
n5.5(4tR )21(6tR)2
Y1/2
Wb
保留时间包含死时间,在死时间内不参与分配!
-
39
2.有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。
• 用不同物质计算可得到不同的理论塔板数。
• 组分在tM时间内不参与柱内分配。需引入有效 塔板数和有效塔板高度:
峰高一半处的宽 度GH
w1 2.354 2
-
23
3.标准偏差 σ
两个拐点E和F之间的距离 的 一半
4.峰面积 A 色谱峰与基 线延长线所包围的面积, 精确计算时
w A1.06h5 1 2
-
24
• 保留值的定义
1.保留时间 t R
从进样开始到色 谱峰最大值出现 时所需的时间
-
25
• 保留值的定义
n理5.5(4Yt1R /2)21(6W tRb)2
n有效
5.54(
t
' R
Y1/ 2
)2
16(
t
' R
Wb
)2
L H有效 n有效
-
40
第十七章 色谱分析法概论
在流动相和固定中具有不同的分配系数,分配系数的大小
反映了组分在固定相上的溶解-挥发 或 吸附-解吸的能力。
分配系数大的组分在固定相上溶解或吸附能
力强,因此在柱内的移动速度慢;分配系数小的
组分在固定相上溶解或吸附能力弱,因此在柱内 的移动速度快。
经过一定时间后,由于分配系数的差别,使
各组分在柱内形成差速移行,达到分离的目的。
空间总和)
当色谱柱载气流速为F0(ml/min)时,它与死时间的 关系为:
V0(M) = tM· 0 F
(VM 大,色谱峰展宽,柱效低)
4. 保留值:定性参数,是在色谱分离过程中,试样中各组分
在色谱柱内滞留行为的一个指标。 (它可用保留时间、保留体积和相对保留值等表示) (1)保留时间 tR (retention time): 从进样到柱后出现待测组分浓度最大值时(色谱峰顶点) 所需要的时间,称为该组分的保留时间。如图中tR(1)、 tR(2) 所示,
把这些色 带称为 “ 色谱图 ” (chromatography), 相
应的方法叫作“色谱法”
色谱法是一种分离技术:
其中的一相固定不动,称为固定相 另一相是携带试样混合物流过此固 定相的流体(气体或液体),称为 流动相
各组分被分离后,可进一步进行定性和定量
分析: 经典:分离过程和其含量测定过程是离线的,即 不能连续进行 现代:分离过程和其含量测定过程是在线的,即 能连续进行
p tR tM t 'R k q tM tM
任一组分的 k 值可由实验测得,即为调整保留时间 tR’与 不被固定相吸附或溶解的组分的保留时间tM 的比值。可将k 看
作色谱柱对组分保留能力的参数,k 值越大,保留时间越长。
色谱分析总论PPT资料(正式版)
各种保留值预测理论
2、技术发展
1)超临界流体色谱
❖ 超临界流体:物质处于临界温度和临界压力以上,既不是液 体也不是通常的气体,而是单一相态的流体。
❖ 使用超临界流体作流动相的色谱法称为supercritical fluid chromatography, SFC
❖ 特点:具有气体的低黏度和高扩散系数,又具有液体的强溶 解能力,参与溶质的分配作用,同时具有气相色谱和液相色 谱的优点。
柱长 L u 死时间 t0
调整保留时间(adjusted retention time, tr’ ):某组 份的保留时间扣除死时间后的保留时间,它是组份在 固定相中的滞留时间。即
由于保留时间为色谱定性依据。但同一组份的保留时 间与流速有关,因此有时需用保留体积来表示保留值。
死体积V0:色谱柱管内固定相颗粒间空隙、色谱仪管 路和连接头间空隙和检测器间隙的总和。忽略后两项 可得到:
液体 液体
固体 液体
液-固色谱 液-液色谱
液相色谱LC
气体 气体
固体 液体
气-固色谱 气相色谱GC 气-液色谱
2、按分离的原理分类
❖ 吸附色谱:吸附性能的差异
气固 液固
❖ 分配色谱:分配系数的不同
溶解度 液体
❖ 离子交换色谱:分离组分与固定相离子进行可逆交换
离子交换树脂
❖ 空间排阻色谱:分子筛
Vr' VrV0tr' •Fco
以上保留时间和保留体积又统称保留值。
色谱曲线的意义
✓ 色谱峰数=样品中单组份的最少个数; ✓ 色谱保留值——定性依据; ✓ 色谱峰高或面积——定量依据; ✓ 色谱保留值或区域宽度——色谱柱分离效能评价指标; ✓ 色谱峰间距——固定相或流动相选择是否合适的依据。
2、技术发展
1)超临界流体色谱
❖ 超临界流体:物质处于临界温度和临界压力以上,既不是液 体也不是通常的气体,而是单一相态的流体。
❖ 使用超临界流体作流动相的色谱法称为supercritical fluid chromatography, SFC
❖ 特点:具有气体的低黏度和高扩散系数,又具有液体的强溶 解能力,参与溶质的分配作用,同时具有气相色谱和液相色 谱的优点。
柱长 L u 死时间 t0
调整保留时间(adjusted retention time, tr’ ):某组 份的保留时间扣除死时间后的保留时间,它是组份在 固定相中的滞留时间。即
