离散数学课件第八章(第1讲)

合集下载

离散数学 第八章

离散数学 第八章
12
欧拉图(续)
例 图中, (1), (4)为欧拉图; (2), (5)为半欧拉图; (3),(6)既不 是欧拉图, 也不是半欧拉图. 在(3), (6)中各至少加几条边才能成为欧拉图?
13
欧拉图的判别法
定理 无向图G为欧拉图当且仅当G连通且无奇度顶点. 无向图G是半欧拉图当且仅当G连通且恰有两个奇度顶点. 定理 有向图D是欧拉图当且仅当D连通且每个顶点的入度都 等于出度. 有向图D具有欧拉通路当且仅当D连通且恰有两个奇度顶 点, 其中一个入度比出度大1, 另一个出度比入度大1, 其余 顶点的入度等于出度.
9
8.2 欧拉图
欧拉通路 欧拉回路 欧拉图 半欧拉图
10
哥尼斯堡七桥问题
欧拉图是能一笔画出的边不重复的回路.
11
欧拉图
欧拉通路: 图中行遍所有顶点且恰好经过每条边一次的通路. 欧拉回路: 图中行遍所有顶点且恰好经过每条边一次的回路. 欧拉图: 有欧拉回路的图. 半欧拉图: 有欧拉通路而无欧拉回路的图. 几点说明: 上述定义对无向图和有向图都适用. 规定平凡图为欧拉图. 欧拉通路是简单通路, 欧拉回路是简单回路. 环不影响图的欧拉性.
第8章 一些特殊的图
8.1 二部图 8.2 欧拉图 8.3 哈密顿图 8.4 平面图
1
8.1 二部图 二部图 完全二部图 匹配 极大匹配 最大匹配 匹配数 完备匹配
2
二部图
定义 设无向图 G=<V,E>, 若能将V 划分成V1 和 V2 (V1V2=V, V1V2=), 使得G中的每条边的两个端 点都一个属于V1, 另一个属于V2, 则称G为二部图, 记为<V1,V2,E>, 称V1和V2为互补顶点子集. 又若G 是简单图, 且V1中每个顶点都与V2中每个顶点相邻, 则称G为完全二部图, 记为Kr,s, 其中r=|V1|, s=|V2|. 注意: n 阶零图为二部图.

离散数学8-代数系统基础

离散数学8-代数系统基础
理学院
第八章 代数系统基础
第八章 代数系统基础
8.1 代数系统概念 8.2 半群与独异点 8.3 群的基本定义与性质 8.4 子群与陪集 8.5 循环群和置换群 8.6 环和域
2
一、基本概念
定义1: 设A是个非空集合且函数f:A*A→A,则称f为 A上的二元运算。
二元运算的两个重要特点: 一是运算封闭性,集合内任意两个元素都可以运算,运算后仍在同
主要包括运算所具有的算律和特殊元素 算律主要:结合律、交换律、分配律、吸收律和消去律 特殊元素:等幂元、幺元、零元和逆元。
9
1.结合律
定义3: 设代数系统<A,*>,对于A中任意元素a,b,c, (ab)c=a(bc),都称运算满足结合律,或是可结合的 。
实数集合上的加法和乘法满足结合律。幂集P(A)上的交、并和对称差 都满足结合律。矩阵的加法和乘法满足结合律。代数系统(Nk,+k)和 (Nk, ×k)中的+k和×k都满足结合律。
例设<A,*>是一个代数系统,其中*定义为a*b=a,证明运算是不可交 换的。
11
3.幂等律
定义5: 设代数系统<A,*>,对于A中任意元素有 x*x=x,则称运算*在A上满足幂等律。
设A为集合,<P(A), ∩>和<P(A), ∪>中的∩和换律、结合律和幂等律。
则称<A,*>是群。
如果<A,>是独异点且每个元素存在逆元,则称<A,>是群。 (R,+),(Z,+)都是群,幺元为零,x -1 = -x;(R-{0},×)是群,幺
元为1,x -1 =1/x ;<Q,>不是群,1是幺元,而0是无逆元。

