齿轮箱传动轴扭矩与转速测试
齿轮传动效率及齿轮疲劳实验
齿轮传动效率及齿轮疲劳实验(附加机械功率、效率测试实验)一.实验目的1.了解封闭(闭式)齿轮实验机的结构特点和工作原理。
2.了解齿轮疲劳实验的过程,及通过实验测定齿轮疲劳曲线的方法。
3.在封闭齿轮实验机上测定齿轮的传动效率。
4.介绍机械功率、效率测定开式实验台,了解一般机械功率、效率的测试方法。
二.实验设备及工作原理用于定子的电磁力矩相平衡,故转矩传感器测得的力矩即为电动机的输出转矩T 0;电动机转速为n ,电动机输出功率为 P0=n ·T 0 / 9550 (KW)。
3. 封闭系统的加载当实验台空载时,悬挂齿轮箱的杠杆通常处于水平位置,当加上载荷W 后,对悬挂齿轮箱作用一外加力矩WL ,使悬挂齿轮箱产生一定角度的翻转,使两个齿轮箱内的两对齿轮的啮合齿面靠紧,这时在弹性扭力轴内存在一扭矩T 9(方向与外加负载力矩WL 相反),在万向节轴内同样存在一扭矩T 9'(方向同样与外加力矩WL 相反);若断开扭力轴和万向节轴,取悬挂齿轮箱为隔离体,可以看出两根轴内的扭矩之和(T 9+T 9')与外加负载力矩WL 平衡(即T 9+T 9'=WL );又因两轴内的两个扭矩(T 9和T 9')为同一个封闭环形传动链内的扭矩,故这两个扭矩相等(T 9=T 9'),即2T 9=WL , T 9=WL/2(Nm );由此可以算出该封闭系统内传递的功率为:P 9=T 9 n / 9550=WLn /19100 (KW)其中:n--电动机及封闭系统的转速(rpm );W--所加砝码的重力(N );L--加载杠杆(力臂)的长度,L= 0.3 m 。
4. 单对齿轮传动效率设封闭齿轮传动系统的总传动效率为η;封闭齿轮传动系统内传递的有用功率为P 9;封闭齿轮传动系统内的功率损耗(无用功率)等于电动机输出功率P 0,即:P 0=(P 9 /η)-P 9η=P 9 /(P 0+P 9)=T 9 /(T 0+T 9 )若忽略轴承的效率,系统总效率η包含两级齿轮的传动效率,故单级齿轮的传动效率为:9091T T T +==ηη 5. 封闭功率流方向封闭系统内功率流的方向取决于由外加力矩决定的齿轮啮合齿面间作用力的方向和由电动机转向决定的各齿轮的转向;当一个齿轮所受到的齿面作用力与其转向相反时,该齿轮为主动齿轮,而当齿轮所受到的齿面作用力与其转向相同时,则该齿轮为从动齿轮;功率流的方向从主动齿轮流向从动齿轮,并封闭成环。
掌握转速、力矩、传动功率和传动效率等机械传动性能参数测.
