圆的有关性质复习测试
圆有关的性质练习题
圆有关的性质练习题1. 设有一个圆,半径为r。
问:圆的直径是多少?圆的周长是多少?圆的面积是多少?首先,直径是连接圆上任意两点并经过圆心的线段。
所以直径的长度就是2r。
其次,周长是圆上一整圈的长度。
根据圆周率的定义,圆的周长等于直径乘以π,即2πr。
最后,圆的面积是圆内部所有点组成的区域的大小。
根据圆的面积公式,圆的面积等于半径的平方乘以π,即πr²。
2. 给定一个圆,半径为r。
在圆上取一点A,并连接该点和圆心O,得到线段AO。
问:此线段AO是否会被圆分成两等分?根据圆的性质,半径是从圆心到圆上任一点的线段。
由于AO的两端分别是圆上任意两点,所以AO也是一个半径。
所以可以得出结论:线段AO会被圆分成两等分。
3. 设有两个圆,半径分别为r₁和r₂,且r₁ > r₂。
问:这两个圆是否会相交?首先,考虑两个圆的最短距离。
通过画图可知,当两个圆的圆心之间的距离小于r₁与r₂的和时,两个圆就会相交。
其次,当两个圆的圆心之间的距离等于r₁与r₂的和时,两个圆刚好相切。
圆心之间的距离大于r₁与r₂的和时,两个圆不相交。
4. 给定一个圆和一条垂直于圆心的直线。
问:直线是否会与圆相交?设直线与圆的圆心之间的距离为d,圆的半径为r。
根据勾股定理,直线与圆相交的条件是d < r。
由此可得,当直线与圆距离小于半径时,直线与圆相交;当直线与圆距离等于半径时,直线与圆相切;当直线与圆距离大于半径时,直线与圆不相交。
5. 在一个圆中,给定两个相交的弦AB和CD。
将这两个弦的中点连接,并将这条线段继续延长,与圆相交于点E。
问:点E与圆心的连线是否会垂直于弦AB和CD?首先,我们知道圆的半径是从圆心到圆上任一点的线段,并且半径与该点所在的弦垂直。
所以点E与圆心的连线垂直于弦AB和CD。
这是因为弦的中点连线的延长与圆相交的点E,必然位于圆的半径上。
而根据圆的性质,半径与该点所在的弦垂直。
通过以上几个问题的练习,我们对圆的性质有了更深入的了解。
圆的基本性质练习题
圆的基本性质练习题姓名______________学号__________一.选择题:(本题共10小题,每小题3分,共30分)1. 已知扇形的弧长为π8,扇形的圆心角为060,则这个扇形的半径为( )A. 12B. 24C. 62D. 482.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )A. 030B. 045C. 060D. 0703.下列说法正确的是( )A .半圆是弧,弧也是半圆B .三点确定一个圆C .平分弦的直径垂直于弦D .直径是同一圆中最长的弦4.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( )A .弧AD=弧BDB .AF=BFC .OF=CFD D .∠DBC=90°5.已知⊙O 的直径为10,若PO=5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断6.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A.40°B.45°C.50°D.55°7.如图,⊙O 的半径为10,若OP=8,则经过点P 的弦长可能是( )A .10B .6C .19D .228. 如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形铁片,则弓形弦AB 的长为( )A 、10cmB 、16cmC 、24cmD 、26cm9.如图,点C 是以AB 为直径的半圆O 的三等分点,AC=2,则图中阴影部分的面积是( )A 、334-πB 、3234-πC 、332-πD 、332-π 10.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为( )A .23 B .2 C .13138 D .131312 二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案! 11.一正六边的边长为8,则它的外接圆的直径为_______________12.四边形ABCD 内接于⊙O ,弧AB :弧BC :弧CD=2:3:5,∠BAD=120°,则∠ABC=_____13.如图,将弧AC 沿弦AC 折叠交直径AB 于圆心O ,则弧AC= 度.14.在半径为2的圆中,弦AC 长为1,M 为AC 中点,过M 点最长的弦为BD ,则四边形ABCD 的面积为15.如图,⊙O 是△ABC 的外接圆,AO ⊥BC 于点F ,D 为弧AC 的中点,且弧CD 的度数为70°,则∠BAF=16.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为________________17. 已知△ABC 的边BC=23cm ,且△ABC 内接于半径为2cm 的⊙O ,则∠A= 度.18.如图,C 、D 是以AB 为直径的圆O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持不变,M 是弦CD 的中点,过点C 作CP ⊥AB 于点P .若CD=3,AB=5,PM=x ,则x 的最大值是_________.19.如图,△ABC 内接于⊙O ,∠B=90°,AB=BC ,D 是⊙O 上与点B关于圆心O 成中心对称的点,P 是BC 边上一点,连接AD 、DC 、AP .已知AB=8,CP=2,Q 是线段AP 上一动点,连接BQ 并延长交四边形ABCD 的一边于点R ,且满足AP=BR ,则=QRBQ ______ 三.解答题(共6题,共66分) 温馨提示:解答题应将必要的解答过程呈现出来!20(本题6分)如图,AB ,CD 是⊙O 的两条直径,过点A 作AE ∥CD 交⊙O 于点E ,连接BD ,DE ,求证:BD=DE .21(本题8分).如图所示,AB=AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE .(1)求证:BE ⊥AC ;(2)求证:BD=DE ;22(本题8分).如图,在直角坐标系中,⊙E 的半径为5,点E (1,﹣4).(1)求弦AB 与弦CD 的长;(2)求点A ,B 坐标.23(本题10分).如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,点P 在⊙O 上,PB 与CD 交于点F ,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O 的半径R=2,求劣弧AC 的长度.24.如图,在⊙O 中,两弦AB 与CD 的中点分别是P 、Q ,且⋂⋂=CD AB ,连结PQ ,求证:∠APQ =∠CQP 。
与圆有关的性质
中考复习与圆有关的性质一、自主练习1.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.AD=BCC.∠D=∠AEC D.△ADE∽△CBE2、如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8第1题图第2题图第3题图第4题图3.如图,四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB 等于()A.30°B.45°C.60°D.90°4.如图,点O为优弧ACB所在圆的圆心,∠AOC=120°,点D在AB延长线上,BD=BC,则∠D=.二、考点呈现考点一圆周角与圆心角的关系【例1】如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为() A. 25°B.50°C. 60°D.80°考点二圆周角定理及推论【例2】如图,AB是☉O的直径,弦CD∥AB.若∠ABD=60°,则∠ADC=.考点三圆心角、弧、弦、弦心距之间的关系【例3】如图,已知A,B,C,D是☉O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求AB的长.考点四垂径定理及应用【例4】如图,☉O的直径AB垂直于弦CD,垂足P是OB的中点, CD=6 cm,直径AB= cm.考点五圆内接四边形【例5】如图,已知四边形ABCD是圆内接四边形,∠1=140°,则∠CDE=度.三、能力提升如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB 的长.。
专题23 圆的有关性质(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)
专题23圆的有关性质(30道)一、单选题1.(2023·辽宁鞍山·统考中考真题)如图,,AC BC 为O 的两条弦,D ,G 分别为,AC BC 的中点,O 的半径为2.若45C ∠=︒,则DG 的长为()A .2B .3C .32D .22.(2023·辽宁阜新·统考中考真题)如图,A ,B ,C 是O 上的三点,若9025AOC ACB ∠=︒∠=︒,,则BOC ∠的度数是()A .20︒B .25︒C .40︒D .50︒3.(2023·黑龙江哈尔滨·统考中考真题)如图,AB 是O 的切线,A 为切点,连接OA ﹐点C 在O 上,OC OA ⊥,连接BC 并延长,交O 于点D ,连接OD .若65B ∠=︒,则DOC ∠的度数为()A .45︒B .50︒C .65︒D .75︒4.(2023·陕西·统考中考真题)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图. AB 是O 的一部分,D 是 AB 的中点,连接OD ,与弦AB 交于点C ,连接OA ,OB .已知24AB =cm ,碗深8cm CD =,则O 的半径OA 为()A.13cm B.16cm C 5.(2023·辽宁锦州·统考中考真题)如图,点A 半径为3,则扇形AOC(阴影部分)的面积为(A.23πB.πC6.(2023·湖南娄底·统考中考真题)如图,正六边形线1l、2l的夹角为60︒,则图中的阴影部分的面积为(A.433π-B.4332π-C7.(2023·辽宁沈阳·统考中考真题)如图,四边形的长是()A .πB .23πC .2πD .4π8.(2023·四川雅安·统考中考真题)如图,某小区要绿化一扇形OAB 空地,准备在小扇形OCD 内种花在其余区域内(阴影部分)种草,测得120AOB ∠=︒,15m OA =,10m OC =,则种草区域的面积为()A .225πm 3B .2125πm 3C .2250πm 3D .2125m 39.(2023·山东泰安·统考中考真题)如图,O 是ABC 的外接圆,半径为4,连接OB ,OC ,OA ,若40CAO ∠=︒,70ACB ∠=︒,则阴影部分的面积是()A .4π3B .8π3C .16π3D .32π310.(2023·山东泰安·统考中考真题)如图,AB 是O 的直径,D ,C 是O 上的点,115ADC ∠=︒,则BAC ∠的度数是()A .25︒B .30︒C .35︒D .40︒11.(2023·黑龙江牡丹江·统考中考真题)如图,A ,B ,C 为O 上的三个点,4AOB BOC ∠=∠,若60ACB ∠=︒,则BAC ∠的度数是()A.2πB.4 3π13.(2023·辽宁营口·统考中考真题)如图所示,30BAD∠=︒,则ACB∠的度数是(A.50︒B.40︒14.(2023·湖北鄂州·统考中考真题)如图,在的中点,以O为圆心,OB长为半径作半圆,交A.3533π-B.53-15.(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.言叙述作图方法:已知直线a和直线外一定点径作圆,交直线a于点M,N;(取其中点C,过O,C两点确定直线A .35︒B .30︒C .25︒D .20︒16.(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,105BCD ∠=︒,连接OB ,OC ,OD ,BD ,2BOC COD ∠=∠.则CBD ∠的度数是()A .25︒B .30︒C .35︒D .40︒17.(2023·内蒙古·统考中考真题)如图,O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,垂足分别为,,D E F ,连接,,DE EF FD .若 6.5,DE DF ABC +=△的周长为21,则EF 的长为()A .8B .4C .3.5D .318.(2023·湖南·统考中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中 AA '的长为()A .4πB .6πC .8πD .16π19.(2023·吉林·统考中考真题)如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意A .70︒20.(2023·内蒙古通辽点C 是半径OB 上一动点,若A .26π+B 二、填空题21.(2023·江苏·统考中考真题)如图,4AC =,则O 的直径22.(2023·江苏南通·统考中考真题)如图,则ACD ∠=度.23.(2023·山东济南·统考中考真题)则阴影部分的面积为(结果保留π).24.(2023·宁夏·统考中考真题)如图,四边形ABCD 内接于O ,延长AD 至点E ,已知140AOC ∠=︒,那么CDE ∠=︒.25.(2023·湖南·统考中考真题)如图,点A ,B ,C 在半径为2的O 上,60ACB ∠=︒,OD AB ⊥,垂足为E ,交O 于点D ,连接OA ,则OE 的长度为.26.(2023·江苏徐州·统考中考真题)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥母线l =6,扇形的圆心角120θ=°,则该圆锥的底面圆的半径r 长为.27.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是寸.29.(2023·吉林·统考中考真题)如图是圆心,半径r 为15m 留π)30.(2023·广东深圳·统考中考真题)如图,交于点D ,若20ADC ∠=︒,则BAD ∠=。
圆的有关性质测试题
圆有关的性质测试题一、选择题1、如右图,⊙O 的半径OA 等于5,半径OC ⊥AB 于点D ,若OD =3,则弦AB 的长为( ) A 、10B 、8C 、6D 、4二、如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ) A .8 B .4 C .10 D .53、若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( ) A.点A 在圆外 B. 点A 在圆上 C. 点A 在圆内 D.不能肯定4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是AD 上任意一点,则∠BEC 的度数为 ( ) A. 30° B. 45°C. 60°D. 90°五、如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23,∠AOC 为( )A .120° B.130C .140°D .150°六、如图,⊙O 的半径为5,若OP =3,,则通过点P 的弦长可能是 ( )A .3B .6C .9D .12 7、如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论: ① ∠A=45°; ②AC=AB ;③ ; ④CE·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个八、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( ) A .20 B .30 C .40 D .50九、如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .810、如图,AB 是⊙O 的直径,CD 为弦,AB CD ⊥于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°D .CE ﹦BD11、如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( )O P(第5题)︵ ︵ AE =(A )6 (B )8 (C )10 (D )12二、填空题1、已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____.二、如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,若是∠A =63 º,那么∠B = º.3、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA = °.4、如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC 上一点,若∠CEA=28,则∠ABD=°.五、一条弦把圆分成2:3两部份,那么这条弦所对的圆周角的度数为__________. 六、如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= .7、如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .八、若是一边长为20cm 的等边三角形硬纸板恰好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为 cm (铁丝粗细忽略不计). 三、解答题1、如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥. (1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若662AD AE ==,,求BC 的长.C(第1题)BDAEOAPB第17题图二、如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.3、已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 别离在弦AB 、AC 上,且知足AD =CE .(1)求证:OD =OE ;(2)连接BC ,当BC =22时,求∠DOE 的度数.4、如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E , 且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长.ODCBAE OD CBAPO ED CBA五、如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径32r=,2AC=,AB=BC求AB长度。
人教版九年级数学上册《圆的有关性质》能力测试题及参考答案
