高二数学期末模拟检测二(word版)
四川省成都市2014届高三上学期(高二下学期期末)摸底测试数学(理)试题 Word版含答案

四川省成都市2014届高三毕业班摸底测试数学(理)试题本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用o.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={l,2},B={2,4),则AUB=A.{1} B.{4} C.{l,4} D.{1,2,4}2.已知向量a=(λ+1,2),b=(1,-2).若a与b共线,则实数λ的值为A.3 B.2 C.-2 D.-33.若2costan3,sin cosαααα=+则的值为A.-1 B.12C.l D.24.命题“∃x∈R,x2-x+l<0”的否定是A.∀x∈R,x2一x+1≥0 B.∀x∈R,x2-x+1>0 C.∃x∈R,x2-x+l≥0 D.∃x∈R,x2-x+l>05.如图是一个几何体的三视图(单位:cm),则这个几何体的表面积是A.(cm2B.(cm2C.(cm2D.(cm26.已知直线m,n和平面α,β,使m⊥α成立的一个充分条件是A.m⊥n,n,// αB.m∥n,n⊥αC.m ⊥n,n⊂αD.m∥β,β⊥α7.已知函数1()(2)()2f x x x =--的图象与x 轴的交点分别为(a ,0)和(b ,0),则函数()xg x a b =-图象可能为8.已知122515113,5x og og y og z -=-==,则下列关系正确的是A .z<y<xB .z<x<yC .x<y<zD . y<z<x9.某企业拟生产甲、乙两种产品,已知每件甲产品的利润为3万元,每件乙产品的利润为2万元,且甲、乙两种产品都需要在A 、B 两种设备上加工,在每台设备A 、每台设备B 上加工1件甲产品所需工时分别为1h 和2h ,加工1件乙产品所需工时分别为2h 和1h ,A 设备每天使用时间不超过4h ,B 设备每天使用时间不起过5h ,则通过合理安排生产计划,该企业在一天内的最大利润是A .18万元B .12万元C .10万元D .8万元10.已知定义在R 上的偶函数g (x )满足:当x≠0时,'()0xg x <(其中'()g x 为函数g (x )的导函数);定义在R 上的奇函数()f x 满足:(2)()f x f x +=-,在区间[0,1]上为单调递增函数,且函数()y f x =在x=-5处的切线方程为y=-6.若关于x 的不等式2[()](4)g f x g a a ≥-+对[6,10]x ∈恒成立,则a 的取值范围是A .23a -≤≤B .12a -≤≤C .12a a ≤-≥或D .23a a ≤-≥或 第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.答案填在答题卡上.11.设函数()f x =lnx -2x+3,则((1))f f = 。
【数学】甘肃省师大附中2017-2018学年高二下学期期末模拟试卷(文)(word附答案解析版)

甘肃省师大附中2017-2018学年 高二下学期期末模拟试卷(文)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2430 A x x x =--≤,{}1 3 B x x =∈-<<N ,则A B =( )A .{}0,1,2B .{}1,2C .{}1,2,3D .{}2,32.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取( )件. A .24 B .18 C .12 D .63.13i1i+=-( ) A .24i -- B .24i -+ C .12i -+ D .12i --4.纹样是中国艺术宝库的瑰宝,火纹是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,已知恰有400个点落在阴影部分,据此可估计阴影部分的面积是( )A .2B .3C .10D .155.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它的离心率为( )ABC.D .26.如图,在正方体1111ABCD A B C D -中,M ,N 分别是为1BC ,1CD 的中点,则下列判断错误的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行7.已知x ,y 满足不等式组2350321000x y x y x y +-≥+-≤-≤⎧⎪⎨⎪⎩,则2x y -的最大值为( )A .6B .2C .1-D .2-8.函数()()2cos π22x f x x x =-+的部分图像可能是( )A .B .C .D .9.函数()ln 2f x x x =-的递减区间是( ) A .10,2⎛⎫ ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭和10,2⎛⎫ ⎪⎝⎭10.执行如图所示的程序框图,若输出b 的值为16,则图中判断框内①处应填( )A .0B .1C .2D .311.在ABC △中,A ,B ,C 的对边分别为a ,b ,c ,若22cos cos212A BC +-=,4sin 3sin B A =,1a b -=,则c 的值为( )A B C D .612.已知椭圆()2222:=10x y C a b a b+>>的左、右焦点为1F ,2F ,左、右顶点为M ,N ,过2F的直线l 交C 于A ,B 两点(异于M 、N ),1AF B △的周长为,且直线AM 与AN 的斜率之积为23-,则C 的方程为( ) A .22=1128x y +B .22=1124x y +C .22=132x y +D .22=13x y +第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量a ,b 满足1=a ,且()2-==a a b b ,则向量a 与b 的夹角是__________. 14.已知函数()ln f x x x =+,若函数()f x 在点()()00,P x f x 处切线与直线310x y -+=平行,则0x =__________.15.若1sin 123πα⎛⎫+= ⎪⎝⎭,则7πcos 12α⎛⎫+ ⎪⎝⎭的值为______.16.某几何体的三视图如图所示,主视图是直角三角形,侧视图是等腰三角形,俯视图是边36π,则该几何体的体积为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求数列{}n b 的前n 项和公式.18.(12分)如图,在三棱柱111ABC A B C -中,ABC △和1AA C △均是边长为2的等边三角形,平面11AA C C ⊥平面ABC ,点O 为AC 中点. (1)证明:1A O ⊥平面ABC ;(2)求三棱锥11O B BC -的体积.19.(12分)社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).(1)试求人数y 关于年份x 的回归直线方程ˆˆˆybx a =+; (2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位); (3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.参考公式:()()()1122211ˆn niii i i i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-.20.(12分)已知点01,2A y ⎛⎫- ⎪⎝⎭是抛物线21:22C x py p ⎛⎫=> ⎪⎝⎭上一点,且A 到C 的焦点的距离为58.(1)求抛物线C 的方程;(2)若P 是C 上一动点,且P 不在直线0:29l y x y =+上,l 交C 于E ,F 两点,过P 作直线垂直于x 轴且交l 于点M ,过P 作l 的垂线,垂足为N .证明:2AM EF AN=.21.(12分)已知函数()2ln f x x x ax =+-. (1)若0a >,求函数()f x 的极值点;(2)若3a ≥,函数()f x 有两个极值点1x ,2x ,且12x x <, 求证:()()123ln 24f x f x -≥-.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。
高二数学期末联考模拟试题二

高二数学期末联考模拟试题二一、填空题1. 设{}1,2M =,{}|2,x N y y x M ==∈,则M N ⋂= .2. 已知数列{}n a 是各项均为正数的等比数列,若2342,216a a a =+=,则n a 等于 .3.已知平面向量a ,b 满足||1=a ,||2=b ,且()+⊥a b a ,则a 与b 的夹角为 .4.(仅文科做)曲线e ()1xf x x =-在0x =处的切线方程为 .A .10x y --=B .10x y ++=C .210x y --=D .210x y ++=(理科做)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为 . 5.在ABC ∆中,M 是BC 的中点,3AM =,点P 在AM 上,且满足2AP PM =,则()PA PB PC ⋅+的值为 .6.函数33,0,(),0x x f x x x --<⎧=⎨≥⎩的图象与函数()ln(1)g x x =+的图象的交点个数是 .7. 已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是 .8. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C = .9. 数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为_______ 10. 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是 .11. 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(πα+的值为 ..12. 在ABC ∆中,若4BA BC ⋅=,ABC ∆的面积为2,则角B = .13. 设α、β为两个不重合的平面,m 、n 为两条不重合的直线,给出下列四个命题: ①若m ⊥n ,m ⊥α,n α,则n ∥α;②若α⊥β,α∩β=m ,n α,n ⊥m ,则n ⊥β; ③若m ⊥n ,m ∥α,n ∥β,则α⊥β;④若n α,m β,α与β相交且不垂直,则n 与m 不垂直.其中,所有真命题的序号是________.(填上所有正确命题的序号)14. 椭圆22221x y a b+=(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为_______________.二、解答题15.(本小题满分14分)设△ABC 的内角,,A B C 所对的边分别为,,a b c ,已知12,3,cos 3a b C ===. (Ⅰ)求△ABC 的面积; (Ⅱ)求sin()C A -的值.16.(本小题满分14分)(文科做)设13()ln 1,22f x a x x x =+++其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴. (Ⅰ) 求a 的值;(Ⅱ) 求函数()f x 的极值.(理科做)如图,在正四棱柱1111ABCD ABC D -中,12,1AA AB ==,点N 是BC 的中点,点M 在1CC 上,设二面角1A DN M --的大小为θ。
广西桂林市2019-2020学年高二下学期期末考试质量检测数学(理)试题 Word版含解析

桂林市2019~2020学年度下学期期末质量检测高二年级 数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个选项是符合题目要求的.1. 23A =( )A. 3B. 6C. 9D. 12【答案】B 【解析】 【分析】直接根据排列数公式计算即可得答案.【详解】解:根据排列数公式()()()121mn A n n n n m =---+得:23326A =⨯=.故选:B.【点睛】本题考查排列数公式的计算,是基础题. 2. i (1+i )=( ) A. 1i -+ B. 1i -- C. 1i + D. 1i -【答案】A 【解析】 【分析】根据复数的乘法运算得到结果.【详解】根据复数的乘法运算得到:原式i (1+i )=i-1. 故选A .【点睛】这个题目考查了复数的乘法运算,题目简单基础. 3. 函数()ln f x x =的导数是( ) A. x B.1xC. ln xD. x e【答案】B 【解析】 【分析】根据导数公式直接计算即可得答案. 【详解】解:因为()1ln 'x x=, 所以()1'f x x=. 故选:B.【点睛】本题考查导数的公式,是基础题. 4.212xdx =⎰( )A. 3B. 2C. 1D.32【答案】A 【解析】 【分析】直接利用微积分基本定理求解即可.【详解】222112|413xdx x ==-=⎰. 故选:A .【点睛】本题考查微积分基本定理的应用,考查计算能力,属于基础题. 5. 5(12)x +的展开式中的常数项为( ) A. -1 B. 1C. 92D. 93【答案】B 【解析】 【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0,求出r ,可得展开式的常数项.【详解】5(12)x +的展开式的通项为155(2)2r r r r rr T C x C x +==, 当0r =时,可得5(12)x +的展开式中的常数项为00521C =.故选:B .【点睛】本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题6. 用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时,应假设( )A. a b <B. a b ≤C. a b >D. a b ≥【答案】B 【解析】 【分析】直接利用命题的否定,写出假设即可.【详解】用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时, 假设就是命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定, 命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定是:a b . 故选:B .【点睛】本题考查反证法的定义以及命题的否定,基本知识的考查. 7. 关于函数3()f x x x =+,下列说法正确的是( ) A. 没有最小值,有最大值 B. 有最小值,没有最大值 C. 有最小值,有最大值 D. 没有最小值,也没有最大值【答案】D 【解析】 【分析】 利用()'fx 研究函数()f x 的最值.【详解】依题意()'2310f x x =+>,所以()f x 在R 上递增,没有最小值,也没有最大值.故选:D【点睛】本小题主要考查利用导数研究函数的最值,属于基础题. 8. 已知随机变量X 的分布列是则a b +=( ) A.23B.32C. 1D.34【解析】 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案.【详解】解:根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=. 故选:A.【点睛】本题考查分布列的性质,是基础题. 9. 已知随机变量ξ服从正态分布()23,N σ,且(4)0.68P ξ≤=,则(2)P ξ≤=( )A. 0.84B. 0.68C. 0.32D. 0.16【答案】C 【解析】 【分析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果. 【详解】解:根据随机变量ξ服从正态分布()23,N σ,所以密度曲线关于直线3x =对称, 由于()40.68P ξ≤=,所以()410.680.32P ξ≥=-=, 所以()20.32P ξ≤=. 故选:C.【点睛】本题考查正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10. 在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( )A 5-B.5C. 5- D.5【解析】 【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =, ∵ n BD ⊥,1 n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则()110n =-,,, ∴10cos ,5n BE n BE n BE⋅==⋅, 设直线BE 与平面1B BD 所成角为θ, 则10sin cos ,5n BE θ==,故选B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题.11. 根据上级扶贫工作要求,某单位计划从5名男干部和6名女干部中选出1名男干部和2名女干部组成一个扶贫小组,派到某村开展“精准扶贫”工作,那么不同的选法有( )A. 60种B. 70种C. 75种D. 150种【答案】C 【解析】 【分析】根据题意,先在5名男干部中任选1人,再从6名女干部中选出2人,由分步计数原理计算可得答案.【详解】根据题意,先在5名男干部中任选1人,有155C =种选法, 再从6名女干部中选出2人,有2615C =种选法,则有51575⨯=种不同的选法; 故选:C .【点睛】本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.12. 定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2xf x e <的解集为( )A. (),0-∞B. (),2-∞C. ()0,∞+D. ()2,+∞【答案】C 【解析】【详解】构造函数()()x f x g x e=,根据()()f x f x '>可知()0g x '<,得到()g x 在R 上单调递减;根据()()002f g e==,可将所求不等式转化为()()0g x g <,根据函数单调性可得到解集.【解答】令()()x f x g x e =,则()()()()()20x x x xf x e f x e f x f xg x e e ''--'==< ()g x ∴在R 上单调递减 ()02f = ()()002f g e∴== 则不等式()2xf x e >可化为()2xf x e<等价于()2g x <,即()()0g x g < 0x ∴> 即所求不等式的解集为:()0,∞+ 本题正确选项:C【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数()()xf xg x e =,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系. 二、填空题:本大题共4小题,每小题5分,共20分.13. 已知i 是虚数单位,复数2z i =+,则z =__________.【解析】 【分析】直接根据复数的模的计算公式计算即可得答案.【详解】解:根据复数模的计算公式得:z =【点睛】本题考查复数模的计算,是基础题. 14. 已知()12P B A =,3()10P AB =,则()P A =__________. 【答案】35【解析】 【分析】直接根据条件概率公式计算即可得答案. 【详解】解:根据条件概率公式()()()P AB P B A P A =和已知条件()12P B A =,3()10P AB =, 所以()()()3310152P AB P A P B A ===. 故答案为:35【点睛】本题考查条件概率公式的应用,是基础题.15. 经过圆221x y +=上一点()00,x y 的切线方程为001x x y y +=,则由此类比可知:经过椭圆22221x y a b+=上一点()00,x y 的切线方程为______. 【答案】00221x x y ya b+= 【解析】 【分析】根据圆的切线方程形式,类比推理出椭圆的切线方程.【详解】解:圆的性质中,经过圆上一点()00,M x y 的切线方程就是将圆的方程中的一个x 和y 分别用()00,M x y 的横坐标与纵坐标替换,故可得椭圆22221x y a b +=类似的性质为:过椭圆22221x y a b +=上一点()00,x y 的切线方程为00221x x y ya b+=. 故答案为:00221x x y ya b+=.【点睛】考查了类比推理的数学思想,是基础题.16. 函数()cos f x x x =-在区间[0,]π上的最大值为__________. 【答案】1π+ 【解析】 【分析】求出导函数()f x ',[0x ∈,]π,利用导数研究函数()f x 的单调性,根据单调性可得结果. 【详解】数()cos f x x x =-, ()1sin f x x '=+, [0x ∈,]π,()0f x ∴'>,当[0x ∈,]π时,函数()f x 单调递增;∴函数()f x 在区间[0,]π上的最大值为:()1f ππ=+.故答案为:1π+.【点睛】本题考查了利用导数研究函数的单调性与最值,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共6小题,共70分解答应给出文字说眀、证明过程及演算步骤.17. 在91x x ⎛⎫- ⎪⎝⎭展开式中,求: (1)含x 的项; (2)含3x 的项的系数.【答案】(1)126x ;(2)84-. 【解析】 【分析】(1)写出二项展开式的通项,令x 的指数为1,求得参数的值,代入通项可求得结果;(2)写出二项展开式的通项,令x 的指数为3,求得参数的值,进而可求得展开式中含3x 的项的系数.【详解】(1)91x x ⎛⎫- ⎪⎝⎭展开式的通项为()99219911rr r rr r r T C xC x x --+⎛⎫=-=- ⎝⋅⋅⋅⋅⎪⎭, 令921r -=,得4r =,所以含x 的项为()4491126C x x -=⋅;(2)由(1),令923r -=,得3r =,所以含3x 的项的系数为()339184C ⋅-=-.【点睛】本题考查利用二项式定理求指定项或指定项的系数,考查计算能力,属于基础题. 18. 已知函数1()ln 2f x x x ax =++在(1, (1))f 处的切线方程为2210x y --=. (1)求实数a 的值;(2)求()f x 的单调区间.【答案】(1)0a =;(2)减区间为10,e ⎛⎫ ⎪⎝⎭,增区间为1,e ⎛⎫+∞ ⎪⎝⎭. 【解析】 【分析】(1)求导得()1f x lnx a '=++,利用f '(1)1=,列出关于a 的方程,解之即可. (2)由(1)可知,()1(0)f x lnx x '=+>,令()0f x '=,则1=x e,然后根据原函数的单调性与导函数的正负性之间的联系判断即可得解.【详解】(1)1()2f x xlnx ax =++,()1f x lnx a '∴=++, ()f x 在点(1,f (1))处的切线方程为2210x y --=,f '∴(1)1=,即011a ++=,解得0a =.(2)由(1)可知,1()2f x xlnx =+,()1(0)f x lnx x '∴=+>, 当1(0,)∈x e时,()0f x '<,()f x 单调递减;当1(x e ∈,)+∞时,()0f x '>,()f x 单调递增,故()f x 的单调递减区间为1(0,)e,单调递增区间为1(e ,)+∞.【点睛】本题考查利用导数研究函数的切线方程、单调性,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题. 19. 在数列{}n a 中,已知11a =,112nn na a a +=+.(1)计算2a ,3 a ,4a ;(2)根据计算结果猜想出{}n a 的通项公式n a ,并用数学归纳法证明你的结论. 【答案】(1)213a =,315a =,417a =;(2)121n a n =-,证明见解析.【解析】 【分析】(1)利用()*11112nn na a a n N a +==∈+,,n 分别取234,,可求出234,,a a a ,并由此猜想数列{}n a 的通项公式n a 的表达式;(2)根据计算结果猜想数列{}n a 的通项公式n a 的表达式,用数学归纳法证明①当1n =时,111211a ==⨯-,猜想成立;②假设n k =成立,利用()*112n n n a a n N a +=∈+,可证得当1n k =+时猜想也成立,故可得结论.【详解】(1)∵111,(1,2,3,)12nn a a a n a+===⋅⋅⋅+, ∴1211123a a a ==+,同理可得:315a =,417a =. (2)由(1)计算结果猜想121n a n =-, 下面用数学归纳法证明: ①当1n =时,111211a ==⨯-,猜想成立,②假设当()*1n k k N=+∈时,猜想成立,即:121kak =-. 则当()*1n k k N =+∈时,111121212212(1)1121k k k a k a a k k k +-====+++-+-,所以,当1n k =+时,猜想成立. 根据①②可知猜想对任何*n N ∈都成立.【点睛】本题主要考查了以数列递推式为载体,考查了数列的通项的猜想与证明,解题的关键是利用数学归纳法证明,尤其第二步的证明.属于中档题. 20. 在四棱锥P ABCD -中,已知底面ABCD正方形,PA ⊥底面ABCD ,且2PA AD ==,E 为PD 中点.(1)求证://PB 平面ACE ; (2)求二面角A BE C --的余弦值. 【答案】(1)证明见解析;(2)105- 【解析】 【分析】(1)由中位线可知//OE BP ,结合线面平行判定即可证明//PB 平面ACE ;(2)以A 为原点构建空间直角坐标系,写出对应点的坐标并求出面ABE 、面BCE 的法向量,根据法向量夹角与二面角的关系求它们的夹角的余弦值【详解】(1)证明:连接AC 、BD ,AC BD O = ,连接EO∵在BPD △中,BO OD =,PE ED = ∴//OE BP又∵BP ⊄平面ACE ,OE ⊂平面ACE ∴//BP 平面ACE(2)由题,易知PA ,AD ,AB 两两互相垂直,2PA AD == 故可建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(2,2,0)C ,(0,1,1)E ,(2,0,0)B ,有(0,1,1)AE =,(2,0,0)AB =,(0,2,0)CB =-,(2,1,1)CE =--设(,,)m x y z =为平面ABE 的一个法向量,有020y z x +=⎧⎨=⎩令1y =-,1z =,得(0,1,1)m =-同理若(,,)n x y z =是平面BCE 的一个法向量,有2020y x y z -=⎧⎨--+=⎩令1x =,2z =,得(1,0,2)n = 则10cos ,||5|,|25m n m n m n ⋅〈〉===⨯∴由图知,二面角A BE C --(钝角)的余弦值为10-【点睛】本题考查了线面平行的判定证明平行,利用空间向量求二面角的余弦值,由题意构建空间坐标系并根据二面角所在的两个面确定各点坐标,可得面的法向量,进而求二面角的余弦值21. 东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区100天的销售量如下表:(视样本频率为概率)(1)根据该产品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与期望(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进32或33份,哪一种得到的利润更大?【答案】(1)见解析(2)见解析 【解析】 【分析】(1)根据题意可得ξ的取值为30,31,32,33,34,35,36,计算相应的概率值即可确定分布列和数学期望;(2)分别求解当购进32份时的利润和购进33份时的利润即可确定利润更高的决策. 【详解】(1)根据题意可得()111305525P ξ==⨯=,()13331251025P ξ==⨯⨯=,()123313225510104P ξ==⨯⨯+⨯=,()11327332251010525P ξ==⨯⨯+⨯⨯=,()31221134210105550P ξ==⨯⨯+⨯=, ()21235251025P ξ==⨯⨯=,()111361010100P ξ==⨯=,ξ的分布列如下:()131711213031323334353632.825254255025100E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯= (2)当购进32份时,利润()()2131324314830416252525⨯⨯+⨯-⨯+⨯-⨯ 107.5213.92 4.16125.6=++=, 当购进33份时,利润为()()()591313343248314163042410042525⨯⨯+⨯-⨯+⨯-⨯+⨯-⨯ 77.883012.96 3.84124.68=+++=, 125.6124.68>可见,当购进32份时,利润更高.【点睛】本题主要考查离散型随机变量的分布列与数学期望的计算,概率统计的预测作用等知识,意在考查学生的转化能力和计算求解能力. 22. 已知函数()ln 2()f x m x x m =-∈R . (1)当6m =时,试确定()f x 的零点的个数;(2)若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,求证:2m ≤. 【答案】(1)2;(2)证明见解析. 【解析】 【分析】(1)根据条件,利用导函数的符号得到()f x 的单调性和极大值、计算1()f e,2()f e 的符号,由零点存在定理,即可判断零点个数;(2)由题意可得[(1)]2(1)x m ln x x x e +->+-对任意(0,)x ∈+∞恒成立,设(1)y ln x x =+-,求得导数和单调性,得到2(1)(1)x x e m ln x x+-<+-对任意的0x >恒成立,再由此不等式的右边与2作差比较,再求出m 的范围.【详解】(1)当6m =时,知()6ln 2(0)f x x x x =->,则62(3)()2x f x x x-'=-=, ∵当03x <<时,()0f x '>;当3x >,则62(3)()2x f x x x-'=-=, ∴()f x 在区间()0,3是单调递增,在区间(3,)+∞单调递减. ∴max ()(3)6ln 360f x f ==->. 又∵1260f e e⎛⎫=--< ⎪⎝⎭,()221220f e e =-<. ∵()f x 在区间1,3e ⎛⎫ ⎪⎝⎭,在区间()23,e 各有1个零点.综上,函数()f x 零点的个数为2.(2)函数()ln 2f x m x x =-,若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,即为ln(1)2(1)2xm x x mx e +-+>-对任意(0,)x ∈+∞恒成立 即有()(ln(1))21xm x x x e +->+-对任意(0,)x ∈+∞恒成立,设ln(1)y x x =+-,1111x y x x -'=-=++,0x >时,0y '<,函数y 递减, 可得ln(1)0y x x =+-<,则()21ln(1)x x e m x x+-<+-对任意(0,)x ∈+∞恒成立.由()211ln(1)22ln(1)ln(1)x x x e x e x xx x x x+-+--++-=⋅+-+-, 设()1ln(1)(0)xg x x e x x x =+--++>,1()21xg x e x '=--+,21()(1)x g x e x ''=-+,由()y g x ''=在0x >递减,即有()0g x ''<,可得()y g x '=在0x >递减,即有()0g x '<,可得()g x 在0x >递减,可得()0g x <,而ln(1)0x x +-<,可得1ln(1)20ln(1)x x e x xx x+--++⋅>+-. 则由()212ln(1)x x e x x+->+-,所以2m ≤.【点睛】本题考查函数的零点个数和函数恒成立问题解法,零点存在定理和分离参数法、以及构造函数法,考查化简运算能力、推理能力,属于难题.。
数学理卷·2014届浙江省嘉兴市高二下学期期末考试(2013.06)word版