3.4.3 JC型转矩转速传感器的工作原理
JC型转矩转速传感器基本原理:通过弹性轴、两组磁 电信号发生器,把被测转矩、转速转换成具有相位差的两 组交流电信号,这两组交流电信号的频率相同且与轴的转 速成正比,而其相位差的变化部分又与被测转矩成正比。
1.转矩的测试
受载前:
u1 Um sinZt
u2 U m sinZ (t 0 )
0 z 0
z zK 1 M
0 :齿轮的初始偏差角。
受载后:
u1 Um sinZt
u2 U m sinZ (t )
z z 0 z
KM
0
K1 M
——两个基本点齿轮间的偏转角度。
2.转速的测试 两组交流电信号的频率相同且与齿轮的齿数 和轴的转速成正比,因此可以用来测量转速。
设转矩转速传感器信号齿轮的齿数为Z,每 秒钟转矩转速传感器输出的脉冲数为f,则转速n 为:
n f Z 60
3.传动功率的测试
(r/min)
P M
nT
1.4实验台的组成及测试原理
1.4.1实验原理
P0 机械效率η 为: Pi
式中:Pi——输入功率;Po——输出功率; 对于机械传动若设其传动转矩为T,角速度 为ω ,则对应的功率为:
2n n P T T= T 60 30
T0 n0 Ti ni
1.4.2实验台的组成
1.开放功率流式实验台
由上式可见,N值并不随轴的转速而变化。而 N0的值也可以设法把它补偿掉。因此,只要适当 选择测量时间t2,就可以使转矩积数器的计数值直 接等于被测转矩T。
2.转速测量
转速的测量是将检相脉冲经“内、外转速信号 选择回路”后与“转速控制门”的时间控制脉冲一 起送到“与门3”, “与门3”输出的脉冲直接送到转 速计数器中计数及显示。t3为进行一次转速测量所 需要的脉冲计数时间。 3.PI-100转矩转速仪前面板图
齿轮传动效率测定
验证性实验指导书实验名称:齿轮传动效率测定实验简介:齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。
齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。
为此,人们采用了许多试验方法和试验设备。
本实验是针对齿轮传动的效率进行验证性测定。
适用课程:机械设计实验目的:A了解电功率封闭式齿轮传动试验台的基本原理、结构及特点;B掌握功率流分析、效率测定的方法;C测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线;D初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。
面向专业:机械类实验项目性质:验证性(课内选做)计划学时: 2学时实验分组:4人/组实验照片:《机械设计》课程实验实验二齿轮传动效率测定齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。
齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。
为此,人们采用了许多试验方法和试验设备。
本实验是针对齿轮传动的效率进行验证性测定。
一、实验目的1. 了解电功率封闭式齿轮传动试验台的基本原理、结构及特点;2.掌握功率流分析、效率测定的方法;3.测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线;4.初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。
二、实验设备和工具1. Z-45直流电动机2台;2. ZJ型转矩转速传感器2台;3. ZD10型减速器2台;4. JXW-1型机械效率仪1台;5. TSGC-20调压器1台;6. 加载控制箱1台;7. CP-80打印机1台。
轴齿静扭极限测试-概述说明以及解释
轴齿静扭极限测试-概述说明以及解释1.引言1.1 概述轴齿静扭极限测试是一种用于评估和验证轴齿扭转能力的关键测试方法。