人教版九年级数学上册《圆的有关性质》能力测试题及参考答案一、选择题1.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.2cmB.2.5cmC.3cmD.3.5cm第1题第2题第3题第4题2.如图,AB是⊙O的直径,点C,D是⊙O上的两点,连接AC,OD,CD,且AC//OD,若AB=6,∠ACD=15°,则AC的长为()A.2√2B.4C.3√2D.3√33.如图,点A,B,C,D都在⊙O上,BD为⊙O的直径,若∠A=65°,则∠DBC的值是()A.15°B.25°C.35°D.65°4.如图,AB为⊙O的直径,点C,D都在⊙O上,若BD=BC,∠ABC=65°,则∠BOD 的度数()A.65°B.60°C.50°D.25°5.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD,∠BAC=28°,则∠D的度数是()A.56°B.58°C.60°D.62°第5题第6题第7题第8题6.如图,四边形ABCD内接于⊙O,∠BOD=84°,则∠C的度数为()A.88°B.92°C.106°D.138°7.如图,在⊙O中,弦AB,CD相交于点P,∠A=45°,∠APD=80°,则∠B的大小是().A.35°B.45°C.60°D.70°8.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°̂的中点,连接9.如图,在⊙O中,弦AB⊥CD,垂足为E,F为CBDAF,BF,AC,AF交CD于点M,过点F作FH⊥AC,垂足为G,交⊙O于点H.̂=DF̂②HC = BF③MF = FC④DF̂+AĤ= BF̂+AF̂.其中现有以下结论:①CF成立的有()A.1个B.2个C.3个D.4个10.如图,点P在⊙O的直径AB上,作正方形PCDE和正方形PFGH,其中点D,G在直径所在的直线上,点C,E,F,H 都在⊙O 上.若两个正方形的面积之和为16,OP=√2,则DG 的长是( ) A.6√2 B.2√14 C.7 D.4√3第10题 第11题 第12题 第13题11.如图,⊙O 经过菱形ABCD 的顶点A,B,C,顶点D 在⊙O 内,延长AD,CD 与⊙O 分别交于点E,F,连接 BE,BF.下列结论:①BE=BF ②AB ̂=AF ̂=EF ̂③∠ABC=90°+ 12∠EBF,其中正确的结论是( ) A.①② B. ①③ C. ②③ D.①②③12.如图,△ABC 内接于⊙O,∠BAC=45°,AD ⊥BC,垂足为D,BD=6,DC=4,则AB 的长( )A.6√2B.10C.12D.6√513.如图,在半径为√13的⊙O 中,弦AB 与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD 的长( )A.2√6B.2√10C.2√11D.4√314.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,176) B .(4,3) C.(5,176) D .(5,3) 15.如图,△ABC 为等边三角形,AB=3.若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为( )A.1.5B.√3C.√3D.216.如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AB=4,∠AOC=120°,P 为⊙O 上的一动点,Q 为AP 的中点,连接CQ,则线段CQ 的最大值为( )A.3B.1+√6C.1+3√2D.1+√7二、填空题17.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E 的度数_______.18.如图,AB,CD 是⊙O 的直径,弦BE 与CD 交于点F,F 为BE 中点,AF//ED,若AF 的长为 2√3,则BC 的长为___.第17题 第18题 第19题19.如图,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E,AB̂=BF ̂,CE =1,AB=6,则弦AF 的长度为___. 20.如图,⊙E 与y 轴相交于A,B 两点(点A 在点B 的上方),与x 轴的正半轴相交于点C,且圆心E 的坐标为(m,0),半径为5;直线l 的函数表达式为y=34x+n,且经过点A 并与x 轴相交于点D(-/2,0).若以C为顶点的抛物线过点B,则该抛物线的函数表达式为___.第20题第21题第22题21.如图,AB是⊙O的弦,AB= 6√3,∠AOB=120°,C为⊙O上的一动点,D,E分别是AC,OB的中点,连接DE,则线段DE的取值范围是____.22.如图,等边△ABC的边长为3,F为BC上的动点,DF⊥AB于点D,EF⊥AC于点E,则DE长的最小值为____.三、解答题̂的中点,连结CD,CA,AD.23.如图 1,AB是⊙O的直径,点D为AB下方⊙O上一点,点C为ABD(1)求证:OC平分∠ACD.(2)如图 2,延长AC,DB相交于点E.①求证:OC//BE.②若CE = 4√5,BD =6,求⊙O的半径.24.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C,D 分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.25.如图,在△ACE 中,AC=CE,⊙O 经过点A,C 且与边AE,CE 分别交于点D,F,点B 是AĈ上一点,且DF̂=BC ̂,连接AB,BC,CD. (1)求证:△CDE ≌△ABC;(2)若AC 为⊙O 的直径,填空:①当∠E =______时,四边形ABCD 为正方形;②当∠E =____时,四边形OCFD 为菱形.26.已知⊙O 中,弦AB=AC,点P 是∠BAC 所对弧上一动点,连接PA,PB.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA,PB,PC 之间的关系.参考答案一、选择题1-5 ADBCD 6-10 DABCB 11-15 BDCAB 16 D二、填空题17. 215° 18.2√619.485 20.y=−116(x −8)221.3√3-3≤DE ≤3√3+322.94 三、解答题23.(1)提示:圆心角定理,垂径定理.(2)①略②半径长5.24(1)半径长4.(2)15°(3)2√ 3+225.(1)略(2)①45°②60°26.(1)略(2)①PA=PB+PC。
圆的性质练习题
圆的性质练习题1. 以下哪个说法是关于圆心的?- (A) 圆心是圆的中点- (B) 圆心位于圆周上- (C) 圆心与半径相等- (D) 圆心可以位于圆外答案:(A) 圆心是圆的中点2. 在一个圆中,有两条相交的弦AB和CD,若弦AB的长度为12,弦CD的长度为16,那么弦AB的一半加上弦CD的一半等于多少?答案:弦AB的一半加上弦CD的一半等于143. 下列哪个选项不能确定一个圆?- (A) 圆心和半径- (B) 直径和半径- (C) 弦和半径- (D) 弧和半径答案:(C) 弦和半径4. 若一个圆的直径为10,那么它的半径是多少?答案:半径是55. 下列哪个说法是关于切线的?- (A) 切线与圆相切于圆的内部- (B) 切线与圆相切于圆的外部- (C) 切线与圆的切点位于圆的任意位置- (D) 切线与圆不可能相切答案:(B) 切线与圆相切于圆的外部6. 如果AB是一个圆的直径,CD是一个切线,且切点为E,那么角CED的度数是多少?答案:角CED的度数是90度7. 以下哪个选项不能作为一个圆的弧长?- (A) 3- (B) 3π- (C) π/2- (D) 2π答案:(C) π/28. 若一个圆的半径为8,那么它的周长是多少?答案:周长是16π9. 若一个圆的周长为12π,那么它的直径是多少?答案:直径是610. 以下哪个说法是关于圆的面积的?- (A) 圆的面积与周长成正比- (B) 圆的面积与半径的平方成正比- (C) 圆的面积与直径成正比- (D) 圆的面积与弧度成正比答案:(B) 圆的面积与半径的平方成正比以上是关于圆的性质的练习题,希望能帮助你巩固对圆的相关概念的理解。
请根据题目给出的选项选择正确答案,并核对答案的准确性。
2023—2024学年人教版数学九年级上册 24.1圆的有关性质同步练习 含答案
2023—2024学年人教版数学九年级上册24.1圆的有关性质同步练习(含答案)初中数学同步练习九年级上册24.1 圆的有关性质一、单选题1.如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()A.4 B.5 C.6 D.72.如图,在⊙O中,弦AB、CD相交于点M,连接BC、AD,⊙AMD=100°,⊙A=30°,则⊙B=()A.40° B.45° C.50° D.60°3.如图,O是线段BC的中点,A、D、C到O点的距离相等.若⊙ABC =30°,则⊙ADC的度数是()A.30° B.60° C.120° D.150°4.如图,点A.B.C在⊙D上,⊙ABC=70°,则⊙ADC的度数为()A.110° B.140° C.35° D.130°5.下列命题中,不正确的是()A.垂直平分弦的直线经过圆心B.平分弦的直径一定垂直于弦C.平行弦所夹的两条弧相等D.垂直于弦的直径必平分弦所对的弧6.如图,⊙O的直径CD⊙AB,⊙AOC=60°,则⊙CDB=()A.20° B.30° C.40° D.50°7.如图,在⊙O中,弦AC⊙半径OB,⊙BOC=48°,则⊙OAB的度数为() A.24° B.30° C.60° D.90°8.如图,⊙O的半径OD⊙弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=4,CD=1,则EC的长为()A.B.C.D.4二、填空题9.如图,AB,CD是⊙O的弦,且AB⊙CD,连接AD,BC,若⊙C=25°,则⊙D的度数为.10.如图,A、B、C是⊙O的圆周上三点,⊙ACB=40°,则⊙ABO等于度.11.如图,四边形ABCD为⊙O的内接四边形,⊙A=100°,则⊙DCE的度数为;12.如图,AB是半圆的直径,点C、D是半圆上两点,⊙ADC = 144°,则⊙ABC =13.如图,⊙ABC内接于⊙O,AC是⊙O的直径,⊙ACB=50°,点D是上一点,则⊙D=度.14.如图,在⊙O的内接五边形ABCDE中,⊙CAD=35°,则⊙B+⊙E=.15.如图,⊙O是⊙ABC的外接圆,AD是⊙O的直径,连接CD,⊙B=70°,则⊙DAC=.16.如图,在中,A,B,C是O上三点,如果,弦,那么的半径长为.三、解答题17.如图,弦AB和CD相交于⊙O内一点E,AE=CE,求证:BE=DE.18.如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB的中点.求证:MC=NC.19.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为多少?20.如图,在中,AB是的直径,与AC交于点D,,求的度数.答案解析部分1.【答案】B2.【答案】C3.【答案】D4.【答案】B5.【答案】B6.【答案】B7.【答案】A8.【答案】B9.【答案】65°10.【答案】5011.【答案】100°12.【答案】3613.【答案】4014.【答案】215°15.【答案】20°16.【答案】517.【答案】证明:⊙⊙A=⊙C,⊙D=⊙B ,AE=CE,⊙ ⊙AED⊙⊙CEB,⊙ BE=DE.18.【答案】解:⊙弧AC和弧BC相等,⊙⊙AOC=⊙BOC,又⊙OA="OB" M、N分别是OA、OB的中点⊙OM=ON,在⊙MOC和⊙NOC中,⊙⊙MOC⊙⊙NOC(SAS),⊙MC=NC.19.【答案】解:如图,连接AQ,由题意可知:⊙BPQ=45°,⊙AB是半圆O的直径,⊙⊙AQB=90°,又⊙⊙BAQ=⊙BPQ=45°,⊙⊙ABQ是等腰直角三角形,⊙BQ=AQ= .即,答案为.20.【答案】解:在⊙ABC中,⊙⊙B=60°,⊙C=75°,⊙⊙A=45°.⊙AB是⊙O的直径,⊙O与AC交于点D,⊙⊙BOD=2⊙A=90°。
2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)
2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1. (2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A. 3B. 4C. 5D. 6第1题图2. (2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A. 20°B. 40°C. 50°D. 80°3. (2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A. 56°B. 33°C. 28°D. 23°第3题图4. (2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A. 40°B. 50°C. 60°D. 70°5. (2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A. 60°B. 54°C. 48°D. 36°第5题图6. (2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC =2∠COD,则∠CBD的度数是()第6题图A. 25°B. 30°C. 35°D. 40°7. [新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A. 674寸 B. 25寸C. 24寸D. 7寸第7题图8. (2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A. 23°B. 24°C. 25°D. 26°9. (2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37 m,拱高约为7 m,则赵州桥主桥拱半径R约为()第9题图A. 20 mB. 28 mC. 35 mD. 40 m10. (2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A. 1B. 2C. 2 3D. 4第10题图11. 如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A. 12B. 10C. 8D. 612. 如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13. (2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14. (2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A. 70°B. 105°C. 125°D. 155°第14题图15. 如图,正方形ABCD 内接于⊙O ,点E 为弧AB 的中点,连接DE 与AB 交于点F .若AB=1,记△ADF 的面积为S 1,△AEF 的面积为S 2,则S 1S 2的值为________.第15题图16. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,且点A 的坐标为(-2,0),D 为第一象限内⊙O 上的一点,若∠OCD =75°,则AD 的长为________.第16题图参考答案与解析1. D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2. B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵AC =AC ,∴∠D =∠B =40°.3. C 【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°. 4. B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5. D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°. 6. A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13 ∠BOD =50°,∴∠CBD =12∠COD =25°. 7. C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72 =24(寸).8. D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9. B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10. B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23 ,∴BE =12 BC =3 .在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11. B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12 AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图 12. 552 ;552 -5 【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12 AB =32.由勾股定理,得OC =OB 2-BC 2 =552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12 =5 ,∴点D 到AB 的距离的最小值为552 -5 .第12题解图13. (1)证明:由圆周角定理,得∠ACB =12 ∠AOB ,∠BAC =12∠BOC . ∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE . ∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5 ,∴BE =2,DB =5 .在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2 =1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52, 即⊙O 的半径是 52.第13题解图14. D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15. 2(2 +1) 【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2 ,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12 ,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12 .∵△ADF 与△AEF 等高,∴S 1S 2 =S △ADF S △AEF=DF EF =2(2 +1).第15题解图16. 23 【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23 .第16题解图。