。
( x14.已知在二项式 则实数 a 的值为
3
a n ) x 展开式中,各项的二项式系数之和为32,且常数项为80,
。
-x
15.设点 P, Q 分别是曲线 y = xe 和直线 y = x + 2 上的动点,则 P, Q 两点间的距离的最 小值为 。 。
16.已知正数 x 满足 x + 2 x £ a (4 x + 1) 恒成立,则实数 a 的最小值为
第 4 页 共 8 页
嘉兴市2012—2013学年第二学期期末检测 高二理科数学(B) 参考答案 (2013.6) 一、选择题(每小题3分,共36分) 1.B; 2.B; 3.D; 4.C; 7.B; 8.C; 9.B; 10.A; 二、填空题(每小题3分,共18分) 13. 2 2 1 16. 2 14. - 2
…5分
令
则 F ( x 2 ) > F ( x1 ) , \ F ¢( x ) =
\ F ( x ) 在 (0,1] 上递增
…6分
a 2 (a + 1)e x × x ³0 x ( x + 1) 2 对x Î (0,1] 恒成立 £ ( x + 1) 2 ex × x2 对x Î (0,1] 恒成立
2013
)
D. 4k + 2
6.设 a Î Z ,且 0 £ a < 12 ,若 32 A.1 B.0
3
+ a 能被11整除,则 a 的值为
D.10
C.11
2
7.“ a > 0 ”是“函数 f ( x) = ax - x + x + 1 在 R 上为增函数”的 A.充分不必要条件 不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也
2021年高二下学期期末模拟考试数学(文)试题 Word版含答案

2021年高二下学期期末模拟考试数学(文)试题 Word 版含答案一、填空题(本大题共14小题,每小题5分,共计70分,请把答案直接填写在答题卡相应位置上........) 1. 设集合,则等于 ▲ .2. 若复数满足,则复数= ▲ .3. 命题“”的否定为 ▲ . 4. 在正方形中,是边的中点,且,,则 ▲ .5. 已知函数,满足,则= ▲ . 6. 已知,若向量与向量的夹角为钝角,则的范围为 ▲ .7.曲线在处的切线方程是 ▲ .8.已知,则 =_ ▲ .9.已知函数的图像如图所示,则 ▲ . 10.已知1212(,),(,),||5,||6,30a a a b b b a b a b ====•=,则 ▲ .11.已知是定义在R 上的奇函数,且在上单调减,,则不等式的解集是 ▲ .12.已知'''010211()cos sin ,()(),()(),,()()n n f x x x f x f x f x f x f x f x -=-===且 则▲ .13.设面积为的平面四边形的第i 条边的边长记为(i =1,2,3,4),P 是该四边形内任意一点,P 点到第i 条边的距离记为,若, 则.类比上述结论,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),Q 是该三棱锥内的任意一点,Q 点到第i 个面的距离记为H i ,则相应的正确命题是:若,则 ▲ .14.对于给定的正数K 和R 上的函数,定义R 上的函数: 取函数,则当时,函数的单调增区间为 ▲ .二、解答题(本大题共6小题,计90分,请在答题纸指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.)15. (本题满分14分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且A ,B ,C 成等差数列.(1) 若,求A;(2) 若AB →·BC →=-32,b =3,求a +c 的值.16. (本题满分14分)已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性,并用定义法证明。
2019-2020学年高中数学(人教版必修2)阶段质量检测(二) Word版含答案

阶段质量检测(二)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.下列说法不正确的是( )A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直答案:D2.(浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α则m⊥αC.若m⊥β,n⊥β,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C3.如图在四面体中,若直线EF和GH相交,则它们的交点一定( )A.在直线DB上B.在直线AB上C.在直线CB上D.都不对答案:A4.如图所示,在正方体ABCDA1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( )A.AC B.BDC.A1D D.A1D1答案:B5.给定下列四个命题:①若两个平面有无数个公共点,则这两个平面重合;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为正确的命题的是( )A.①和②B.②和③C.③和④D.②和④6.正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是( )A.12B.32C.63D.62答案:C7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角ACDB的余弦值为( )A.12B.13C.33D.23答案:C8.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中正确的说法个数是( )A.3 B.2C.1 D.0答案:B9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D10.已知平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC,BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度为( )A.13 B.151 C.12 3 D.15答案:A二、填空题(共4小题,每小题5分,共20分)11.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为答案:BM⊥PC(其他合理即可)12.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个说法:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,α⊥β,则a⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确的个数为________.答案:313.在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=3,则异面直线AD与BC所成角的大小为________.答案:60°14.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;说法正确的命题序号是________.答案:①②三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.证明:(1)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.又CD⊥PC,PA∩PC=P,∴CD⊥平面PAC.(2)∵AD∥BC,AB⊥BC,AB=BC=1,∴∠BAC=45°,∠CAD=45°,AC= 2.∵CD⊥平面PAC,∴CD⊥CA,∴AD=2.又∵E为AD的中点,∴AE=BC=1,∴AE綊BC,∴四边形ABCE是平行四边形,又∵AB⊂平面PAB,CE⊄平面PAB,∴CE∥平面PAB.16.(本小题满分12分)(山东高考)如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形.所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF. 因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB=12 AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.17.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,AB⊥平面BB1C1C,BB1=2BC,D,E,F分别是CC1,A1C1,B1C1的中点,G在BB1上,且BG=3GB1.求证:(1)B1D⊥平面ABD;(2)平面GEF∥平面ABD.证明:(1)取BB1的中点为M,连接MD,如图所示.因为BB1=2BC,且四边形BB1C1C为平行四边形,所以四边形CDMB和四边形DMB1C1均为菱形.故∠CDB=∠BDM,∠MDB1=∠B1DC1,所以∠BDM+∠MDB1=90°,即BD⊥B1D.又AB⊥平面BB1C1C,B1D⊂平面BB1C1C,所以AB⊥B1D.又AB∩BD=B,所以B1D⊥平面ABD.又F为B1C1的中点,所以GF∥MC1.又MB綊C1D,所以四边形BMC1D为平行四边形,所以MC1∥BD,故GF∥BD.又BD⊂平面ABD,所以GF∥平面ABD.又EF∥A1B1,A1B1∥AB,AB⊂平面ABD,所以EF∥平面ABD.又EF∩GF=F,故平面GEF∥平面ABD.18.(本小题满分12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE =EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC与BD交于点G.∵EF∥AG,且EF=1,AG=12AC=1,∴四边形AGEF为平行四边形.所以AF∥EG. ∵EG⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FG.∵EF∥CG,EF=CG=1,且CE=1,∴四边形CEFG为菱形.∴CF⊥EG.∵四边形ABCD为正方形,∴BD⊥AC.又∵平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF.∴CF⊥BD.又BD∩EG=G,∴CF⊥平面BDE.(1)AO 与A ′C ′所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的度数. 解:(1)∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵OC ⊥OB ,AB ⊥平面BC ′,∴OC ⊥AB .又AB ∩BO =B ,∴OC ⊥平面ABO . 又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12,∴∠OAC =30°. 即AO 与A ′C ′所成角的度数为30°. (2)如图所示,作OE ⊥BC 于E ,连接AE . ∵平面BC ′⊥平面ABCD ,∴OE ⊥平面ABCD ,∠OAE 为OA 与平面ABCD 所成的角. 在Rt △OAE 中,OE =12,AE =12+⎝ ⎛⎭⎪⎫122=52, ∴tan ∠OAE =OE AE =55.(3)∵OC ⊥OA ,OC ⊥OB ,OA ∩OB =O , ∴OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成角的度数为90°.M ,N 分别是边AD ,CD 上的点,且2AM =MD ,2CN =ND ,如图①,将△ABD 沿对角线BD 折叠,使得平面ABD ⊥平面BCD ,并连接AC ,MN (如图②).(1)证明:MN ∥平面ABC ; (2)证明:AD ⊥BC ;(3)若BC =1,求三棱锥A BCD 的体积. 解:(1)证明:在△ACD 中, ∵2AM =MD,2CN =ND , ∴MN ∥AC ,又∵MN ⊄平面ABC ,AC ⊂平面ABC , ∴MN ∥平面ABC .(2)证明:在△ABD 中,AB =AD ,∠A =90°, ∴∠ABD =45°.∵在平面四边形ABCD 中,∠B =135°, ∴BC ⊥BD .又∵平面ABD ⊥平面BCD ,且BC ⊂平面BCD ,平面ABD ∩平面BCD =BD , ∴BC ⊥平面ABD ,又AD ⊂平面ABD , ∴AD ⊥BC . (3)在△BCD 中,∵BC =1,∠CBD =90°,∠BCD =60°, ∴BD = 3.在△ABD 中,∵∠A =90°,AB =AD , ∴AB =AD =62, ∴S △ABD =12AB ·AD =34,由(2)知BC ⊥平面ABD , ∴V A BCD =V C ABD =13×34×1=14.(B卷能力素养提升)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.空间两个角α,β的两边分别对应平行,且α=60°,则β为( )A.60°B.120°C.30°D.60°或120°解析:选D 由等角定理可知β=60°或120°.2.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( ) A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB 与CD平行;若不共面,则直线AB与CD是异面直线.3.如图,正方体ABCDA1B1C1D1中,①DA1与BC1平行;②DD1与BC1垂直;③BC1与AC所成角为60°.以上三个结论中,正确结论的序号是( )A.①B.②C.③D.②③解析:选C ①错,应为DA1⊥BC1;②错,两直线所成角为45°;③正确,将BC1平移至AD1,由于三角形AD1C为等边三角形,故两异面直线所成角为60°,即正确命题序号为③,故选C.4.已知l是直线,α、β是两个不同的平面,下列命题中的真命题( )A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l∥α,α∥β,则l∥βD.若l⊥α,l∥β,则α⊥β解析:选D 对于A,若l∥α,l∥β,则α∥β或α与β相交,所以A错;对于B,若α⊥β,l∥α,则l∥β或l⊥β或l⊂β或l与β相交,所以B错;对于C,若l∥α,α∥β,则l∥β或l⊂β,所以C错;对于D,若l⊥α,l∥β,则α⊥β,由面面垂直的判定可知选项D正确.5.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BDB.AC∥截面PQMNC.AC=BD解析:选C ∵MN∥PQ,由线面平行的性质定理可得MN∥AC,从而AC∥截面PQMN,B正确;同理可得MQ∥BD,故AC⊥BD,A正确;又∠PMQ=45°,故D正确.6.α,β,γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是( )A.①或②B.②或③C.①或③D.只有②解析:选C 若填入①,则由a∥γ,b⊂β,b⊂γ,b=β∩γ,又a⊂β,则a∥b;若填入③,则由a⊂γ,a=α∩β,则a是三个平面α、β、γ的交线,又b∥β,b⊂γ,则b∥a;若填入②,不能推出a∥b,可以举出反例,例如使β∥γ,b⊂γ,画一草图可知,此时能有a∥γ,b∥β,但不一定a∥b,有可能异面.从而A、B、D都不正确,只有C正确.7.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是( )A.c与a,b都异面B.c与a,b都相交C.c至少与a,b中的一条相交D.c与a,b都平行解析:选D 如图,以三棱柱为模型.∵a∥b,a⊄γ,b⊂γ,∴a∥γ.又∵a⊂β,β∩γ=c,∴a∥c.∴a∥b∥c.8.如下图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是( )A.平行B.相交且垂直C.异面D.相交成60°解析:选D 还原几何体,如图.可知D点与B点重合,△ABC是正三角形,所以选D.成的角为( )A .30°B .45°C .60°D .90°解析:选A 如图,二面角αl β为45°,AB ⊂β,且与棱l 成45°角,过A 作AO ⊥α于O ,作AH ⊥l 于H .连接OH 、OB ,则∠AHO 为二面角αl β的平面角,∠ABO 为AB 与平面α所成角.不妨设AH =2,在Rt △AOH 中,易得AO =1;在Rt △ABH 中,易得AB =2.故在Rt △ABO 中,sin ∠ABO =AO AB =12, ∴∠ABO =30°,为所求线面角.10.如图(1)所示,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为H ,如图(2)所示,那么,在四面体A EFH 中必有( )A .AH ⊥△EFH 所在平面B .AG ⊥△EFH 所在平面C .HF ⊥△AEF 所在平面D .HG ⊥△EFH 所在平面解析:选A 折成的四面体中有AH ⊥EH ,AH ⊥FH ,∴AH ⊥平面HEF .故选A. 二、填空题(共4小题,每小题5分,共20分)11.如图,直四棱柱ABCD A 1B 1C 1D 1的底面是边长为1的正方形,侧棱长AA 1=2,则异面直线A 1B 1与BD 1的夹角大小等于________.解析:∵A 1B 1∥AB ,∴AB 与BD 1所成的角即是A 1B 1与BD 1所成的角.连接AD 1, 可知AB ⊥AD 1,在Rt △BAD 1中,AB =1,AD 1=3,∴tan ∠ABD 1=AD1AB=3, ∴∠ABD 1=60°,故A 1B 1与BD 1的夹角为60°. 答案:60°12.如图,在正三棱柱ABC A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.解析:取AC ,A 1C 1的中点E ,E 1,连接BE ,B 1E 1,EE 1,由题意知平面BEE 1B 1⊥平面AC 1,过D 作DF ⊥EE 1于F ,连接AF ,则DF ⊥平面AC 1.∴∠DAF 即为AD 与平面AC 1所成的角.可求得AD =2,DF =32,∴sin ∠DAF =DF AD =64. 答案:6413.设a ,b ,c 是空间中的三条直线,下面给出五个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ;③若a 与b 相交,b 与c 相交,则a 与c 相交;④若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线; ⑤若a ,b 与c 成等角,则a ∥b .上述命题中正确的命题是________(只填序号). 解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 答案:①14.给出下列命题:①若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么c 至多与a ,b 中一条相交;②若直线a 与b 异面,直线b 与c 异面,则直线a 与c 异面; ③一定存在平面α同时和异面直线a ,b 都平行. 其中正确的命题为________.(写出所有正确命题的序号)解析:①中,异面直线a ,b 可以都与c 相交,故不正确;②中,直线异面不具有传递性,故不正确;③中,过直线b 上一点P 作a ′∥a ,则a ′、b 确定一平面,则与该平面平行的任一平面(平面内不包含直线a 、b )都与异面直线a 、b 平行,故正确.答案:③三、解答题(共6小题,共70分,解答时应写出文字说明,证明过程或演算过程) 15.(本小题满分10分)如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.解:在平面AA 1D 1D 内,延长D 1F ,∵D 1F 与DA 不平行,∴D 1F 与DA 必相交于一点,设为P ,则P ∈D 1F ,P ∈DA .又∵D 1F ⊂平面BED 1F ,AD ⊂平面ABCD ,∴P ∈平面BED 1F ,P ∈平面ABCD .又B 为平面ABCD 与平面BED 1F 的公共点,连接PB ,∴PB 即为平面BED 1F 与平面ABCD 的交线.如图所示.16.(本小题满分12分)在右图的几何体中,面ABC ∥面DEFG, ∠BAC =∠EDG=120°,四边形ABED 是矩形,四边形ADGC 是直角梯形,∠ADG =90°,四边形DEFG是梯形, EF ∥DG ,AB =AC =AD =EF =1,DG =2.(1)求证:FG ⊥面ADF ; (2)求四面体 CDFG 的体积.解:(1)连接DF 、AF ,作DG 的中点H , 连接FH ,EH ,∵EF ∥DH ,EF =DH =ED =1, ∴四边形DEFH 是菱形,∴EH ⊥DF , 又∵EF ∥HG, EF =HG , ∴四边形EFGH 是平行四边形, ∴FG ∥EH ,∴FG ⊥DF ,由已知条件可知AD ⊥DG ,AD ⊥ED , 所以AD ⊥面EDGF ,所以AD ⊥FG .又∵⎩⎪⎨⎪⎧FG⊥AD,FG⊥DF,AD ⊂面ADF ,DF ⊂面ADF ,AD∩DF=D ,∴FG ⊥面ADF .(2)因为DH ∥AC 且DH =AC , 所以四边形ADHC 为平行四边形, 所以CH ∥AD ,CH =AD =1,由(1)知AD ⊥面EDGF , 所以CH ⊥面DEFG .由已知,可知在三角形DEF 中,ED =EF =1,∠DEF =60°,所以,△DEF 为正三角形,DF =1,∠FDG =60°, S △DEG =12·DF ·DG ·sin∠FDG =32. 四面体CDFG =13·S △DFG ·CH=13×32×1=36. 17.(本小题满分12分)如图所示,在四棱锥P ABCD 中,PA ⊥平面ABCD ,AD ⊥AB ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 的中点,N 为线段PB 的中点,G在线段BM 上,且BGGM=2.(1)求证:AB ⊥PD ; (2)求证:GN ∥平面PCD . 证明:(1)因为PA ⊥平面ABCD , 所以PA ⊥AB .又因为AD ⊥AB ,AD ∩PA =A ,所以AB ⊥平面PAD .又PD ⊂平面PAD ,所以AB ⊥PD .(2)因为△ABC 是正三角形,且M 是AC 的中点,所以BM ⊥AC . 在直角三角形AMD 中,∠MAD =30°, 所以MD =12AD .在直角三角形ABD 中,∠ABD =30°, 所以AD =12BD ,所以MD =14BD .又因为BGGM=2,所以BG =GD .又N 为线段PB 的中点,所以GN ∥PD . 又GN ⊄平面PCD ,PD ⊂平面PCD , 所以GN ∥平面PCD .18.(本小题满分12分)(浙江高考)如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.解:(1)证明:设E为BC的中点,连接AE,A1E,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.又因为A1E,BC⊂平面A1BC,A1E∩BC=E,故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,AE∩A1E=E,所以BC⊥平面AA1DE.所以BC⊥A1F.又因为DE∩BC=E,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=78.19.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.解:(1)证明:在三棱柱ABCA1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG=12AC,EC1=12A1C1.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB=AC2-BC2= 3.所以三棱锥EABC的体积V=13S△ABC·AA1=13×12×3×1×2=33.20.(本小题满分12分)如图所示,在棱长为2的正方体ABCDA1B1C1D1中,E,F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求三棱锥VB1EFC的体积;(3)求二面角ECFB1的大小.解:(1)证明:连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则EF为中位线,∴EF∥D1B,而D1B⊂面ABC1D1,EF⊄面ABC1D1,∴EF∥面ABC1D1.(2)等腰直角三角形BCD中,F为BD中点,∴CF⊥BD.①∵ABCDA1B1C1D1是正方体,∴DD1⊥面ABCD,又CF⊂面ABCD,∴DD1⊥CF.②综合①②,且DD1∩BD=D,DD1,BD⊂面BDD1B1,∴CF ⊥平面EFB 1即CF 为高,CF =BF = 2. ∵EF =12BD 1=3,B 1F =BF2+BB21=2+22=6, B 1E =B1D21+D1E2=12+2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴S △B 1EF =12EF ·B 1F =322,∴VB 1EFC =VC B 1EF =13·S △B 1EF ·CF=13×322×2=1. (3)∵CF ⊥平面BDD 1B 1,∴二面角E CF B 1的平面角为∠EFB 1. 由(2)知∠EFB 1=90°∴二面角E CF B 1的大小为90°.。
陕西省咸阳市实验中学2016-2017学年高二下学期期末检测数学(理)试题 (word版含答案)