由于保留时间为色谱定性依据。但同一组份的保留时 间与流速有关,因此有时需用保留体积来表示保留值。
死体积V0:色谱柱管内固定相颗粒间空隙、色谱仪管 路和连接头间空隙和检测器间隙的总和。忽略后两项 可得到:
液体 液体
固体 液体
液-固色谱 液-液色谱
液相色谱LC
气体 气体
固体 液体
气-固色谱 气相色谱GC 气-液色谱
2、按分离的原理分类
❖ 吸附色谱:吸附性能的差异
气固 液固
❖ 分配色谱:分配系数的不同
溶解度 液体
❖ 离子交换色谱:分离组分与固定相离子进行可逆交换
离子交换树脂
❖ 空间排阻色谱:分子筛
Vr' VrV0tr' •Fco
以上保留时间和保留体积又统称保留值。
色谱曲线的意义
✓ 色谱峰数=样品中单组份的最少个数; ✓ 色谱保留值——定性依据; ✓ 色谱峰高或面积——定量依据; ✓ 色谱保留值或区域宽度——色谱柱分离效能评价指标; ✓ 色谱峰间距——固定相或流动相选择是否合适的依据。
色谱法概论PPT课件
能。
色谱法与其他技术的联用
色谱-质谱联用(GC-MS, LC-MS)
通过将色谱的分离能力与质谱的高灵敏度检测相结合,可实现对复杂样品中目标化合物 的定性和定量分析,广泛应用于药物代谢、环境监测等领域。
色谱-光谱联用(GC-IR, LC-UV/Vis)
色谱与光谱技术的联用可以提供更丰富的化合物结构和组成信息,有助于深入了解化合 物的性质和行为。
实验材料
确保色谱柱、试剂、溶 剂等材料的质量和纯度,
以满足实验要求。
实验设备
检查色谱仪、检测器、 注射器等设备的运行状 况,确保实验过程中设
备正常工作。
实验设计
根据实验目的和要求, 设计合理的色谱条件和
实验方案。
实验安全
注意实验过程中的安全 问题,如使用有毒有害
试剂时的防护措施。
实验操作步骤
色谱柱安装与条件设置
数据整理
整理实验过程中记录的数据,包括 色谱图、峰面积等。
结果分析
对实验结果进行深入分析,探究可 能的原因和影响因素。
03
02
结果判断
根据实验目的和要求,判断实验结 果是否符合预期。
结论总结
总结实验结果,得出结论,并提出 进一步改进和完善的建议。
04
04 色谱法在分析化学中的应 用
在食品分析中的应用
食品成分分析
色谱法用于分离和检测食品中的营养 成分,如脂肪、蛋白质、碳水化合物、 维生素和矿物质等,以确保食品质量 和安全。
食品添加剂分析
食品污染物分析
色谱法用于检测食品中的有害物质, 如农药残留、重金属、霉菌毒素等, 以防止食品污染和保障食品安全。
色谱法用于检测食品中添加的防腐剂、 色素、香料等成分,以控制食品添加 剂的使用量,保障消费者健康。
《色谱分析法概述》课件
高效分离
开发新型固定相和色谱柱,提高分离效率和分辨率。
灵敏度提升
采用新型检测器和技术,提高检测灵敏度和响应速度 。
联用技术
与质谱等检测技术联用,实现复杂样品的高效分离和 定性分析。
毛细管电泳法的发展趋势
01
02
03
微型化
采用微型化进样技术和毛 细管电泳芯片,实现快速 、便携的样品分析。
多维分离
结合多种分离模式和检测 技术,实现复杂样品的多 维分离和定性分析。
在色谱过程中,固定相和流动相的选择性是关键因素,它们决定了各组分在两 相之间的分配行为,进而影响分离效果。
色谱分析法的分类
分类
色谱分析法有多种分类方式,根据固定相的形态可分为柱色谱、纸色谱和薄层色 谱;根据操作方式可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱等 。
描述
不同类型的色谱分析法适用于不同的分离需求,如柱色谱适用于大量样品的分离 ,而薄层色谱则适用于快速分离和定性分析。
《色谱分析法概述》ppt 课件
CATALOGUE
目 录
• 色谱分析法简介 • 色谱分析法的应用 • 色谱分析法的优缺点 • 色谱分析法的发展趋势 • 色谱分析法的前景展望
01
CATALOGUE
色谱分析法简介
色谱分析法的定义
定义
色谱分析法是一种分离和分析复杂混 合物中各组分的方法,通过利用不同 物质在固定相和流动相之间的吸附、 溶解等分配行为的差异实现分离。
在环境领域的应用
污染物检测与控制
色谱分析法用于检测环境中的污 染物,如重金属、有机污染物等 ,为环境污染控制和治理提供依 据。
生态毒理学研究
在生态毒理学研究中,色谱分析 法用于检测环境中的有毒物质对 生物体的影响,评估环境安全性 和生态风险。
开发新型固定相和色谱柱,提高分离效率和分辨率。
灵敏度提升
采用新型检测器和技术,提高检测灵敏度和响应速度 。
联用技术
与质谱等检测技术联用,实现复杂样品的高效分离和 定性分析。
毛细管电泳法的发展趋势
01
02
03
微型化
采用微型化进样技术和毛 细管电泳芯片,实现快速 、便携的样品分析。
多维分离
结合多种分离模式和检测 技术,实现复杂样品的多 维分离和定性分析。