圆的有关性质(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)圆的有关性质(优选真题60道)一.选择题(共23小题)1.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70°B.105°C.125°D.155°【分析】利用圆周角定理求得∠BOC的度数,然后利用三角形外角性质及等边对等角求得∠BPC的范围,继而得出答案.【解答】解:如图,连接BC,∵∠BAC=70°,∴∠BOC=2∠BAC=140°,∵OB=OC,=20°,∴∠OBC=∠OCB=180°−140°2∵点P为OB上任意一点(点P不与点B重合),∴0°<∠OCP<20°,∵∠BPC=∠BOC+∠OCP=140°+∠OCP,∴140°<∠BPC<160°,故选:D.【点评】本题考查圆与三角形外角性质的综合应用,结合已知条件求得∠BPC的范围是解题的关键.2.(2023•赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25°B.30°C.35°D.40°【分析】利用圆内接四边形的性质及圆周角定理求得∠BOD的度数,再结合已知条件求得∠COD的度数,然后利用圆周角定理求得∠CBD的度数.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠BCD=105°,∴∠A=75°,∴∠BOD=2∠A=150°,∵∠BOC=2∠COD,∴∠BOD=3∠COD=150°,∴∠COD=50°,∠COD=25°,∴∠CBD=12故选:A.【点评】本题考查圆内接四边形性质及圆周角定理,结合已知条件求得∠BOD的度数是解题的关键.3.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB =2∠C ,∠C =55°,∴∠AOB =110°,故选:D .【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.4.(2023•广东)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A .20°B .40°C .50°D .80°【分析】由AB 是⊙O 的直径,得∠ACB =90°,而∠BAC =50°,即得∠ABC =40°,故∠D =∠ABC =40°,【解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC+∠ABC =90°,∵∠BAC =50°,∴∠ABC =40°,∵AĈ=AC ̂, ∴∠D =∠ABC =40°,故选:B .【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.5.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m【分析】设主桥拱半径R ,根据垂径定理得到AD =372,再利用勾股定理列方程求解,即可得到答案. 【解答】解:由题意可知,AB =37m ,CD =7m ,设主桥拱半径为Rm ,∴OD =OC ﹣CD =(R ﹣7)m ,∵OC 是半径,OC ⊥AB ,∴AD =BD =12AB =372m ,在RtADO 中,AD2+OD2=OA2,∴(372)2+(R ﹣7)2=R2, 解得R =156556≈28.故选:B .【点评】本题主要考查垂径定理的应用,涉及勾股定理,解题的关键是用勾股定理列出关于R 的方程解决问题.6.(2023•广元)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是( )A .56°B .33°C .28°D .23°【分析】先由平角定义求得∠AOD =56°,再利用圆周角定理可求∠ACD .【解答】解:∵∠BOD =124°,∴∠AOD =180°﹣124°=56°,∴∠ACD =12∠AOD =28°,【点评】本题主要考查的是圆周角定理的应用,利用平角定义求得∠AOD =56°是解决本题的关键.7.(2023•温州)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =√3,则∠CAO 的度数与BC 的长分别为( )A .10°,1B .10°,√2C .15°,1D .15°,√2【分析】由平行线的性质,圆周角定理,垂直的定义,推出∠AOB =∠COD =90°,∠CAD =∠BDA =45°,求出∠BOC =60°,得到△BOC 是等边三角形,得到BC =OB ,由等腰三角形的性质求出圆的半径长,求出∠OAD 的度数,即可得到BC 的长,∠CAO 的度数.【解答】解:∵BC ∥AD ,∴∠DBC =∠ADB ,∴AB̂=CD ̂, ∴∠AOB =∠COD ,∠CAD =∠∵DB ⊥AC ,∴∠AED =90°,∴∠CAD =∠BDA =45°,∴∠AOB =2∠ADB =90°,∠COD =2∠CAD =90°,∵∠AOD =120°,∴∠BOC =360°﹣90°﹣90°﹣120°=60°,∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB ,∵OA =OD ,∠AOD =120°,∴∠OAD =∠ODA =30°,∴AD =√3OA =√3,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.【点评】本题考查圆周角定理,平行线的性质,等边三角形的判定和性质,等腰三角形的性质,关键是由圆周角定理推出∠AOB=∠COD=90°,∠CAD=∠BDA=45°,证明△OBC是等边三角形.8.(2023•山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40°B.50°C.60°D.70°【分析】由圆周角定理可得∠BCD=90°,∠BDC=∠BAC=40°,再利用直角三角形的性质可求解.【解答】解:∵BD经过圆心O,∴∠BCD=90°,∵∠BDC=∠BAC=40°,∴∠DBC=90°﹣∠BDC=50°,故选:B.【点评】本题主要考查圆周角定理,直角三角形的性质,掌握圆周角定理是解题的关键.9.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A .5B .4C .3D .2【分析】根据垂径定理得OB ⊥AC ,在根据勾股定理得OA =√AD 2+OD 2=√82+62=10,即可求出答案.【解答】解:∵AD =CD =8,∴OB ⊥AC ,在Rt △AOD 中,OA =√AD 2+OD 2=√82+62=10,∴OB =10,∴BD =10﹣6=4.故选:B .【点评】本题考查了垂径定理和勾股定理,由垂径定理得OB ⊥AC 是解题的关键.10.(2023•枣庄)如图,在⊙O 中,弦AB ,CD 相交于点P .若∠A =48°,∠APD =80°,则∠B 的度数为( )A .32°B .42°C .48°D .52°【分析】根据外角∠APD ,求出∠C ,由同弧所对圆周角相等即可求出∠B .【解答】解:∵∠A =48°,∠APD =80°,∴∠C =80°﹣48°=32°,∵AD̂=AD ̂, ∴∠B =∠C =32°.故选:A .【点评】本题考查了圆周角的性质的应用,三角形外角的性质应用是解题关键.11.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC =()A.23°B.24°C.25°D.26°【分析】连接OC,根据圆周角定理可求解∠AOC的度数,结合垂直的定义可求解∠BOC 的度数,再利用圆周角定理可求解.【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=1∠BOC=26°,2故选:D.【点评】本题主要考查圆周角定理,掌握圆周角定理是解题的关键.12.(2023•湖北)如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC =70°,则∠ADC=()A.70°B.60°C.50°D.40°【分析】先根据外角性质得∠BAC=∠BPC﹣∠C=50°=∠BDC,,再由AB是⊙O的直径得∠ADB=90°即可求得∠ADC.【解答】解:∵∠C=20°,∠BPC=70°,∴∠BAC=∠BPC﹣∠C=50°=∠BDC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB﹣∠BDC=40°,故选:D.【点评】本题主要考查了三角形的外角性质以及直径所对的圆周角是直角,熟练掌握各知识点是解决本题的关键.13.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2√3B.3√2C.2√5D.√5【分析】根据圆周角定理及推论解答即可.【解答】解:方法一:连接CO并延长CO交⊙O于点E,连接AE,∵OA=OC,∴∠OAC=∠OCA,∵∠ACD=∠CAB,∴∠ACD=∠ACO,∴AE=AD=2,∵CE是直径,∴∠EAC=90°,在Rt△EAC中,AE=2,AC=4,∴EC=√22+42=2√5,∴⊙O 的半径为√5.方法二:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠ACD =∠CAB ,∴AD̂=BC ̂, ∴AD =BC =2,在Rt △ABC 中,AB =√AC 2+BC 2=2√5,∴圆O 的半径为√5.故选:D .【点评】本题主要考查了圆周角定理及推论,熟练掌握这些性质定理是解决本题的关键.14.(2022•贵阳)如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )A .5B .5√2C .5√3D .5√5【分析】解法一:根据题意和等边三角形的判定,可以得到BE 的长.解法二:先根据直径所对的圆周角是90°,然后根据直角三角形的性质和直角三角形中30°角所对的直角边是斜边的一半,可以求得BE的长.【解答】解:解法一:连接OE,BD=5,由已知可得,OE=OB=12∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.解法二:由题意可得,BD为⊙O的直径,∴∠BED=90°,∵∠ABC=60°,∴∠EDB=30°,∵BD=10,∴BE=5,故选:A.【点评】本题考查等边三角形的判定与性质、与圆相关的知识,解答本题的关键是明确题意,求出△OBE 的形状.15.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.【解答】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°﹣90°﹣90°﹣130°=50°,∴∠BOC=2∠BAC=100°,故选:B.【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是()A.40°B.45°C.50°D.55°【分析】根据直径所对的圆周角是直角得到∠ABC=90°,进而求出∠CAB,根据圆周角定理解答即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,∵∠ACB=40°,∴∠CAB=90°﹣40°=50°,由圆周角定理得:∠BPC=∠CAB=50°,故选:C.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是直角是解题的关键.17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F ̂上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()是劣弧DEA.115°B.118°C.120°D.125°【分析】根据圆的内接四边形对角互补及等边△ABC的每一个内角是60°,求出∠EFD=120°.【解答】解:四边形EFDA是⊙O内接四边形,∴∠EFD+∠A=180°,∵等边△ABC的顶点A在⊙O上,∴∠A=60°,∴∠EFD=120°,故选:C.【点评】本题考查了圆内接四边形的性质、等边三角形的性质,掌握两个性质定理的应用是解题关键.18.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD 的面积为()A.36√3B.24√3C.18√3D.72√3【分析】根据AB=12,BE=3,求出OE=3,OC=6,并利用勾股定理求出EC,根据垂径定理求出CD,即可求出四边形的面积.【解答】解:如图,连接OC,∵AB=12,BE=3,∴OB=OC=6,OE=3,∵AB⊥CD,在Rt△COE中,EC=√OC2−OE2=√36−9=3√3,∴CD=2CE=6√3,∴四边形ACBD的面积=12AB⋅CD=12×12×6√3=36√3.故选:A.【点评】本题考查了垂径定理,解题的关键是熟练运用定理.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.19.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8/分C.1.2厘米/分D.1.4厘米/分【分析】连接OA,过点O作OD⊥AB于D,由垂径定理求出AD的长,再由勾股定理求出OD的长,然后计算出太阳在海平线以下部分的高度,即可求解.【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=12AB=8(厘米),∵OA=10厘米,∴OD=√OA2−AD2=√102−82=6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.【点评】本题考查的是垂径定理的运用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.52C.3D.√10【分析】当A,M,C三点共线时,线段CM的长度最小,求出此时CM的长度即可.【解答】解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A为圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=√32+42=5,AM=AB=3,∴CM=5﹣3=2,故选:A.【点评】本题主要考查圆的性质,关键是要考虑到点M在以A为圆心,3为半径的圆上.21.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【分析】由圆内接四边形的性质得∠D度数为60°,再由∠APC为△PCD的外角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.22.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°【分析】根据圆内接四边形的性质得到∠BAD+∠BCD=180°,根据圆周角定理得到∠BOD=2∠BAD,根据菱形的性质得到∠BOD=∠BCD,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BAD+∠BCD =180°,由圆周角定理得:∠BOD =2∠BAD ,∵四边形OBCD 为菱形,∴∠BOD =∠BCD ,∴∠BAD+2∠BAD =180°,解得:∠BAD =60°,故选:B .【点评】本题考查的是圆内接四边形的性质、圆周角定理、菱形的性质,掌握圆内接四边形的对角互补是解题的关键.23.(2021•眉山)如图,在以AB 为直径的⊙O 中,点C 为圆上的一点,BĈ=3AC ̂,弦CD ⊥AB 于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则∠CBF 的度数为( )A .18°B .21°C .22.5°D .30°【分析】由圆周角定理可求∠ACB =90°,由弧的关系得出角的关系,进而可求∠ABC =22.5°,∠CAB =67.5CAH =∠ACE =22.5°,即可求解.【解答】解:∵AB 是直径,∴∠ACB =90°,∴∠ABC+∠CAB =90°,∵BĈ=3AC ̂, ∴∠CAB =3∠ABC ,∴∠ABC =22.5°,∠CAB =67.5°,∵CD ⊥AB ,∴∠ACE =22.5°,∵点H 是AG 的中点,∠ACB =90°,∴AH =CH =HG ,∴∠CAH =∠ACE =22.5°,∵∠CAF =∠CBF ,∴∠CBF =22.5°,故选:C .【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB 的度数是本题的关键.二.填空题(共25小题)24.(2023•长沙)如图,点A ,B ,C 在半径为2的⊙O 上,∠ACB =60°,OD ⊥AB ,垂足为E ,交⊙O 于点D ,连接OA ,则OE 的长度为 .【分析】连接OB ,利用圆周角定理及垂径定理易得∠AOD =60°,则∠OAE =30°,结合已知条件,利用直角三角形中30°角对的直角边等于斜边的一半即可求得答案.【解答】解:如图,连接OB ,∵∠ACB =60°,∴∠AOB =2∠ACB =120°,∵OD ⊥AB ,∴AD̂=BD ̂,∠OEA =90°, ∴∠AOD =∠BOD =12∠AOB =60°,∴∠OAE =90°﹣60°=30°,∴OE =12OA =12×2=1,故答案为:1.【点评】本题考查圆与直角三角形性质的综合应用,结合已知条件求得∠AOD =60°是解题的关键.25.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=°.【分析】先根据直径所对的圆周角是直角可得∠ACB=90°,再利用圆周角定理可得∠ADC=∠ABC=20°,然后利用直角三角形的两个锐角互余可得∠BAC=70°,从而利用角平分线的定义进行计算,即可解答.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ADC=20°,∴∠ADC=∠ABC=20°,∴∠BAC=90°﹣∠ABC=70°,∵AD平分∠BAC,∠BAC=35°,∴∠BAD=12故答案为:35.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.26.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为寸.【分析】连接OA ,设⊙O 的半径是r 寸,由垂径定理得到AE =12AB =5寸,由勾股定理得到r2=(r ﹣1)2+52,求出r ,即可得到圆的直径长.【解答】解:连接OA ,设⊙O 的半径是r 寸,∵直径CD ⊥AB ,∴AE =12AB =12×10=5寸,∵CE =1寸,∴OE =(r ﹣1)寸,∵OA2=OE2+AE2,∴r2=(r ﹣1)2+52,∴r =13,∴直径CD 的长度为2r =26寸.故答案为:26.