在机械工程领域中,轴齿静扭极限测试被广泛应用于各种工程设计中,特别是在涉及传动系统和机械装置的设计中。
轴齿静扭极限测试是通过施加静态扭矩力来评估轴齿结构的稳定性和耐久性。
在测试中,被测的轴齿结构被固定,并施加一个旋转力矩,以模拟实际工作状态下的扭转力。
通过测量轴齿结构在扭转过程中的变形和应力分布等参数,可以得出轴齿结构的静扭极限以及可能出现的破坏模式。
轴齿静扭极限测试的核心目的是确定轴齿结构的设计参数和材料选择是否满足特定的工程要求和性能指标。
通过准确的测试结果,工程师和设计人员可以评估和改善轴齿结构,以提高其扭转能力和疲劳寿命。
此外,轴齿静扭极限测试还可以作为质量控制的手段,确保制造出的轴齿产品符合设计标准和特定的应用需求。
本文将以概述轴齿静扭极限测试的定义、背景和目的为开头,接下来将详细介绍轴齿静扭极限测试的方法和步骤,以及其在工程设计中的应用和意义。
最后,通过总结和评价已有的研究成果,我们将展望轴齿静扭极限测试的发展前景和挑战,并提出对未来研究方向的展望。
通过深入研究和理解轴齿静扭极限测试,希望能为相关领域的研究人员和工程师提供一定的参考和指导,促进轴齿结构设计的进一步优化和发展。
1.2 文章结构本文主要围绕轴齿静扭极限测试展开,共分为引言、正文和结论三个部分。
引言部分(Section 1)将对轴齿静扭极限测试进行概述,介绍本文的目的和文章结构。
正文部分(Section 2)包括三个小节,分别是轴齿静扭极限测试的定义和背景、测试的方法和步骤,以及测试的应用和意义。
其中,2.1小节将详细阐述轴齿静扭极限测试的定义和相关的背景知识,2.2小节将介绍具体的测试方法和步骤,通过实验手段来评估材料或设备在静止状态下承受扭转力的极限。
而2.3小节将探讨轴齿静扭极限测试的应用领域和重要意义,例如在工程设计中的作用以及对材料研发的促进作用等。
齿轮传动测试实验
实验名称实验3 齿轮传动测试实验课程名称机械设计实验时间实验地点F302组号同组人成绩一、实验目的:1.圆柱齿轮减速器传动效率测试。
二、仪器设备:THMCY-2型齿轮与蜗杆传动效率综合分析实验装置本装置主要由实验台、圆柱齿轮减速器(速比为5)、直流调速电机、磁粉制动器及一些实验所需的仪器仪表等组成。
使学生掌握齿轮传动主要性能参数的测试方法。
实验台的主要技术参数1. 输入电源:单相三线 AC220V±10% 50Hz2. 实训台外形尺寸:750mm×600mm×1160mm3. 圆柱齿轮减速器 1台4. 直流调速电机1台:额定功率 355W,调速范围 0~1500r/min5. 直流调速器1个:PWM脉宽调速,为直流电机提供可调电源6. 恒流源1路:输出电流0~0.8A,为磁粉制动器提供工作电流7. 磁粉制动器1台:额定转矩50N·m三、实验原理简要:(请自行节选)(一)实验台电源仪表控制部分操作说明本实验台由电源仪表控制部分和机械部分两部分组成。
电源仪表控制部分包括电源总开关(即漏电保护器)、电源指示灯、一只数显转速表、一只数显激磁电流表、激磁电流调节旋钮和电机调速部分。
1. 实验前先将实验台左后侧的单相电源线插头与实验室内电源接通。
2. 实验台面板左侧的漏电保护器是整个实验台的电源总开关,打开后,红色指示灯亮,两只数显仪表可以正常显示。
3. 磁粉制动器加载电流的调节,是通过实验台面板上磁粉制动器方格内的“激磁电流调节”旋钮来调节。
旋钮慢慢的顺时针旋转,激磁电流数显表的数值会增大,磁粉制动器的加载电流增大,即减速器输出轴的负载转矩增大,实现了减速器传动负载的变化。
4. 实验台面板右边是电机调速部分,控制直流电机的转动,由“调速开关”和“电机调速”电位器组成。
按下红色“调速开关”按钮,指示灯亮,顺时针旋转“电机调速”电位器,电机会带动减速器旋转。
(二)实验台的结构特点1. 机械结构本实验台的机械部分,主要由直流电机、减速器、磁粉制动器组成。
齿轮传动系统传动轴模态仿真及振动实验测试研究
-111 -
•信息技术•
王冰•齿轮传动系统传动轴模ห้องสมุดไป่ตู้仿真及振动实验测试研究