在色谱过程中,固定相和流动相的选择性是关键因素,它们决定了各组分在两 相之间的分配行为,进而影响分离效果。
色谱分析法的分类
分类
色谱分析法有多种分类方式,根据固定相的形态可分为柱色谱、纸色谱和薄层色 谱;根据操作方式可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱等 。
描述
不同类型的色谱分析法适用于不同的分离需求,如柱色谱适用于大量样品的分离 ,而薄层色谱则适用于快速分离和定性分析。
《色谱分析法概述》ppt 课件
CATALOGUE
目 录
• 色谱分析法简介 • 色谱分析法的应用 • 色谱分析法的优缺点 • 色谱分析法的发展趋势 • 色谱分析法的前景展望
01
CATALOGUE
色谱分析法简介
色谱分析法的定义
定义
色谱分析法是一种分离和分析复杂混 合物中各组分的方法,通过利用不同 物质在固定相和流动相之间的吸附、 溶解等分配行为的差异实现分离。
在环境领域的应用
污染物检测与控制
色谱分析法用于检测环境中的污 染物,如重金属、有机污染物等 ,为环境污染控制和治理提供依 据。
生态毒理学研究
在生态毒理学研究中,色谱分析 法用于检测环境中的有毒物质对 生物体的影响,评估环境安全性 和生态风险。
第十七章色谱分析法概论课件
色谱分析法是一种物理化学分离方法,具有高分离效能、高 灵敏度、高选择性等优点,广泛应用于化学、生物、医药、 环保等领域。
色谱分析法的原理
01
固定相和流动相
色谱分析法中,混合物样品在固定相和流动相之间进行分配,由于不同
组分在两相之间的分配系数不同,从而实现各组分的分离。
02 03
吸附与解吸
在吸附色谱中,组分在固定相上的吸附和解吸能力不同,从而实现了组 分的分离。在分配色谱中,组分在固定相和流动相之间的分配系数不同 ,也实现了组分的分离。
将固定相涂布在玻璃板或 塑料板上进行分离,具有 快速、简便的特点。
按分离原理分类
吸附色谱法
离子交换色谱法
利用吸附剂对不同物质的吸附能力差 异进行分离。
利用离子交换剂对不同离子的交换能 力差异进行分离。
分配色谱法
利用不同物质在固定相和流动相之间 的分配系数差异进行分离。
03
色谱分析法的历史与发 展
色谱分析法的起源
1903年,俄国植物 学家茨维特(Tswett )首次提出分离植物 色素的色谱法。
1930年代,随着化 学工业的发展,色谱 法开始应用于工业生 产。
1906年,茨维特使 用吸附剂分离植物色 素,并命名为“色谱 法”。
色谱分析法的技术发展
1940年代,气相色谱法(GC)的发明,使得气体混合物的分离和分析成为可能。
化学反应监测
色谱分析法可用于监测化学反应进 程,确定反应条件和产物,提高化 学反应的效率和选择性。
在医学领域的应用
药物分析
色谱分析法用于药物的分离、纯 化和结构鉴定,确保药物质量和
安全有效性。
生物样品分析
通过色谱分析法可以对生物体内 的药物代谢物、毒素、营养素等 进行定性和定量分析,为医学诊
色谱分析法的原理
01
固定相和流动相
色谱分析法中,混合物样品在固定相和流动相之间进行分配,由于不同
组分在两相之间的分配系数不同,从而实现各组分的分离。
02 03
吸附与解吸
在吸附色谱中,组分在固定相上的吸附和解吸能力不同,从而实现了组 分的分离。在分配色谱中,组分在固定相和流动相之间的分配系数不同 ,也实现了组分的分离。
将固定相涂布在玻璃板或 塑料板上进行分离,具有 快速、简便的特点。
按分离原理分类
吸附色谱法
离子交换色谱法
利用吸附剂对不同物质的吸附能力差 异进行分离。
利用离子交换剂对不同离子的交换能 力差异进行分离。
分配色谱法
利用不同物质在固定相和流动相之间 的分配系数差异进行分离。
03
色谱分析法的历史与发 展
色谱分析法的起源
1903年,俄国植物 学家茨维特(Tswett )首次提出分离植物 色素的色谱法。
1930年代,随着化 学工业的发展,色谱 法开始应用于工业生 产。
1906年,茨维特使 用吸附剂分离植物色 素,并命名为“色谱 法”。
色谱分析法的技术发展
1940年代,气相色谱法(GC)的发明,使得气体混合物的分离和分析成为可能。
化学反应监测
色谱分析法可用于监测化学反应进 程,确定反应条件和产物,提高化 学反应的效率和选择性。
在医学领域的应用
药物分析
色谱分析法用于药物的分离、纯 化和结构鉴定,确保药物质量和
安全有效性。
生物样品分析
通过色谱分析法可以对生物体内 的药物代谢物、毒素、营养素等 进行定性和定量分析,为医学诊
色谱分析法概论经典PPT课件
t t t'
tR=t0(1+ k)
V
tR=t0(1+K
s
V
k
)
R
t 0
0
R
t
0
m
色谱过程方程
分配系数与色谱分离
(三)色谱分离的前提
KA≠KB 或kA≠kB或r2 ,1 ≠1是色谱分离的前提
推导过程:
tV
RA
=
t0(1+KA
s
Vm
)
tRB
=
t0(1+KB
Vs Vm
)
tR=
t0
(KA-KB)
Vs Vm