【点评】本题考查垂径定理的应用,勾股定理的应用,关键是连接OA 构造直角三角形,应用垂径定理,勾股定理列出关于圆半径的方程.27.(2023•郴州)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器 台.【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半,得该圆周角所对的弧所对的圆心角是110°,则共需安装360°÷110°=3311≈4台.【解答】解:∵∠P=55°,∴∠P所对弧所对的圆心角是110°,,∵360°÷110°=3311∴最少需要在圆形边缘上共安装这样的监视器4台.故答案为:4.【点评】此题考查了要圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意把实际问题转化为数学问题,能够把数学和生活联系起来.28.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.【分析】由圆内接四边形的性质:圆内接四边形的对角互补,即可得到答案.【解答】解:∵四边形ABCD内接于圆O,∴∠B+∠D=180°,∵∠D=100°,∴∠B=80°.故答案为:80°.【点评】本题考查圆内接四边形的性质,关键是掌握圆内接四边形的性质.29.(2023•南充)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【分析】根据垂径定理得OM⊥AC,根据圆周角定理得∠C=90°,根据勾股定理得AB=√122+52=13,BC=2.5,OD∥BC,所以OD⊥AC,MD=OM﹣OD=6.5﹣2.5=4.根据三角形中位线定理得OD=12【解答】解:∵点M是弧AC的中点,∴OM⊥AC,∵AB是⊙O的直径,∴∠C=90°,∵AC=12,BC=5,∴AB=√122+52=13,∴OM=6.5,∵点D是弦AC的中点,∴OD=1BC=2.5,OD∥BC,2∴OD⊥AC,∴O、D、M三点共线,∴MD=OM﹣OD=6.5﹣2.5=4.故答案为:4.【点评】本题考查了垂径定理,圆周角定理,勾股定理,三角形中位线定理,熟练掌握和运用这些定理是解题的关键.30.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC 的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB =90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.【点评】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.31.(2022•上海)如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为 .(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB ,过点O 作OD ⊥AB 于D ,∵OD ⊥AB ,OD 过圆心,AB 是弦,∴AD =BD =12AB =12(AC+BC )=12×(11+21)=16, ∴CD =BC ﹣BD =21﹣16=5,在Rt △COD 中,OD2=OC2﹣CD2=132﹣52=144,在Rt △BOD 中,OB2=OD2+BD2=144+256=400,∴S ⊙O =π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB =12cm ,BC =5cm ,则圆形镜面的半径为 .【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),所以圆形镜面的半径为13cm,2cm.故答案为:132【点评】本题考查了圆周角定理和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.33.(2022•阿坝州)如图,点A,B C在⊙O上,若∠ACB=30°,则∠AOB的大小为.【分析】根据圆周角定理即可得出答案.∠AOB,∠ACB=30°,【解答】解:∵∠ACB=12∴∠AOB=2∠ACB=2×30°=60°.故答案为:60°.【点评】本题主要考查了圆周角定理,熟练掌握圆周角定理是解题的关键.34.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O ̂所对的圆周角,则∠APD的度数是.于点D.若∠APD是AD【分析】由垂径定理得出AD̂=BD ̂,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =12∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴AD̂=BD ̂, ∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =12∠AOB =60°,∴∠APD =12∠AOD =12×60°=30°,故答案为:30°.【点评】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理,35.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为 厘米.【分析】根据题意,弦AB 长20厘米,弓形高CD 为2厘米,根据勾股定理和垂径定理可以求得圆的半径.【解答】解:如图,点O 是圆形玻璃镜面的圆心,连接OC ,则点C ,点D ,点O 三点共线,由题意可得:OC ⊥AB ,AC =12AB =10(厘米),设镜面半径为x 厘米,由题意可得:x2=102+(x ﹣2)2,∴x =26,∴镜面半径为26厘米,故答案为:26.【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,由勾股定理可求解.36.(2022•黄石)如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是 .【分析】根据已知,列出关于α,β的方程组,可解得α,β的度数,即可求出答案.【解答】解:根据题意得:{αβ=0.6α+=360°,解得{α=135°β=225°, ∴β﹣α=225°﹣135°=90°,故答案为:90°.【点评】本题考查圆心角,解题的关键是根据周角为360°和已知,列出方程组.37.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为 cm (玻璃瓶厚度忽略不计).【分析】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=1AD2=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解答】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),AD=6(cm),由垂径定理得:AM=DM=12在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.38.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是.【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=2√3,所以A(﹣2√3,0),B (0,2),然后利用线段的中点坐标公式得到D点坐标.【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∵∠ABO=60°,AB=2,∴OB=12∴OA=√3OB=2√3,∴A(﹣2√3,0),B(0,2),∴D点坐标为(−√3,1).故答案为(−√3,1).【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的90°的圆周角所对的弦是直径.也考查了坐标与图形性质.39.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC=30°,则⊙O 的半径为cm.【分析】连接OC,证明△AOC是等边三角形,可得结论.【解答】解:如图,连接OC.∵∠AOC=2∠ADC,∠ADC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=5(cm),∴⊙O的半径为5cm.故答案为:5.【点评】本题考查圆周角定理,等边三角形的判定和性质等知识,解题的关键是证明△AOC是等边三角形.40.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B 在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).【分析】(Ⅰ)利用勾股定理求解即可.(Ⅱ)取BC与网格线的交点D,连接OD延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC 交BE的延长线于F,连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC=√22+12=√5.故答案为:√5.(Ⅱ)如图,点P即为所求.故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE 交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BFA的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△FAP≌△BAC,则点P即为所求.【点评】本题考查圆周角定理,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.41.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为.【分析】延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小.【解答】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.∵CD⊥OB,∴∠DCB=90°,∵∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO,∴CDAO =BCBO,∴CD4=36,∴CD=2,在Rt△CDE中,DE=√CD2+CE2=√22+62=2√10,∴PC+PD的最小值为2√10.故答案为:2√10.【点评】本题考查圆周角定理,垂径定理,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.42.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是CD̂的中点,则∠ABE=.【分析】由∠ABC=90°,可得CD是⊙O的直径,由点B是CD̂的中点以及三角形的内角和,可得∠BDC=∠BCD=45°,利用三角形的内角和求出∠ACB,再根据角的和差关系求出∠DCE,由圆周角定理可得∠ABE =∠DCE得出答案.【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是CD̂的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【点评】本题考查圆周角定理,弦、弧、圆心角之间的关系以及三角形内角和定理,掌握圆周角定理和推论是正确计算的前提.43.(2021•成都)如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .【分析】设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,先求出A 、C 坐标,得到OA 、OC 长度,可得∠CAO =30°,Rt △AOD 中求出AD 长度,从而根据垂径定理可得答案.【解答】解:设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,如图:在y =√33x +2√33中,令x =0得y =2√33, ∴C(0,2√33),OC =2√33, 在y =√33x +2√33中令y =0得√33x +2√33=0,解得x =﹣2,∴A(﹣2,0),OA =2,Rt △AOC 中,tan ∠CAO =OC OA =2√332=√33,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×√3=√3,2∵OD⊥AB,∴AD=BD=√3,∴AB=2√3,故答案为:2√3.得到【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=OCOA∠CAO=30°.44.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.【点评】本题考查圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.45.(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC 的长为.【分析】连接OA,由AB⊥CD,设OC=5x,OM=3x,根据CD=10可得OC=5,OM=3,根据垂径定理得到AM=4,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解答】解:连接OA,∵OM:OC=3:5,设OC=5x,OM=3x,则OD=OC=5x,∵CD=10,∴OM=3,OA=OC=5,∵AB⊥CD,AB,∴AM=BM=12在Rt△OAM中,OA=5,AM=√OA2−OM2=√52−32=4,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=√AM2+CM2=√42+82=4√5;当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=√AM2+MC2=√42+22=2√5.综上所述,AC的长为4√5或2√5.故答案为:4√5或2√5.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.46.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB =6.4cm,很快求得圆形瓦片所在圆的半径为cm.【分析】先根据垂径定理的推论得到CD 过圆心,AD =BD =3.2cm ,设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,利用勾股定理得到(R ﹣1.6)2+3.22=R2,然后解方程即可.【解答】解:∵C 点是AB̂的中点,CD ⊥AB , ∴CD 过圆心,AD =BD =12AB =12×6.4=3.2(cm ),设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,在Rt △OAD 中,(R ﹣1.6)2+3.22=R2,解得R =4(cm ),所以圆形瓦片所在圆的半径为4cm .故答案为4.【点评】本题考查了垂径定理的应用:利用垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.47.(2021•德阳)在锐角三角形ABC 中,∠A =30°,BC =2,设BC 边上的高为h ,则h 的取值范围是 .【分析】如图,BC 为⊙O 的弦,OB =OC =2,证明△OBC 为等边三角形得到∠BOC =60°,则根据圆周角定理得到∠BAC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形,易得CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,根据垂径定理得到AH ⊥BC ,所以BH =CH =1,OH =√3,则AH =2+√3,然后写出h 的范围.【解答】解:如图,BC 为⊙O 的弦,OB =OC =2,∵BC =2,∴OB =OC =BC ,∴△OBC 为等边三角形,∴∠BOC =60°,∴∠BAC =12∠BOC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,∴当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形, 在Rt △BCD 中,∵∠D =∠BAC =30°,∴CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大, 延长AO 交BC 于H ,如图,∵A 点为DÊ的中点, ∴AB̂=AC ̂, ∴AH ⊥BC ,∴BH =CH =1,∴OH =√3BH =√3,∴AH =OA+OH =2+√3,∴h 的范围为2√3<h ≤2+√3.故答案为2√3<h ≤2+√3.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(π取3.14,√3取1.73)。
2024年中考数学真题汇编专题22 圆的相关性质+答案详解