间,经对比发现,传动轴最低固有频率已经超过最高啮合 频率,因此可以避免齿轮箱与传动轴出现共振的情况。
3传动轴振动试验
选择四级减速结构作为测试平台,图4为测试平台组 成结构。齿轮传动比等于1 : 1,保持1 200 r/min的转速, 以12 000 Hz的频率进行采样,按照逐级方式完成载荷的 加载过程,逐渐提高负载到800 Nm,使用CA-YD-186压 电传感器。利用MED对传动轴振动信号进行处理。仿真 数据如图5所示。
以及振型参数进行分析可知,传动轴发生了局部振动并存 在扭转的现象,当模态阶数增大后,获得了更明显振型。 传动轴前6阶频率介于625 ~ 1 339 Hz之间,并且最低固有 频率也大于最高啮合频率,从而避免了齿轮箱与传动轴发 生共振的问题。采用MED分解加速度振动信号,得到前 2阶IMF分量,再通过切片双谱测试减小模态混叠程度, 达到信号数据简化的效果,以上测试结果表明,可以通过 实验分析过程设计传动轴结构。
输出 T1
Z1 Z2
1-液黏装置
Z3 Z4
Z5 Z6
图1齿轮传动系统结构组成示意图
前处理 创,建项分了析}LJ^定 儿藪义环材料口添加几何LJ定义零件
模型
行为丿
后处理
分析选项定义边界
、设置
条件
图2模态分析流程
采用QT500传动轴作为测试对象,传动轴输出通过 轴承进行支撑,依次设置了 Cylindrical Support和 Displacement两种约束方式。
12 3
4
5 6 7 8 9 10
1—调速电机;2—联轴器;3—传动齿轮箱;4—转速仪;
扭矩测量说明
扭矩测量说明一、测量原理:由材料力学知,当受扭矩作用时,轴表面有最大剪应力τmax。
轴表面的单元体为纯剪应力状态,在与轴线成45 度的方向上有最大正应力σ1 和σ2,其值为|σ1|=|σ2|= τmax。
相应的变形为ε 1 和ε2,当测得应变后,便可算出τmax 及扭矩(可以使用BeeData 自带的应变扭矩计算工具,直接计算出扭矩值)。
测量时应变片沿与轴线成45°的方向粘贴(可以使用扭矩测量45 度角专用应变片)。
由于采用无线传输技术,测量节点跟随轴旋转,不再需要拆轴安装扭矩传感器。
二、粘贴应变片:正确粘贴应变片是保证扭矩准确测量的关键步骤,不合适的粘贴将引起零飘,蠕变等问题。
为了减小电流消耗,推荐使用350 欧姆或更大阻值应变片。
1. 组桥方式:推荐使用专用扭矩测量应变片(45 度角)组成全桥进行扭矩测量。
可以使用单片半桥应变片(比如BE350-5HA),上下对称沿轴向贴片,组成全桥,该贴法具有消除弯曲影响的优点。
也可以使用单片全桥应变片,该贴法具有粘贴方便的优点,但是应变片成本较高,不能消除弯曲影响。
图1 上下半桥贴法图2 单片全桥2. 粘贴应变片2.1 电阻应变片的选择:在应变片灵敏数K 相同的一批应变片中,剔除电阻丝栅有形状缺陷,片内有气泡、霉斑、锈点等缺陷的应变片。
用数字万用表的电阻档测量应变片的电阻值R,将电阻值在350 ±2Ω范围内的应变片选出待用(应变片灵敏系数由厂家标定,一般为2.00 左右)。
2.2 轴表面的处理:用锉刀和粗砂纸等工具将试件在轴上的贴片位置的油污、漆层、锈迹、电镀层除去,再用细砂纸打磨成45°交叉纹,之后用镊子夹起丙酮棉球将贴片处擦洗干净,至棉球洁白为止。
见图2-1。
打磨区图2-1 钢试件应变片粘贴处表面处理示意图测点定位:应变片必须准确地粘贴在试件的应变测点上,而且粘贴方向必须是要测量的应变方向(如果使用专用45 度角应变片,应变片沿轴向粘贴)。
齿轮箱检验测试项目
齿轮箱检验测试项目齿轮箱产品检验指导书1 适用范围适用于齿轮箱产品检验。