分配系数(容量因子)不等是分离的前提。
(三) 理论塔板高度和理论塔板数 (height equivalent to a theoretical plate或plate height, H) (plate number, n)
是色谱柱效参数。
理论塔板高度
H =L/n
注意: 1、计算n时使标准差(峰宽或半峰宽) 和保留时间单位一致 2、n的单位
tR≠0
KA≠KB kA≠kB
第二节 色谱法的分类和发展
一、色谱法的分类
按流动相的分子聚集状态分类: GC、LC、SFC 等
按固定相的分子聚集状态分类: GSC、GLC、LSC、LLC等
按操作形式分类: 柱色谱法、平面色谱法、毛细管电泳法等
按色谱过程的分离机制分类: 分配色谱法、吸附色谱法、离子交换色谱法、
分配色谱法
分离原理 利用被分离组分在固定相或流 动相中的溶解度差别而实现分离。
K= Cs X s Vs Cm X m Vm
•溶质分子在固定相中溶解度越大,或在流动相 中溶解度越小,则K越大。在LLC中K主要与流 动相的性质 (种类与极性) 有关;在GLC中K与 固定相极性和柱温有关。
第十七章 色谱分析法概论-分析化学
I X 100 [Z n
' ' lg t R lg t ( x) R( z )
lg t
' R( z n)
lg t
' R( z )
]
Ix为待测组分的保留指数,z 与 z+n 为
正构烷烃对的碳原子数。
P
16
乙酸正丁酯的保留指数测定
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
第十七章 色谱分析法概论
P
1
第一节 色谱法的分类和发展
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
色谱分析法是一种物理或物理化学分离分 析方法。 始于20世纪初; 30与40年代相继出现了薄层色谱与纸色谱; 50年代气相色谱兴起、色谱理论、毛细管色 谱; 60年代气相色谱-质谱联用; 70年代高效液相色谱; 80年代末超临界流体色谱、高效毛细管电泳 色谱。
• R=1 4σ分离 • R=1.5 6σ分离 95.4% 99.7%
w1
w1
tR2-tR1
P
21
三、分配系数与色谱分离
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
1、分配系数 在一定温度和压力下,达到分配平衡 时,组分在固定相和流动相中的浓度之比 CS K Cm 2、容量因子
m
X+
H+
SO3-R
S
X+ SO -R 3 H+
P
30
阳离子交换树脂
xie 仪 器 分 析
色谱分析(气相)PPT课件
在进行实验之前,应仔细阅读实验指导手 册,了解实验步骤、注意事项和可能的风 险。
使用正确的实验器材
注意实验室通风
确保使用与实验要求相符的器材,如色谱 柱、进样针、检测器等,避免因器材不当 导致实验失败或安全事故。
在实验过程中,应确保实验室通风良好, 避免有害气体积聚。
废弃物处理及环保要求
分类收集废弃物
型。
根据分离要求选择
根据所需的分离度、分析时间 、峰形等要求选择合适的色谱 柱类型和规格。
根据仪器条件选择
根据仪器的型号、规格、操作 条件等选择合适的色谱柱类型 和规格。
根据经验和实践选择
根据实验室经验和实践,选择 常用的、性能稳定的色谱柱类
型和规格。
05
实验操作过程及注意事项
仪器启动与关闭流程
色谱分析(气相)PPT课件
目 录
• 色谱分析概述 • 气相色谱仪器组成及工作原理 • 样品前处理与进样技术 • 色谱柱类型与选择依据 • 实验操作过程及注意事项 • 结果评价与质量控制方法 • 实验安全规范与环保意识培养
01
色谱分析概述
色谱法定义与原理
定义
色谱法是一种物理分离技术,利用物质在固定相和流动相之间的分配平衡,实 现对复杂样品中各组分的分离与纯化。
鼓励使用可再生资源和可降解材料,减少对环境的负担。同时,实验 室也应积极推广循环经济和资源回收利用的理念。
THANK YOU
数据处理
对采集的数据进行定性定量分析,包括峰识 别、积分、校正等步骤。
注意事项
在数据采集和处理过程中要确保数据的准确 性和可靠性,避免误差的产生。
06
结果评价与质量控制方法
定性分析方法
保留时间定性
色谱法概论PPT课件
(9)调整保留时间(tR’):扣除死时间后的组分实际被固定相所
保留的时间,即tR’= tR-t0 = tR-tm
意义:
组分随流动相移动的时间都是相同的,都是死时间。它与固定相、组 分的性质均无关,只与流动相的流动速度有关,对分离不起作用。
tR’即为组分在固定相中出现的(保留的)时间,即组分被固定相所 滞留的时间,与组分和固定相之间的作用力有关。
11
高效液相系统
液体样品
液体传输
高效液相色谱柱 高效液相系统
检测器
数据处理 12
高效液相系统和色谱柱
Agilent 1100 高效液相系统
高效液相色谱柱
可更换卡套
液体医药样品 溶剂
色谱柱