2024年中考数学真题汇编专题22 圆的相关性质+答案详解(试题部分)一、单选题1.(2024·湖南·中考真题)如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A .60︒B .75︒C .90︒D .135︒2.(2024·甘肃临夏·中考真题)如图,AB 是O 的直径,35E ∠=︒,则BOD ∠=( )A .80︒B .100︒C .120︒D .110︒3.(2024·江苏连云港·中考真题)如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A .倾斜直线B .抛物线C .圆弧D .水平直线4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为( )A .50cmB .35cmC .25cmD .20cm5.(2024·内蒙古赤峰·中考真题)如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是( )A .61︒B .63︒C .65︒D .67︒6.(2024·湖北·中考真题)AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A .40︒B .25︒C .20︒D .15︒7.(2024·四川宜宾·中考真题)如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于( )A .30︒B .45︒C .60︒D .90︒8.(2024·四川广元·中考真题)如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于( )A .64︒B .60︒C .54︒D .52︒9.(2024·云南·中考真题)如图,CD 是O 的直径,点A 、B 在O 上.若AC BC =,36AOC ∠=,则D ∠=( )A .9B .18C .36oD .4510.(2024·黑龙江绥化·中考真题)下列叙述正确的是( )A .顺次连接平行四边形各边中点一定能得到一个矩形B .平分弦的直径垂直于弦CD .相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等11.(2024·广东广州·中考真题)如图,O 中,弦AB 的长为点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定12.(2024·黑龙江牡丹江·中考真题)如图,四边形ABCD 是O 的内接四边形,AB 是O 的直径,若20BEC ∠=︒,则ADC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒13.(2024·湖北武汉·中考真题)如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是( )A B C D二、填空题14.(2024·四川南充·中考真题)如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.15.(2024·北京·中考真题)如图,O 的直径AB 平分弦CD (不是直径).若35D ∠=︒,则C ∠= ︒16.(2024·江苏苏州·中考真题)如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .17.(2024·黑龙江大兴安岭地·中考真题)如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠ ︒.18.(2024·四川眉山·中考真题)如图,ABC 内接于O ,点O 在AB 上,AD 平分BAC ∠交O 于D ,连接BD .若10AB =,BD =BC 的长为 .19.(2024·陕西·中考真题)如图,BC 是O 的弦,连接OB ,OC ,A ∠是BC 所对的圆周角,则A ∠与OBC ∠的和的度数是 .20.(2024·黑龙江牡丹江·中考真题)如图,在O 中,直径AB CD ⊥于点E ,6,1CD BE ==,则弦AC 的长为 .21.(2024·江西·中考真题)如图,AB 是O 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ⊥,将DBE 沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为 .22.(2024·河南·中考真题)如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .三、解答题23.(2024·四川甘孜·中考真题)如图,AB 为⊙O 的弦,C 为AB 的中点,过点C 作CD AB ∥,交OB 的延长线于点D .连接OA OC ,.(1)求证:CD 是⊙O 的切线;(2)若32OA BD ==,,求OCD 的面积.24.(2024·内蒙古包头·中考真题)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)25.(2024·安徽·中考真题)如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.26.(2024·四川眉山·中考真题)如图,BE 是O 的直径,点A 在O 上,点C 在BE 的延长线上,EAC ABC ∠=∠,AD 平分BAE ∠交O 于点D ,连结DE .(1)求证:CA 是O 的切线;(2)当8,4AC CE ==时,求DE27.(2024·江苏扬州·中考真题)如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长. 28.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈).29.(2024·江西·中考真题)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求AC 的长.30.(2024·广东深圳·中考真题)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径.31.(2024·四川广元·中考真题)如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.32.(2024·内蒙古呼伦贝尔·中考真题)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=OBD 的面积.33.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD −与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD −与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示)34.(2024·浙江·中考真题)如图,在圆内接四边形ABCD 中,AD AC ADC BAD <∠<∠,,延长AD 至点E ,使AE AC =,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60AFE ∠=︒,CD 为直径,求ABD ∠的度数.(2)求证:①EF BC ∥;②EF BD =.2024年中考数学真题汇编专题22 圆的相关性质+答案详解(答案详解)一、单选题1.(2024·湖南·中考真题)如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A .60︒B .75︒C .90︒D .135︒ 45A ∠=BOC ∴∠故选:C .2.(2024·甘肃临夏·中考真题)如图,AB 是O 的直径,35E ∠=︒,则BOD ∠=( )A .80︒B .100︒C .120︒D .110︒【答案】D 【分析】本题考查圆周角定理,关键是由圆周角定理推出2AOD E ∠=∠.由圆周角定理得到270AOD E ∠=∠=︒,由邻补角的性质求出18070110BOD ∠=︒−︒=°.【详解】解:35E ∠=︒,270AOD E ∴∠=∠=︒,18070110BOD ︒∴∠=−︒=︒.故选:D .3.(2024·江苏连云港·中考真题)如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A .倾斜直线B .抛物线C .圆弧D .水平直线【答案】C 【分析】本题考查动点的移动轨迹,根据题意,易得重物移动的路径为一段圆弧.【详解】解:在移动的过程中木棒的长度始终不变,故点A 的运动轨迹是以O 为圆心,OA 为半径的一段圆弧,故选:C .4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为( )A .50cmB .35cmC .25cmD .20cm【答案】C 【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出BD 的长;设圆心为O ,连接OB ,在Rt OBD △中,可用半径OB 表示出OD 的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【详解】解:∵CD 是线段AB 的垂直平分线,∴直线CD 经过圆心,设圆心为O ,连接OB .Rt 根据勾股定理得:222OD BD OB +=,即:)2221020OB OB −+=,解得:25OB =;5.(2024·内蒙古赤峰·中考真题)如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是( )A .61︒B .63︒C .65︒D .67︒6.(2024·湖北·中考真题)AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A .40︒B .25︒C .20︒D .15︒7.(2024·四川宜宾·中考真题)如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于( )A .30︒B .45︒C .60︒D .90︒【答案】A 【分析】本题考查了直径所对的圆周角为直角,同弧或等弧所对的圆周角相等.根据直径所对的圆周角为直角得到90ACB ∠=︒,同弧或等弧所对的圆周角相等得到60CDB A ∠=∠=︒,进一步计算即可解答.【详解】解:AB 是O 的直径,90ACB ∴∠=︒,60CDB ∠=︒,60A CDB ∴∠=∠=︒,9030ABC A ∴∠=︒−∠=︒,故选:A .8.(2024·四川广元·中考真题)如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于( )A .64︒B .60︒C .54︒D .52︒ 【详解】解:ABC ∠是圆周角,与圆心角12AOC ∠=又四边形ABCD 是O 的内接四边形,180ADC =︒,又180CDE ADC ∠+∠=︒,64CDE ∴∠=∠︒,故选:A .9.(2024·云南·中考真题)如图,CD 是O 的直径,点A 、B 在O 上.若AC BC =,36AOC ∠=,则D ∠=( )A .9B .18C .36oD .4510.(2024·黑龙江绥化·中考真题)下列叙述正确的是( )A .顺次连接平行四边形各边中点一定能得到一个矩形B .平分弦的直径垂直于弦C .物体在灯泡发出的光照射下形成的影子是中心投影D .相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A. 顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B. 平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C. 物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D. 在同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11.(2024·广东广州·中考真题)如图,O 中,弦AB 的长为点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定 ,再结合特殊角的正弦值,求出O 的OC 为半径,12AD ∴=ABC =∠AOC ∴∠=在ADO △sin AOD ∠sin AD OA ∴=,即O 的半径为5OP =>∴点P 在O 外,故选:C .12.(2024·黑龙江牡丹江·中考真题)如图,四边形ABCD 是O 的内接四边形,AB 是O 的直径,若20BEC ∠=︒,则ADC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒ 【答案】B 【分析】此题考查了圆周角定理、圆内接四边形的性质,连接AC ,由AB 是O 的直径得到90ACB ∠=︒,根据圆周角定理得到20CAB BEC ∠=∠=︒,得到9070ABC BAC ∠=︒−∠=︒,再由圆内接四边形对角互补得到答案.【详解】解:如图,连接AC ,∵AB 是O 的直径,∴90ACB ∠=︒,∵20BEC ∠=︒,∴20CAB BEC ∠=∠=︒∴9070ABC BAC ∠=︒−∠=︒∵四边形ABCD 是O 的内接四边形,∴180110ADC ABC ∠=︒−∠=︒,故选:B13.(2024·湖北武汉·中考真题)如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是( )A B C 2 D 并延长交O 于点F ()SAS ADC EBC ≌,再利用圆周角定理得到函数即可求解.【详解】解:延长AB 并延长交O 于点F∵四边形ABCD 内接于O ,∴ADC ABC ABC CBE ∠+∠=∠+∠∴ADC CBE ∠=∠∵45BAC CAD ∠=∠=︒︒,DAB ∠是O 的直径,90DCB =︒DCB 是等腰直角三角形,BCAD∴()SAS ADC EBC ≌ACD ECB ∠=∠,AC 2AB AD +=2AB BE AE +==又∵90DCB ∠=︒二、填空题14.(2024·四川南充·中考真题)如图,AB是O的直径,位于AB两侧的点C,D均在O上,30∠=︒,BOC ∠=度.则ADC是O的直径,位于均在O上,∠BOC=︒,15075︒;15.(2024·北京·中考真题)如图,O的直径AB平分弦CD(不是直径).若35∠=︒,则C∠=D︒【答案】55【分析】本题考查了垂径定理的推论,圆周角定理,直角三角形的性质,熟练掌握知识点是解题的关键.先由垂径定理得到AB CD ⊥,由BC BC =得到35A D ∠=∠=︒,故903555C ︒︒∠=−=︒.【详解】解:∵直径AB 平分弦CD ,∴AB CD ⊥,∵BC BC =,∴35A D ∠=∠=︒,∴903555C ︒︒∠=−=︒,故答案为:55.16.(2024·江苏苏州·中考真题)如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴180BOC ∠=︒−∠117.(2024·黑龙江大兴安岭地·中考真题)如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠ ︒.【答案】65【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒−︒=︒,故答案为:65.18.(2024·四川眉山·中考真题)如图,ABC 内接于O ,点O 在AB 上,AD 平分BAC ∠交O 于D ,连接BD .若10AB =,BD =BC 的长为 .可证明(ASA ABD AED ≌BCE ∽△,得到BE AB 【详解】解:延长AC ,BD AB 是O 的直径,90ADB ADE ∴∠=∠=︒,∠AD 平分BAD ∴∠=又∵AD =∴(ASA ABD AED ≌25BD DE ∴==,45BE =,10AB =,25BD =,AD ∴=DAC ∠=又∵BAD ∠∴BAD ∠ADB ∠=ABD BEC ∴∽,BE BC AB AD∴=, 451045BC ∴=, 8BC ∴=,19.(2024·陕西·中考真题)如图,BC 是O 的弦,连接OB ,OC ,A ∠是BC 所对的圆周角,则A ∠与OBC ∠的和的度数是 .【答案】90︒/90度【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得2BOC A ∠=∠,结合三角形内角和定理,可证明2180A OBC OCB ∠+∠+∠=︒,再根据等腰三角形的性质可知OBC OCB ∠=∠,由此即得答案.【详解】A ∠是BC 所对的圆周角,BOC ∠是BC 所对的圆心角,2BOC A ∴∠=∠,180BOC OBC OCB ∠+∠+∠=︒,2180A OBC OCB ∴∠+∠+∠=︒,OB OC =,OBC OCB ∴∠=∠,2180A OBC OBC ∴∠+∠+∠=︒,22180A OBC ∴∠+∠=︒,90A OBC ∴∠+∠=︒.故答案为:90︒.20.(2024·黑龙江牡丹江·中考真题)如图,在O 中,直径AB CD ⊥于点E ,6,1CD BE ==,则弦AC 的长为 .,设O 的半径为Rt OED 中,由勾股定9=,在Rt AEC 中,由勾股定理即可求解.设O的半径为Rt OED中,由勾股定理得:r,解得:=5==5,OA OE=+AE OA OERt AEC中,由勾股定理得:故答案为:321.(2024·江西·中考真题)如图,AB是O的直径,2⊥,AB=,点C在线段AB上运动,过点C的弦DE AB 将DBE沿DE翻折交直线AB于点F,当DE的长为正整数时,线段FB的长为.【详解】解:AB为直径,的长为正整数时,时,即DE为直径,∵22.(2024·河南·中考真题)如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .与C在ABC 内部时,与C 相切于点在ABC AE 最小,分别画出图形,求出结果即可.90=︒,CA 9045︒=︒,在平面内旋转,与C 相切于点在ABC 内部时,则CD AE ⊥,∴90ADC CDE ∠=∠=︒,∴22231AD AC CD =−=−∵AC AC =,∴45CED ABC ==︒∠∠,∵90CDE ∠=︒,∴CDE 为等腰直角三角形,DE CD =AE AD =AE 的最大值为AE 与C 相切于点在ABC 外部时,则CD AE ⊥,∴90CDE ∠=︒,∴222231AD AC CD =−=−=∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =︒−=︒∠∠∴18045CED CEA =︒−=︒∠∠,∵90CDE ∠=︒,∴CDE 为等腰直角三角形,DE CD =AE AD =AE 的最小值为故答案为:三、解答题23.(2024·四川甘孜·中考真题)如图,AB 为⊙O 的弦,C 为AB 的中点,过点C 作CD AB ∥,交OB 的延长线于点D .连接OA OC ,.(1)求证:CD 是⊙O 的切线;(2)若32OA BD ==,,求OCD 的面积.24.(2024·内蒙古包头·中考真题)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答) Rt OCE 中,利用勾股定理求解即可;,利用垂径定理等可得出BF =Rt Rt CEO OFB ≌,得出,然后利用平行线的判定即可得证;法二:连接AD ,证明CEO ADB ∽,得出ABD ∠,然后利用平行线的判定即可得证【详解】(1)解∶∵OC OB =,()11802OBC OCB BOC ∠=∠=︒−∠, 2BOC BCE ∠=∠,)90BCE BCE ∠=︒−∠即O 的半径为2)证明:法一:过∴12BF BD =, ∵2BD OE =∴OE BF =,又OC OB =,OEC ∠=∠()Rt Rt HL CEO OFB ≌,COE OBF =∠,BD OC ∥;法二:连接AD , ∵AB 是直径,∴90ADB ∠=︒,∴22AD AB BD =−=∴1OC CE OE ===,∴CEO ADB ∽,COE ABD ∠=∠,BD OC ∥.【点睛】本题考查了垂径定理,相似三角形的判定与性质,等腰三角形的性质,三角形的内角和定理,全等三角形的判定与性质等知识,明确题意,灵活运用所学知识解题是解题的关键.25.(2024·安徽·中考真题)如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.在ABC中.AB OA==2=AC ABAC的长为26.(2024·四川眉山·中考真题)如图,BE是O的直径,点A在O上,点C在BE的延长线上,EAC ABC ∠=∠,AD 平分BAE ∠交O 于点D ,连结DE .(1)求证:CA 是O 的切线;(2)当8,4AC CE ==时,求DE 的长. BE 是O 的直径,OA OB =ABC ∴∠EAC ∠=CAE ∴∠=CAE ∴∠+OAC ∴∠OA 是O 的半径,是O 的切线;)解:EAC ∠=ABC EAC ∽△,CE AC, 4, ,AD 平分BAD \?