2 齿轮箱产品检验按照单机检验规范和要求检验,检验项目和内容如下:2.1 外观及附带资料检验2.1.1铸件不允许有明显的披缝、凹陷、飞边、胀箱等缺陷;2.1.2焊缝符合图纸要求,表面光滑平整,无裂纹、焊瘤、焊渣、飞溅;2.1.3经过喷砂(丸)处理,表面质量等级应达到Sa2级,经过手工或机械打磨,表面质量应达到St2级;2.1.4外露结合面边缘整齐、均匀,不应有明显的错位;2.1.5表面漆膜厚度,遵从技术文件要求,油漆无流挂、漏涂、污物、剥落现象;2.1.6装入沉孔的螺钉不应高于零件表面,其头部与沉孔之间不得有明显偏心;固定销、螺栓尾端应略高于零件表面;外露轴端略高于包容件的端面,内孔表面与壳体凸缘间的壁厚应均匀对称;2.1.7外露件表面不应有磕碰、锈蚀、锐角、飞边、毛刺、残漆、油污、型砂,外露的螺钉、螺母、定位销等紧固件应完整,不得有扭伤锤伤划痕,安装牢固,不应有松动现象;2.1.8电机等配套件型号、规格与要求一致,外观无损伤、碰伤、掉漆;2.1.9外型尺寸及安装孔位符合图纸要求;2.1.10附带资料齐全(关键件及部件出厂检验记录、热处理或振动时效报告、特殊材质证明、技术图纸、配套的未装零件和外购件明细)。
2.2 空运转试验试验前,检查油位,加注润滑油。
试验在无负荷状态下进行,试验条件与齿轮箱产品工况一致,试验不少于4小时,正反各2小时。
用以检验齿轮箱的运转状态、温度变化、功率消耗,以及运转动作的灵活性、平稳性、可靠性、安全性。
检验项目和内容如下:2.2.1轴承温度检测:运转开始和结束时,用红外测温仪在轴承端盖处检测轴承温度。
轴承温度及温升,应符合技术协议及相关技术文件要求,如无明确规定,可参考以下指标:室温下,滚动轴承温度不高于80℃,温升不超过40℃。
2.2.2传动噪声检测用声级计进行检测,测点位置的确定按下列原则:先估算设备尺寸,根据尺寸确定测点的位置。
减速器(齿轮)综合性能测试方法方案
减速器(齿轮)综合性能测试方案(定制)1、平台适用范围本试验台适用于齿轮减速器,特别适用于精密减速器的综合性能测试,测试内容包含但不仅限于:齿轮传动的传动效率、疲劳寿命试验、被测减速器轴承端的温升、被测减速器如传动误差、被测减速器输入输出端振本试验台的设计及各项参数的测试,符合以下标准及规范: GB/T35089-2018 机器人用精密齿轮传动装置 2、主要技术参数 (1) 测量对象:各种通用齿轮;(2) 测量型号:可测最大输出扭矩 1500Nm 的精密减速器;(3)速比:≤ 100;(4)输入轴转速范围:0-3000rpm ;(5)扭矩测量精度:±0.1% F.S;(6)传动误差/回差/背隙测量精度:±5 角秒; 3、测试项目 (1) 传动误差; (2) 回差:静态测量、动态测量;(3) 扭转刚度、背隙; (4) 启动转矩;(5) 静摩(6) 动摩(7)传动效率,包括在不同转速、不同载荷、不同温度工况下的效率;(8)负载;(9)振动、噪音、温升。
4、主机结构试验台采用卧式机构,由精密机械系统、测控系统、测量软件等部分组成。
其中主机结构如图 1 所示:图 1 平台主机结构示意图主机相关各组件安装在约 3 米长的带T 型槽铸铁平台基座上。
主机主要由驱动装置、加载装置、安装支架、基座等部分组成。
输入端由交流伺服电机驱动,可分别工作在速度模式和力矩模式。
输出端阻尼电机采用交流伺服电机,作为加载装置,并在回差静态测量时,作为驱动装置。
为了实现不同型号的精密减速器安装,设计精密安装支架,精密减速器通过连接圆盘固定在精密安装支架上,提高装夹的通用性。
被测精密减速器通过专用安装过渡工装安装在减速器支架上,其输入、输出端分别与角度编码器(高精度圆光栅)相连接。
为了消除装偏心引起的测量误差,圆光栅采用双读数头的结构。
各伺服电机、扭矩传感器、被测减速器、陪测减速器均安装在支架上,并且沿同一轴线方向安装到平台基座上。
实验四、齿轮传动效率测试实验
实验四齿轮传动效率测试实验一、实验目的齿轮传动效率测试实验是利用齿轮传动实验台的传感器技术,微机测控技术等先进测试方法测试齿轮传动效率的智能化实验。
1.测定齿轮传动效率与转速和载荷的关系;2.掌握转矩、转速、功率、效率的测量方法。
二、实验设备CXZ—II齿轮传动实验台。