硅胶填料
以不同速率 流出的组分
结果 检测器
色谱图
13
气相-质谱系 统
色谱柱
14
气相色谱系统
气源
进样器
检测器
流出曲线是柱内组分分离结 果的反映,是研究色谱分离 过程机理的依据,也是定性、
32
定量的依据。
色谱流出曲线的意义:
色谱峰数=样品中单组分的最少个数; 色谱保留值——定性依据; 色谱峰高或面积——定量依据; 色谱保留值或区域宽度——色谱柱分离效能评价
指标; 色谱峰间距——固定相或流动相选择是否合适的
5
在分析化学领域,色谱法是一个相对年轻的分支学科。早期的色谱技 术只是一种分离技术而已,与萃取、蒸馏等分离技术不同的是其分离效率 高得多。当这种高效的分离技术与各种灵敏的检测技术结合在一起后,才 使得色谱技术成为最重要的一种分析方法,几乎可以分析所有已知物质, 在所有学科领域都得到了广泛的应用。
色谱法起过关键作用的诺贝尔奖研究工作
中国药科大学-分析化学课件-第17色谱分析
峰宽和之半
tR2 W1
tR1 W2
2
R 2(tR2 tR1) 1.177(tR2 tR1)
W1 W2
W1 2(1) W1 2(2)
讨论
• 设色谱峰为正常峰,W1≈W2= 4σ
R 1.0 tR 4 基本分离 R 1.5 tR 6 完全分离(定量分析前提)
R 1.0 完全未分开
调整保留体积VR’:保留体积与死体积之差,即组分 停留在固定相时所消耗流动相的体积
VR'
VR
V0
t
' R
FC
注:VR' 与Fc无关;t
' R
1 Fc
V0 和 Vm、t0 和 tm 的区别
• V0 :由进样器至检测器的流路中未被固定相占有的空 间体积 ; 流定相充满死体积所需的时间为t0 。
• Vm :平衡时流动相在色谱柱中占有的体积,流动相经 过色谱柱所需时间用tm 表示。
线性:对称峰 凸形:拖尾峰
• 对称因子(symmetry factor)
——衡量色谱峰对称性
色谱峰
正常峰(对称)——fs在0.95~1.05之间
非正常峰 前沿峰 ——fs小于0.95 拖尾峰 ——fs大于1.05
对称因子:(拖尾因子)
fs
W0.05h 2A
A B 2A
8.分离因子和分离度:—分离参数
➢吸附色谱:利用物理吸附性能的差异(固定相固体)
( absorption chromatography)
➢离子交换色谱:利用离子交换原理(固定相离子交换树脂)
(ion exchange chromatography )
➢空间排阻色谱:利用排阻作用力的不同(固定相凝胶)
色谱概论及薄层色谱法PPT幻灯片
活化:100℃左右(除水)
11
常用的吸附剂——聚酰胺
流 动 相
固定相
聚酰胺色谱分离原理:氢键 12
分配色谱法
固定液 (固定相)
流 动 相
载体 支持作用(如硅胶)
➢分离机制:不同组分溶解度差异 正相色谱:流动相极性<固定相极性
反相色谱:流动相极性>固定相极性
13
离子交换色谱
m
树脂骨架
1
2
1.固定离子; 2.可交换离子
32
A.三氯化铁 B.硫酸 C.茚三酮 D.碘化铋钾
B 11.属于通用型显示剂的是( ) A 12.用于检测含有酚羟基化合物的显色剂( ) C 13.用于检测氨基酸类化合物的显示剂( )
有关薄层操作方法以下说法正确的是(AB)CD
A.展开之前将斑点晾干
B. 展开之前进行饱和
C.展开后记录溶剂前沿
D. 制备好薄层板后降其活化
29
展开操作应注意的问题
1
检查层析 缸密闭性
2
展开前——先饱和 ,防止边缘效应
3
展开时,注意展开 剂不要浸到点样线
v
v
v
v
v
v
v
v
30
观察
日光 灯 紫外灯 (365或254nm)
荧光板上在 紫外灯下观察暗斑
硫酸
通用显色剂
碘
物理 化学 检出 显色
法法
茚三 酮
FeCl3
专属显色剂
31
同步测试
1. 甲乙两化合物,经用一薄层色谱系统展开后,它们的Rf
分配系数
组分在固定相 (s) 与流动相 (m) 中的浓度 (C) 之
比。
K = Cs Cm
大专本科分析化学第十七章色谱分析法概论
A
s
)
m
Vs ) = t ( 1+ K B tRB 0 Vm
Vs tR= t0 (KA-KB) Vm
tR≠0
KA≠KB kA≠kB
二、基本类型色谱法的分离机制
• 分配色谱法
• 吸附色谱法
• 离子交换色谱法 • 分子排阻色谱法
(一)分配色谱法
分离原理
•
利用被分离组分在固定相或流动相中的溶解度差别而实 现分离。
也称为空间排阻色谱法、凝胶色谱法。 • 分为凝胶渗透色谱法(gel permeation chromatography;
GPC)和凝胶过滤色谱法(gel filtration chrom源自tography;GFC)
分子排阻色谱法
• 根据空间排阻(理论,孔内外同等大小的溶质分子处于
扩散平衡状态。
渗透系数
• 高效液相色谱发:球型或无定型全多孔硅胶 和堆积硅珠。 • 气相色谱法:高分子多孔微球等
吸附色谱法 • 流动相 气-固吸附色谱法:气体,常为氢气或氮气。 液-固吸附色谱法:有机溶剂。