∴BD DE =BD DE ∴=BE 是O 的直径,90BDE ∴∠=︒,22DE BD ∴==27.(2024·江苏扬州·中考真题)如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长. 【答案】(1)作图见详解的值,在直角BCM 中运用勾股定理即可求解.()1Rt BCM Rt BB M HL ≌,1CM B M =,Rt AMW 中,53WM ==AM CM =−是直径,90ACB =︒,Rt ABC 中,2x =(负值舍去)36x ==,Rt BCM 中,【点睛】本题主要考查尺规作角等于已知角,掌握以上知识的综合运用是解题的关键.28.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈). Rt AHP 中,利用正切的定义求出1)证明:如图,连接Rt AHP 中,AH PH, tan606︒=⨯,APH APB −∠29.(2024·江西·中考真题)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求AC 的长. 【答案】(1)见解析(2)2π【分析】本题考查了直径所对的圆周角为直角,等边三角形的判定和性质,弧长公式,熟知相关性质和计算公式是解题的关键.(1)根据直径所对的圆周角为直角结合已知条件,可得30CAB ∠=︒,即可得90ABD??,进而可证得结论;(2)连接OC ,证明OBC △为等边三角形,求得120AOC ∠=︒,利用弧长公式即可解答.【详解】(1)证明:AB 是半圆O 的直径,90ACB ∴∠=︒, 60D ABC ∠=∠=︒,9030CAB ABC ∴∠=︒−∠=︒,18090ABD CAB D ∴∠=︒−∠−∠=︒,BD ∴是半圆O 的切线;(2)解:如图,连接OC ,,60OC OB CBA =∠=︒,OCB ∴为等边三角形,COB ∴∠=180AOC ∴∠=120360AC l ∴=30.(2024·广东深圳·中考真题)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径. 的长,设O 的半径为OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,为O 的切线,BE ,为O 的直径,90ADC =︒,∴四边形BHDE 为矩形,BE ; )由(1)知四边形设O 的半径为Rt AOH △解得:3r =即:O 的半径为31.(2024·四川广元·中考真题)如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.DE CFDE CF为O的切线.)过点C作CHACB为等腰直角三角形,42,AH=22【点睛】本题考查了切线的判定,圆周角定理,正切,勾股定理等知识以及等腰三角形的性质等知识,问题难度不大,正确作出合理的辅助线,是解答本题的关键.32.(2024·内蒙古呼伦贝尔·中考真题)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=OBD 的面积.是O 的半径;是O 的切线;)解:∵C ∠=132CD =DE ,180BDO =︒−∠33.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD −与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD −与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示) )根据题意得出ABC 是等边三角形,则CE =,设BD ,证明(AAS AFB CDB ≌①当D 在BC 上时,在AD 上截取证明CAB DEB ∽,ABE V AB ⊥于点F ,得出2AB BC =进而即可得出结论;②当D AG ,证明CAB DAG ∽,CAD BAG ∽,同①可得AB =∴ABC 是等边三角形,则∵O 是ABC 的外接圆,AD 是BAC ∠的角平分线,则AD BC ⊥∵四边形ACDB 是圆内接四边形,120CDB ∠=︒DBC =∠=在Rt BDE △中,∴cos30BE BD =︒⋅=∴3BC =,∵AD 是直径,则ABD ?∵AB AB =∴60ADB ACB ∠=∠=∴DBF 是等边三角形,∴BF BD =,则BFD ∠∴120AFB ∠=︒∵四边形ACDB CDB ∠=∴ABC 是等边三角形,则在,AFB CDB 中AFB CDB BAF BCD AB CB ∠=∠∠=∠= ∴(AAS AFB CDB ≌AF CD =,AD BD AD DF −=−AD BD CD −=;3)解:①如图所示,当在AD 上截取DE BD =∵AB AB =∴ACB ADB ??又∵,CA CB DE DB ==∴CAB DEB ∽,则∠AB BC EB BD =即AB BC =又∵ABC EBD ∠=∠ABE CBD ∠=∠ABE CBD V V ∽Rt BCF 中,sin 2BC α⋅=∴2sin2AB BC α=⋅ ∴2sin 2AD BD CD α−=,即②当D 在AB 上时,如图所示,延长∵四边形ACDB 是圆内接四边形,∴180GDA ACB ∠=∠=又∵,CA CB DG DA ==∴CAB DAG ∽,则∴AC AB AD AG =即AC AB =又∵CAB DAG ∠=∠CAD BAG ∠=∠∴CAD BAG ∽CD AC BG AB=, BG BD DG BD =+=同①可得2sin AB AC =⋅CD AC ==34.(2024·浙江·中考真题)如图,在圆内接四边形ABCD 中,AD AC ADC BAD <∠<∠,,延长AD 至点E ,使AE AC =,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60AFE ∠=︒,CD 为直径,求ABD ∠的度数.(2)求证:①EF BC ∥;②EF BD =. 可证明ADG AEF ∽,CDA △60AFE =︒,∽,,ADG AEF,=∠,ABD ACDBGD,∽,∵ADG AEFAD GD=,AE EFAD AE=,GD EFAC AE=,BD EF=,AE AC。
专题24.1圆的有关性质(测试)(解析版)
专题 24.1 圆的相关性质(测试)一、单项选择题1.以下各角中,是圆心角的是()A.B.C.D.【答案】 D【分析】极点在圆心,两边和圆订交的角是圆心角,选项 D 中,是圆心角,应选 D.2.一个周长是 l 的半圆,它的半径是()A .l B.2l C.l 2 D.l 1【答案】 C【分析】半圆的周长为半径的倍加上半径的 2 倍,因此一个周长是l 的半圆,它的半径是l 2 ,因此选 C. 3.如图, AB, AC 分别是⊙ O 的直径和弦,OD AC 于点D,连结BD,BC,且 AB 10, AC8 ,则BD 的长为()A.25B.4C.213D.【答案】 C【分析】∵ AB 为直径,∴ACB 90 ,∴BC AB 2 AC 2 10 2 82 6,∵ OD AC ,∴ CD AD 14 ,AC2.在 Rt CBD 中,BD42 62 2 13应选 C.4.如图,AB是O 的弦, OC AB 交O 于点 C ,点D是O 上一点,ADC 30 ,则BOC 的度数为().A . 30°B. 40°C.50°D. 60°【答案】 D【分析】解:如图,∵ADC 30 ,∴AOC 2 ADC 60 .∵ AB是O的弦, OC AB交O于点 C,∴.AC BC∴AOC BOC 60 .应选: D..5.如图,有一圆形展厅,在其圆形边沿上的点 A 处安装了一台监督器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边沿上共安装这样的监督器()台.A.3B. 4C.5D.6【分析】设需要安装n( n 是正整数)台相同的监控器,由题意,得:65°×2×n≥360°,解得 n≥36,∴起码要安装 3 台这样的监控器,才能监控整个展厅.应选:A.136.如图,一条公路的转弯处是一段圆弧,点 O 是这段弧所在圆的圆心,AB 40m ,点 C 是AB的中点,且 CD 10m,则这段弯路所在圆的半径为()A .25m B.24m C.30m D.60m【答案】 A【分析】解:OC AB,AD DB20m ,在 Rt AOD 中,OA2 OD 2 AD2,设半径为 r 得:r2 r2202,10解得: r25m ,这段弯路的半径为25m应选: A.7.若AB和CD的度数相等,则以下命题中正确的选项是()A.AB = CDB.AB和CD的长度相等C.AB所对的弦和CD 所对的弦相等D.AB所对的圆心角与CD 所对的圆心角相等【答案】 D【分析】如图,AB 与CD的度数相等,A、依据度数相等,不可以推出弧相等,故本选项错误;B、依据度数相等,不可以推出两弧的长度相等,故本选项错误;C、依据度数相等,不可以推出所对应的弦相等,故本选项错误;D、依据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;应选 D.8.如图, C、D 为半圆上三均分点,则以下说法:①AD =CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD = OC;④△ AOD 沿 OD 翻折与△COD 重合.正确的有()A.4 个B.3个C.2 个D.1 个【答案】 A【分析】∵ C、D 为半圆上三均分点,∴ ???,故①正确,AD CD BC∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD = CD = OC,∠ AOD= ∠ DOC= ∠ BOC=60°,故②③正确,∵OA=OD=OC=OB ,∴△ AOD ≌△ COD ≌△ COB ,且都是等边三角形,∴△ AOD 沿 OD 翻折与△COD 重合.故④正确,∴正确的说法有:①②③④共 4 个,应选 A.9.以下说法:①优弧必定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点能够作无数条弦;⑤经过圆内必定点能够作无数条直径.A.1 个B.2个C.3 个D.4 个【答案】 C【分析】解:在同圆或等圆中,优弧必定比劣弧长,因此①错误;面积相等的两个圆半径相等,则它们是等圆,因此②正确;能完整重合的弧是等弧,因此③错误;经过圆内一个定点能够作无数条弦,因此④正确;经过圆内必定点能够作无数条直径或一条直径,因此⑤错误.应选: C.10.如下图,AB 是半圆 O 的直径。
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。
圆的有关性质(共46题)(解析版)--2023年中考数学真题分项汇编
圆的有关性质(46题)一、单选题1(2023·四川自贡·统考中考真题)如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,连接BD ,∠DCA =41°,则∠ABC 的度数是()A.41°B.45°C.49°D.59°【答案】C 【分析】由CD 是⊙O 的直径,得出∠DBC =90°,进而根据同弧所对的圆周角相等,得出∠ABD =∠ACD =41°,进而即可求解.【详解】解:∵CD 是⊙O 的直径,∴∠DBC =90°,∵AD =AD,∴∠ABD =∠ACD =41°,∴∠ABC =∠DBC -∠DBA =90°-41°=49°,故选:C .【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.2(2023·四川凉山·统考中考真题)如图,在⊙O 中,OA ⊥BC ,∠ADB =30°,BC =23,则OC =()A.1B.2C.23D.4【答案】B【分析】连接OB ,由圆周角定理得∠AOB =60°,由OA ⊥BC 得,∠COE =∠BOE =60°,CE =BE =3,在Rt △OCE 中,由OC =CE sin60°,计算即可得到答案.【详解】解:连接OB ,如图所示,,∵∠ADB =30°,∴∠AOB =2∠ADB =2×30°=60°,∵OA ⊥BC ,∴∠COE =∠BOE =60°,CE =BE =12BC =12×23=3,在Rt △OCE 中,∠COE =60°,CE =3,∴OC =CE sin60°=332=2,故选:B .【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.3(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB .“会圆术”给出AB 的弧长l 的近似值计算公式:l =AB +MN 2OA .当OA =4,∠AOB =60°时,则l 的值为()A.11-23B.11-43C.8-23D.8-43【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB ,得ON ⊥AB ,∴点M ,N ,O 三点共线,∵OA =4,∠AOB =60°,∴△OAB 是等边三角形,∴OA =AB =4,∠OAN =60°,ON =OA sin60°=23,∴OA =AB =4,∠OAN =60°,ON =OA sin60°=23∴l =AB +MN 2OA=4+4-23 24=11-43.故选:B .【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.4(2023·四川宜宾·统考中考真题)如图,已知点A 、B 、C 在⊙O 上,C 为AB的中点.若∠BAC =35°,则∠AOB 等于()A.140°B.120°C.110°D.70°【答案】A【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:∵点A 、B 、C 在⊙O 上,C 为AB的中点,∴BC =AC ,∴∠BOC =∠AOC =12∠AOB ,∵∠BAC =35°,根据圆周角定理可知∠BOC =2∠BAC =70°,∴∠AOB =2∠BOC =140°,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.5(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于⊙O ,连接OC ,OD ,则∠BAE -∠COD =()A.60°B.54°C.48°D.36°【答案】D【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵∠BAE =180°-360°5,∠COD =360°5,∴∠BAE -∠COD =180°-360°5-360°5=36°,故选:D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.6(2023·江苏连云港·统考中考真题)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形【答案】B 【分析】根据扇形的定义,即可求解.扇形,是圆的一部分,由两个半径和和一段弧围成.【详解】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .【点睛】本题考查了扇形的定义,熟练掌握扇形的定义是解题的关键.7(2023·云南·统考中考真题)如图,AB 是⊙O 的直径,C 是⊙O 上一点.若∠BOC =66°,则∠A =()A.66°B.33°C.24°D.30°【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵BC =BC,∠BOC =66°,∴∠A =12∠BOC =33°,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.8(2023·新疆·统考中考真题)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B【分析】根据圆周角定理求得∠AOB =60°,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB =AB ,∠ACB =30°,∴∠AOB =60°,∴S =60360π×62=6π.故选:B .【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.9(2023·浙江温州·统考中考真题)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =3,则∠CAO 的度数与BC 的长分别为()A.10°,1B.10°,2C.15°,1D.15°,2【答案】C【分析】过点O 作OE ⊥AD 于点E ,由题意易得∠CAD =∠ADB =45°=∠CBD =∠BCA ,然后可得∠OAD =∠ODA =30°,∠ABD =∠ACD =12∠AOD =60°,AE =12AD =32,进而可得CD =2OC =2,CF =12CD =22,最后问题可求解.【详解】解:过点O 作OE ⊥AD 于点E ,如图所示:∵BC∥AD,∴∠CBD=∠ADB,∵∠CBD=∠CAD,∴∠CAD=∠ADB,∵AC⊥BD,∴∠AFD=90°,∴∠CAD=∠ADB=45°=∠CBD=∠BCA,∵∠AOD=120°,OA=OD,AD=3,∴∠OAD=∠ODA=30°,∠ABD=∠ACD=12∠AOD=60°,AE=12AD=32,∴∠CAO=∠CAD-∠OAD=15°,OA=AEcos30°=1=OC=OD,∠BCD=∠BCA+∠ACD=105°,∴∠COD=2∠CAD=90°,∠CDB=180°-∠BCD-∠CBD=30°,∴CD=2OC=2,CF=12CD=22,∴BC=2CF=1;故选:C.【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.10(2023·浙江台州·统考中考真题)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为( ).A.2B.2C.4+22D.4-22【答案】D【分析】设正方形四个顶点分别为A、B、C、D,连接OA并延长,交⊙O于点E,由题意可得,EA的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.【详解】解:设正方形四个顶点分别为A、B、C、D,连接OA并延长,交⊙O于点E,过点O作OF⊥AB,如下图:则EA的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:OE=AB=4,AF=OF=12AB=2由勾股定理可得:OA=OF2+AF2=22,∴AE =4-22,故选:D .【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.11(2023·山东枣庄·统考中考真题)如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A =48°,∠APD =80°,则∠B 的度数为()A.32°B.42°C.48°D.52°【答案】A【分析】根据圆周角定理,可以得到∠D 的度数,再根据三角形外角的性质,可以求出∠B 的度数.