离散数学 第8章 树(祝清顺版)88页PPT文档

离散数学 第8章 树(祝清顺版)88页PPT文档

e6
e5
e3
e10
e9 e11
e6
e7 e8
e10

e11
离散数学
第八章 树
2007年8月20日
生成树的存在条件
定理3 任何无向连通图G 至少存在一棵生成树.
[证] 若连通图G中无回路, 则G为自身的生成树. 若G中包含回路, 则随意地删除回路上的一条边, 而
vVdeg(vi) =2m =2(n1). 另一方面, 设T有x片树叶, 可得
2(n1)= vVdeg(vi) ≥x+2(nx) 由上式解出x≥2.
离散数学
第八章 树
2007年8月20日
例题
例2 设T为6条边的树, 其顶点度为1, 2, 3. 如果T恰有3个 度为2的顶点,那么T有多少片树叶?并画出满足要求的 非同构的无向树. [解] 设T有x片树叶, 于是结点总数为
本章将对树进行详细的讨论,主要包括:
树的基本性质和生成树,
根树、有向树中的n元树、有序树和搜索树等。
离散数学
第八章 树
2007年8月20日
Discrete Mathematics
科学出版社
第1节 树
主讲:祝清顺 教授
树的概念
定义1 连通而无简单回路的无向图称为无向树, 简称树, 常用T表示树. 在树中度数为1的结点称为树叶, 度数大于1的结点称为分支结点.
e1

e4 e2 e7 e8
e6
e5 e3Fra biblioteke10
e9 e11
e1 e4 e2 e5
e3

e9
生成树T1
离散数学
第八章 树

《离散数学》图论 (上)

《离散数学》图论 (上)
12
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。

离散数学第八章第1讲课件.ppt

离散数学第八章第1讲课件.ppt

B
C
例:
一个3阶有向图的度序列是2,2,4,入度序列是
2,0,2,出度序列是
.
定理3:在任何有向图中,所有结点的入度和等于所有结点 的出度之和。
证:因为每一条有向边必对应一个入度和出度,若一个 结点具有一个入度或出度,则必关联一条有向边,所以, 有向图中各结点入度和等于边数,各结点出度和也是等 于边数,因此,任何有向图中,入度之和等于出度和。
A
最大度,记为:△(G)=max{d(v)| vV} B
E
最小度,记为:δ(G)=min{d(v)| vV}
D
C
定理1 (握手定理) :每个图中,结点度数的总和等于边 数的两倍。即
deg(v) 2 E
vV
证:∵每条边必关联两个结点,而一条边给于关联的每 个结点的度数为1。 故上述定理成立。
例:在一次10周年同学聚会上,想统计所有人握手的 次数之和,应该如何建立该问题的图论模型?
如下图,(a)和(b)互为补图。
v1
v1
v2
v5
v4
v3 (a)
v2 v3
v5 v4 (b)
例:对于n阶简单无向图G,若其边数为m,试计算G 的补图 的边数。
(12)子图:设图G =<V,E>,如果有图G=<V,E>, 且EE,VV,则称 G 为 G 的子图。
如下图, =<V,E>及图G=<V,E>,如果存在一双射函 数g:vi→vi且e=(vi,vj)是G的一条边,当且仅当 e=(g(vi ),g(vj))是 G 的一条边,则称G与G同 构,记作G≌G。
两个图同构的充要条件是:两个图的结点和边分别存在 着一一对应的关系,且保持关联关系。

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

《离散数学》完整课件

《离散数学》完整课件

第三节 复合关系与逆关系
本节讨论关系的复合运算与逆运算极其 性质;主要考虑了下列问题:
1.关系的复合是否满足交换律、结合律、 关系的复合对于集合的并(交)是否有分 配律;
2.关系的复合运算与逆运算在关系图和 关系矩阵上的反应;
3.关系的复合运算与关系的逆运算之间 的运算规律.
返回本章首页
11 2021/6/7
|A|<|B|三条中有且仅有一条成立;
2.Bernstein定理:设A,B是两个集合,若|A|≥|B| 且|A| ≤ |B|,则集合A,B等势;
3.设A是任意集合,P(A)为A的幂集,则P(A)的基 数大于A的基数.
返回本章首页
23 2021/6/7
本章小结
本章的主要内容有:集合的等势、有限 集与无限集、可数集与不可数集、较为 常见的集合的基数等.集合的基数反映了 集合的元素的多少,它是集合的一种性 质,一种与该集合等势的集合构成的集 合族的共同性质.
返回本章首页
17 2021/6/7
第九节 复合映射与逆映射
映射的复合就是关系的复合,须注意的是 复合的次序,主要内容有:
1.映射的复合具有结合律,但不符合交换律; 2.区分了左逆与右逆;给出里左逆、右逆
与单射、满射之间的关系; 3.可逆与左、右逆之间的关系.
返回本章首页
18 2021/6/7
本章小结
1.本节首先给出了公式的蕴涵关系的三个等价定 义,及蕴涵关系具有的性质,给出了15个基本蕴 涵式;
2.把蕴涵概念推广,得到公式的逻辑结果的定义;
3.为了研究推理,还引进演绎的概念;
4.用实例说明推理方法.
返回本章首页
30 2021/6/7
第六节 形式演绎