三、实验设备的结构及工作原理齿轮传动效率测试实验台如图1所示:图1 齿轮传动实验台结构简图1.底座;2.电机;3.轴承支架;4.齿轮减速器;5.联轴器;6.磁粉制动器;实验台的动力来自一台直流调速电机2,电机的转轴由一对固定在底座1上的轴承支架3托起,因而电机的定子连同外壳可以绕转轴摆动。
转子的轴头通过联轴器5与齿轮减速器4的输入轴相连,直接驱动输入轴转动。
电机机壳上装有测矩杠杆,通过输入测矩传感器,可测出电机工作时的输出转矩(即齿轮减速器的输入转矩)。
被测齿轮减速器4的箱体固定在实验台底座上,传动比i=5,其动力输出轴上装有磁粉制动器6,改变制动器输入电流的大小即改变负载制动力矩的大小。
实验台面板(如图3)上装有电机转速调节旋钮以及液晶显示屏,可显示转速和加载等,电机转速、输入及输出力矩等信号通过单片机数据采集系统输入上位机数据处理后即可显示并打印出实验结果和曲线。
实验台电器控制键操作面板布置如图3示。
图3 电器控制操作面板面板布置及操作按序号说明如下:1——加载负荷电流表;2——电源开关;3——液晶显示屏;4——电机速度调节;5——操作按键区。
本实验台配有专用的实验软件,可安装在计算机上,将软件安装好后,从开始里可以找到该软件的图标,点击该可执行文件就会进入齿轮效率检测实验台主界面。
打开软件后,软件界面如下:图2 齿轮效率检测实验台主界面操作说明:A 、实测窗体有“文件(F )”、“实验项目(P )”、“负载控制(D )”、“操作(O )”、“工具(T )”、“实验分析(A )”和“帮助(H )”菜单。
(1)“文件(F )”下有“新建、打开、保存、另存为图片、打印、退出”六个子菜单,它们分别有“新建一个文件、打开一个已保存文件保存实验数据为检测软件格式。
轴承启动扭矩测试方法
轴承启动扭矩测试方法轴承是工业生产中常用的传动元件,其性能直接影响着机械设备的使用寿命和运行效率。
而轴承的启动扭矩是一个重要的指标,用于评估轴承在启动时所需要的力矩。
轴承的启动扭矩测试可以帮助制造商和用户判断轴承的质量和性能。
下面将介绍一种常用的轴承启动扭矩测试方法。
首先,选择适当的测试设备。
一般来说,启动扭矩测试需要使用测试台或特殊的测试设备。
测试设备应具备一定的精度和灵敏度,以确保测试结果的准确性。
其次,准备测试样品。
从要测试的轴承样品中选择一定数量的轴承,确保样品的代表性。
轴承样品应选取不同规格和型号的轴承,以覆盖不同的使用场景和需求。
接下来,进行测试前的准备工作。
首先,根据测试设备的要求,设置测试参数和测试环境。
测试参数包括测试速度、测试时间和测试扭矩的单位等。
测试环境方面,可保持环境温度和湿度稳定,以避免其对测试结果的影响。
然后,按照测试设备的操作步骤,将轴承样品安装在测试台上,并保证其固定牢靠。
在安装过程中,要注意对轴承的轴向力和径向力进行平衡,以确保测试结果的准确性。
在测试过程中,应按照测试设备的要求,逐步增加扭矩,直到轴承启动为止。
在增加扭矩的过程中,要记录下轴承所需的扭矩大小。
可以使用称重传感器或扭矩传感器等设备来测量扭矩的大小。
同时,还需记录下测试速度和持续时间等参数。
在测试完成后,应对测试数据进行分析和处理。
首先,根据测试数据计算轴承的启动扭矩平均值和标准差等统计指标,以评估轴承的整体质量和性能。
其次,可以对不同规格和型号的轴承进行比较,找出优质的轴承供应商或产品。
最后,根据测试结果,制定相应的改进措施和质量标准。
如果轴承的启动扭矩超出了设计或标准要求,可能需要对轴承的材料、润滑剂或加工工艺进行调整。
同时,可以将启动扭矩作为一个重要的质量标准,纳入轴承供应商的评估指标中。
总之,轴承启动扭矩测试是一个重要的测试方法,能够帮助制造商和用户评估轴承的质量和性能。
通过选择适当的测试设备,准备合适的测试样品,并按照测试设备的要求进行测试,可以得到准确的测试结果。
齿轮传动效率测定与分析
齿轮传动效率测定与分析 The pony was revised in January 2021实验2 齿轮传动效率测定与分析实验目的1.了解机械传动效率的测定原理,掌握用扭矩仪测定传动效率的方法;2.测定齿轮传动的传递功率和传动效率;3.了解封闭加载原理。