• 洗脱能力主要由流动相极性决定。强极性流动相占据吸附
中心的能力强,洗脱能力强。 • Snyder溶剂强度0:吸附自由能,表示洗脱能力。0值越
• 色谱法与光谱法的主要不同点:
色谱法具有分离和分析两种功能 光谱法不具备分离功能
• 色谱法创始于20世纪初,俄国植物学家M.S.Tswett 在研 究植物叶子中的色素组成时做了一个著名的实验: 将碳酸钙粉末放在竖立的玻璃管中,从顶端注入植物
色素的提取液,然后不断加入石油醚冲洗。
植物色素慢慢地向下移动并逐渐分散成数条不同颜色 的色带。
(0<Kp<1 )
s
)
m
Vs ) = t ( 1+ K B tRB 0 Vm
Vs tR= t0 (KA-KB) Vm
tR≠0
KA≠KB kA≠kB
二、基本类型色谱法的分离机制
• 分配色谱法
• 吸附色谱法
• 离子交换色谱法 • 分子排阻色谱法
(一)分配色谱法
分离原理
•
利用被分离组分在固定相或流动相中的溶解度差别而实 现分离。
也称为空间排阻色谱法、凝胶色谱法。 • 分为凝胶渗透色谱法(gel permeation chromatography;
GPC)和凝胶过滤色谱法(gel filtration chrom源自tography;GFC)
分子排阻色谱法
• 根据空间排阻(理论,孔内外同等大小的溶质分子处于
扩散平衡状态。
渗透系数
• 高效液相色谱发:球型或无定型全多孔硅胶 和堆积硅珠。 • 气相色谱法:高分子多孔微球等
吸附色谱法 • 流动相 气-固吸附色谱法:气体,常为氢气或氮气。 液-固吸附色谱法:有机溶剂。
• 洗脱能力主要由流动相极性决定。强极性流动相占据吸附
中心的能力强,洗脱能力强。 • Snyder溶剂强度0:吸附自由能,表示洗脱能力。0值越
• 色谱法与光谱法的主要不同点:
色谱法具有分离和分析两种功能 光谱法不具备分离功能
• 色谱法创始于20世纪初,俄国植物学家M.S.Tswett 在研 究植物叶子中的色素组成时做了一个著名的实验: 将碳酸钙粉末放在竖立的玻璃管中,从顶端注入植物
色素的提取液,然后不断加入石油醚冲洗。
植物色素慢慢地向下移动并逐渐分散成数条不同颜色 的色带。
(0<Kp<1 )
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✓ 缺点: 对未知物分析的定性专属性差
需要与其他分析方法. 联用(GC-MS,LC-MS) 13
第二节 色谱过程与术语
一、色谱过程 二、基本术语
1、流出曲线和色谱峰
2、基线、噪音和漂移
3、峰宽——柱效参数
4、峰高和峰面积——定量参数
5、保留值——定性参数
6、分配系数和容量因子——相平衡参数
7、分离因子和分离度——分离参数
GLC
平面色谱法
纸色谱法
LLC LLC
色
谱
液相色谱法
柱色谱法
法
(LC)
薄层色谱法 (TLC)
LSC LLC
LSC
IEC
SEC
毛细管电泳法
(CE)
超临界流体色谱法
(SFC)
➢ 色谱法简单分类
.
12
四、色谱法的特点
✓优点:“三高”、“一快”、 “高一选广择”性——可将性质相似的组分分开 高效能——反复多பைடு நூலகம்利用组分性质的差异 产生很好分离效果,n=103~106 高灵敏度——10-11~10-13g,适于痕量分析 分析速度快——几~几十分钟完成分离 一次 可以测多种样品 应用范围广——气体,液体、固体物质
• 应用的科学领域:生命科学、材料科学、环境科学等
• 药学:
1、教材内容多,约占全书的三分之一。
2、药学各个专业都会用到色谱分析法
药典 2005年版 2000年版 Ⅱ部
药品 1967种
1699种
HPLC分析 848种
567种
3、考研
大综合包括分析、有机、生理、生化
其中分析75分约近一半是色谱内容
.
6
基线:仅有流动相通过检测器时产生 的信号曲线。反映检测器噪音 随时间变化的曲线
(稳定—平直直线)
噪音:仪器本身所固有的,以噪音 带表示(仪器越好,噪音越小)
漂移:基线向某个方向稳定移动
(仪器未稳定造成)
.
18
3.峰宽 peak width:色谱柱效参数 • 标准差σ:σ为正态分布曲线两拐点间距离的一半。对应
吸附→解吸→再吸附→再解吸→无数次洗脱→分开
.
8
三、色谱法分类:
1.按两相的态分:
Mobile phase stationary phase
Liquid Liquid
Solid Liquid
L-S色谱 LC L-L色谱
Gas
Solid
G-S色谱 GC
Gas
Liquid
G-L色谱
.
9
2.按固定相的固定方式分: 柱色谱 填充柱色谱
2、1931年β-胡萝卜素异构体的分离
3、30~40年代TLC、PC平板色谱法的出现
4、40年代瑞典科学家Tiselius等在分配液相色谱、
吸附色谱和电泳领域取得了成果※
5、50年代英国Martin和Synge建立GC色谱※
6、60年代GC-MS联用
7、70年代HPLC崛起
.