2016-2017学年度第二学期高二期末检测数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若复数满足,则A. B. C. D.2. 设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是A. 0.2B. 0.8C. 0.2或0.8D. 0.163. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;③线性回归方程必经过点(,);④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是()A. 0B. 1C. 2D. 34. 用反证法证明:若整系数一元二次方程有有理数根,那么中至少有一个是偶数.下列假设正确的是A. 假设都是偶数;B. 假设都不是偶数C. 假设至多有一个偶数D. 假设至多有两个偶数5. 过点O(1,0)作函数f(x)=e x的切线,则切线方程为()A. y=e2(x-1)B. y=e(x-1)C. y=e2(x-1)或y=e(x-1)D. y=x -16. 随机变量ξ服从二项分布ξ~B(n,P),且E(ξ)=300,D(ξ)=200,则等于()A. 3200B. 2700C. 1350D. 12007. 从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)等于( )A. B. C. D.8. 如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是()A. 双曲线的一支B. 抛物线的一部分C. 圆D. 椭圆9. 下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x +0.35,则下列结论错误的是( )A. 产品的生产能耗与产量呈正相关B. t的值是3.15C. 回归直线一定过(4.5,3.5)D. A产品每多生产1吨,则相应的生产能耗约增加0.7吨10. 将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是A. 150B. 210C. 240D. 30011. 设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为()A. B. 2 C. 1 D. 条件不够,不能确定12. 已知函数f(x)=x3+bx2+cx+d的图象如图,则函数的单调递减区间是()A. (-∞,-2)B. (-∞,1)C. (-2,4)D. (1,+∞)第Ⅱ卷(非选择题)二、填空题(本大题共4小题.把答案直接填在题中的相应横线上.)13. 直线是曲线的一条切线,则实数的值为____________14. 连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=________.15. 已知,则的值等于________.16. 已知函数,如果存在,使得对任意的,都有成立,则实数a的取值范围是__________.三、解答题(本大题共6小题.解答应写出文字说明、证明过程或演算步骤.)17. 在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.18. 设正项数列的前项和为,且,(1)求,并猜想数列的通项公式(2)用数学归纳法证明你的猜想.19. 某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为、,比较、的大小(直接写出结果,不写过程);(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.20. 如图,四棱锥P—ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F 是PC的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)若底面ABCD为正方形,,求二面角C—AF—D大小..21. 已知函数(a<0).(Ⅰ)当a=-3时,求f(x)的单调递减区间;(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围;参考答案:1【答案】C2【答案】C3【答案】D4【答案】B5【答案】A6【答案】B7【答案】B8【答案】D9【答案】B10【答案】A11【答案】C12【答案】A13【答案】14【答案】15【答案】16【答案】17.解:(1)第3项的二项式系数为C=15,又T3=C (2)42=24·Cx,所以第3项的系数为24C=240.(2)T k+1=C (2)6-k k=(-1)k26-k Cx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.18.解:(1)当时,,∴或(舍,).当时,,∴.当时,,∴.猜想:.(2)证明:①当时,显然成立.②假设时,成立,则当时,,即∴.由①、②可知,,.19.解:(Ⅰ)由茎叶图可得.(Ⅱ)由题可知X取值为0,1,2.,,,所以X的分布列为:所以.(Ⅲ)由茎叶图可得,甲班有4人及格,乙班有5人及格.设事件A=“从两班这20名同学中各抽取一人,已知有人及格”,事件B=“从两班这20名同学中各抽取一人,乙班同学不及格”.则.20解:(Ⅰ)连接BD,设AC∩BD=O,连结OE,∵四边形ABCD为矩形,∴O是BD的中点,∵点E是棱PD的中点,∴PB∥EO,又PB平面AEC,EO平面AEC,∴PB∥平面AEC.(Ⅱ)由题可知AB,AD,AP两两垂直,则分别以、、的方向为坐标轴方向建立空间直角坐标系.明确平面DAF的一个法向量为,利用二面角公式求角.设由可得AP=AB,于是可令AP=AB=AD=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(1,1,1)设平面CAF的一个法向量为.由于,所以,解得x=-1,所以.因为y轴平面DAF,所以可设平面DAF的一个法向量为.由于,所以,解得z=-1,所以.故.所以二面角C—AF—D的大小为60°.点睛:立体几何是高中数学的重要内容之一,也历届高考必考的题型之一.本题考查是空间的直线与平面的平行问题和空间两个平面所成角的范围的计算问题.解答时第一问充分借助已知条件与判定定理,探寻直线PB与EO平行,再推证PB∥平面AEC即可.关于第二问中的二面角的余弦值的问题,解答时巧妙运用建构空间直角坐标系,探求两个平面的法向量,然后运用空间向量的数量积公式求出二面角的余弦值21.解(Ⅰ)∵a=-3,∴,故令f′(x)<0,解得-3<x<-2或x>0,即所求的单调递减区间为(-3,-2)和(0,+∞)(Ⅱ)∵(x>a)令f′(x)=0,得x=0或x=a+1(1)当a+1>0,即-1<a<0时,f(x)在(a,0)和(a+1,+∞)上为减函数,在(0,a+1)上为增函数.由于f(0)=aln(-a)>0,当x→a时,f(x)→+∞.当x→+∞时,f(x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点.即当-1<a<0对,f(x)有且仅有一个零点;(2)当a=-1时,,∵,∴f(x)在(a,+∞)单调递减,又当x→-1时,f(x)→+∞.当x→+∞时,f(x)→-∞,故函数f(x)有且仅有一个零点;(3)当a+1<0即a<-1时,f(x)在(a,a+1)和(0,+∞)上为减函数,在(a+1,0)上为增函数.又f(0)=aln(-a)<0,当x→a时,f(x)→+∞,当x→+∞时,f (x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点;综上所述,所求的范围是a<0.。
高中数学人教A版必修二 章末综合测评2 Word版含答案

点、直线、平面之间的位置关系一、选择题1.设a、b为两条直线α、β为两个平面则正确的命题是()【09960089】A.若a、b与α所成的角相等则a∥bB.若a∥αb∥βα∥β则a∥bC.若a⊂αb⊂βa∥b则α∥βD.若a⊥αb⊥βα⊥β则a⊥b【解析】A中a、b可以平行、相交或异面;B中a、b可以平行或异面;C中α、β可以平行或相交.【答案】 D2.(2016·山西山大附中高二检测)如图1在正方体ABCD-A1B1C1D1中E、F、G、H分别为AA1、AB、BB1、B1C1的中点则异面直线EF与GH所成的角等于()图1A.45°B.60°C.90°D.120°【解析】如图连接A1B、BC1、A1C1则A1B=BC1=A1C1且EF∥A1B、GH∥BC1所以异面直线EF与GH所成的角等于60°【答案】 B3.设l为直线αβ是两个不同的平面.下列命题中正确的是() A.若l∥αl∥β则α∥βB.若l⊥αl⊥β则α∥βC.若l⊥αl∥β则α∥βD.若α⊥βl∥α则l⊥β【解析】选项A平行于同一条直线的两个平面也可能相交故选项A错误;选项B垂直于同一直线的两个平面互相平行选项B正确;选项C由条件应得α⊥β故选项C错误;选项D l与β的位置不确定故选项D错误.故选B【答案】 B7.(2015·洛阳高一检测)如图2△ADB和△ADC都是以D为直角顶点的等腰直角三角形且∠BAC=60°下列说法中错误的是()图2A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC⊥平面ABD【解析】由题可知AD⊥BDAD⊥DC所以AD⊥平面BDC又△ABD与△ADC均为以D为直角顶点的等腰直角三角形所以AB=ACBD=DC=22AB又∠BAC=60°所以△ABC为等边三角形故BC=AB=2BD所以∠BDC=90°即BD⊥DC所以BD⊥平面ADC同理DC⊥平面ABD所以A、B、C项均正确.选D【答案】 D8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12底面对角线的长为26则侧面与底面所成的二面角为() A.30°B.45°C.60°D.90°【解析】由棱锥体积公式可得底面边长为23高为3在底面正方形的任一边上取其中点连接棱锥的顶点及其在底面的射影根据二面角定义即可判定其平面角在直角三角形中因为tan θ=3(设θ为所求平面角)所以二面角为60°选C【答案】 C9.将正方形ABCD沿BD折成直二面角M为CD的中点则∠AMD 的大小是()A.45°B.30°C.60°D.90°【解析】 如图设正方形边长为a 作AO ⊥BD 则AM =AO 2+OM 2=⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫12a 2=32a又AD =aDM =a2∴AD 2=DM 2+AM 2∴∠AMD =90° 【答案】 D10.在矩形ABCD 中若AB =3BC =4P A ⊥平面AC 且P A =1则点P 到对角线BD 的距离为( )A 292B 135C 175D 1195【解析】 如图过点A 作AE ⊥BD 于点E 连接PE∵P A ⊥平面ABCDBD ⊂平面ABCD ∴P A ⊥BD ∴BD ⊥平面P AE ∴BD ⊥PE∵AE =AB ·AD BD =125P A =1 ∴PE =1+⎝ ⎛⎭⎪⎫1252=135 【答案】 B11.(2016·大连高一检测)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直体积为94底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心则P A 与平面ABC 所成角的大小为( )【09960090】A.75°B.60°C.45°D.30°【解析】如图所示P为正三角形A1B1C1的中心设O为△ABC的中心由题意知:PO⊥平面ABC连接OA则∠P AO即为P A与平面ABC 所成的角.在正三角形ABC中AB=BC=AC= 3则S=34×(3)2=334VABC-A1B1C1=S×PO=94∴PO= 3又AO=33×3=1∴tan ∠P AO=POAO=3∴∠P AO=60°【答案】 B12.正方体ABCD-A1B1C1D1中过点A作平面A1BD的垂线垂足为点H以下结论中错误的是()A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°【解析】因为AH⊥平面A1BDBD⊂平面A1BD所以BD⊥AH又BD⊥AA1且AH∩AA1=A所以BD⊥平面AA1H又A1H⊂平面AA1H所以A1H⊥BD同理可证BH⊥A1D所以点H是△A1BD的垂心A正确.因为平面A1BD∥平面CB1D1所以AH⊥平面CB1D1B正确.易证AC1⊥平面A1BD因为过一点有且只有一条直线与已知平面垂直所以AC1和AH重合.故C正确.因为AA1∥BB1所以∠A1AH为直线AH和BB1所成的角.因为∠AA1H≠45°所以∠A1AH≠45°故D错误.【答案】 D二、填空题(本大题共4小题每小题5分共20分将答案填在题中的横线上)13.设平面α∥平面βA、C∈αB、D∈β直线AB与CD交于点S 且点S位于平面αβ之间AS=8BS=6CS=12则SD=________【解析】由面面平行的性质得AC∥BD ASBS=CSSD解得SD=9【答案】914.如图3四棱锥S-ABCD中底面ABCD为平行四边形E是SA上一点当点E满足条件:________时SC∥平面EBD图3【解析】当E是SA的中点时连接EBEDAC设AC与BD的交点为O连接EO∵四边形ABCD是平行四边形∴点O是AC的中点.又E是SA的中点∴OE是△SAC的中位线.∴OE∥SC∵SC⊄平面EBDOE⊂平面EBD∴SC∥平面EBD【答案】E是SA的中点15.如图4所示在正方体ABCD-A1B1C1D1中MN分别是棱AA1和AB上的点若∠B1MN是直角则∠C1MN等于________.图4【解析】∵B1C1⊥平面A1ABB1MN⊂平面A1ABB1∴B1C1⊥MN又∠B1MN为直角∴B1M⊥MN而B1M∩B1C1=B1∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1∴∠C 1MN =90° 【答案】 90°16.已知四棱锥P -ABCD 的底面ABCD 是矩形P A ⊥底面ABCD 点E 、F 分别是棱PC 、PD 的中点则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△P AB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号) 【解析】 由条件可得AB ⊥平面P AD ∴AB ⊥PD 故①正确;若平面PBC ⊥平面ABCD 由PB ⊥BC得PB ⊥平面ABCD 从而P A ∥PB 这是不可能的故②错;S △PCD =12CD ·PDS △P AB =12AB ·P A由AB =CDPD >P A 知③正确; 由E 、F 分别是棱PC 、PD 的中点 可得EF ∥CD 又AB ∥CD∴EF ∥AB 故AE 与BF 共面④错. 【答案】 ①③三、解答题(本大题共6小题共70分.解答应写出文字说明证明过程或演算步骤)17.(本小题满分10分)如图5所示已知△ABC 中∠ACB =90°SA ⊥平面ABCAD ⊥SC 求证:AD ⊥平面SBC图5【证明】∵∠ACB=90°∴BC⊥AC又∵SA⊥平面ABC∴SA⊥BC∵SA∩AC=A∴BC⊥平面SAC∴BC⊥AD又∵SC⊥ADSC∩BC=C∴AD⊥平面SBC18.(本小题满分12分)如图6三棱柱ABC-A1B1C1的侧棱与底面垂直AC=9BC=12AB=15AA1=12点D是AB的中点.图6(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1【证明】(1)∵C1C⊥平面ABC∴C1C⊥AC∵AC=9BC=12AB=15∴AC2+BC2=AB2∴AC⊥BC又BC∩C1C=C∴AC⊥平面BCC1B1而B1C⊂平面BCC1B1∴AC⊥B1C(2)连接BC1交B1C于O点连接OD如图∵OD分别为BC1AB的中点∴OD∥AC1又OD⊂平面CDB1AC1⊄平面CDB1∴AC1∥平面CDB1 19.(本小题满分12分)(2016·德州高一检测)某几何体的三视图如图7所示P是正方形ABCD对角线的交点G是PB的中点.(1)根据三视图画出该几何体的直观图;(2)在直观图中①证明:PD∥面AGC;②证明:面PBD⊥面AGC图7【解】(1)该几何体的直观图如图所示:(2)证明:①连接ACBD交于点O连接OG因为G为PB的中点O为BD 的中点所以OG ∥PD②连接PO 由三视图知PO ⊥平面ABCD 所以AO ⊥PO又AO ⊥BO 所以AO ⊥平面PBD因为AO ⊂平面AGC所以平面PBD ⊥平面AGC20.(本小题满分12分)(2016·济宁高一检测)如图8正方形ABCD 和四边形ACEF 所在的平面互相垂直EF ∥ACAB =2CE =EF =1图8(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE【09960091】【证明】 (1)如图设AC 与BD 交于点G因为EF ∥AG 且EF =1AG =12AC =1所以四边形AGEF 为平行四边形.所以AF ∥EG因为EG⊂平面BDEAF⊄平面BDE所以AF∥平面BDE(2)连接FG∵EF∥CGEF=CG=1∴四边形CEFG为平行四边形又∵CE=EF=1∴▱CEFG为菱形∴EG⊥CF在正方形ABCD中AC⊥BD∵正方形ABCD和四边形ACEF所在的平面互相垂直∴BD⊥平面CEFG∴BD⊥CF又∵EG∩BD=G∴CF⊥平面BDE21.(本小题满分12分)(2015·山东高考)如图9三棱台DEF-ABC 中AB=2DEGH分别为ACBC的中点.图9(1)求证:BD∥平面FGH;(2)若CF⊥BCAB⊥BC求证:平面BCD⊥平面EGH【解】(1)证法一:连接DGCD设CD∩GF=M连接MH在三棱台DEF-ABC中AB=2DEG为AC的中点可得DF∥GCDF=GC所以四边形DFCG为平行四边形则M为CD的中点.又H为BC的中点所以MH∥BD又MH⊂平面FGHBD⊄平面FGH所以BD∥平面FGH 证法二:在三棱台DEF-ABC中由BC=2EFH为BC的中点可得BH∥EFBH=EF所以四边形BHFE为平行四边形可得BE∥HF在△ABC中G为AC的中点H为BC的中点所以GH∥AB又GH∩HF=H所以平面FGH∥平面ABED因为BD⊂平面ABED所以BD∥平面FGH(2)连接HE因为GH分别为ACBC的中点所以GH∥AB由AB⊥BC得GH⊥BC又H为BC的中点所以EF∥HCEF=HC因此四边形EFCH是平行四边形.所以CF∥HE又CF⊥BC所以HE⊥BC又HEGH⊂平面EGHHE∩GH=H所以BC⊥平面EGH又BC⊂平面BCD所以平面BCD⊥平面EGH22.(本小题满分12分)(2016·重庆高一检测)如图10所示ABCD是正方形O是正方形的中心PO⊥底面ABCD底面边长为aE是PC的中点.图10(1)求证:P A∥平面BDE;平面P AC⊥平面BDE;(2)若二面角E-BD-C为30°求四棱锥P-ABCD的体积.【解】(1)证明:连接OE如图所示.∵O、E分别为AC、PC的中点∴OE∥P A∵OE⊂平面BDEP A⊄平面BDE∴P A∥平面BDE∵PO⊥平面ABCD∴PO⊥BD在正方形ABCD中BD⊥AC又∵PO∩AC=O∴BD⊥平面P AC又∵BD⊂平面BDE∴平面P AC⊥平面BDE(2)取OC中点F连接EF∵E为PC中点∴EF为△POC的中位线∴EF∥PO又∵PO⊥平面ABCD∴EF⊥平面ABCD∵OF ⊥BD ∴OE ⊥BD∴∠EOF 为二面角E -BD -C 的平面角 ∴∠EOF =30°在Rt △OEF 中OF =12OC =14AC =24a∴EF =OF ·tan 30°=612a ∴OP =2EF =66a∴V P -ABCD =13×a 2×66a =618a 3。
四川省资阳市2014-2015学年高二第二学期期末质量检测数学(文)试卷Word版,含答案