【详解】解:∵∠A =∠D ,∠A =48°,∴∠D =48°,∵∠APD =80°,∠APD =∠B +∠D ,∴∠B =∠APD -∠D =80°-48°=32°,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出∠D 的度数.12(2023·四川内江·统考中考真题)如图,正六边形ABCDEF 内接于⊙O ,点P 在AF 上,Q 是DE 的中点,则∠CPQ 的度数为()A.30°B.36°C.45°D.60°【答案】C 【分析】先计算正六边形的中心角,再利用同圆或等圆中,等弧对的圆心角相等,圆周角定理计算即可.【详解】如图,连接OC ,OD ,OQ ,OE ,∵正六边形ABCDEF ,Q 是DE的中点,∴∠COD =∠DOE =360°6=60°,∠DOQ =∠EOQ =12∠DOE =30°,∴∠COQ =∠COD +∠DOQ =90°,∴∠CPQ =12∠COQ =45°,故选:C .【点睛】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形中心角计算,圆周角定理是解题的关键.13(2023·湖北十堰·统考中考真题)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为()A.43B.7C.8D.45【答案】B【分析】作BM⊥AC于点M,由题意可得出△AEB≌△DEC,从而可得出△EBC为等边三角形,从而得到∠GEF=60°,∠EGF=30°,再由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.【详解】解:作BM⊥AC于点M,在△AEB和△DEC中,∠A=∠DAE=ED∠AEB=∠DEC,∴△AEB≌△DEC ASA,∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠GEF=60°,BC=EC∴∠EGF=30°,∵EG=2,OF⊥AC,∠EGF=30°∴EF=12EG=1,又∵AE=ED=3,OF⊥AC∴CF=AF=AE+EF=4,∴AC=2AF=8,EC=EF+CF=5,∴BC=EC=5,∵∠BCM=60°,∴∠MBC=30°,∴CM=52,BM=BC 2-CM2=532,∴AM=AC-CM=112,∴AB=AM2+BM2=7.故选:B.【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、三角形的外接圆与外心、勾股定理等知识点,综合性较强,掌握基本图形的性质,熟练运用勾股定理是解题关键.14(2023·山西·统考中考真题)如图,四边形ABCD 内接于⊙O ,AC ,BD 为对角线,BD 经过圆心O .若∠BAC =40°,则∠DBC 的度数为()A.40°B.50°C.60°D.70°【答案】B【分析】由同弧所对圆周角相等及直角三角形的性质即可求解.【详解】解:∵BC =BC ,∴∠BDC =∠BAC =40°,∵BD 为圆的直径,∴∠BCD =90°,∴∠DBC =90°-∠BDC =50°;故选:B .【点睛】本题考查了直径所对的圆周角是直角,同圆中同弧所对的圆周角相等,直角三角形两锐角互余,掌握它们是关键.15(2023·湖北宜昌·统考中考真题)如图,OA ,OB ,OC 都是⊙O 的半径,AC ,OB 交于点D .若AD =CD =8,OD =6,则BD 的长为( ).A.5B.4C.3D.2【答案】B 【分析】根据等腰三角形的性质得出OD ⊥AC ,根据勾股定理求出OC =10,进一步可求出BD 的长.【详解】解:∵AD =CD =8,∴点D 为AC 的中点,∵AO =CO ,∴OD ⊥AC ,由勾股定理得,OC =CD 2+OD 2=62+82=10,∴OB =10,∴BD =OB -OD =10-6=4,故选:B .【点睛】本题主要考查了等腰三角形的性质,勾股定理以及圆的有关性质,正确掌握相关性质是解答本题的关键16(2023·河北·统考中考真题)如图,点P 1~P 8是⊙O 的八等分点.若△P 1P 3P 7,四边形P 3P 4P 6P 7的周长分别为a ,b ,则下列正确的是()A.a <bB.a =bC.a >bD.a ,b 大小无法比较【答案】A【分析】连接P 1P 2,P 2P 3,依题意得P 1P 2=P 2P 3=P 3P 4=P 6P 7,P 4P 6=P 1P 7,△P 1P 3P 7的周长为a =P 1P 3+P 1P 7+P 3P 7,四边形P 3P 4P 6P 7的周长为b =P 3P 4+P 4P 6+P 6P 7+P 3P 7,故b -a =P 1P 2+P 2P 3-P 1P 3,根据△P 1P 2P 3的三边关系即可得解.【详解】连接P 1P 2,P 2P 3,∵点P 1~P 8是⊙O 的八等分点,即P 1P 2 =P 2P 3 =P 3P 4=P 4P 5 =P 5P 6 =P 6P 7 =P 7P 8=P 8P 1∴P 1P 2=P 2P 3=P 3P 4=P 6P 7,P 4P 6 =P 4P 5 +P 5P 6 =P 7P 8+P 8P 1 =P 1P 7∴P 4P 6=P 1P 7又∵△P 1P 3P 7的周长为a =P 1P 3+P 1P 7+P 3P 7,四边形P 3P 4P 6P 7的周长为b =P 3P 4+P 4P 6+P 6P 7+P 3P 7,∴b -a =P 3P 4+P 4P 6+P 6P 7+P 3P 7 -P 1P 3+P 1P 7+P 3P 7 =P 1P 2+P 1P 7+P 2P 3+P 3P 7 -P 1P 3+P 1P 7+P 3P 7 =P 1P 2+P 2P 3-P 1P 3在△P 1P 2P 3中有P 1P 2+P 2P 3>P 1P 3∴b -a =P 1P 2+P 2P 3-P 1P 3>0故选:A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.17(2023·浙江杭州·统考中考真题)如图,在⊙O 中,半径OA ,OB 互相垂直,点C 在劣弧AB 上.若∠ABC =19°,则∠BAC =()A.23°B.24°C.25°D.26°【答案】D【分析】根据OA ,OB 互相垂直可得ADB 所对的圆心角为270°,根据圆周角定理可得∠ACB =12×270°=135°,再根据三角形内角和定理即可求解.【详解】解:如图,∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴ADB 所对的圆心角为270°,∴ADB 所对的圆周角∠ACB =12×270°=135°,又∵∠ABC =19°,∴∠BAC =180°-∠ACB -∠ABC =26°,故选:D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.18(2023·湖北黄冈·统考中考真题)如图,在⊙O 中,直径AB 与弦CD 相交于点P ,连接AC ,AD ,BD ,若∠C =20°,∠BPC =70°,则∠ADC =()A.70°B.60°C.50°D.40°【答案】D【分析】先根据圆周角定理得出∠B =∠C =20°,再由三角形外角和定理可知∠BDP =∠BPC -∠B =70°-20°=50°,再根据直径所对的圆周角是直角,即∠ADB =90°,然后利用∠ADB =∠ADC +∠BDP 进而可求出∠ADC .【详解】解:∵∠C =20°,∴∠B =20°,∵∠BPC =70°,∴∠BDP =∠BPC -∠B =70°-20°=50°,又∵AB 为直径,即∠ADB =90°,∴∠ADC =∠ADB -∠BDP =90°-50°=40°,故选:D .【点睛】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.19(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28mC.35mD.40m【答案】B【分析】由题意可知,AB =37m ,CD =7m ,主桥拱半径R ,根据垂径定理,得到AD =372m ,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,AB =37m ,CD =7m ,主桥拱半径R ,∴OD =OC -CD =R -7 m ,∵OC 是半径,且OC ⊥AB ,∴AD =BD =12AB =372m ,在Rt △ADO 中,AD 2+OD 2=OA 2,∴372 2+R -7 2=R 2,解得:R =156556≈28m ,故选:B .【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.20(2023·四川·统考中考真题)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是()A.56°B.33°C.28°D.23°【答案】C 【分析】根据圆周角定理计算即可.【详解】解:∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°,故选:C .【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键.21(2023·山东聊城·统考中考真题)如图,点O 是△ABC 外接圆的圆心,点I 是△ABC 的内心,连接OB ,IA .若∠CAI =35°,则∠OBC 的度数为()A.15°B.17.5°C.20°D.25°【答案】C【分析】根据三角形内心的定义可得∠BAC 的度数,然后由圆周角定理求出∠BOC ,再根据三角形内角和定理以及等腰三角形的性质得出答案.【详解】解:连接OC ,∵点I 是△ABC 的内心,∠CAI =35°,∴∠BAC =2∠CAI =70°,∴∠BOC =2∠BAC =140°,∵OB =OC ,∴∠OBC =∠OCB =180°-∠BOC 2=180°-140°2=20°,故选:C .【点睛】本题主要考查了三角形内心的定义和圆周角定理,熟知三角形的内心是三角形三个内角平分线的交点是解题的关键.22(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.23(2023·广东·统考中考真题)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =()A.20°B.40°C.50°D.80°【答案】B【分析】根据圆周角定理可进行求解.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠BAC =50°,∴∠ABC =90°-∠BAC =40°,∵AC =AC ,∴∠D =∠ABC =40°;故选:B .【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.24(2023·河南·统考中考真题)如图,点A ,B ,C 在⊙O 上,若∠C =55°,则∠AOB 的度数为()A.95°B.100°C.105°D.110°【答案】D【分析】直接根据圆周角定理即可得.【详解】解:∵∠C =55°,∴由圆周角定理得:∠AOB =2∠C =110°,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.25(2023·全国·统考中考真题)如图,AB ,AC 是⊙O 的弦,OB ,OC 是⊙O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若∠BAC =70°,则∠BPC 的度数可能是()A.70°B.105°C.125°D.155°【答案】D【分析】根据圆周角定理得出∠BOC =2∠BAC =140°,进而根据三角形的外角的性质即可求解.【详解】解:∵BC =BC ,∠BAC =70°,∴∠BOC =2∠BAC =140°,∵∠BPC =∠BOC +∠PCO ≥140°,∴∠BPC 的度数可能是155°故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.26(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,∠BCD =105°,连接OB ,OC ,OD ,BD ,∠BOC =2∠COD .则∠CBD 的度数是()A.25°B.30°C.35°D.40°【答案】A【分析】根据圆内接四边形对角互补得出∠A =180°-105°=75°,根据圆周角定理得出∠BOD =2∠A =150°,根据已知条件得出∠COD =13∠BOD =50°,进而根据圆周角定理即可求解.【详解】解:∵圆内接四边形ABCD 中,∠BCD =105°,∴∠A =180°-105°=75°∴∠BOD =2∠A =150°∵∠BOC =2∠COD∴∠COD =13∠BOD =50°,∵CD =CD∴∠CBD =12∠COD =12×50°=25°,故选:A .【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.27(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA =OB ;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a ∥b .按以上作图顺序,若∠MNO =35°,则∠AOC =()A.35°B.30°C.25°D.20°【答案】A【分析】证明∠NMO=∠MNO=35°,可得∠AOB=2×35°=70°,结合OA=OB,C为AB的中点,可得∠AOC=∠BOC=35°.【详解】解:∵∠MNO=35°,MO=NO,∴∠NMO=∠MNO=35°,∴∠AOB=2×35°=70°,∵OA=OB,C为AB的中点,∴∠AOC=∠BOC=35°,故选A.【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.二、填空题28(2023·四川南充·统考中考真题)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【答案】4【分析】根据圆周角定理得出∠ACB=90°,再由勾股定理确定AB=13,半径为132,利用垂径定理确定OM⊥AC,且AD=CD=6,再由勾股定理求解即可.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=12,BC=5,∴AB=13,∴AO=12AB=132,∵点D,M分别是弦AC,弧AC的中点,∴OM⊥AC,且AD=CD=6,∴OD=AO2-AD2=52,∴MD=OM-OD=AO-OD=4,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.29(2023·浙江金华·统考中考真题)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为cm.【答案】5π6【分析】连接AD ,OD ,OE ,根据等腰三角形三线合一性质,圆周角定理,中位线定理,弧长公式计算即可.【详解】解:如图,连接AD ,OD ,OE ,∵AB 为直径,∴AD ⊥AB ,∵AB =AC =6cm ,∠BAC =50°,∴BD =CD ,∠BAD =∠CAD =12∠BAC =25°,∴∠DOE =2∠BAD =50°,OD =12AB =12AC =3cm ,∴弧DE 的长为50×π×3180=5π6cm ,故答案为:5π6cm .【点睛】本题考查了等腰三角形三线合一性质,中位线定理,弧长公式,熟练掌握三线合一性质,弧长公式,圆周角定理是解题的关键.30(2023·四川广安·统考中考真题)如图,△ABC 内接于⊙O ,圆的半径为7,∠BAC =60°,则弦BC 的长度为.【答案】73【分析】连接OB ,OC ,过点O 作OD ⊥BC 于点D ,先根据圆周角定理可得∠BOC =2∠BAC =120°,再根据等腰三角形的三线合一可得∠BOD =60°,BC =2BD ,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接OB ,OC ,过点O 作OD ⊥BC 于点D ,∵∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,OD ⊥BC ,∴∠BOD =12∠BOC =60°,BC =2BD ,∵圆的半径为7,∴OB =7,∴BD =OB ⋅sin60°=723,∴BC =2BD =73,故答案为:73.【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.31(2023·甘肃武威·统考中考真题)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 是⊙O 上一点,∠CDB =55°,则∠ABC =°.【答案】35【分析】由同弧所对的圆周角相等,得∠A =∠CDB =55°,再根据直径所对的圆周角为直角,得∠ACB =90°,然后由直角三角形的性质即可得出结果.【详解】解:∵∠A ,∠CDB 是BC所对的圆周角,∴∠A =∠CDB =55°,∵AB 是⊙O 的直径,∵∠ACB =90°,在Rt △ACB 中,∠ABC =90°-∠A =90°-55°=35°,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.32(2023·浙江绍兴·统考中考真题)如图,四边形ABCD 内接于圆O ,若∠D =100°,则∠B 的度数是.【答案】80°【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B+∠D=180°,∵∠D=100°,∴∠B=180°-∠D=80°.故答案为:80°.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.33(2023·山东烟台·统考中考真题)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为.【答案】52.5°【分析】方法一∶如图:连接OA,OB,OC,OD,AD,AB,由题意可得:OA=OB=OC=OD,∠AOB=50°-25°=25°,然后再根据等腰三角形的性质求得∠OAB=65°、∠OAD=25°,最后根据角的和差即可解答.方法二∶连接OB,OD,由题意可得:∠BAD=105°,然后根据圆周角定理即可求解.【详解】方法一∶解:如图:连接OA,OB,OC,OD,AD,AB,由题意可得:OA=OB=OC=OD,∠AOB=50°-25°=25°,∠AOD=155°-25°=130°,∴∠OAB=12180°-∠AOB=77.5°,∠OAD=12180°-∠AOB=25°,∴∠BAD=∠OAB-∠OAD=52.5°.故答案为52.5°.方法二∶解∶连接OB,OD,由题意可得:∠BAD=155°-50°=105°,根据圆周角定理,知∠BAD=12∠BOD=12×105°=52.5°.故答案为:52.5°.