离散数学离散数学第8章 一些特殊的图 PPT课件

离散数学离散数学第8章 一些特殊的图 PPT课件

在23岁时,他发表了他还是一个17岁的孩子时作出的“奇怪的发 现”,…即《光线系统理论》第一部分,这是一篇伟大的杰作,它对于 光学,就象拉格朗日的《分析力学》之于力学。
哈密尔顿最深刻的悲剧既不是酒精,也不是他的婚姻,而是他顽固地
相信,四元数是解决物质宇宙的数学关键。…从来没有一个伟大的数学
家这样毫无希望地错误过。
2
1
3
4
(2) 有限面与无限面:面积有限的区域称为有 限面(或内部面),否则为无限面(或外部面) 。 上图中,面4是无限面。
7/1/2020 9:05 PM
第四部分:图论(授课教师:向胜军)
24
(3) 面的次数等于面边界的边数(注意:悬挂边算2 次),记为deg(R).
(4) 平面图中面的次数之和等于边数m的两倍,即
d(u)+d(v)≥n-1 则G是半哈密尔顿图。
注意:
此定理条件显然不是必要条件,如n≥6的n边形,对于 任意不相邻的顶点u, v, d(u)+d(v)=4,4<n-1,而n边形显 然有哈密尔顿通路。
7/1/2020 9:05 PM
第四部分:图论(授课教师:向胜军)
18
哈密尔顿图的充分条件
❖ 设G是n(n≥3)阶无向简单图,若G中 任意不相邻的顶点对u,v均满足: d(u)+d(v)≥n 则G是哈密尔顿图。
a
bc
d
e
f g
h
i j
k
l
ba
d
g
e j
f
l
b
a
c
d
g
j
i
e
h
f
k
7/1/2020 9:05 PM

离散数学 第8章 图的基本概念 课件

离散数学 第8章 图的基本概念 课件

素数目等于结点vj的引入次数。即

deg(vi)=
和deg(vj)=

5.由给定简单图G的邻接矩阵A可计算出矩阵A的l次幂,
即Al。则第i行第j列上的元素alij便是G中从
结点vi到结点vj长度为l的通路的数目。
给出下面Байду номын сангаас理

定理 设A为简单图G的邻接矩阵,则Al中的i行j列元 素alij等于G中联结vi到vj的长度为l的通路的数目。
0 0 0 1 1 0 C 0 0 1 0 0 0 1 1 0 BC 1 1 0
例2
v5
v1 v2
v3
v4
0 0 A 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 P 1 0 0 0 0 0 1 0 0
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
多重图、无向图及权图
则该有向图的邻接距阵为:
则该无向图的邻接距阵为:

已知加权的简单图G=<V,E>,定义一个矩阵
A=(aij),其中:

aij=
{
ω, ω是边(vi,vj) 的权
0, vi与vj没有边相连
则称A为图G的权矩阵
例: 权图
a
5
b
4
w(ab)=5 w(aa)=0 w(ac)=12 w(bd)= ∞ w(ad)=8
8
12
20
d
c
0 5 12 8 5 0 4 A 12 4 0 20 8 20 0

离散数学第八章布尔代数

离散数学第八章布尔代数
答案4
对于一个具体的逻辑电路,我们可以使用布尔代数进行化简。首先,将电路中的逻辑门表示为相应的布尔表达式,然后利用布尔代数的性质和定理进行化简,最终得到最简的布尔表达式。
答案部分
THANKS
定理
在布尔代数中,定理是经过证明的数学命题,可以用于证明其他命题或解决特定问题。
公式与定理
逻辑推理
逻辑推理
在布尔代数中,逻辑推理是一种基于已知命题推导出新命题的推理过程。它使用逻辑规则和已知事实来得出结论。
推理规则
在逻辑推理中,常用的推理规则包括析取三段论、合取三段论、假言推理等。这些规则用于从已知事实推导出新的事实或结论。
在电路设计中的应用
计算机的内部工作原理是基于逻辑运算的。布尔代数是计算机逻辑设计的基础,用于描述计算机中的各种逻辑关系和运算。例如,计算机中的指令集、指令编码、指令执行等都涉及到布尔代数的应用。
计算机逻辑设计
在数据压缩和加密算法中,布尔代数也发挥了重要作用。通过利用布尔代数的性质和运算,可以实现高效的压缩算法和安全的加密算法。
变量
在布尔代数中,常量表示一个固定的值,通常用于表示逻辑上的“真”或“假”。
常量
变量与常量
函数
在布尔代数中,函数是一种将输入映射到输出的规则。对于每个输入,函数都有一个确定的输出。
运算
布尔代数中的运算包括逻辑与、逻辑或、逻辑非等基本运算。这些运算用于组合变量的值以产生新的输出。
常量、函数和运算符组成的数学表达式。
逻辑电路设计
逻辑函数的优化准则
逻辑函数的优化准则包括最小化使用的最小项数量、减少最大项的个数、减少最大项的复杂度等。这些准则有助于简化逻辑函数的表示和实现,提高电路的性能。
逻辑函数的优化方法