资阳市2014—2015学年度高中二年级第二学期期末质量检测文 科 数 学本试题卷分为第一部分(选择题)和第二部分(非选择题)两部分. 第一部分1至2页,第二部分3至8页. 全卷共150分,考试时间为120分钟.第一部分 (选择题 共50分)注意事项:1.答第一部分前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束时,将本试卷和答题卡一并收回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 曲线sin e x y x =+(其中e =2.71828…是自然对数的底数)在点(01),处的切线的斜率为(A) 2(B) 3(C)13(D)122. 曲线221259x y +=与曲线221(9)259x y k k k+=<--的 (A) 长轴长相等 (B) 短轴长相等 (C) 焦距相等(D) 离心率相等3. 设i 是虚数单位,复数12z z ,在复平面内的对应点关于实轴对称,11i z =-,则12z z = (A) 2(B) 1+i(C) i(D) -i4.双曲线22142x y -=的渐近线方程是(A) y =(B) y =(C) 12y x =±(D) 2y x =±5.设函数31()(0)3f x ax bx a =+≠,若0(3)3()f f x '=,则0x 等于(A) 1±(B)(C) (D) 26.若函数()sin f x x ax =+在R 上单调递增,则实数a 的取值范围为(A) [11]-,(B) (1]-∞-,(C) (1]-∞,(D) [1)+∞,7.已知函数21()cos 4f x x x =+,则()f x 的导函数()f x '的图象大致是8.若直线l :(1)1y a x =+-与抛物线C :2y ax =恰好有一个公共点,则实数a 的值构成的集合为(A) {}10-,(B) 4{2}5--,(C) 4{1}5--,(D) 4{10}5--,,9.过双曲线C 1:22221(00)x y a b a b -=>>,的左焦点1F 作圆C 2:222x y a +=的切线,设切点为M ,延长1F M 交抛物线C 3:22(0)y px p =>于点N ,其中13C C ,有一个共同的焦点,若1||||MF MN =,则双曲线1C 的离心率为(A)1-(B)(C) (D) 1+10. 若函数32()f x x ax bx c =+++ ()a b c ∈R ,,有极值点12x x ,,且11()f x x =,则关于x 的方程23[()]2()0f x af x b ++=的不同实根的个数是 (A) 5(B) 4(C) 3(D) 2资阳市2014—2015学年度高中二年级第二学期期末质量检测文 科 数 学第二部分 (非选择题 共100分)注意事项:1.第二部分共6页,用钢笔或圆珠笔直接答在试题卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分.把答案直接填在题中横线上. 11.抛物线24y x =-的准线方程为 .12.执行右图所示的程序框图,若输入2x =,则输出y 的值为 . 13.函数21()ln 2f x x x =-的单调减区间为 . 14.定义在R 上的函数()f x 满足(1)1f =,且对任意x ∈R 都 有1()2f x '<,则不等式1()2x f x +>的解集为_________. 15.抛物线24y x =的焦点为F ,过点(20)P ,的直线与该抛物线相交于A B ,两点,直线AF BF ,分别交抛物线于点 C D ,.若直线AB CD ,的斜率分别为12k k ,,则12k k =_______.三、解答题:(本题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16.(本题满分12分)求与椭圆2214924x y+=有公共焦点,且离心率54e=的双曲线方程.17.(本题满分12分)斜率为12的直线l经过抛物线24x y=的焦点,且与抛物线相交于A B,两点,求线段AB的长.18.(本题满分12分)已知函数2()()f x x x c =-(c ∈R )在2x =处有极小值. (Ⅰ) 求c 的值;(Ⅱ) 求()f x 在区间[0,4]上的最大值和最小值.19.(本题满分12分)某商场的销售部经过市场调查发现,该商场的某种商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ) 求a 的值;(Ⅱ) 若该商品的成本为3元/千克,试确定销售价格x 的值,使该商场每日销售该商品所获得的利润最大.20.(本题满分13分)已知椭圆22221(0)y x a b a b +=>>,且它的一个焦点1F 的坐标为(01),.(Ⅰ) 求椭圆的标准方程;(Ⅱ) 设过焦点1F 的直线与椭圆相交于A B ,两点,N 是椭圆上不同于A B ,的动点,试求NAB ∆的面积的最大值.21.(本题满分14分)已知函数2()2ln ()f x x x a x a =-+∈R . (Ⅰ) 当2a =时,求函数()f x 在(1(1))f ,处的切线方程; (Ⅱ) 求函数()f x 的单调区间;(Ⅲ) 若函数()f x 有两个极值点1212()x x x x <,,不等式12()f x mx ≥恒成立,求实数m 的取值范围.资阳市2014—2015学年度高中二年级第二学期期末质量检测数学参考答案及评分意见(文科)一、选择题:ACDBB ,DACBC .二、填空题:11.1x =;12. 12;13. (0,1)(填(0,1]也可);14. (,1)-∞;15.12. 三、解答题:16. 椭圆2214924x y +=的焦点坐标为(50)-,,(50),, ········································· 2分设双曲线的方程为22221(00)x y a b a b-=>>,, ············································· 3分则22225c a b =+=,ce a==54==, ··································· 9分 解得216a =,29b =.所以,双曲线的方程是221169y x -=. ························································ 12分 17. 由已知可知,抛物线24x y =的焦点为(0,1)F ,所以直线l 的方程为112y x =+. ·· 2分由211,24,y x x y ⎧=+⎪⎨⎪=⎩得2(22)4y y -=,即2310y y -+=. ···································· 6分 设1122(,),(,)A x y B x y ,则123y y +=, ························································ 8分 所以12||325AB y y p =++=+=. ······························································ 12分 18. (Ⅰ) 因为222'()()2()34f x x c x x c x cx c =-+-=-+,又2()()f x x x c =-在2x =处有极小值,所以2'(2)12802f c c c =-+=⇒=或6c =, ··············································· 2分 ①当2c =时,2'()384(32)(2)f x x x x x =-+=--,当2'()(32)(2)03f x x x x =--≥⇒≤或2x ≥时,()f x 单调递增,当2'()(32)(2)023f x x x x =--≤⇒≤≤时,()f x 单调递减, 此时()f x 在2x =处有极小值,符合题意; ················································· 4分②当6c =时,2'()324363(2)(6)f x x x x x =-+=--,当'()3(2)(6)02f x x x x =--≥⇒≤或6x ≥时,()f x 单调递增, 当'()3(2)(6)026f x x x x =--≤⇒≤≤时,()f x 单调递减, 此时()f x 在2x =处有极大值,不符题意,舍去. 综上所述,2c =. ·················································································· 6分 (Ⅱ)由(Ⅰ)知,2()(2)f x x x =-,'()(32)(2)f x x x =--,令'()(32)(2)0f x x x =--=,得23x =或2x =,当x 变化时,'(),()f x f x 的变化情况如下表:min max 12分19. (Ⅰ) 因为5x =时,11y =,所以10112a+=,解得2a =. ································ 2分(Ⅱ) 由(Ⅰ)可知,该商品每日的销售量2210(6)3y x x =+--, ························· 3分 所以商场每日销售该商品所获得的利润为:222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-. ······················· 6分 所以2'()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+--=--. ································ 7分 令'()=30(4)(6)0f x x x --=,得4x =或6(舍去)当x 变化时,'(),()f x f x 的变化情况如下表:由上表可知4x =是函数()f x 在区间(3,6)内的极大值点,也是最大值点. ··········· 10分 所以,当4x =时,函数()f x 取得最大值,且最大值为42.答:当销售价格为4元/千克时,该商场每日销售该商品所得的利润最大. ·········· 12分20. (Ⅰ)设椭圆的半焦距为c ,则1c =.又由c e a =,可解得a =所以2222b a c =-=,所以,椭圆的标准方程为22132y x +=. ······················································ 4分 (Ⅱ) 设过焦点1F 的直线为l .①若l 的斜率不存在,则(0,A B ,即||AB =,显然当N 在短轴顶点或(时,NAB ∆的面积最大,此时,NAB ∆的最大面积为12⨯= ··········································· 6分②若l 的斜率存在,不妨设为k ,则l 的方程为1y kx =+.设1122(,),(,)A x y B x y .联立方程:221,1,32y kx y x =+⎧⎪⎨+=⎪⎩消去y 整理得:22(32)440k x kx ++-=, ·················· 7分所以1221224,324,32kx x x k x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩则12|||AB x x =-=. ······················· 8分 因为,当直线与l 平行且与椭圆相切时,此时切点N 到直线l 的距离最大,设切线':(l y kx m m =+≤,联立22132y kx m x y =+⎧⎪⎨+=⎪⎩消去x 整理得:222(32)4260k y kmx m +++-=,由222(4)4(32)(26)0km k m ∆=-+-=,解得:2232(m k m =+<.又点N 到直线l的距离d =, ························································· 9分所以11||22NAB S AB d ∆=⋅⋅==, ············ 10分 所以2222212(1)(1)(32)m k S k -+=+.将2232m k =+代入得222116(1)(1)S m m=--.令1(t m =∈,设函数22()6(1)(1)f t t t =--,则2'()12(1)(21)f t t t =--+,因为当1()2t ∈-时,'()0f t >,当1(,0)2t ∈-时,'()0f t <,所以()f t 在1()2-上是增函数,在1(,0)2-上是减函数,所以max181()()28f t f =-=.故212k =时,NAB ∆<,所以,当l 的方程为1y x =+时,NAB ∆. ······ 13分 21. (Ⅰ) 因为当2a =时,2()22ln f x x x x =-+,所以2'()22f x x x=-+. ·············· 2分因为(1)1,'(1)2f f =-=,所以切线方程为23y x =-. ····································· 4分(Ⅱ) 因为222'()22(0)a x x af x x x x x-+=-+=>,令'()0f x =,即2220x x a -+=. · 5分(ⅰ) 当480a ∆=-≤,即12a ≥时,'()0f x ≥,函数()f x 在(0,)+∞上单调递增;········································································································· 6分(ⅱ) 当480a ∆=->,即12a <时,由2220x xa -+=,得1,2x =,① 若102a <<,由'()0f x >,得0x <<或x >;由'()0f x <<;此时,函数()f x在上递减,在)+∞上递增; ······································································································ 7分②若0a =,则2()2f x x x =-,函数()f x 在(0,1)上递减,在(1,)+∞上递增; ····· 8分 ③若0a <,则函数()f x在上递减,在)+∞上递增. 综上,当12a ≥时,函数()f x 的增区间为在(0,)+∞,无减区间; 当102a <<时,()f x的单调递增区间是)+∞;单调递减区间是; 当0a ≤时,()f x的单调递增区间是)+∞,单调递减区间是. ········································································································· 9分(Ⅲ)由(Ⅱ)可知,函数()f x 有两个极值点12,x x ,则102a <<. ·························· 10分 因为2'()0220f x x x a =⇒-+=,所以12121,x x x x +===因为102a <<,所以12110,122x x <<<<, 因为222111*********()2ln 2(22)ln f x x x a x x x x x x x x x -+-+-==221111112(22)ln 1x x x x x x -+-=-, 所以111121()112ln 1f x x x x x x =-++-. ··························································· 12分 设11()12ln (0)12h x x x x x x =-++<<-,则21'()12ln (1)h x x x =-+-. 因为2211110,11,(1)1,41224(1)x x x x <<-<-<-<-<-<-<--,且2ln 0x <, '()0()h x h x <⇒在1(0,)2上单调递减,则3()ln 22h x >--,所以3ln 22m ≤--. ········································································································· 14分。
江苏省泰州市2020-2021学年高二上学期期末调研测试数学试题(word版,含答案)