3
图示 植物色素混合物
• 峰面积(peak area;A):色谱曲线与基线间 包围的面积。
.
20
5.保留值:色谱定性参数
表示组分在色谱固定相内滞留状态的参数 (1)时间表示的保留值
▪ 保留时间 retention time, tR:从进样开始到组分出现浓度
二、色谱法定义、分离基础和目的
定义:利用各组分物理化学性质的不同,在流动相流 经固定相时,由于各组分在两相间的吸附、分 配或其它亲和力的差异而产生不同速度的移 动,最终达到分离的目的。图例
分离基础:差速迁移 (例:赛跑)
目的:多组分分离,实现定性定量分析
.
7
图示
色素
石油醚 流动相
碳酸钙 吸附剂
✓ 分离机制: 各组分与流动相分子争夺吸附剂表面活性中心 利用吸附剂对不同组分的吸附能力差异而实现分离
8、等温线
.
14
一、色谱过程
色谱过程:指物质分子(被分离组分)在相对运动的
两相(流动相和固定相)中的“分配”平衡 过程 ✓ 以吸附色谱为例见图示 ✓ 色谱过程: 吸附→ 解吸→再吸附 →再解吸 →反复多次洗脱 →被测组分分配系数不同→ 差速迁移 → 分离
.
15
图示
• 吸附能力弱的组分先流出 吸附能力强的组分后流出
0.607h处峰宽的一半 注:σ↓小,峰↓窄,柱效↑高
• 半峰宽W1/2:峰高一半处所对应的峰宽 W12 2.355
• 峰宽W:色谱峰两侧拐点切
线与基线相交的截距
W4 W1.69W 912
➢ 注:除了用于衡量柱效,
还可以计算峰面积
.
19
4.峰高和峰面积:色谱定量参数
• 峰高(peak height;h):组分在柱后出现浓度 极大时的检测 信号,即色谱峰顶至基线的 距离。
➢ 固定相——CaCO3颗粒 ➢ 流动相——石油醚 ➢ 色谱柱——玻璃柱
Chroma + to +
graph
.
4
2.现在:一种重要的分离、分析技术 分离混合物各组分并加以分析
固定相——除了固体,还可以是液体 流动相——液体或气体 色谱柱——各种材质和尺寸 被分离组分——不再仅局限于有色物质
.
5
色谱学的重要作用
• 组分的结构和性质微小差异
与固定相作用差异
动相移动的速度不等
差速迁移 .
色谱分离。
随流
16
二、基本术语
包括:定性参数、定量参数、柱效参数、分离参数等
1.流出曲线和色谱峰
• 流出曲线(色谱图 chromagtogram):电信号强
度随时间变化曲线
• 色谱峰(peak):流出曲线.上突起部分
17
2.基线、噪音和漂移 base line, noise and drift
第十七章 色谱分析法概论
chromatography
色谱法是最重要的分离技术,. 篇幅约占书的三分之一 1
色谱法概述 色谱过程和术语 色谱法基本理论 基本类型色谱的分离机制
.
2
第一节 色谱法概述
一、色谱法(chromatograph)的起源和发展
1.1906年由俄国植物学家Tsweet创立
植物色素分离见图示
L-L(液液分配附法) G-L(气液分配附法)
离子交换色谱:利用离子交换原理(固定相离子交换树脂) ion exchange chromatography
空间排阻色谱:利用排阻作用力的不同(固定相凝胶)
size exclusion chromatography
.
11
GSC
气相色谱法 (GC)
柱色谱法
毛细管柱色谱
平面色谱
纸色谱 薄层色谱 高分子薄膜色谱
.
10
3.按分离机制分:
吸附色谱:利用物理吸附性能的差异(固定相固体) absorption chromatography
L-S(液固吸附法) G-S (气固吸附法)
分配色谱:利用分配系数的不同(固定相液体) partition chromatography
需要与其他分析方法. 联用(GC-MS,LC-MS) 13
第二节 色谱过程与术语
一、色谱过程 二、基本术语
1、流出曲线和色谱峰
2、基线、噪音和漂移
3、峰宽——柱效参数
4、峰高和峰面积——定量参数
5、保留值——定性参数
6、分配系数和容量因子——相平衡参数
7、分离因子和分离度——分离参数
GLC
平面色谱法
纸色谱法
LLC LLC
色
谱
液相色谱法
柱色谱法
法
(LC)
薄层色谱法 (TLC)
LSC LLC
LSC
IEC
SEC
毛细管电泳法
(CE)
超临界流体色谱法
(SFC)
➢ 色谱法简单分类
.
12
四、色谱法的特点
✓优点:“三高”、“一快”、 “高一选广择”性——可将性质相似的组分分开 高效能——反复多பைடு நூலகம்利用组分性质的差异 产生很好分离效果,n=103~106 高灵敏度——10-11~10-13g,适于痕量分析 分析速度快——几~几十分钟完成分离 一次 可以测多种样品 应用范围广——气体,液体、固体物质
• 应用的科学领域:生命科学、材料科学、环境科学等
• 药学:
1、教材内容多,约占全书的三分之一。
2、药学各个专业都会用到色谱分析法
药典 2005年版 2000年版 Ⅱ部
药品 1967种
1699种
HPLC分析 848种
567种
3、考研
大综合包括分析、有机、生理、生化
其中分析75分约近一半是色谱内容
.