实验设备和工具1.齿轮传动效率试验台;2.测力计;3.数据处理与分析软件;4.计算机、打印机。
实验原理和方法1. 齿轮传动的效率及其测定方法齿轮传动的功率损失主要在于:(1)啮合面的摩擦损失;(2)轮齿搅动润滑油时的油阻损失;(3)轮轴支承在轴承中和轴承内的摩擦损失。
齿轮传动的效率即指一对齿轮的从动轮(轴)输出功率与主动轮(轴)输入功率之比。
对于采用滚动轴承支承的齿轮传动,满负荷时计入上述损失后,平均效率如表所示。
表齿轮传动的平均效率测定效率的方式主要有两种:开放功率流式与封闭功率流式。
前者借助一个加载装置(机械制动器、电磁测功器或磁粉制动器)来消耗齿轮传动所传递的能量。
其优点是与实际工作情况一致,简单易行,实验装置安装方便;缺点是动力消耗大,对于需作较长时间试验的场合(如疲劳试验),消耗能力尤其严重。
而后者采用输出功率反馈给输入的方式,电源只供给齿轮传动中摩擦阻力所消耗的功率,可以大大减小功耗,因此这种实验方案采用较多。
2. 封闭式试验台加载原理图表示一个加载系统,电机功率通过联轴器1传到齿轮2,带动齿轮3及同一轴上的齿轮6,齿轮6再带动齿轮5。
齿轮5的轴与齿轮2的轴之间以一只特殊联轴器和加载器相联接。
设齿轮齿数6532,z z z z ==,齿轮5的转速为5n (r/min)、扭矩为)m N (5⋅M ,则齿轮5处的功率为)kW ( 9550555n M N = 若齿轮2、5的轴不作封闭联接,则电机的功率为)kW ( 9550/5551ηη⨯==n M N N 式中η为传动系统的效率。
而当封闭加载时,在5M 不变的情况下,齿轮2、3、6、5形成的封闭系统的内力产生封闭力矩4M )m N (⋅,其封闭功率为)kW ( 9550444n M N =该功率不需全部由电机提供,此时电机提供的功率仅为)kW ( /441N N N -='η 由此可见,11N N <<',若%95≈η,则封闭式加载的功率消耗仅为开放式加载功率的1/20。
齿轮传动系统中各个零部件传递的扭矩如何测量
齿轮传动系统中各个零部件传递的扭矩如何测量题目A班级:姓名:学号:一、齿轮传动系统中各个零部件传递的扭矩如何测量?在电动执行机构中,齿轮传动系统与扭矩测量系统是执行机构两个重要组成部分。
本文将简述两种不同的齿轮传动系统以及对应的两种不同的扭矩测量方法。
1齿轮传动系统电动执行机构的动力来源是电机,一般电机的转速非常快(额定转速一般为3000rpm或1500rpm),而输出扭矩又非常小(一般介于0.5Nm~20Nm之间),所以必须借助于齿轮系统传动,利用其减速及放大扭矩的功能,一方面把输出转速降到理想速度,另一方面将较小的电机输出扭矩放大到阀门操作所需要的较大的扭矩输出。
同时,齿轮传动系统的传动特性也可用于执行机构输出扭矩的测量。
1.1蜗轮蜗杆传动不同电动执行机构中采用的齿轮传动型式各不相同,但一般都包含有蜗轮蜗杆传动系统。
蜗轮蜗杆传动系统具有很多的优点,例如单级传动比大、轮系接触面积大、承载能力强、传动平稳、特定螺旋角下可实现自锁等,然而蜗轮蜗杆传动系统因自身的结构也同时存在这较大的缺点:1)传动效率低:由于轮系接触面积大,相对滑动摩擦较大,传动效率一般仅为10~20%。
另外由于较大的滑动摩擦造成的齿面磨损也较大,轮系发热现象严重,需要较好的润滑与散热。
2)蜗杆轴向力大:蜗轮蜗杆传动相当于螺旋传动,当蜗杆转动带动蜗轮传动时,受反作用力的影响,在蜗轮转动的同时,蜗杆会受到与蜗轮转动方向相反的轴向力。
负载越大,轴向力越大。
较大的轴向力会造成蜗杆支持部件的磨损,从而使蜗杆的轴向定位产生间隙,使系统传动的精度降低,并且会产生传动震荡及噪音。
1.2行星齿轮传动为了在利用蜗轮蜗杆传动优点的同时又尽量降低其缺点的影响,执行机构可采用两级传动,常用的选择是采用行星齿轮传动+蜗轮蜗杆传动的组合型式。
行星齿轮传动的原理:行星齿轮系统由三个主要传动部件组成:太阳轮、行星轮及齿圈。
所有的行星轮一般固定在一个行星架上。