2020~2021学年度第一学期期末调研测试高二数学试题(考试时间:120分钟;总分:150分)一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:,10,xp x R e x ∃∈--≤则命题p 的否定为().,10x A x R e x ∀∈--> B.∀x ∉,10xR e x -->.,10x C x R e x ∀∈--≥.,10x D x R e x ∃∈-->2.已知等差数列{}n a 前10项的和是310,前20项的和是1220,则数列{}n a 的通项公式为().62n A a n =+ .62n B a n =- .42n C a n =+ .42n D a n =-3.在空间四边形OABC 中,,,,OA a OB b OC c ===且2,AM MB =则MC =()12.33A a b c --+21.33B a b c --+12.33C a b c +-21.33D a b c +- 4.2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射。嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段。在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为()A.0.32B.0.48C.0.68D.0.825.如果向量()()(2,1,3),1,4,2,1,1,a b c m =-=-=-共面,则实数m 的值是(-) A.-1B.1C.-5D.56.设抛物线28y x =的焦点为F,过点M(1,0)的直线与抛物线相交于A,B 两点,若|BF|=4,则|AF|=()7.2A B.3.7C5.2D 7.已知正项等比数列{}n a 的公比为q,前n 项和为,n S 则"q>1"是“46520S S S +->”的()条件 A.充分不必要 B.必要不充分 C.充分必要D.既不充分也不必要8.若0<x<y<z 且xyz=1,则下列关系式不一定成立的是(() A.lgy+lgz>0.224y z B +> 2.2C x z +>2.2D x z +>二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。9.已知双曲线C:221,84x y -=则下列说法正确的是() A.渐近线方程为2y x = B.焦点坐标为(23,0)± C.顶点坐标为(2,0)±D.实轴长为2210.设a,b,c ∈R,则下列结论正确的有() A.若a<b,c<0,则ac>bc1.2B a a+≥ C.若a<b<0,则11a b>222.()22a b a b D ++≤11.任取一个正整数m,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想")。如取正整数m=3,根据上述运算法则得出3→10→5→16→8→4→2→1,共需经过7个步骤首次变成1(简称为7步“雹程”)。则下列叙述正确的是()A.当m=12时,经过9步雹程变成1B.当*2()km k N =∈时,经过k 步雹程变成1 C.当m 越大时,首次变成1需要的雹程数越大D.若m 需经过5步雹程首次变成1,则m 所有可能的取值集合为{5,32}12.已知过抛物线24y x =焦点F 的直线l 与抛物线交于A, B 两点,直线AM ⊥l 交x 轴于点M,直线BN ⊥l 交x 轴于点N,则下列结论正确的有(深) A.|AF|+|BF|=|AF|·|BF| B.|MF|+|NF|=|MF|·|NF| C.|AF|·|BF|的最小值为4D.|MF|·|NF|的最小值为16三、填空题:本题共4小题,每小题5分,共20分。13.已知直三棱柱111ABC A B C -中,1,,AB AC AB AC AA ⊥==点E,F 分别为111,AA A C 的中点,则直线BE 和CF 所成角的余弦值为____.14.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为12,,F F 若椭圆上存在一点P 使得12||2||,PF PF =则该椭圆离心率的取值范围是___.15.如图甲是第七届国际数学教育大会(ICME-7)的会徽。它的主题图案是由一连串如图乙所示的直角三角形演化而成的。设其中的第一个直角三角形12OA A 是等腰三角形,且1122334781OA A A A A A A A A ======,它可以形成近似的等角螺线,记1238,,,,OA OA OA OA 的长度组成数列*{}(,18)n a n N n ∈≤≤,且11,n n n b a a +=+则n a =___(n ∈N *,1≤n ≤8),数列{}n b 的前7项和为___.16.已知正实数a,b 满足a+2b=1,则11a ba b+--的最小值为___. 四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。 17.(本题满分10分)已知命题p:实数t 满足227120(0)at a a t -+<<,命题q:实数t 满足曲线221259x y t t+=++为椭圆。 (1)若q 为真,求实数t 的取值范围;(2)若p 是q 的充分条件,求实数a 的取值范围。18.(本题满分12分)在2,n an n b a =⋅①|10|,n n b a =-②21n n n b a a +=③这三个条件中任选一个,补充在下面问题中,并完成问题的解答。问题:已知数列{}n a 是各项均为正数的等差数列,22,a =且1481,,a a a +成等比数列. (1)求数列{}n a 的通项公式;(2)记______,求数列{}n b 的前n 项和.n S注:如果选择多个条件分别解答,按第一个解答计分。19.(本题满分12分)已知点P(x,y)到定点F的距离与它到定直线:l y 点P的轨迹为曲线E.(1)求曲线E的方程;(2)设点Q(m,0)(m>1),若|PQ|求实数m的值。20.(本题满分12分)2020年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成,在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元,若进行技术指导,养羊的投资减少了x(x>0)万元,且每万元创造的利润变为原来的(1+0.25x)倍。现将养羊少投资的x万元全部投资网店,进行农产品销售,则每万元创造的利润为0.15(a-0.875x)万元,其中a>0.(1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x的取值范围;(2)若网店销售的利润始终不高于技术指导后养羊的利润,求a的最大值。21.(本题满分12分)如图,已知在四棱锥P- ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD=2AB= 2BC=2,PA=1,∠ABC=90°.(1)求直线PB与平面PCD所,成角的正弦值;(2)在线段PB 上是否存在点E,使得二面角E-AC-P 的余弦值33?若存在,指出点E 的位置;若不存在,说明理由.22.(本题满分12分)已知A,B 分别是双曲线E :2214y x -=的左,右顶点,直线l (不与坐标轴垂直)过点N(2,0),且与双曲线E 交于C,D 两点.(1)若3,CN ND =求直线l 的方程;(2)若直线AC 与BD 相交于点P ,求证:点P 在定直线上.2020-2021学年度第一学期期末考试高二数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.求,全部选对的得5分,部分选对的得3分,有选错的得0分.13.2514.1[,1)315,11612四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)因为q为真,所以25090259ttt t+>⎧⎪+>⎨⎪+≠+⎩,解得9t>-;……………………4分(2)命题p:由227120t at a-+<得(3)(4)0t a t a--<,因为0a<,所以43a t a<<,设{}|43A t a t a=<<,{}|9B t t=>-,因为p是q的充分条件,所以集合A是集合B的子集,故有49a≥-,解得094a-≤<.……………………10分18.解:(1)因为1481,,a a a+成等比数列,所以2418(1)a a a=+设等差数列{}n a的公差为d,则有2111(3)(1)(7)a d a a d+=++①又22a=,所以12a d+=②联立①②解得111ad=⎧⎨=⎩所以n a n=……………………6分(2)选①,则2nnb n=⋅231222322n n S n =⨯+⨯+⨯++⨯ (1) 23121222(1)22n n n S n n +=⨯+⨯++-⨯+⨯ (2)(1)-(2)得23122222n n n S n +-=++++-⨯化简得1(1)22n n S n +=-⋅+ ……………………12分选②,则10n b n =-当10n ≤时,10n b n =-,(19)2n n n S -= 当10n >时,219180(9810)[12(10)]2n n n S n -+=++++++++-=综上2(19),10219180,102n n n n S n n n -⎧≤⎪⎪=⎨-+⎪>⎪⎩ ……………………12分 选③,则1111()(2)22n b n n n n ==-++1111111111111[()()()()()()]213243546112n S n n n n =-+-+-+-++-+--++ 21111135()212124(1)(2)n nnS n n n n +=+--=++++ ……………………12分19.解:(1|y = 化简得2213y x +=,∴曲线E 的方程为2213y x +=. (6)分(2)PQ ==11)PQ x =-≤≤ ①当12m-<-,即2m >时,min 1PQ m =+=1m =(舍)②当12m -≥-,即12m <≤时,2min 3362PQ m =+=,解得2m = 综上实数m 的值为2. ……………………12分20.解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯, 整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤.………………5分(2)由题意知网店销售的利润为()0.150.875a x x -万元, 技术指导后,养羊的利润为()()0.1510.2510x x +-万元, 则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立, 又010x <<,∴5101.58x a x≤++恒成立, 又51058x x+≥,当且仅当4x =时等号成立, ∴0 6.5a <≤,即a 的最大值为5.6.答:(1)x 的取值范围为06x <≤;(2)a 的最大值为5.6.………………12分21.解:(1)以{},,AB AD AP 为正交基底,建立如图所示的空间直角坐标系, 则(0,0,0),(1,0,0),(0,2,0),(1,1,0),(0,0,1)A B D C P(1,1,1),(1,1,0),(1,0,1)CP CD PB =--=-=-不妨设平面PCD 的法向量(,,)m x y z =则有00m CP m CD ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z x y --+=⎧⎨-+=⎩,取(1,1,2)m =设直线PB 与平面PCD 所成的角为α,则3sin cos ,m PB m PB m PB⋅=<>==⋅α 所以直线PB 与平面PCD 所成角的正弦值为36………………6分 (2)假设线段PB 上存在点E ,使得二面角E AC P --的余弦值33设,[0,1]PE PB =∈λλ,则(,0,1)E -λλ 从而(,0,1),(1,1,0),(0,0,1)AE AC AP =-==λλ 设平面ACE 的法向量1111(,,)n x y z =则有1100AE AC n n ⎧⋅=⎪⎨⋅=⎪⎩,即1111(1)00x z x y +-=⎧⎨+=⎩λλ,取1(1,1,)n =--λλλ设平面PAC 的法向量2222(,,)n x y z =则有2200AP A n C n ⎧⋅=⎪⎨⋅=⎪⎩,即22200z x y =⎧⎨+=⎩,取2(1,1,0)n =-121212cos ,2n n n n n n ⋅<>===⋅ 解之得23=λ或2=λ(舍) 故存在点E 满足条件,E 为PB 上靠近点B 的三等分点. ………………12分 22.解:设直线l 的方程为2+=my x ,设()()2211,,,y x D y x C ,把直线l 与双曲线E 联立方程组,⎪⎩⎪⎨⎧=-+=14222y x my x ,可得()012161422=++-my y m ,则1412,1416221221-=--=+m y y m m y y , ………………3分 (1)()()2211,2,,2y x y x -=--=,由3=,可得213y y -=, 即14822-=m m y ①,14123222-=-m y ②, 把①式代入②式,可得14121483222-=⎪⎭⎫ ⎝⎛--m m m ,解得2012=m ,105±=m , 即直线l 的方程为05452=--y x 或05452=-+y x . ………………7分 (2)直线AC 的方程为()1111++=x x y y ,直线BD 的方程为()1122--=x x y y , 直线AC 与BD 的交点为P ,故()1111++x x y ()1122--=x x y ,即()1311++x my y ()1122-+=x my y , 进而得到121221311y y my y y my x x ++=-+,又()212143y y y y +-=,故()()339343343112121121221-=-+-=++-++-=-+y y y y y y y y y y x x ,解得21=x 故点P 在定直线21=x 上. ………………12分。
湖北省鄂州二中2013-2014学年高二下学期期末检测数学(理)试题 Word版含答案(新人教A版)

2014年鄂州二中高二下学期期末数学检测题(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为 ( ) A .1- B .0 C .1 D .1-或1 2.一个物体作变速直线运动,速度和时间关系为v (t )=24t -m/s ,则该物体从0秒到43.在极坐标系中,直线与直线l 关于极轴对称,则直线l 的方程为A . C . .4.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律, 第6幅图的蜂巢总数为( )A .61B .90C .91D .127 5. 若<<0,则下列不等式,①a <b ;②a+b <ab ;③|a|>|b|;④>2中,正确的不等6.设a R ∈,若函数xy e ax =+,x R ∈,有大于零的极值点,则( ) A 、1a e <- B 、1a >- C 、1a <- D 、1a e>- 7.已知1=,由柯西不等式知以下一定成立的是( )A .221a b +> B .221a b += C .221a b +< D.221a b =229.极坐标系中,有点A 22,3π⎛⎫ ⎪⎝⎭和点B 2,3π⎛⎫-⎪⎝⎭,曲线C 2的极坐标方程为ρ=,设M 是曲线C 2上的动点,则|MA|2+|MB|2的最大值是( ) A .24 B .26 C .28D .3010.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足x x f x f >')()(,则下列不等式成立的是( )A.3(2)2(3)f f <B.3(4)4(3)f f <C.2(3)3(4)f f <D.(2)2(1)f f <二、填空题:本大题共5小题,每小题5分,共25分.11.= .12.==,= (a ,t ,n 为正实数, 2n ≥),通过归纳推理,可推测a ,t 的值,则a t += .(结果用n 表示)13.将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是 .14.大家知道:在平面几何中,ABC △的三条中线相交于一点,这个点叫三角形的重心,并且重心分中线之比为2∶1(从顶点到中点).据此,我们拓展到空间:把空间四面体的顶点与对面三角形的重心的连线叫空间四面体的中轴线,则四条中轴线相交于一点,这点叫此四面体的重心.类比上述命题,请写出四面体重心的一条性质:________ .15.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :ρsin 2θ=2acosθ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. 已知关于t 的方程t 2﹣zt+4+3i=0(z ∈C )有实数解, (1)设z=5+ai (a ∈R ),求a 的值. (2)设z=b+ai (b,a ∈R )求|z|的取值范围.17. 已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3. (Ⅰ)当a=﹣2时,求不等式f (x )<g (x )的解集; (Ⅱ)当1,12x ⎛⎫∈ ⎪⎝⎭时,f (x )≤g (x )成立,求a 的取值范围.18.(本小题满分12分)已知2()2ln()f x x a x x =+--在0x =处取得极值. (Ⅰ)求实数a 的值;(Ⅱ)若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.19. (本小题满分12分) 已知函数f (x )=|x ﹣m|,(Ⅰ)求证:1()(2f x f x-+≥);(Ⅱ)若m=1且27a b c ++=时, 22(log )(2log )f x f x ++>数a ,b ,c 恒成立,求实数x 的取值范围. . 20.(本小题满分13分)一座桥,两端的桥墩已建好,这两桥墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻桥墩之间的桥面工程费用为(2x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下..工程的费用为y 万元. (Ⅰ)试写出y 关于x 的函数关系式;(Ⅱ)当m =640米时,需新建多少个桥墩才能使y 最小?21.(本小题满分14分)设函数()xf x e =(e 为自然对数的底数),23()12!3!!n n x x x g x x n =+++++L (n +∈N ).(Ⅰ)证明:()f x 1()g x ≥;(Ⅱ)证明:当0x ≥时,()f x 2()g x ≥;(Ⅲ)当0x ≥时,比较()f x 与()n g x 的大小,并证明.参 考 答 案一、选择题:本大题共10小题,每小题5分,共50分.1.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为 ( A )A .1-B .0C .1D .1-或1【解析】由210110x x x ⎧-=⇒=-⎨-≠⎩ ,故选A .2.一个物体作变速直线运动,速度和时间关系为v (t )=4﹣t 2m/s ,则该物体从0秒到4A===16=3.在极坐标系中,直线与直线l 关于极轴对称,则直线l 的方程为A .C . .提示:把换成,即得结果4.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律, 第6幅图的蜂巢总数为( C )A .61B .90C .91D .1275. 若<<0,则下列不等式,①a <b ;②a+b <ab ;③|a|>|b|;④>2中,正确的不等6.设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( C ) A 、1a e <- B 、1a >- C 、1a <- D 、1a e>- 7.已知1=,则以下成立的是( B )A .221a b +> B .221a b += C .221a b +< D.221a b =9. 极坐标系中,有点A 22,3π⎛⎫ ⎪⎝⎭和点B 2,3π⎛⎫-⎪⎝⎭,曲线C 2的极坐标方程为ρ=,设M 是曲线C 2上的动点,则|MA|2+|MB|2的最大值是(B )A .24B .26C .28D .30解: A ,由ρ=,化为ρ2(4+5sin 2θ)=36,∴4ρ2+5(ρsin θ)2=36,化为4(x 2+y 2)+5y 2=36,化为,设曲线C 2上的动点M (3cos α,2sin α),|MA|2+|MB|2=+=18cos 2α+8sin 2α+8=10cos 2α+16≤26,当cos α=±1时,取得最大值26.∴|MA|2+|MB|2的最大值是26.10.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足x x f x f >')()(,则下列不等式成立的是( A )A.3(2)2(3)f f <B.3(4)4(3)f f <C.2(3)3(4)f f <D.(2)2(1)f f <二、填空题:本大题共5小题,每小题5分,共25分.11.=.12.===,=a ,t ,n 为正实数, 2n ≥),通过归纳推理,可推测a ,t 的值,则a t += .(结果用n 表示)【答案】21n n +-【解析】通过归纳推理,,a n =22=1,1t n a t n n -∴+=+-.13.将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是.(方法一)利用导数求函数最小值.=,递减;当的最小值是时,的最小值是△的三条中线相交于一点,这个点叫三角形的重心,并14.大家知道:在平面几何中,ABC且重心分中线之比为2∶1(从顶点到中点).据此,我们拓展到空间:把空间四面体的顶点与对面三角形的重心的连线叫空间四面体的中轴线,则四条中轴线相交于一点,这点叫此四面体的重心.类比上述命题,请写出四面体重心的一条性质:________.答案:四面体重心分中轴线之比为3∶1【解析】如图所示,AE,BP为四面体的中轴线,P,E分别为B CD∆,的重心,连结PE,因为A CD∆AP∶PF=2∶1,BE∶EF=2∶1,所以AP∶PF=BE∶EF,A BP E//,所以AG∶GE=BG∶GP=AB∶PE=3∶1.15.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C:psin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为,直线l与曲线C分别交于M、N.若|PM|、|MN|、|PN|成等比数列,则实数a的值为1.提示:设点M 对应的参数为1t ,点N 对应的参数为2t ,则有()21212t t t t -=,即()212125t t t t +=直线参数方程代入到抛物线普通方程22y ax =,得()216402t t a -++=,有1212,328t t t t a +=⋅=+,代入得a=1三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. 已知关于t 的方程t 2﹣zt+4+3i=0(z ∈C )有实数解, (1)设z=5+ai (a ∈R ),求a 的值. ,∴,或a=)∵,∴,∴17. 已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3. (Ⅰ)当a=﹣2时,求不等式f (x )<g (x )的解集; (Ⅱ)当1,12x ⎛⎫∈ ⎪⎝⎭时,f (x )≤g (x )成立,求a 的取值范围. 【解答】:(1)解集为(0,2)(2)当1,12x ⎛⎫∈ ⎪⎝⎭时,f (x )≤g (x )为2123x x a x -++≤+24x a x +≤-,424x x a x -≤+≤-,443aa x ---≤≤ ∴149411232a a a ---≤≤≤∴-≤≤(法二:数形结合法)18.(本小题满分12分)已知2()2ln()f x x a x x =+--在0x =处取得极值. (Ⅰ)求实数a 的值;(Ⅱ)若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.【解答】(Ⅰ)21(2)x x f x a'=--+,当0x =时,()f x 取得极值, ∴0()f x '=,解得2a =,检验2a =符合题意.(Ⅱ)令2()()2ln(2),g x f x b x x x b =+=+--+则 22(,)1(2)2x x g x x =-->-'+ 当(2,0)x ∈-时,0,())(g x x g '>∴在(2,0)-上单调递增; 当(0,)x ∈+∞时,0,())(g x x g '<∴在(0,)+∞上单调递减, 要使()0f x b +=在区间[1,1]-上恰有两个不同的实数根,只需(1)00(0)02ln 20,(1)02ln 320g b g b g b -≤≤⎧⎧⎪⎪>+>⎨⎨⎪⎪≤-+≤⎩⎩即2ln 222ln 3.b ∴-<≤-19. (本小题满分12分) 已知函数f (x )=|x ﹣m|,(Ⅰ)求证:1()(2f x f x-+≥); (Ⅱ)若m=1且27a b c ++=时,22(log )(2log )f x f x ++>数a ,b ,c 恒成立,求实数x 的取值范围.20.(本小题满分12分)一座桥,两端的桥墩已建好,这两桥墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻桥墩之间的桥面工程费用为(2x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下..工程的费用为y 万元. (Ⅰ)试写出y 关于x 的函数关系式;(Ⅱ)当m =640米时,需新建多少个桥墩才能使y 最小? 【解答】(Ⅰ)设需要新建n 个桥墩,(1)1mn x m n x+=-,即=,所以()(2m my f x n n x x x x==256+(=256(-1)+ 2562256.mm x=+- (Ⅱ)方法一:由(Ⅰ)知,1322222561(512)22()m m mxx xxf x -=-+=-',令()0f x '=,得32512x =,所以x =64当0<x <64时,()f x '<0,()f x 在区间(0,64)内为减函数;当64640x <<时,()f x '>0,()f x 在区间(64,640)内为增函数, 所以()f x 在x =64处取得最小值,此时,640119.64m n x =-=-= 故需新建9个桥墩才能使y 最小.方法二:2562562256(225622m y m m m xx=+-=++-+3225614256m m ≥+-=-(当且仅当2562x =即64x =取等) 21.(本小题满分14分)设函数()xf x e =(e 为自然对数的底数),23()12!3!!n n x x x g x x n =+++++L (n +∈N ).(Ⅰ)证明:()f x 1()g x ≥;(Ⅱ)证明:当0x ≥时,()f x 2()g x ≥;(Ⅲ)当0x ≥时,比较()f x 与()n g x 的大小,并证明.【解答】(Ⅰ)证明:设11()()()1x x f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>. 即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增, 在0x =处取得唯一极小值,因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥,所以()f x 1()g x ≥.(Ⅱ)证明:设222()()()12xx x f x g x e x ϕ=-=---2()1x x e x ϕ'=--,由(1)知2()0x ϕ'≥,所以[)2()0+x ϕ∞在,单增,22()(0)=0x ϕϕ≥,所以()f x 2()g x ≥(Ⅲ)当0x ≥时,()f x ≥()n g x . 用数学归纳法证明如下:①当1n =时,由(1)知()f x 1()g x ≥;②假设当n k =(k +∈N )时,对任意0x ≥均有()f x ≥()k g x , 令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=-≥,即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++≥, 因为1(0)0k ϕ+=,所以1()0k x ϕ+≥.从而对任意0x ≥,有1()()0k f x g x +-≥,即对任意0x ≥,有1()()k f x g x +≥, 这就是说,当1n k =+时,对任意0x ≥,也有()f x ≥1()k g x +. 由①,②知,当0x >时,都有()f x ≥()n g x .。
吉林省白城市2013-2014学年高二上学期期末考试数学(理)试题(二) Word版含答案