离散数学屈婉玲第八章ppt课件.ppt

离散数学屈婉玲第八章ppt课件.ppt

f g={<a1,c1>,<a2,c2>,<a3,c2>}
g:B→C 和 f g:A→C是满射的, 但 f:A→B不是满射的.
18
反函数
反函数存在的条件 (1) 任给函数F, 它的逆F 1不一定是函数, 只是一个二元关系. (2) 任给单射函数 f:A→B, 则f 1是函数, 且是从ranf 到A的双
Z: 0 1 1 2 2 3 3 …
↓ ↓↓↓↓ ↓ ↓
N: 0 1 2 3 4 5 6 …
这种对应所表示的函数是:
f:Z
N,
f
(x)
2x 2x
1
0 x0
(4) 令 f :[π/2,3π/2]→[1,1] f(x) = sinx
10
某些重要函数
定义8.7 (1)设 f:A→B, 如果存在c∈B使得对所有的 x∈A都有 f(x)=c,
射函数, 但不一定是从B到A的双射函数 (3) 对于双射函数 f:A→B, f 1:B→A是从B到A的双射函数.
定理8.4 设 f:A→B是双射的, 则f 1:B→A也是双射的. 证明思路: 先证明 f 1:B→A,即f 1是函数,且domf 1=B, ranf 1=A. 再证明f 1:B→A的双射性质.
|A|=m, |B|=n, 且m, n>0, |BA|=nm A=, 则BA=B={} A≠且B=, 则BA=A=
3
实例
例1 设A={1,2,3}, B={a,b}, 求BA.
BA={ f0, f1, … , f7}, 其中 f0 = {<1,a>,<2,a>,<3,a>} f1 = {<1,a>,<2,a>,<3,b>} f2 = {<1,a>,<2,b>,<3,a>} f3 = {<1,a>,<2,b>,<3,b>} f4 = {<1,b>,<2,a>,<3,a>} f5 = {<1,b>,<2,a>,<3,b>} f6 = {<1,b>,<2,b>,<3,a>} f7 = {<1,b>,<2,b>,<3,b>}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Deg+(A)=2, Deg-(A)=3
Deg+(B)=3, Deg-(B)=2
A
D
Deg+(C)=1, Deg-(C)=1
Deg+(D)=1, Deg-(D)=1
B
C
例:
一个3阶有向图的度序列是2,2,4,入度序列是
2,0,2,出度序列是
.
定理3:在任何有向图中,所有结点的入度和等于所有结点 的出度之和。
解:设图G有x个节点度数为2,则G的阶数为 x+1+1=x+2。 根据握手定理有: 3+5+2x=12 于是x=2,所以G的阶数为2+2=4。
定理2:在任何图中,度数为奇数的结点必定是偶数个。
例:是否存在一个无向图,其度数序列分别为: (1) 5,4,4,3,3,2,2 (2) 4,4,3,3,2,2,2,2
例:在一次10周年同学聚会上,想统计所有人握手的 次数之和,应该如何建立该问题的图论模型?
解:将每个同学分别作为一个节点,如果两个人 握过一次手就在相应的两个节点之间画一条无向 边,于是得到一个无向图。一个人握手的次数就 是这个节点与其他节点所连接的边的条数,进而 可得出所有人握手的次数之和。
例:无向图G有6条边,各有一个3度和5度节点,其 余均为2度节点,求G的阶数。
e1
a
b
e2
c
a
b
c
(a)
(b)
(10)无向完全图:简单图G =<V,E>中,若每一对结 点间都有无向边存在,则称该图为无向完全图。
定理4:n个结点的无向完全图的边数为: 1 (n 1) 2
证明:在有n个结点的无向完全图中,任意两点间都有边 连接, n个结点中任意取两点的组合为:
Cn2
1 n(n 2
(3)邻接点,孤立结点
邻接点:在一个图中,若两个结点有一条有向边或者一条 无向边关联,则这两个结点称为邻接点。
孤立结点:在一个图中不与任何结点相邻接的结点,称为 孤立结点。如下图中结点v5。
v1
v2
v5
v3
v4
(4)零图,平凡图 零图:仅由孤立结点构成的图称为零图。如图(a) 平凡图:仅由一个孤立结点构成的图称为平凡图。如图(b)