行星齿轮系统的传动有双自由度的特性,即在三个传动部件中,固定任意一个部件,另外两个就可传动与蜗杆相联。
传动效率实验
传动效率实验一、实验目的:1.把握开式功率流实验台测试齿轮传动效率的方法;2.了解开式功率流实验台的构造、传感器工作原理以及加载器的加载方法;3.了解齿轮传动工作载荷、转速对其效率的阻碍;4.了解振动、噪声和温度的测量方法,以及齿轮传动工作载荷、转速对其的阻碍。
二、实验内容:1.测定齿轮传动的效率并绘制效率曲线;2.测定齿轮传动时的振动、噪声和轴承的温升。
三、实验仪器、设备简介:实验台一:名称线路或示图中符号型号与规格数量实验室编号备注三相交流整流子电动机1型号JZS251—1转速470~14 rpm功率1~31转矩转速传感器2ZJ型额定转矩100N·m转速范畴0~4000 rpm1摆线针轮减速机3型号BW15 速比1:11功率750W1转矩转速传感器4ZJ型额定转矩1000N·m转速范畴0~4000 rpm1磁粉制动器5型号CZ—201实验台二:效率仪6 MTEM-1 1可调直流稳压、稳流电源5,型号DF1701SB/SC输出电压32V 输出电流3A1便携式红外温度计WFHX-68 1声级计HS5660A 1四、实验用详细线路图或其他示意图:图1实验台一简图图2实验台二简图图3转矩传感器工作原理图图4磁粉制动器工作原理示意图五、实验有关原理及原始运算数据,所应用的公式1.实验台的组成实验台一简图如图1 所示, 三相交流整流子电动机1 通过转矩转速传感器2与摆线针轮减速机3的输入轴相连,减速器3的输出轴再通过转矩转速传感器4与磁粉制动器5相连。
转矩转速传感器(2,4)与转矩转速测量仪5 '相配套。
实验台二由电磁调速电动机1通过转矩转速传感器2与三减速器3的输入轴相连, 减速器3的输出轴再通过转矩转速传感器4与磁粉制动器5相连。
转矩转速传感器(2,4)与效率仪6相连。
2. 实验原理交流整流子电动机(或电磁调速电动机)作为运动和动力的输入部分,其转速能够在一定范畴内调整:磁粉制动器作为加载器, 由稳流电源改变激磁电流大小,以获得不同的负载力矩:输入输出的转矩转速可由转矩转速传感器通过转矩转速仪(或效率仪)测得:如此就能够测出不同工况下齿轮箱的传动效率。
检测齿轮转速的原理是
检测齿轮转速的原理是齿轮转速检测原理是通过测量齿轮齿面上特定点的运动速度和位置信息来确定齿轮的转速。
一种常见的方法是使用传感器来测量齿轮齿面上特定点的位置信息。
传感器可以是非接触式的,如激光传感器或光电传感器,也可以是接触式的,如磁性传感器或机械开关。
传感器安装在齿轮上或与齿轮齿面接触,在齿轮旋转时产生脉冲信号。
通过测量脉冲信号的频率和数量,可以确定齿轮的转速。
例如,如果传感器每秒产生100个脉冲,并且齿轮有50个齿,那么齿轮的转速将是每分钟3000转。
另一种方法是使用光电编码器来检测齿轮的转速。
光电编码器由发光器和接收器组成,发光器发出光束,接收器接收被齿轮上的透明和不透明区域遮挡的光束。
当齿轮旋转时,透明和不透明区域的变化导致接收器接收到的光强发生变化。
通过测量光强的变化,可以确定齿轮的转速。
光电编码器精度高,适用于要求较高的齿轮转速检测。
此外,还有一种方法是使用振动传感器检测齿轮的转速。
振动传感器感知齿轮旋转时产生的振动信号,并将其转换为电信号。
通过分析振动信号的频率和幅值,可以确定齿轮的转速。
振动传感器可以应用于齿轮转速监测和故障诊断,如齿面磨损、松动、偏心等故障。
此外,还可以使用其他方法根据齿轮传动的机制和条件来确定齿轮的转速,如声音检测、加速度检测等。
这些方法都是通过测量齿轮运动的某些特征,将其转换为电信号,然后通过分析电信号来确定齿轮的转速。
总之,齿轮转速的检测原理是通过测量齿轮齿面上特定点的运动速度和位置信息来确定齿轮的转速。
传感器、光电编码器、振动传感器等不同类型的传感器和检测装置可以使用不同的原理来实现齿轮转速的检测。
这些方法在工业自动化、机械制造和故障诊断等领域具有广泛的应用价值。