白城市2013—2014年第一学期期末考试高二理科数学(试卷二)本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分为 100 分,答题时间为 90 分钟。
考生作答时,选择题答案和非选择题答案写在答题纸上。
考试结束后,将答题纸交回。
注意事项:1、答题前,考生务必先将自己的姓名、准考证号、所在学校准确填写,条形码贴在制定位置上。
2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
非选择题答案字体工整、清楚。
第Ⅰ卷 (共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 函数232+-=x x y 的定义域是( )A. []21,B. ),2[]1,(+∞⋃-∞C. )21(,D.),2()1,(+∞⋃-∞2.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60° D .60°或1203.已知等差数列}{n a 的公差为2,若3a 是1a 与4a 的等比中项, 则2a =( )A .4-B .6-C .8-D .10-4.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量BD 1→的是( )①(A 1D 1→-A 1A →)-AB →; ②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→; ④(B 1D 1→+A 1A →)+DD 1→. A .①②B .②③C .③④D .①④5.下列说法错误的是( )A .如果命题“¬p ”与命题“p ∨q ”都是真命题,那么命题q 一定是真命题B .命题“若a =0,则ab =0”的否命题是:“若a ≠0,则ab ≠0”装订线 学校 班级 姓名 考号C .若命题p :∃x 0∈R ,x 02+2x 0-3<0,则¬p :∀x ∈R ,x 2+2x -3≥0D .“sin θ=12”是“θ=30°”的充分不必要条件6.抛物线241x y =的焦点到准线的距离是 ( )A.14B.12C.2D.47.在正方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,O 为正方形ABCD 的中心,P 为棱A 1B 1上任一点,则异面直线OP 与MA 所成的角为( )A .30°B .45°C .60°D .90°8. 已知变量y x 、满足的约束条件为⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,且目标函数为y x z +=,则z 的最大值是( )A. 1B.2C. -1D. -29.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B.5C.62 D.5210.在ABC ∆中,设角C B A ,,的对边分别为c b a ,,,且bca B C -=2cos cos ,则角B 等于( )A .30B .60C . 90D .12011. 各项均为正数的等比数列}{n a 的前n 项和为n S ,若2=n S ,143=n S ,则n S 4等于( )A. 16B. 26C. 30D. 8012.设0,0>>b a 若ba 333与是的等比中项,则ba 11+的最小值为( ) A 8 B 4 C 1 D14第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.在ABC ∆中,设角C B A ,,的对边分别为c b a ,,,已知ab c b a 2222=-+,则C =14.椭圆1422=+y m x 的焦距为2,则m 的值等于________ 15.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角的大小是________.16.已知数列}{n a 满足14222233221-=++++n n n a a a a ,则}{n a 的通项公式三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)双曲线C 与椭圆x 28y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C 的方程.18.(本题满分12分)在ABC ∆中,设角C B A ,,的对边分别为c b a ,,,且B aC A c C b cos 3)cos(cos =+-(I )求B cos 的值;(II )若2=⋅BC BA ,且6=a ,求b 的值.19.(本题满分12分)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 1和CC 1的中点.(1)求证:EF ∥平面ACD 1;(2)求异面直线EF 与AB 所成的角的余弦值.20、(本题满分12分)已知数列}{n a 的前n 项和为n S ,且有n n S n 211212+=,数列}{n b 满足)(0212*++∈=+-N n b b b n n n ,且113=b ,前9项和为153;(1)求数列}{n a 、}{n b 的通项公式; (2)设)12)(112(3--=n n n b a c ,数列}{n c 的前n 项和为n T ,求使不等式57k T n >对一切*∈N n 都成立的最大正整数k 的值.21.(本题满分12分)如图,正方形ABCD 所在平面与平面ABC 垂直,M 是CE 和AD 的交点,且BC AC BC AC =⊥,.(1)求证:AM ⊥平面EBC ;(2)求直线AB 与平面EBC 所成角的大小; (3)求锐二面角C BE A --的大小.ADCBB1D1C1A1F EMEDCBA22.(本题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴的一个端点到右焦点的距离为3,直线l :y =kx +m 交椭圆于不同的两点A ,B .(1)求椭圆的方程;(2)若坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.白城市2013—2014年第一学期期末考试高二理科数学(试卷二)答案二、填空题13. 45 14. 5或3 15. π6 16. n n a 243⋅=三、解答题17.解:设双曲线方程为)0,0(12222>>=-b a by a x 1分由椭圆14822=+y x ,求得两焦点为(-2,0),(2,0), 3分 ∴对于双曲线C :c =2. 4分 又x y 3=为双曲线C 的一条渐近线, ∴3=ab6分 解得3,122==b a , 9分∴双曲线C 的方程为1322=-y x . 10分 18.解:(1)由正弦定理得 B A B C C B cos sin 3cos sin cos sin =+ .....2分 即 B A C B cos sin 3)sin(=+∴ B A A cos sin 3sin = .........5分 ∵ 0sin ≠A∴ 31cos =B 20 ..........7分(2)由2cos ,2==⋅B ac 可得,装订线 学校 班级 姓名 考号,cos 2.6,6.9.......... ,6222B ac c a b c a ac -+====由可得又分即可得22=b . …………12分 19.解:如图,分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz ,由已知得D (0,0,0)、A (2,0,0)、B (2,2,0)、C (0,2,0)、B 1(2,2,2)、E (1,0,2)、F (0,2,1). ............3分 (1)证明:易知平面ACD 1的一个法向量DB 1→=(2,2,2). ∵EF →=(-1,2,-1),∴EF →²DB 1→=-2+4-2=0, (6)∴EF →⊥DB 1→,而EF ⊄平面ACD 1,∴EF ∥平面ACD 1. .......8(2)∵AB →=(0,2,0),∴cos 〈EF →,AB →〉=EF →²AB→|EF →||AB →|=426=63,∴异面直线EF 与AB所成的63. ...........12分 20.解:(1)当2≥n 时, 51+=-=-n S S a n n n适合上式时,,6111===S a n5 +=∴n a n ............2分由0212=+-++n n n a a a 可知,}n b {是等差数列,设公差为d有题意得 ⎪⎩⎪⎨⎧=+=⨯+112153289911d b d b 解得 3,51==d a233)1(5 +=⨯-+=∴n n b n ............4分 (2)由(1)知:)12)(12(1)12)(112(3+-=--=n n b a c n n n 而)121121(21)12)(12(1)12)(112(3+--=+-=--=n n n n b a c n n n ..........5分所以:n n c c c T +++= 21)]121121()5131()311[(21+--++-+-=n n 12)1211(21+=+-=n n n ; .........7分 又因为0)12)(32(1123211>++=+-++=-+n n n n n n T T n n ; 所以}{n T 是单调递增,故31)(1min ==T T n ; .........10分由题意可知5731k>;得:19<k ,所以k 的最大正整数为18; .........12分21.解:依题可知,CA ,CB ,CD 两两垂直,故可建立如图空间直角坐标系Cxyz ,设正方形边 长为1,则AC =BC =1.C(0,0,0),A(1,0,0),B(0,1,0),D(0,0,1),E(1,0,1),)21,0,21(M...................2分(1)证明:)21,0,21(-= CB →=(0,1,0),CE →=(1,0,1)∴AM →²CB →=0,AM →²CE →=0,∴AM →⊥CB →,AM →⊥CE →,∴AM ⊥CB ,AM ⊥CE 且CB ∩CE =C ,∴AM ⊥平面EBC . .................5分 (2)由(1)知AM →为平面EBC 的一个法向量,AB →=(-1,1,设所求角大小为θ,则sin θ=|cos 〈AM →,AB →〉|=12, ∴直线AB 与平面EBC 所成的角的大小为30°(3)设m =(x ,y ,z )为平面AEB 的一个法向量,则⎩⎪⎨⎪⎧m ²AB →=0m ²AE →=0⇒⎩⎨⎧-x +y =0,z =0.取m =(1,1,0),则|cos 〈AM →,m 〉|=12所以锐二面角A BE C 的大小为60°. ................12分22.解:(1)设椭圆的半焦距为c ,依题意得⎪⎩⎪⎨⎧==336a a c解得c = 2.由222c b a +=,得b =1.∴所求椭圆方程为x 23+y 2=1. ...............3分(2)由已知|m |1+k 2=32,可得m 2=34k 2+1). 将y =kx +m 代入椭圆方程, 整理得(1+3k 2)x 2+6kmx +3m 2-3=0.DCzΔ=(6km )2-4(1+3k 2)(3m 2-3)>0,(*)∴x 1+x 2=-6km 1+3k 2,x 1²x 2=3m 2-31+3k 2. .............6分∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)²⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1 =12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6≤3+122³3+6 =4(k ≠0). .............8分 当且仅当9k 2=1k 2,即k =±33时等号成立,此时|AB |=2.经检验,k =±33满足(*)式. .............9分 当k =0时,|AB |= 3. .............10分综上可知|AB |ma x =2, .............11分∴当|AB |最大时,△AOB 的面积取最大值S =12³2³32=32 (12)分。
湖北省2021年高二数学第二学期期末模拟考试卷(二)

湖北省高二第二学期期末模拟考试卷(二)(理科) (考试时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1. 设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .[-4,-2] B .(-∞,1] C .[1,+∞) D .(-2,1]2.已知复数201712i z i=-,则复数z 的虚部为( )A. 25-B. 15iC. 15D. 15-3. 随机变量X ~()1,4N ,若()20.2p x ≥=,则()01p x ≤≤为( )A. 0.2B. 0.3C. 0.4D. 0.64.若4个人报名参加3项体育比赛,每个人限报一项,则不同的报名方法的种数有( )A. 34A B. 34C C. 34 D. 43 5. 广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表(单位:万元)广告费x 2 3 4 5 6 销售额y2941505971由上表可得回归方程为10.ˆ2ˆyx a =+,据此模型,预测广告费为8万元时的销售额约为( )A. 90.8B. 72.4C. 98.2D. 111.2 6. 从1,2,3,4,5中不放回地依次取2个数,事件A 表示“第1次取到的是奇数”,事件B 表示“第2次取到的是奇数”,则(|)P B A =( )A.15 B.310 C.25 D.127.已知函数()21=cos 4f x x x +,()f x '是()f x 的导函数,则()f x '的图象大致是( )8. 如图,长方形的四个顶点坐标为O (0,0),A (4,0),B (4,2),C (0,2),曲线y x =经过点B,现将质点随机投入长方形OABC 中,则质点落在图中阴影部分的概率为( )A. 23B. 34C. 45D. 56OC B A9.若,0x y >且2x y +>,则1y x+和1xy +的值满足( )A. 1y x +和1x y +都大于2B. 1y x+和1x y +都小于2C. 1y x+和1x y +中至少有一个小于2 D. 以上说法都不对10.2013年8月,考古学家在湖北省随州市叶家山发现了大量的古墓,经过对生物体内碳14含量的测量,估计该古墓群应该形成于公元前850年左右的西周时期,已知碳14的“半衰期”为5730年(即含量大约经过5730年衰减为原来的一半),由此可知,所测生物体内碳14的含量应最接近于( ) A .25﹪ B . 50﹪ C . 70﹪ D .75﹪11. 对大于1的自然数 m 的三次幂可用奇数进行以下形式的“分裂”:33313731523945171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩, , ,....仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )A. 44B. 45C. 46D.4712. 已知函数()()2ln 2f x a x x a x =+-+恰有两个零点,则实数a 的取值范围是( ) A. ()1,-+∞ B. ()1,0- C. ()2,0- D. ()2,1--二、填空题:(本大题共4小题,每小题5分,共20分)13. 数学老师从6道习题中随机抽3道让同学检测,规定至少要解答正确2道题才能及格。
高二数学2022-2023学年第二学期期末模拟卷(含答案)