【点睛】本题主要考查了角的度量、圆周角定理等知识点,掌握圆周角的度数等于它所对弧上的圆心角度数的一半是解答本题的关键.34(2023·湖南·统考中考真题)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是个.【答案】10【分析】先求出正五边形的外角为72°,则∠1=∠2=72°,进而得出∠AOB=36°,即可求解.【详解】解:根据题意可得:∵正五边形的一个外角=360°5=72°,∴∠1=∠2=72°,∴∠AOB=180°-72°×2=36°,∴共需要正五边形的个数=360°36°=10(个),故答案为:10.【点睛】本题主要考查了圆的基本性质,正多边形的外角,解题的关键是掌握正多边形的外角的求法.35(2023·湖南永州·统考中考真题)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm.水的最深处到水面AB的距离为4cm,则水面AB的宽度为cm.【答案】16【分析】过点O作OD⊥AB于点D,交⊙O于点E,则AD=DB=12AB,依题意,得出OD=6,进而在Rt△AOD中,勾股定理即可求解.【详解】解:如图所示,过点O作OD⊥AB于点D,交⊙O于点E,则AD=DB=12 AB,∵水的最深处到水面AB 的距离为4cm ,⊙O 的半径为10cm .∴OD =10-4=6cm ,在Rt △AOD 中,AD =AO 2-OD 2=102-62=8cm∴AB =2AD =16cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.36(2023·湖北随州·统考中考真题)如图,在⊙O 中,OA ⊥BC ,∠AOB =60°,则∠ADC 的度数为.【答案】30°【分析】根据垂径定理得到AB =AC,根据圆周角定理解答即可.【详解】解:∵OA ⊥BC ,∴AB =AC ,∴∠ADC =12∠AOB =30°,故答案为:30°.【点睛】本题考查的是垂径定理和圆周角定理,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.37(2023·湖南·统考中考真题)如图所示,点A 、B 、C 是⊙O 上不同的三点,点O 在△ABC 的内部,连接BO 、CO ,并延长线段BO 交线段AC 于点D .若∠A =60°,∠OCD =40°,则∠ODC =度.【答案】80【分析】先根据圆周角定理求出∠BOC 的度数,再根据三角形的外角定理即可得出结果.【详解】解:在⊙O 中,∵∠BOC =2∠A =2×60°=120°,∴∠ODC =∠BOC -∠OCD =120°-40°=80°故答案为:80.【点睛】本题考查了圆周角定理,三角形的外角定理,熟练掌握圆周角定理是本题的关键.38(2023·湖南郴州·统考中考真题)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器台.【答案】4【分析】圆周角定理求出∠P 对应的圆心角的度数,利用360°÷圆心角的度数即可得解.【详解】解:∵∠P =55°,∴∠P 对应的圆心角的度数为110°,∵360°÷110°≈3.27,∴最少需要在圆形边缘上共安装这样的监视器4台;故答案为:4【点睛】本题考查圆周角定理,熟练掌握同弧所对的圆周角是圆心角的一半,是解题的关键.39(2023·浙江杭州·统考中考真题)如图,六边形ABCDEF 是⊙O 的内接正六边形,设正六边形ABCDEF 的面积为S 1,△ACE 的面积为S 2,则S 1S 2=.【答案】2【分析】连接OA ,OC ,OE ,首先证明出△ACE 是⊙O 的内接正三角形,然后证明出△BAC ≌△OAC ASA ,得到S △BAC =S △AFE =S △CDE ,S △OAC =S △OAE =S △OCE ,进而求解即可.【详解】如图所示,连接OA ,OC ,OE ,∵六边形ABCDEF 是⊙O 的内接正六边形,∴AC =AE =CE ,∴△ACE 是⊙O 的内接正三角形,∵∠B =120°,AB =BC ,∴∠BAC =∠BCA =12180°-∠B =30°,∵∠CAE =60°,∴∠OAC =∠OAE =30°,∴∠BAC =∠OAC =30°,同理可得,∠BCA =∠OCA =30°,又∵AC =AC ,∴△BAC ≌△OAC ASA ,∴S △BAC =S △OAC ,由圆和正六边形的性质可得,S △BAC =S △AFE =S △CDE ,由圆和正三角形的性质可得,S △OAC =S △OAE =S △OCE ,∵S 1=S △BAC +S △AFE +S △CDE +S △OAC +S △OAE +S △OCE =2S △OAC +S △OAE +S △OCE =2S 2,∴S 1S 2=2.故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.40(2023·广东深圳·统考中考真题)如图,在⊙O 中,AB 为直径,C 为圆上一点,∠BAC 的角平分线与⊙O 交于点D ,若∠ADC =20°,则∠BAD =°.【答案】35【分析】由题意易得∠ACB =90°,∠ADC =∠ABC =20°,则有∠BAC =70°,然后问题可求解.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =AC,∠ADC =20°,∴∠ADC =∠ABC =20°,∴∠BAC =70°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =35°;故答案为:35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.41(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为点E ,CE =1寸,AB =10寸,则直径CD 的长度是寸.【答案】26【分析】连接OA 构成直角三角形,先根据垂径定理,由DE 垂直AB 得到点E 为AB 的中点,由AB =6可求出AE 的长,再设出圆的半径OA 为x ,表示出OE ,根据勾股定理建立关于x 的方程,求解方程可得2x 的值,即为圆的直径.【详解】解:连接OA ,∵AB ⊥CD ,且AB =10寸,∴AE =BE =5寸,设圆O 的半径OA 的长为x ,则OC =OD =x ,∵CE =1,∴OE =x -1,在直角三角形AOE 中,根据勾股定理得:x 2-(x -1)2=52,化简得:x 2-x 2+2x -1=25,即2x =26,∴CD =26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.三、解答题42(2023·浙江金华·统考中考真题)如图,点A 在第一象限内,⊙A 与x 轴相切于点B ,与y 轴相交于点C ,D .连接AB ,过点A 作AH ⊥CD 于点H .(1)求证:四边形ABOH 为矩形.(2)已知⊙A 的半径为4,OB =7,求弦CD 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵⊙A 与x 轴相切于点B ,∴AB ⊥x 轴.∵AH ⊥CD ,HO ⊥OB ,∴∠AHO =∠HOB =∠OBA =90°,∴四边形AHOB 是矩形.(2)如图,连接AC .∵四边形AHOB 是矩形,∴AH =OB =7.在Rt △AHC 中,CH 2=AC 2-AH 2,∴CH =42-(7)2=3.∵点A 为圆心,AH ⊥CD ,∴CD =2CH =6.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.43(2023·甘肃武威·统考中考真题)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知⊙O ,A 是⊙O 上一点,只用圆规将⊙O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在⊙O 上逆时针方向顺次截取AB =BC =CD;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于⊙O 上方点E ;③以点A 为圆心,OE 长为半径作弧交⊙O 于G ,H 两点.即点A ,G ,D ,H 将⊙O 的圆周四等分.【答案】见解析。
中考数学一轮复习专题过关检测卷—圆的基本性质(含答案解析)
中考数学一轮复习专题过关检测卷—圆的基本性质(含答案解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.如图,AB是⊙O的直径,,∠COB=40°,则∠A的度数是()A.50°B.55°C.60°D.65°【答案】B【解答】解:∵AB是⊙O的直径,,∠COB=40°,∴∠AOD=∠DOC,∴,∵OA=OD,∴.故选:B.2.如图,点A、B、C在⊙O上,∠ACB=30°,则∠AOB的度数是()A.30°B.40°C.60°D.65°【答案】C【解答】解:∵∠AOB=2∠ACB,∠ACB=30°,∴∠AOB=60°,故选:C.3.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58°,那么∠ADC的度数为()A.32°B.29°C.58°D.116°【答案】B【解答】解:∵弦BC⊥OA,∴=,∴∠ADC=∠AOB=×58°=29°.故选:B.4.如图,四边形ABCD内接于⊙O,它的一个外角∠CBE=70°,则∠ADC的度数为()A.110°B.70°C.140°D.160°【答案】B【解答】解:∵∠ADC+∠ABC=180°,∠ABC+∠CBE=180°,∴∠ADC=∠CBE=70°.故选:B.5.如图,弦AB⊥OC,垂足为点C,连接OA,若OC=4,AB=6,则sin A等于()A.B.C.D.【答案】C【解答】解:∵弦AB⊥OC,AB=4,OC=2,∴AC=AB=3,∴OA===5,∴sin A==.故选:C.6.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O.如果弦AB=4,那么⊙O的半径长度为()A.2B.4C.2D.4【答案】B【解答】解:作OD⊥AB于D,连接OA.∵OD⊥AB,AB=4,∴AD=AB=2,由折叠得:OD=AO,设OD=x,则AO=2x,在Rt△OAD中,AD2+OD2=OA2,(2)2+x2=(2x)2,x=2,∴OA=2x=4,即⊙O的半径长度为4;故选:B.7.如图,已知AB与⊙O相切于点A,AC是⊙O的直径,连接BC交⊙O于点D,E为⊙O上一点,当∠C ED=58°时,∠B的度数是()A.32°B.64°C.29°D.58°【答案】D【解答】解:连接AD,∵AB与⊙O相切于点A,∴CA⊥AB,∴∠CAB=90°,∵∠CED=∠CAD=58°,∴∠DAB=90°﹣∠CAD=32°,∵AC是⊙O的直径,∴∠ADC=90°,∴∠B=90°﹣∠DAB=58°,故选:D.8.如图,△ABC内接于⊙O,E是的中点,连接BE,OE,AE,若∠BAC=70°,则∠OEB的度数为()A.70°B.65°C.60°D.55°【答案】D【解答】解:连接OB、OC,则∠BOC=2∠BAC=140°,∵OB=OC,∴∠OBC=∠OCB=20°,∵E是的中点,∴,∴∠EBC=∠EAC=∠EAB=∠BAC=35°,∴∠OBE=∠OBC+∠EBC=55°,∵OB=OE,∴∠OEB=∠OBE=55°,故选:D.9.如图,AB是⊙O的直径,过点A作⊙O的切线AC,连接BC,与⊙O交于点D,E是⊙O上一点,连接AE,DE.若∠C=48°,则∠AED的度数为()A.42°B.48°C.32°D.38°【答案】A【解答】解:∵AB是⊙O的直径,过点A作⊙O的切线AC,∴BA⊥AC,∴△ABC为直角三角形,∴∠B+∠C=90°,∴∠B=90°﹣∠C=90°﹣48°=42°,∴∠AED=∠B=42°.故选:A.10.如图,AB是⊙O的直径,C、D、E是⊙O上的点,若,∠E=70°,则∠ABC的度数()A.30°B.40°C.50°D.60°【答案】B【解答】解:连接DB,∵∠E=70°,∴∠A=70°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠A=90°﹣70°=20°,∵,∴∠DBC=∠DBA=20°,∴∠ABC=∠DBC+∠DBA=20°+20°=40°.故选:B.二、填空题(本题共6题,每小题2分,共12分)。
圆的有关性质初三练习题
圆的有关性质初三练习题1. 单选题:下列哪个选项是关于圆的有关性质的描述?a) 圆的面积等于πr²b) 圆的外切矩形的面积小于圆的面积c) 圆周长等于2πrd) 圆的直径等于圆的半径的两倍2. 填空题:已知圆的半径为5cm,求其直径长为______cm。
3. 判断题:若两个圆的半径相等,则它们的面积一定相等。
4. 多选题:下列哪些是圆的有关性质?a) 弧长公式:L = α/360° × 2πrb) 圆的切线与半径垂直c) 弦的长大于弧的长d) 圆心角等于弧所对的圆周角e) 圆的半径与直径满足关系式:d = 2r5. 解答题:已知圆的半径为8cm,求其面积和周长。
6. 判断题:如果两个圆的半径相等,则它们的直径也一定相等。
7. 单选题:下列哪个选项是圆的有关性质的描述?b) 弧长与圆心角的关系:L = rθc) 两条弧长相等的弧所对的圆心角一定相等d) 圆上的两点可以连成一条直线8. 填空题:确定圆心为O,半径为6cm的圆上,P点与Q点之间的弧长为12πcm,则圆心角∠POQ的度数为______。
9. 判断题:两条相交的弦一定相等。
10. 解答题:已知圆的周长为12πcm,求其半径和面积。
11. 单选题:下列哪个选项是关于两个相交圆的有关性质的描述?a) 两个相交圆一定有2个公共切线b) 两个相交圆的外切矩形的面积一定小于两个圆的面积之和c) 两个相交圆的内切矩形的面积一定大于两个圆的面积之和d) 两个相交圆的半径之和一定大于两个相交弦的长度之和12. 填空题:已知圆的周长为18πcm,则其直径长为______cm。
13. 判断题:两个相交圆的交点一定在两个圆的直径上。
14. 多选题:下列哪些是与圆的有关性质有关的计算公式?a) 圆的面积公式:S = πr²b) 圆的弧长公式:L = 2πrd) 圆心角的计算公式:α = L/re) 弧度制与角度制的换算公式:θ(度数) = θ(弧度) × 180°/π15. 解答题:已知圆的面积是16πcm²,求其半径和周长。
24.1圆的有关性质练习卷人教版数学九年级上册
人教版九年级上册《24.1圆的有关性质》同步练习卷 一、选择题 1. 下列说法中错误的是( )A .半圆是弧B .半径相等的圆是等圆C .过圆心的线段是直径D .弓形是弦及弦所对的弧组成的图形2. 在以AB=8cm 为直径的圆上,到AB 的距离为4cm 的点有( )A .无数个B .1个C .2个D .4个3. 下列命题中是真命题的有( )①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最大的弦;⑥半圆所对的弦是直径.A .3个B .4个C .5个D .6个4. 如图,BC 是半圆O 的直径,D ,E 是BC ―上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠DOE=40°,那么∠A 的度数为( )A .35°B .40°C .60°D .70°5.若⊙O所在平面内一点P到⊙O上的点的最大距离为7,最小距离为3,则此圆的半径为()A.5 B.2 C.10或4 D.5或2 二、填空题6.若四边形的四个顶点在同一个圆上,则这个四边形可能是______ .7.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 ______ .8.如图,在△ABC中,∠B=60°,∠C=70°,若AC与以AB为直径的⊙O相交于点D,则∠BOD的度数是 ______ 度.9.如图,OB、OC是⊙O的半径,A是⊙O上一点,若∠B=20°,∠C=30°,则∠BOC= ______ .10.如图,在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ,OP⊥AB,则PQ的长是 ______ .三、解答题11.如图,AC是⊙O的直径,点B在圆上(不与点A,C重合),点D在AC的延长线上,连接BD交⊙O于点E,∠AOB=3∠ADB.求证:DE= 1AC.212.如图,A、B、C为⊙O上三点,∠ACB=20〇,求∠BAO的度数.13.如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C.问:线段CE和线段BF相等吗?请说明理由.14.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.15.如图a,直线l经过⊙O的圆心O,且与⊙O交于A,B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.(1)如图b,当点P在半径OA上时,若QP=QO,求∠OCP的度数.(2)当点P在直线l上其他位置时,是否还存在∠OCP使得QP=QO?若存在,请求出∠OCP的度数;若不存在,请说明理由.。
圆的有关性质练习题
圆的有关性质练习题1、如图,AD是△ABC外接圆的直径,AD=6cm,∠DAC=∠AB C.求AC的长.2、如图已知:△DBC和等边△ABC都内接于⊙O,BC=a,∠BCD=75°.求BD的长.3、如图,半圆的直径AB=13cm,C是半圆上一点,CD⊥AB于D,并且CD=6cm.求AD的长.4、如图,圆内接△ABC的外角∠MAB的平分线交圆于E,EC=8cm.求BE的长.5、已知:如图,AD平分∠BAC,DE∥AC,且AB=a.求DE的长.6、如图,在梯形ABCD中,AD∥BC,∠BAD=135°,以A为圆心,AB为半径作⊙A 交AD,BC于E,F两7、如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=6cm,BD=2cm,BE=2.4cm.求DE的长.8、如图,⊙O的半径为40cm,CD是弦,A为的中点,弦AB交CD于F.若AF=20cm,BF=40cm,求O点到弦CD的弦心距.9、如图,四边形ABCD内接于以AD为直径的圆O,且AD=4cm,AB=CB=1cm,求CD 的长.10、已知:如图,⊙O是△ABC的外接圆,AD⊥BC于D,AE平分∠BAC交⊙O于E.求证:AE平分∠OA D.11、已知:如图,△ABC的AB边是⊙O的直径,另两边BC和AC分别交⊙O于D,E两点,DF⊥AB,交AB于F,交BE于G,交AC的延长线于H.求证:DF2=HF·GF.12、已知:如图,AB是半圆的直径,AC是一条弦,D是中点,DE⊥AB于E,交AC于F,DB交AC于G.求证:AF=FG.13、如图,AB是⊙O的弦,P是AB所对优弧上一点,直径CD⊥AB,PB交CD于E,延长AP交CD的延长线于F.求证:△EPF∽△EO A.14、已知:如图,AB,AC分别为⊙O的直径与弦,CD⊥AB于D,E为⊙O外一点,且AE=AC,BE交⊙O于F,连结ED,CF.求证:∠ACF=∠AE D.15、如图,△ABC内接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.。