6
基线:仅有流动相通过检测器时产生 的信号曲线。反映检测器噪音 随时间变化的曲线
(稳定—平直直线)
噪音:仪器本身所固有的,以噪音 带表示(仪器越好,噪音越小)
漂移:基线向某个方向稳定移动
(仪器未稳定造成)
.
18
3.峰宽 peak width:色谱柱效参数 • 标准差σ:σ为正态分布曲线两拐点间距离的一半。对应
吸附→解吸→再吸附→再解吸→无数次洗脱→分开
.
8
三、色谱法分类:
1.按两相的态分:
Mobile phase stationary phase
Liquid Liquid
Solid Liquid
L-S色谱 LC L-L色谱
Gas
Solid
G-S色谱 GC
Gas
Liquid
G-L色谱
.
9
2.按固定相的固定方式分: 柱色谱 填充柱色谱
2、1931年β-胡萝卜素异构体的分离
3、30~40年代TLC、PC平板色谱法的出现
4、40年代瑞典科学家Tiselius等在分配液相色谱、
吸附色谱和电泳领域取得了成果※
5、50年代英国Martin和Synge建立GC色谱※
6、60年代GC-MS联用
7、70年代HPLC崛起
.
3
图示 植物色素混合物
• 峰面积(peak area;A):色谱曲线与基线间 包围的面积。
.
20
5.保留值:色谱定性参数
表示组分在色谱固定相内滞留状态的参数 (1)时间表示的保留值
▪ 保留时间 retention time, tR:从进样开始到组分出现浓度
二、色谱法定义、分离基础和目的
定义:利用各组分物理化学性质的不同,在流动相流 经固定相时,由于各组分在两相间的吸附、分 配或其它亲和力的差异而产生不同速度的移 动,最终达到分离的目的。图例
分离基础:差速迁移 (例:赛跑)
目的:多组分分离,实现定性定量分析
.
7
图示
色素
石油醚 流动相
碳酸钙 吸附剂
✓ 分离机制: 各组分与流动相分子争夺吸附剂表面活性中心 利用吸附剂对不同组分的吸附能力差异而实现分离
8、等温线
.
14
一、色谱过程
色谱过程:指物质分子(被分离组分)在相对运动的
两相(流动相和固定相)中的“分配”平衡 过程 ✓ 以吸附色谱为例见图示 ✓ 色谱过程: 吸附→ 解吸→再吸附 →再解吸 →反复多次洗脱 →被测组分分配系数不同→ 差速迁移 → 分离
.
15
图示
• 吸附能力弱的组分先流出 吸附能力强的组分后流出
0.607h处峰宽的一半 注:σ↓小,峰↓窄,柱效↑高
• 半峰宽W1/2:峰高一半处所对应的峰宽 W12 2.355
• 峰宽W:色谱峰两侧拐点切
线与基线相交的截距
W4 W1.69W 912
➢ 注:除了用于衡量柱效,
还可以计算峰面积
.
19
4.峰高和峰面积:色谱定量参数
• 峰高(peak height;h):组分在柱后出现浓度 极大时的检测 信号,即色谱峰顶至基线的 距离。
➢ 固定相——CaCO3颗粒 ➢ 流动相——石油醚 ➢ 色谱柱——玻璃柱
Chroma + to +
graph
.
4
2.现在:一种重要的分离、分析技术 分离混合物各组分并加以分析
固定相——除了固体,还可以是液体 流动相——液体或气体 色谱柱——各种材质和尺寸 被分离组分——不再仅局限于有色物质
.
5
色谱学的重要作用
• 组分的结构和性质微小差异
与固定相作用差异
动相移动的速度不等
差速迁移 .
色谱分离。
随流
16
二、基本术语
包括:定性参数、定量参数、柱效参数、分离参数等
1.流出曲线和色谱峰
• 流出曲线(色谱图 chromagtogram):电信号强
度随时间变化曲线
• 色谱峰(peak):流出曲线.上突起部分
17
2.基线、噪音和漂移 base line, noise and drift
第十七章 色谱分析法概论
chromatography
色谱法是最重要的分离技术,. 篇幅约占书的三分之一 1
色谱法概述 色谱过程和术语 色谱法基本理论 基本类型色谱的分离机制
.
2
第一节 色谱法概述
一、色谱法(chromatograph)的起源和发展
1.1906年由俄国植物学家Tsweet创立
植物色素分离见图示
L-L(液液分配附法) G-L(气液分配附法)
离子交换色谱:利用离子交换原理(固定相离子交换树脂) ion exchange chromatography
空间排阻色谱:利用排阻作用力的不同(固定相凝胶)
size exclusion chromatography
.
11
GSC
气相色谱法 (GC)
柱色谱法
毛细管柱色谱
平面色谱
纸色谱 薄层色谱 高分子薄膜色谱
.
10
3.按分离机制分:
吸附色谱:利用物理吸附性能的差异(固定相固体) absorption chromatography
L-S(液固吸附法) G-S (气固吸附法)
分配色谱:利用分配系数的不同(固定相液体) partition chromatography