2022-2023学年高二下学期期末模拟试卷(时间:120分钟,分值:150分,范围:必修二第5章——必修三第6、7、8章)一、单项选择题:本题共8小题,每小题5分,共40分.在每个小题绐岀的四个选项中,只有一项是符合题目要求的.1.下列说法,正确的是()A .对分类变量X 与Y 的独立性检验的统计量2χ来说,2χ值越小,判断“X 与Y 有关系”的把握性越大B .在残差图中,残差点分布在以取值是0的横轴为对称轴的水平带状区域越窄,说明模型的拟合精度越高C .若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线23y x =-+上,则这组样本数据的相关系数r 为1D .数据-1,1,2,4,5,6,8,9的第25百分位数是22.某校有演讲社团、篮球社团、乒乓球社团、羽毛球社团、独唱社团共五个社团,甲、乙、丙、丁、戊五名同学分别从五个社团中选择一个报名,记事件A 为“五名同学所选项目各不相同”,事件B 为“只有甲同学选篮球”,则()P A B =()A .332B .316C .34D .253.82x x ⎛⎫+ ⎪ ⎪⎝⎭展开式中,二项式系数最大的项是()A .第3项B .第4顶C .第5项D .第6项4.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,则不同的站法有()A .1440种B .2880种C .4320种D .3600种5.2023年春,为了解开学后大学生的身体健康状况,寒假开学后,学校医疗部门抽取部分学生检查后,发现大学生的舒张压呈正态分布()270.8,7.02X N ~(单位:mm /Hg ),且()82.80.1P X >=,若任意抽查该校大学生6人,恰好有k 人的舒张压落在()58.8,82.8内的概率最大,则k =()A .3B .4C .5D .66.抛掷三枚质地均匀的硬币一次,在有一枚正面朝上的条件下,另外两枚也正面朝上的概率是()A .18B .78C .17D .677.三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A .72种B .108种C .36种D .144种8.若不等式222e ln e ln 2e xaa x x a -+-≥-在[1,2]x ∈-有解,则实数a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知21nx x ⎛⎝的展开式中二项式系数之和为1024,则下列说法正确的()A .展开式中奇数项的二项式系数和为256B .展开式的各项系数之和为1024C .展开式中常数项为45D .展开式中含15x 项的系数为4510.下列说法正确的是()A .在一个2×2列联表中,计算得到2χ的值,则2χ的值越接近1,可以判断两个变量相关的把握性越大B .随机变量()2~,N ξμσ,若函数()()2f x P x x ξ=≤≤+为偶函数,则1μ=C .若回归直线方程为ˆ 1.22yx =+,则样本点的中心不可能为(5,7)D .若甲、乙两组数据的相关系数分别为0.91-和0.89,则甲组数据的线性相关性更强11.一个袋子中有编号分别为1,2,3,4的4个球,除编号外没有其它差异.每次摸球后放回,从中任意摸球两次,每次摸出一个球.设“第一次摸到的球的编号为2”为事件A ,“第二次摸到的球的编号为奇数”为事件B ,“两次摸到的球的编号之和能被3整除”为事件C ,则下列说法正确的是()A .()516P C =B .事件B 与事件C 相互独立C .()12P CA =∣D .事件A 与事件B 互为对立事件12.下列不等关系中正确的是()A 32ln 3<B 344ln 3>C .sin 33sin1cos1<D .sin 33sin1cos1>三、填空题:本题共4小题,每小题5分,共计20分.13.2023年五一节到来之前,某市物价部门对本市5家商场的某种商品一天的销售量及其价格进行调查,5家商场这种商品的售价x (单位:元)与销售量y (单位:件)之间的一组数据如下表所示:价格x 89.5m 10.512销售量y1610865经分析知,销售量y 件与价格x 元之间有较强的线性关系,其线性回归直线方程为 3.544y x =-+,则m =________.14.某城市休闲公园管理人员拟对一块圆环区域进行改造封闭式种植鲜花,该圆环区域被等分为5个部分,每个部分从红、黄、紫三种颜色的鲜花中选取一种进行栽植.要求相邻区域不能用同种颜色的鲜花,总的栽植方案有_________种.15.假设有两箱零件,第一箱内装有10件,其中有3件次品;第二箱内装有20件,其中有2件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,已知取出的是次品,则它是从第一箱取出的概率为__________.16.已知函数()ln 20()a x x a f x =-≠,若不等式222e ()e cos(())a x x x f x f x ≥+对0x >恒成立,则实数a 的取值范围为__________.四、解答题:本题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)为了解学生对党的“二十大”精神的学习情况,学校开展了“二十大”相关知识的竞赛活动,全校共有1000名学生参加,其中男生450名,采用分层抽样的方法抽取100人,将他们的比赛成绩(满分为100分),分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.其中成绩不低于80分为“优秀”,低于80分为“非优秀”.(1)求实数a 的值,并估算全校1000名学生中成绩优秀的人数;(2)完成下列22⨯列联表,判断是否有95%的把握认为比赛成绩优秀与性别有关.优秀非优秀合计男女10合计附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.2()P k αχ=≥0.100.050.0100.0050.001k2.7063.8416.6357.87910.82818.(12分)已知()()52601261(1)(1)m x x a a x a x a x +=+-+-++- ,其中R m ∈,且13564a a a ++=,(1)求m 的值;(2)求4a 的值.19.(12分)已知0a >,函数()()2ln ln f x x a a x x e =-+-,其中e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当a e =时,求函数()f x 的单调区间;(3)求证:函数()f x 存在极值点,并求极值点0x 的最小值.20.(12分)某校20名学生的数学成绩(1,2,,20)i x i = 和知识竞赛成绩(1,2,,20)i y i = 如下表:学生编号i 12345678910数学成绩i x 100999693908885838077知识竞赛成绩iy 29016022020065709010060270学生编号i 11121314151617181920数学成绩i x 75747270686660503935知识竞赛成绩iy 4535405025302015105计算可得数学成绩的平均值是75x =,知识竞赛成绩的平均值是90y =,并且()20216464i i x x =-=∑,()2021149450ii yy =-=∑,()()20121650i i i x x y y =--=∑.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01).(2)设*N N ∈,变量x 和变量y 的一组样本数据为(){},|1,2,,i i x y i N = ,其中(1,2,,)i x i N = 两两不相同,(1,2,,)i y i N = 两两不相同.记i x 在{},2|1,,n x n N = 中的排名是第i R 位,i y 在{},2|1,,n y n N = 中的排名是第i S 位,1,2,,i N = .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记i i i d R S =-,1,2,,i N = .证明:()221611Ni i d N N ρ==--∑.(ii )用(i )的公式求这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”(精确到0.01).(3)比较(1)和(2)(ii )的计算结果,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.()()niix x y y r --=∑21(1)(21)6nk n n n k =++=∑31000≈.21.(12分)某商场拟在周年店庆进行促销活动,对一次性消费超过200元的顾客,特别推出“玩游戏,送礼券”的活动,游戏规则如下:每轮游戏都抛掷一枚质地均匀的骰子,若向上点数不超过4点,获得1分,否则获得2分,进行若干轮游戏,若累计得分为9分,则游戏结束,可得到200元礼券,若累计得分为10分,则游戏结束,可得到纪念品一份,最多进行9轮游戏.(1)当进行完3轮游戏时,总分为X ,求X 的分布列和数学期望;(2)若累计得分为i 的概率为()1,2,,9i p i =⋅⋅⋅,初始分数为0分,记01p =(i )证明:数列{}()11,2,,9i i p p i --=⋅⋅⋅是等比数列;(ii )求活动参与者得到纪念品的概率.22.(12分)已知函数()e ln xf x x a x =-在1x =处的切线方程为()()21,R y e x b a b =+-∈(1)求实数a ,b 的值;(2)设函数()()23xg x f x e x =--+,当1,12x ⎡⎤∈⎢⎥⎣⎦时,()g x 的值域为区间()(),,Z m n m n ∈的子集,求n m -的最小值.2022-2023学年高二下学期期末模拟试卷(时间:120分钟,分值:150分,范围:必修二第5章——必修三第6、7、8章)一、单项选择题:本题共8小题,每小题5分,共40分.在每个小题绐岀的四个选项中,只有一项是符合题目要求的.1.下列说法,正确的是()A .对分类变量X 与Y 的独立性检验的统计量2χ来说,2χ值越小,判断“X 与Y 有关系”的把握性越大B .在残差图中,残差点分布在以取值是0的横轴为对称轴的水平带状区域越窄,说明模型的拟合精度越高C .若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线23y x =-+上,则这组样本数据的相关系数r 为1D .数据-1,1,2,4,5,6,8,9的第25百分位数是2【答案】B【分析】对选项A ,根据独立性检验的定义即可判断A 错误,对选项B ,根据残差图的性质即可判断B 正确,对选项C ,根据题意得到相关系数为1-,故C 错误,对选项D ,根据计算得到第25百分位数是32,即可判断D 错误.【详解】对于A ,由独立性检验可知,2χ值越大,判断“X 与Y 有关系”的把握性越大,故A 错误;对于B ,在残差图中,残差点分布的水平带状区域越窄,说明波动越小,即模型的拟合精度越高,故B 正确;对于C ,样本点都在直线23y x =-+上,说明是负相关,相关系数为1-,故C 错误;对于D ,8个数据从小到大排列,由于80.252⨯=,所以第25百分位数应该是第二个与第三个的平均数12322+=,故D 错误,故选:B 2.某校有演讲社团、篮球社团、乒乓球社团、羽毛球社团、独唱社团共五个社团,甲、乙、丙、丁、戊五名同学分别从五个社团中选择一个报名,记事件A 为“五名同学所选项目各不相同”,事件B 为“只有甲同学选篮球”,则()P A B =()A .332B .316C .34D .25【答案】A【分析】分别求出事件AB 、事件B 的可能的种数,代入条件概率公式()()()P AB P A B P B =即可求解.【详解】事件AB :甲同学选篮球且五名同学所选项目各不相同,所以其他4名同学排列在其他4个项目,且互不相同为44A ,事件B :甲同学选篮球,所以其他4名同学排列在其他4个项目,可以安排在相同项目为44,故()()()44545A 354325P AB P A B P B ===.故选:A .3.8x x ⎛⎫+ ⎪ ⎪⎝⎭展开式中,二项式系数最大的项是()A .第3项B .第4顶C .第5项D .第6项【答案】C【分析】根据二项式确定展开式中二项式系数最大的项即可.【详解】由题设,展开式中二项式1r T +对应二项式系数为8C r ,所以,二项式系数最大的项为4r =,即5T :第5项.故选:C4.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,则不同的站法有()A .1440种B .2880种C .4320种D .3600种【答案】C【分析】采用间接法,先求出没有限制的所有站法,再排除不满足条件的站法可求解.【详解】7个人从左到右排成一排,共有77A 5040=种不同的站法,其中甲、乙、丙3个都相邻有3535A A 720=种不同的站法,故甲、乙、丙3人中至多有2人相邻的不同站法有50407204320-=种不同的站法.故选:C5.2023年春,为了解开学后大学生的身体健康状况,寒假开学后,学校医疗部门抽取部分学生检查后,发现大学生的舒张压呈正态分布()270.8,7.02X N ~(单位:mm /Hg ),且()82.80.1P X >=,若任意抽查该校大学生6人,恰好有k 人的舒张压落在()58.8,82.8内的概率最大,则k =()A .3B .4C .5D .6【答案】C【分析】利用正态分布计算出()58.882.8P X <<,然后利用二项分布概率最大可得出关于k 的不等式组,解之即可.【详解】因为()270.8,7.02X N ~,则()()58.882.81282.80.8P X P X <<=->=,由题意知:抽查该校大学生6人,恰好有k 人的舒张压落在()58.8,82.8内的概率为()()()66C 0.20.81,2,,5kkk k -⋅⋅= ,要使此式的值最大,由6171666151664141C C55554141C C 5555kkk kk k kkk kk k -----+-+⎧⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅≥⋅⋅⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪⋅⋅≥⋅⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,即()()()()()()6176156!416!41!6!551!7!556!416!41!6!551!5!55k kk kk kk kk k k k k k k k ----+-⎧⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅≥⋅⋅⎪⎪ ⎪ ⎪ ⎪⋅--⋅-⎝⎭⎝⎭⎝⎭⎝⎭⎪⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪⋅⋅≥⋅⋅ ⎪ ⎪ ⎪ ⎪⎪⋅-+⋅-⎝⎭⎝⎭⎝⎭⎝⎭⎩,解得232855k ≤≤,{}1,2,3,4,5k ∈ ,所以,5k =.故选:C.6.抛掷三枚质地均匀的硬币一次,在有一枚正面朝上的条件下,另外两枚也正面朝上的概率是()A .18B .78C .17D .67【答案】C【分析】由题可知,抛掷三枚硬币,则基本事件共有8个,其中有一枚正面朝上的基本事件有7个,分别求出“有一枚正面朝上”和“三枚都正面朝上”的概率,最后根据条件概率的计算公式,即可求出结果.【详解】解:根据题意,可知抛掷三枚硬币,则基本事件共有8个,其中有一枚正面朝上的基本事件有7个,记事件A 为“有一枚正面朝上”,则()78P A =,记事件B 为“另外两枚也正面朝上”,则AB 为“三枚都正面朝上”,故()18P AB =,故()()()118778P AB P B A P A ===.即在有一枚正面朝上的条件下,另外两枚也正面朝上的概率是17.故选:C.【点睛】本题考查条件概率的计算公式的应用,考查分析和计算能力.7.三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A .72种B .108种C .36种D .144种【答案】D【分析】根据题意,利用捆绑法和插空法,再利用分布乘法原理,即可求出结果.【详解】解:先将男生甲与男生乙“捆绑”,有22A 种方法,再与另一个男生排列,则有22A 种方法,三名女生任选两名“捆绑”,有23A 种方法,再将两组女生插空,插入男生3个空位中,则有23A 种方法,利用分步乘法原理,共有22222233144A A A A =种.故选:D .【点睛】本题考查乘法原理的运用和排列知识,还运用了捆绑法和插空法解决相邻和不相邻问题,考查学生分析解决问题的能力.8.若不等式222e ln e ln 2e xaa x x a -+-≥-在[1,2]x ∈-有解,则实数a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【分析】先得到0a >,不等式变形得到()22e ln 21e exx a a ⎛⎫≥- -⎪⎝⎭,换元后令()()21ln 22e f t t t =--+,问题转化为存在2,e e t a a ⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥,求导后得到()f t 的单调性,结合()()21e 0f f ==,得到当21e t ≤≤时,()0f t ≥,比较端点值得到答案.【详解】由ln a 有意义可知,0a >,222e ln e ln 2e x a a x x a -+-≥-变形为()()22e ln 2e1x aa x --≥-,即()22e ln 21eexx a a⎛⎫≥- -⎪⎝⎭,令e xt a =,即有()2e 1ln 220t t --+≥,因为[1,2]x ∈-,所以2,e e e x t a a a ⎡=⎤∈⎢⎥⎣⎦,令()()21ln 22e f t t t =--+,问题转化为存在2,e e t a a ⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥,因为()22e 1212e t f t t t---'=-=,令()0f t '<,即20e 21t --<,解得2e 12t ->,令()0f t '>,即20e 21t -->,解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞ ⎪⎝⎭上单调递减,又()()()222210,e e 1ln e 2e 20f f ==--+=,而221e e 1<2-<,所以当21e t ≤≤时,()0f t ≥,若存在2,e e t a a ⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立,只需22e e a ≤且e 1a ≥,解得4e 1e ,a ⎡⎤∈⎢⎥⎣⎦.故选:D【点睛】对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知21nx x ⎛⎝的展开式中二项式系数之和为1024,则下列说法正确的()A .展开式中奇数项的二项式系数和为256B .展开式的各项系数之和为1024C .展开式中常数项为45D .展开式中含15x 项的系数为45【答案】BCD【分析】先由已知条件得21024n =求出n 的值,然后求出二项式展开式的通项公式,再逐个分析判断即可【详解】解:因为2nx x ⎛⎝的展开式中二项式系数之和为1024,所以21024n =,得10n =,所以二项式展开式的通项公式为5202102110101()rr rrr r T C x C xx --+==⋅,对于A ,展开式中奇数项的二项式系数和为110245122⨯=,所以A 错误,对于B ,因为2nx x ⎛⎝的展开式中二项式系数之和与展开式的各项系数之和相等,所以展开式的各项系数之和为1024,所以B 正确,对于C ,令52002r -=,解得8r =,所以展开式中常数项为81045C =,所以C 正确,对于D ,令520152r -=,解得2r =,所以展开式中含15x 项的系数为21045C =,所以D 正确,故选:BCD10.下列说法正确的是()A .在一个2×2列联表中,计算得到2χ的值,则2χ的值越接近1,可以判断两个变量相关的把握性越大B .随机变量()2~,N ξμσ,若函数()()2f x P x x ξ=≤≤+为偶函数,则1μ=C .若回归直线方程为ˆ 1.22yx =+,则样本点的中心不可能为(5,7)D .若甲、乙两组数据的相关系数分别为0.91-和0.89,则甲组数据的线性相关性更强【答案】BCD【分析】由独立性检验的相关知识可判断A ;根据偶函数的对称性可判断B ;根据回归直线过样本点的中心可判断C ;根据线性相关性与相关系数的关系可判断D.【详解】对于A ,在一个2×2列联表中,由计算得2χ的值(可大于1),2χ的值越大,两个变量相关的把握越大,故A 错误;对于B ,()()2f x P x x ξ=≤≤+为偶函数,则()()f x f x -=,即()()22P x x P x x ξξ-≤≤-+=≤≤+,故可得212x x μ-++==,故B 正确;对于C ,7 1.252≠⨯+,所以样本点的中心不可能为()5,7,C 正确;对于D ,具有线性相关关系的两个变量x ,y 的相关系数为r ,则r 越接近于1,x 和y 之间的线性相关程度越强,D 正确.故选:BCD.11.一个袋子中有编号分别为1,2,3,4的4个球,除编号外没有其它差异.每次摸球后放回,从中任意摸球两次,每次摸出一个球.设“第一次摸到的球的编号为2”为事件A ,“第二次摸到的球的编号为奇数”为事件B ,“两次摸到的球的编号之和能被3整除”为事件C ,则下列说法正确的是()A .()516P C =B .事件B 与事件C 相互独立C .()12P CA =∣D .事件A 与事件B 互为对立事件【答案】AC【分析】对于选项A ,由古典概型的概率公式得()516P C =,所以该选项正确;对于选项B ,由题得()()()P BC P B P C ≠⋅,事件B 与事件C 不相互独立,所以该选项错误;对于选项C,()12P C A =∣,所以该选项正确;对于选项D,举例说明事件A 与事件B 不是对立事件,所以该选项错误.【详解】对于选项A ,两次摸到的球的编号之和能被3整除的基本事件有(1,2),(2,1),(2,4),(4,2),(3,3),共5个,由古典概型的概率公式得()554416P C ==⨯,所以该选项正确;对于选项B ,由题得241()442P B ⨯==⨯,21()448P BC ==⨯,所以()()()P BC P B P C ≠⋅,事件B 与事件C 不相互独立,所以该选项错误;对于选项C,()()21()142P AC P CA P A ===⨯∣,所以该选项正确;对于选项D,如果第一次摸到编号为1的球,第二次摸到编号为4的球,则事件A 和B 都没有发生,所以事件A 与事件B 不是对立事件,所以该选项错误.故选:AC12.下列不等关系中正确的是()A 2ln 3<B 4>C .sin 33sin1cos1<D .sin 33sin1cos1>【答案】BC【分析】根据函数值的特征,构造函数()ln xf x x=,求出其导数,判断函数的单调性,可判断AB ;同理构造函数()sin xg x x=,判断CD.【详解】令()ln x f x x=,则()21ln xf x x -'=,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<所以函数()f x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()2f f>,即ln22>2ln 3>=,故A 错误,又ln 42ln 2=,所以ln 4ln242=>44ln >B 正确;令()sin x g x x =,π()0,x ∈,则2cos sin ()x x xg x x -'=,令()cos sin u x x x x =-,则()cos sin u x x x x =--'cos sin 0x x x =-<在(0,π)上恒成立,所以()u x 在(0,π)上单调递减,所以()(0)0u x u <=,所以()0g x '<在(0,π)上恒成立,所以()g x 在(0,π)上单调递减,所以(2)(3)g g >,即sin 2sin 323>,即3sin 2sin 32<=3sin1cos1,故C 正确,D 错误,故选:BC .【点睛】关键点点睛:构造函数()ln xf x x=和()sin x g x x =,π()0,x ∈,是解决本题的关键.三、填空题:本题共4小题,每小题5分,共计20分.13.2023年五一节到来之前,某市物价部门对本市5家商场的某种商品一天的销售量及其价格进行调查,5家商场这种商品的售价x (单位:元)与销售量y (单位:件)之间的一组数据如下表所示:价格x 89.5m 10.512销售量y1610865经分析知,销售量y 件与价格x 元之间有较强的线性关系,其线性回归直线方程为 3.544y x =-+,则m =________.【答案】10【分析】计算变量的平均值,x y ,根据变量y 与x 之间有较强的线性关系,结合回归直线的性质即可求得m 的值.【详解】变量x 的平均值为89.510.512855m m x ++++==+,变量y 的平均值为161086595y ++++==,又销售量y 件与价格x 元之间有较强的线性关系,所以其线性回归直线方程 3.544y x =-+经过点(),x y ,所以9 3.58445m ⎛⎫=-⨯++ ⎪⎝⎭,解得10m =.故答案为:10.14.某城市休闲公园管理人员拟对一块圆环区域进行改造封闭式种植鲜花,该圆环区域被等分为5个部分,每个部分从红、黄、紫三种颜色的鲜花中选取一种进行栽植.要求相邻区域不能用同种颜色的鲜花,总的栽植方案有_________种.【答案】30【分析】依颜色为出发点,分析可得必用3种颜色的鲜花,先安排1,2位置,再讨论第三种颜色的可能位置,分析运算即可.【详解】若只用两种颜色的鲜花,则1,3位置的颜色相同,2,4位置的颜色相同,即可得1,4位置的颜色不同,则5位置无颜色可选,不合题意;故必用3种颜色的鲜花,则1,2的栽植方案有23A 6=种,已用两种颜色,第三种颜色可能在3,4,5,可得:(i )若第三种颜色在3或5,有如下两种可能:①3,5的颜色相同,则4的颜色有两种可能,栽植方案有12C 2=种;②3,5的颜色不相同,则4的颜色必和1的颜色相同,栽植方案有12C 2=种;栽植方案共有224+=种;(ⅱ)若第三种颜色在4,则3的颜色必和1的颜色相同,5的颜色必和2的颜色相同,栽植方案共有1种;综上所述:总的栽植方案有()64130⨯+=种.故答案为:30.15.假设有两箱零件,第一箱内装有10件,其中有3件次品;第二箱内装有20件,其中有2件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,已知取出的是次品,则它是从第一箱取出的概率为__________.【答案】0.75/34【分析】利用条件概率求取出的是次品,求它是从第一箱取出的概率.【详解】设事件i A 表示从第(1,2)i i =箱中取一个零件,事件B 表示取出的零件是次品,则121122()()()()(|)()(|)P B P A B P A B P A P B A P A P B A =+=⋅+⋅131241*********=⨯+==,所以已知取出的是次品,求它是从第一箱取出的概率为1113()3210(|)4()420P A B P A B P B ⨯===.故答案为:34.16.已知函数()ln 20()a x x a f x =-≠,若不等式222e ()e cos(())a x x x f x f x ≥+对0x >恒成立,则实数a 的取值范围为__________.【答案】(0,2e]【分析】将不等式等价转化,构造函数()e 2cos t g t t t =--,并探讨其性质,再利用导数分类讨论()t f x =的值域即可求解作答.【详解】ln 2()22()cos[()]e 2()cos[()]0e 2()cos[()]0eaa x x f x x x f x f x f x f x f x f x --≥⇔--≥⇔--≥,令()t f x =,则()e 2cos t g t t t =--,()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,则()0g t '<恒成立,当0t >时,e 1,cos 1t t >≥-,则()0h t '>恒成立,则()g t '在(0,)+∞上单调递增,又因为(0)1,(1)e 2sin10g g ''=-=-+>,因此存在0(0,1)t ∈,使得()00g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在()0,t -∞上单调递减,在(0t ,)∞+上单调递增,又(0)0g =,作出函数()g t的图像如下:函数()ln 2(0)f x a x x a =-≠定义域为(0,)+∞,求导得2()2a a x f x x x-'=-=,①当a<0时,()0f x '<,函数()f x 的单调递减区间为(0,)+∞,当01x <<时,ln y a x =的取值集合为(0,)+∞,而2y x =-取值集合为(2,0)-,因此函数()f x 在(0,1)上的值域包含(0,)+∞,当1x ≥时,ln y a x =的取值集合为(,0]-∞,而2y x =-取值集合为(,2)-∞-,因此函数()f x 在[1,)+∞上无最小值,从而函数()f x 的值域为R ,即()R t f x =∈,()00g t <,不合题意,②当0a >时,由()0f x '<得2a x >,由()0f x '<得02a x <<,函数()f x 在(0,)2a上单调递增,在(,)2a +∞上单调递减,max ()()ln 22a af x f a a ==-,当01x <≤时,ln y a x =的取值集合为(,0]-∞,而2y x =-取值集合为(2,0]-,因此函数()f x 在(0,1]上的值域包含(,0]-∞,此时函数()f x 的值域为(,ln ]2aa a -∞-,即()(,ln ]2a t f x a a =∈-∞-,当ln 02aa a -≤时,即当02e a <≤时,()0g t ≥恒成立,符合题意,当ln02a a a ->时,即当2e a >时,10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,结合图象可知,()10g t <,不合题意,所以实数a 的取值范围为(0,2e].故答案为:(0,2e]【点睛】关键点睛:函数不等式恒成立求参数范围问题,结合已知,利用换元法构造新函数,用导数探讨函数的性质,借助数形结合的思想推理求解.四、解答题:本题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)为了解学生对党的“二十大”精神的学习情况,学校开展了“二十大”相关知识的竞赛活动,全校共有1000名学生参加,其中男生450名,采用分层抽样的方法抽取100人,将他们的比赛成绩(满分为100分),分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.其中成绩不低于80分为“优秀”,低于80分为“非优秀”.(1)求实数a 的值,并估算全校1000名学生中成绩优秀的人数;(2)完成下列22⨯列联表,判断是否有95%的把握认为比赛成绩优秀与性别有关.优秀非优秀合计男女10合计附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.2()P k αχ=≥0.100.050.0100.0050.001k2.7063.8416.6357.87910.828【答案】(1)0.020a =,250(人)(2)填表见解析;没有【分析】(1)根据频率和为1求得a ,进而根据频率估计成绩优秀的人数;(2)根据题意结合分层抽样完善列联表,求2χ,并与临界值对比分析.【详解】(1)由题意可得:(0.0050.0150.0300.0250.005)101a +++++⨯=,解得0.020a =,样本中成绩优秀的频率为:0.0200.0051025(.)0+⨯=,以样本估计总体,全校1000名学生中成绩优秀的人数为:0.251000250⨯=(人).(2)由题意,采用分层抽样,男生抽取人数450100451000⨯=人,女生抽取1004555-=人,且样本中优秀的人数为1000.2525⨯=人,故22⨯列联表如下:优秀非优秀合计男153045女104555合计2575100可得22100(15453010)1003.0304555257533χ⨯⨯-⨯==≈⨯⨯⨯,因为3.030 3.841<,故没有95%的把握认为比赛成绩优秀与性别有关18.已知()()52601261(1)(1)m x x a a x a x a x +=+-+-++- ,其中R m ∈,且13564a a a ++=,(1)求m 的值;(2)求4a 的值.【答案】(1)2(2)25【分析】(1)分别令0x =,2x =,然后两式相减求结合13564a a a ++=即可得解;(2)()52x x +化为()()53111x x ⎡⎤⎡⎤+--+⎣⎦⎣⎦,求出()511x ⎡⎤-+⎣⎦展开式的通项,令()1x -的指数等于4和3即可得解.【详解】(1)当0x =时,()012345600m a a a a a a a +⋅=-+-+-+,①当2x =时,()5012345622m a a a a a a a +⋅=++++++,②②-①得,()()5135222m a a a +⋅=++,因为13564a a a ++=,所以()()5135222128m a a a +⋅=++=,解得2m =;(2)()()()5523111x x x x ⎡⎤⎡⎤+=+--+⎣⎦⎣⎦,()511x ⎡⎤-+⎣⎦展开式的通项为()515C 1kk k T x -+=-,令54k -=,则1k =,令53k -=,则2k =,所以124553C C 25a =+=.19.已知0a >,函数()()2ln ln e f x x a a x x =-+-,其中e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当e a =时,求函数()f x 的单调区间;(3)求证:函数()f x 存在极值点,并求极值点0x 的最小值.【答案】(1)()212e e 0x y --+=(2)单调增区间为(e,)+∞,单调减区间为(0,e)(3)证明见解析,0x 的最小值是e .【分析】(1)先求()f x 的导函数,再点斜式求曲线()y f x =在点()()1,1f 处的切线方程(2)先求()f x 的导函数,根据()f x '的正负判定函数的增减即可;(3)根据导数的分母正,需要分子有变号零点,转变为双变量函数的恒成立和有解问题,利用导数再次确定新函数单调性和最值即可求解.【详解】(1)当1a =时,()()2ln e f x x x =-+-,()()()221ln11e 1e f ==-+--,()()12e f x x x'=-+-,()()1121e 12e f '=-+-=-,曲线()y f x =在点()()1,1f 处的切线方程()()()21e 12e 1y x --=--,切线方程()212e e 0x y --+=.(2)当e a =时,2()eln (e)f x x x x =-+-,则2e 2(12e)e (21)(e)()12(e),(0)x x x x f x x x x x x+--+-+-='=-=>令()0f x '>,得e x >;令()0f x '<,得e x <;所以,函数()y g x =的单调增区间为(e,)+∞,单调减区间为(0,e).(3)22(ln 2e)()ln 2(e)a x a x af x a x x x+--=-+'-=令2()2(ln 2e)0t x x a x a =+--=,因为2(ln 2e)80a a ∆=-+>,所以方程22(ln 2e)0x a x a +--=,有两个不相等的实根()1212,x x x x <,又因为1202ax x =-<,所以120x x <<,令02x x =,列表如下:x ()00,x 0x ()0,x +∞()f x '-0+()f x 减极小值增所以()f x 存在极值点0x .所以存在0x 使得2002(ln 2e)0x a x a +--=成立,所以存在0x 使得200022e ln x x a x a -=-,所以存在0x 使得2000ln 22e a x a x x -=-对任意的0a >有解,因此需要讨论等式左边的关于a 的函数,记0()ln u t t x t =-,所以0()1x u t t=-',当00t x <<时,()0,()u t u t <'单调递减;当0t x >时,()0,()u t u t >'单调递增.所以当0t x =时,0()ln u t t x t =-的最小值为()0000ln u x x x x =-.所以需要200000022e ln ln x x a x a x x x -=-≥-,即需要200002(2e 1)ln 0x x x x -++≥,即需要002(2e 1)ln 0x x -++≥,即需要002ln (2e 1)0x x -+≥+因为()2ln (2e 1)v t t t =+-+在(0,)+∞上单调递增,且()0()0v x v e ≥=,所以需要0e x ≥,故0x 的最小值是e .20.某校20名学生的数学成绩(1,2,,20)i x i = 和知识竞赛成绩(1,2,,20)i y i = 如下表:学生编号i 12345678910数学成绩i x 100999693908885838077知识竞赛成绩iy 29016022020065709010060270学生编号i 11121314151617181920数学成绩i x 75747270686660503935知识竞赛成绩iy 4535405025302015105计算可得数学成绩的平均值是75x =,知识竞赛成绩的平均值是90y =,并且()20216464i i x x =-=∑,()2021149450ii yy =-=∑,()()20121650i i i x x y y =--=∑.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01).(2)设*N N ∈,变量x 和变量y 的一组样本数据为(){},|1,2,,i i x y i N = ,其中(1,2,,)i x i N = 两两不相同,(1,2,,)i y i N = 两两不相同.记i x 在{},2|1,,n x n N = 中的排名是第i R 位,i y 在{},2|1,,n y n N = 中的排名是第i S 位,1,2,,i N = .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.。
(优辅资源)广东省汕头市高二下学期期末教学质量检测考试理科数学试卷 Word版含答案