证:因为每一条有向边必对应一个入度和出度,若一个 结点具有一个入度或出度,则必关联一条有向边,所以, 有向图中各结点入度和等于边数,各结点出度和也是等 于边数,因此,任何有向图中,入度之和等于出度和。
a
d
b
c
(9)平行边,多重图,简单图 连接于同一对结点间的多条边称为是平行边。 含有平行边的任何一个图称为多重图。 不含有平行边和环的图称作简单图。
图论的应用
图论是一门应用性很强的学科。 20世纪60年代以来,它在 许多领域,如物理学、生物学、计算机科学、信息论、运 筹学以及语言学、社会科学等有着广泛的应用。
图论在计算机科学中的应用:最短通路、最小生成树、最 大匹配、中国邮递员问题和旅行售货员等问题的算法和计 算机实现。
第八章 图
§8.1 图的基本概念 §8.2 路与图的连通性 §8.3 图的矩阵表示 §8.4 赋权图及最短路径 §8.5 特殊的图
8.1 图的基本概念
离散数学所研究的图是不同于几何图形、机械图形的另一 种数学结构,不关心图中顶点的位置、边的长短和形状, 只 关心顶点与边的联结关系。
如下图(a)和(b)可以认为是同一个图形。
a
e1 b
e2 e6
e3
d
e4
e5
ad
e1
e2
b
e6 e3 e2
e6 ee5d3
c
ae4
e5
c
(a)
v4
v3 (a)
v2 v3
v5 v4 (b)
例:对于n阶简单无向图G,若其边数为m,试计算G 的补图 的边数。
(12)子图:设图G =<V,E>,如果有图G=<V,E>, 且EE,VV,则称 G 为 G 的子图。
如下图,(b)、(c)都是(a)的子图。
b
c
g
d
a
h
b
c
(2)无向图,有向图
a
d
每一条边都是无向边的图称无向图。
b
c
每一条边都是有向边的图称有向图。 a
d
b
c
例:将右图用二元组表示为: G=〈V,E〉 其中V={a,b,c,d} E={<a,b>,<b,a>,<b,d>,<d,a>,<d,d>,<c,c>} 则:G=〈V,E〉= 〈 {a,b,c,d} , {<a,b>,<b,a>,<b,d>,<d,a>,<d,d>,<c,c>} 〉
例:设无向图G有10条边,3度和4度节点各2个,其 余节点的度数均小于3,则G至少有多少个节点?在 最少节点的情况下,求出G的度数序列、最大度 和 最小度 。
(8)入度,出度:在有向图中,射入一个结点的边数称为该 结点的入度。由一个结点射出的边数称为该结点的出度。
结点的出度与入度和是该结点的度数。
A
最大度,记为:△(G)=max{d(v)| vV} B
E
最小度,记为:δ (G)=min{d(v)| vV}
D
C
定理1 (握手定理) :每个图中,结点度数的总和等于边 数的两倍。即
deg(v) 2 E
vV
证:∵每条边必关联两个结点,而一条边给于关联的每 个结点的度数为1。 故上述定理成立。
e1 b
c e4
(b)
(1)图的定义: 一个图G可用一个二元组<V(G),E(G)>表示, 其中V(G)为顶点集合, E(G)是边的集合。 讨论定义: (a) V(G) ={V1,V2,…,Vn}为有限非空集合,Vi称为顶点。 (b) E(G)={e1,…,em}为有限的边集合,ei称为边。 可用 e= <vi,vj>或e= (vi,vj) 来表示图的边。
1)
故有n个结点的无向完全图的边数为
E 1 n(n 1) 2
例:有9个结点的无向完全图K9的边数为?
(11)补图:给定一个图G,由G中所有结点和所有能使 G成为完全图的添加边组成的图,称为G 相对于完全图 的补图,或简称为G的补图。记作 G 。
如下图,(a)和(b)互为补图。
v1
v1
v2
v5
(a)
(b)
(5) 邻接边:关联于同一结点的两条边称为邻接边。 (6)自回路(环):关联于同一结点的一条边称为自
回路。 如下图,e4=<c,c>是自回路(环)。
e3 e4
(7)度数: 在图G =<V,E>中,与结点v(vV)关 联的 边数,称为该结点的度数,记作deg(v)。 约定:每个环在其对应结点上的度数增加2 。
相关文档
最新文档