绝密★启用前 试卷类型:A汕头市2015~2016学年度普通高中教学质量监测高二理科数学注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、学校、座位号、考生号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第 Ⅰ 卷一、选择题:(本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
)1. 集合{}{}2|ln 0,|16A x x B x x =≥=<,则=A B ( )A .()41,B .[)1,4C .[)1,+∞D .[),4e2. 复数231i i -⎛⎫ ⎪+⎝⎭=( )A .-3-4iB .-3+4iC .3-4iD .3+4i3. 函数22()sincos 33f x x x =+的图象中相邻的两条对称轴间距离为( ) A . 3π B .43πC .32πD .76π 4. 下列命题中,是真命题的是( )A .0x R ∃∈,00x e≤ B .已知a ,b 为实数,则a +b =0的充要条件是a b=-1C . x R ∀∈,22x x >D .已知a ,b 为实数,则a >1,b >1是ab >1的充分条件 5. 现有2个男生,3个女生和1个老师共六人站成一排照相,若两端站男生,3个女生中有且仅有两人相邻,则不同的站法种数是( ) A .12B .24C .36D .486. 已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )ABC .2D7. 已知双曲线C :2222x y a b-=1(a >0,b >0),则C 的渐近线方程为( )A .14y x =±B .13y x =±C .12y x =± D .y x =±8. 在ABC ∆中,A =6π,ABAC =3,D 在边BC 上,且2CD D B =,则AD =( )ABC .5 D.9. 某程序框图如图所示,现将输出(,)x y 值依次记为:11(,)x y , 22(,)x y ,…,(,)n n x y ,…若程序运行中输出的一个数组是(10)-x ,,则数组中的x =( ) A .32 B .24 C .18D .1610. 如图1,已知正方体1111CD C D AB -A B 的棱长为a ,动点M 、N 、Q 分别在线段1D A ,1C B ,11C D 上.当三棱锥Q-BMN 的俯视图如图2正视图面积等于( )A .212aB .214aC 2aD 211. 已知函数)0)(cos 3(sin cos )(>+=ωωωωx x x x f ,如果存在实数0x ,使得对任意的实数x ,都有00()()(2016)f x f x f x π≤≤+成立,则ω的最小值为( ) A .14032πB .14032C .12016π D .1201612. 已知函数-+-≤≤⎧=⎨≤<⎩2|1|,70()ln ,x x f x x e x e,2()2g x x x =-,设a 为实数,若存在实数m ,使 ()2()0f m g a -=则实数a 的取值范围为( )A .[1,)-+∞B .[1,3]-C .,1][3,)-∞-+∞(U D .,3]-∞( 第 Ⅱ 卷本卷包括必考题和选考题两部分。
高二下学期期末考试数学(文)试题Word版含答案

永春一中高二年(文)期末考数学科试卷(.07)命题:张隆亿 时间:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若命题p :32,1x x x ∃∈>-R ,则p ⌝为( )A .32,1x x x ∀∈<-RB .32,1x x x ∀∈-R ≤C .32,1x x x ∃∈<-RD .32,1x x x ∃∈-R ≤2.已知集合{|13}A x x =-<<,2{|280}B x x x =+->,则=B A ( )A .∅B .(1,2)-C .(2,3)D .(2,4) 3.若复数z 满足()3+4i 1i z =-(i 是虚数单位),则复数z 的共轭复数z = ( )A . 17i 55-- B .17i 55-+C .17i 2525-- D .17i 2525-+4.为了得到函数121x y +=-的图象,只需把函数2x y =的图象上的所有的点( )A .向左平移1个单位长度,再向下平移1个单位长度B .向右平移1个单位长度,再向下平移1个单位长度C .向左平移1个单位长度,再向上平移1个单位长度D .向右平移1个单位长度,再向上平移1个单位长度 5.若函数(1)()y x x a =+-为偶函数,则a 等于( )A .-2B .-1C .1D .26.已知函数()f x 在区间[,]a b 上的图象是连续的曲线,若()f x 在区间(,)a b 上是增函数, 则( )A .()f x 在(,)a b 上一定有零点B .()f x 在(,)a b 上一定没有零点C .()f x 在(,)a b 上至少有一个零点D .()f x 在(,)a b 上至多有一个零点 7.已知定义在R 上的奇函数()f x ,当0x ≥时,恒有(2)()f x f x +=,且当[]0,1x ∈时, ()e 1x f x =-,则(2017)(2018)f f -+=( )A .0B .eC .e 1-D .1e - 8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)9.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q ,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )10.函数||e ()3xf x x=的部分图象大致为( )11.函数()()22log f x x x =-的零点个数为( )A .1B .2C .3D .412.设对函数f (x )=-e x -x (e 为自然对数的底数)图像上任意一点处的切线为l 1,若总存在函数g (x )=ax +2cos x 图像上一点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为( )A .[-1,2]B .(-1,2)C .[-2,1]D .(-2,1) 二、填空题:本大题共4小题,每小题5分,共20分. 13.已知幂函数()f x k x α=⋅的图像经过12,22⎛⎫⎪⎪⎝⎭,则k α+的值 . 14.计算:26666(1log 3)log 2log 18log 4-+⋅= .15.已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.16.若不等式(x -a)2+(x -ln a)2>m 对任意x⊥R,a⊥(0,+∞)恒成立,则实数m 的取值范围是 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必B1 1O xy -11 ODxy 1 1O A xy -11 O Cxy -考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题(共60分) 17.(12分)在⊥ABC 中,27AB =,6C π=,点在边上,且π3ADB ∠=. (1)若4BD =,求tan ABC ∠; (2)若3AD BC =,求⊥ABC 的周长.18.(12分) 已知函数()3239f x x x x a =--+.(1)求函数()f x 的单调区间;(2)若()f x 在区间[]2,2-上的最大值为8,求它在该区间上的最小值.19.(12分)设抛物线C :24y x =的焦点为F ,过F 且斜率为的直线l 与C 交于A ,B 两点,8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.20.(12分)近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.图1图2(1)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在(8,16]”为事件A ,试估计A 的概率;(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中x (单位:年)表示二手车的使用时间,y (单位:万元)表示相应的二手车的平均交易价格. 由散点图看出,可采用ea bxy +=作为二手车平均交易价格y 关于其使用年限x 的回归方程,相关数据如下表(表中ln i i Y y =,101110i i Y Y ==∑):⊥根据回归方程类型及表中数据,建立y 关于x 的回归方程;⊥该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格4%的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格10%的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.附注:⊥对于一组数据()()()1122,,,,,n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为1221ˆˆˆ,ni i i nii u v nu vv u unu βαβ==-==--∑∑; ⊥参考数据: 2.951.750.550.65 1.85e 19.1,e 5.75,e 1.73,e 0.52,e 0.16--≈≈≈≈≈.21.(12分)已知函数21()xax x f x e +-=.(1)求曲线()y f x =在点(0,-1)处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.选考题:共10分.请考生在(22)、(23)两题中任选一题作答.如果多做,则按所做第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,直线l 的参数方程为1,1x y t⎧=⎪⎨=+⎪⎩(t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2cos ρθ=. (1)求直线l 的极坐标方程和曲线C 的直角坐标方程; (2)设l 与C 交于,P Q 两点,求POQ ∠.23.[选修4-5:不等式选讲](10分)已知函数2()23f x x a x a =-+-+,2()4g x x ax =++,a ∈R . (1)当1a =时,解关于x 的不等式()f x ≤4;(2)若对任意1x ∈R ,都存在2x ∈R ,使得不等式12()()f x g x >成立,求实数a 的取值范围.永春一中高二年(文)期末考数学参考答案和评分细则评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分标准制定相应的评分细则。
高二下学期期末考试数学试卷含答案(word版)

第二学期期末考试 高二数学试卷一、选择题:(本题共12小题,每小题5分,共60分,每小题只有一个选项正确。
)1.设集合{|22}xA x =>,{|ln(2)}B y y x ==-,则A B ⋂=( )A .{|12}x x <<B .{|02}x x <<C .{|1}x x >D . {|2}x x <2.若()125i z i -=,则z 的值为( )A .3B .5C .3D .53. 在边长为3的等边三角形ABC ∆中,若M 、N 分别是BC 边上的三等分点,则AM AN u u u u r u u u rg 的值是( )A .112 B . 132C. 6 D .7 4.已知24x y +=,其中0,0x y >>,则12x y+的最小值为( ) A.32 B. 2 C. 94D. 22 5.函数2cos 32sinxx y +=的图像的一条对称轴方程是( ) A .311π=x B .35π=x C .35-π=x D .3-π=x 6.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x 与相应的生产能耗y 的几组对应数据:根据上表可得回归方程$9.49.1y x =+,那么表中m 的值为( ) A .27.9B .25.5C .26.9D .267.设函数21()9ln 2f x x x =-在区间[1,1]a a -+上单调递减,则实数a 的取值范围是 ( ) A.(1,2]B.[4,+∞)C.(-2,2]D.(0,3]8.已知命题p :x R ∀∈,22log (23)1x x ++>;命题q :0x R ∃∈,0sin 1x >,则下列命题中为真命题的是( )A .p q ⌝∧⌝B .p q ∧⌝C .p q ⌝∧D .p q ∧9.若实数,x y 满足1200y x x y y ≤+⎧⎪-≤⎨⎪≥⎩,则z =的最大值是 ( )AD10.在三棱锥S ABC -中,SB BC ⊥,SA AC ⊥, SB BC =,SA AC =,12AB SC =,且三棱锥S ABC -,则该三棱锥的外接球半径是( ) A .1B .2C .3D .411.斜率为k 的直线l 过抛物线错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末模拟检测二(提高篇)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
一、单选题
1.设1i
2i 1i z -=++,则||z =
A .0
B .
12
C .1 D
2.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( ) A .2
B .3
C .4
D .5
3.曲线3y x x =-在点()1,0处的切线方程为( ) A .20x y -= B .220x y +-= C .220x y ++=
D .220x y --=
4.若6把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为( ) A .
3
5
B .
115
C .
815
D .
13
5.若
()()()()5
2
5
012512111x a a x a x a x -=+-+-+
+-,则135a a a ++=( ). A .121-
B .122-
C .243-
D .1-
6.随机变量X 的取值为0,1,2,若()1
04
P X ==,()1E X =,则()D X =( )
A .
32
B .
12
C .
14
D .1
7.设X ~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.0228,那么向正方形OABC 中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( )
(附:随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%)
A .6038
B .6587
C .7028
D .7539
8.已知函数()f x 的导函数为()f x ',且满足()2()ln f x xf e x '=+,则()f e '等于()
A .1
B .1e
-
C .1-
D .e -
二、多选题
9.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .()2
5P B =
B .()15|11
P B A =
C .事件B 与事件1A 相互独立
D .1A ,2A ,3A 是两两互斥的事件
10.将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有( ). A .1
1
1
1
3213C C C C
B .23
43C A
C .122
342C C A
D .18
11.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的4
5
,女生喜欢抖音的人数占女生人数
3
5
,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人 附表:
附:()()()()()
2
2
n ad bc K a b c d a c b d -=
++++ A .25
B .45
C .60
D .75
12.设函数()()e
21x
f x x ax a =--+,若存在唯一的整数0
x
,使得()00f x <,则
满足题意的a 的取值范围可以是( )
A .33,2e 2⎡⎫⎪⎢⎣⎭
B .3,12e ⎡⎫⎪⎢⎣⎭
C .33254e ,e 2⎛⎤ ⎥⎝
⎦
D .2
353e ,
e 2⎛
⎤ ⎥⎝
⎦
第II 卷(非选择题)
请点击修改第II 卷的文字说明
三、填空题
13.8
3128x x ⎛⎫- ⎪⎝
⎭展开式中的常数项为________. 14.若函数sin ()x f x x
=
的导函数为'
()f x ,则'()f π=________. 15.为培养学生的综合素养,某校准备在高二年级开设A ,B ,C ,D ,E ,F 六门选修课程,学校规定每个学生必须从这6门课程中选3门,且A ,B 两门课程至少要选
1门,则学生甲共有__________种不同的选法.
16.某工厂为了对新研发的一种产品进行合理定价,将该产品事先拟订的价格进行试销,得到如下数据.
由表中数据求得线性回归方程4y x a =-+,则10x =元时预测销量为__________件.
四、解答题
17.已知函数()2
ln f x x ax x =+-,a R ∈.
(1)若1a =,求曲线()y f x =在点()()
1,1f 处的切线方程; (2)若函数()f x 在[1,3]上是减函数,求实数a 的取值范围.
18.已知()22n
n N x +⎫∈⎪⎭的展开式中第二项与第三项的二项式系数之和为36. (1)求n 的值;
(2)求展开式中含3
2x 的项及展开式中二项式系数最大的项.
19.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.
20.为推行“新课堂”教学法,某老师分别用传统教学和“新课堂”两种不同的教学方式在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽
取20名学生的成绩进行统计,作出如图所示的茎叶图,若成绩大于70分为“成绩优良”.
(1)分别计算甲、乙两班的样本中,前10名成绩的平均分,并据此判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
(3)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记ξ
为所抽取的2人中来自乙班的人数,求ξ的分布列及数学期望.
附:K2=
2
(-)
()()()()
n ad bc
a c
b d a b
c d
++++
(n=a+b+c+d),
21.某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线
从第一道生产工序抽样调查了100件,得到频率分布直方图如图:
若生产一件一等品、二等品、三等品的利润分别是100元、60元、100-元.
(Ⅰ)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;
(Ⅱ)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;
(Ⅲ)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2
(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.
(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,
(33)0.9974P X μσμσ-<+=≤)
22.已知函数1
()ln f x x a x x
=
-+. (1)讨论()f x 的单调性;
(2)若()f x 存在两个极值点12,x x ,证明:
()()
1212
2f x f x a x x -<--.88836630。