函数的奇偶性说课PPT幻灯片33页PPT

合集下载

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

函数的奇偶性前言函数的奇偶性是高中数学中的一个重要概念,也是数学中的常见性质之一。

片面地来讲,它们是课程表中的某一个知识点,但是如果它被用来将不同的数学概念联系起来,比如对称、周期性、等等,则可以把它作为基础知识点,引导学生探求数学中的奇美妙世界。

本文将围绕着函数的奇偶性来进行讲解。

正文什么是函数的奇偶性一个给定的函数,如果对于任意的x,都有f(−x)=−f(x),则称该函数为一个奇函数,如果对于任意的x,都有f(−x)=f(x),则称该函数为一个偶函数。

奇偶性的性质1.若f(x)是一个奇函数,则其图像关于原点对称。

若f(x)是一个偶函数,则其图像关于y轴对称。

2.对于任意的奇函数f(x),f(0)=0。

对于任意的偶函数f(x),f(0)是正的。

3.奇函数与奇函数相加,得到一个奇函数;奇函数与偶函数相加,得到一个奇函数;偶函数与偶函数相加,得到一个偶函数。

4.奇函数与奇函数相乘,得到一个偶函数;奇函数与偶函数相乘,得到一个奇函数;偶函数与偶函数相乘,得到一个偶函数。

5.如果f(x)是一个定义域为$[0,\\infty)$上的偶函,那么f(x)可以表示为一个关于x=0的偶函数的傅里叶级数。

奇偶性的应用对称性奇函数是关于原点对称的,而偶函数则是关于y轴对称的。

根据这一性质,我们可以很容易地画出函数的图像。

例如,对于函数f(x)=x3,其中f(x)是一个奇函数,我们可以得到关于原点的对称图像:奇函数对称性1同样地,对于函数g(x)=x2,其中g(x)是一个偶函数,我们可以得到关于y轴的对称图像:偶函数对称性1这种对称性不仅存在于函数的图像中,还可以应用于方程的解决。

例如,对于二次方程ax2+bx+c=0,如果b=0,那么该方程是一个偶函数。

如果我们知道一个根x0,那么−x0也是一个根。

这种对称性使得解方程变得更加简单。

周期性对于任意函数f(x),如果存在一个正数T,使得f(x+T)=f(x)对任意的x都成立,那么我们称f(x)是有周期的,T是这个周期。

函数的奇偶性(精辟讲解)精品PPT课件

函数的奇偶性(精辟讲解)精品PPT课件
f(x)=-f(-x). (2)可用定义法,也可以用特殊值代入,如 f(1)=f(-1), 再验证. (3)可考虑 f(x)在[-2,2]上的单调性.
解 (1)∵f(x)是定义在 R 上的奇函数, ∴f(0)=0,当 x<0 时,-x>0, 由已知 f(-x)=(-x)2-(-x)-1=x2+x-1=-f(x). ∴f(x)=-x2-x+1.
所以 f(x)在(0,+∞)内单调递增.
故|lg x|>1,即 lg x>1 或 lg x<-1,
解得
x>10

1 0<x<10.
点评 解决本题的关键在于利用函数的奇偶性把不等
式两边的函数值转化到同一个单调区间上,然后利用函
数的单调性脱掉符号“f”.
题型三 函数的奇偶性与周期性 例 3 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,
域是否关于原点对称.若对称,再验证 f(-x)=±f(x)或
其等价形式 f(-x)±f(x)=0 是否成立.
解 (1)由x32--x32≥≥0
,得 x=±3.∴f(x)的定义域为{-3,3}.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.即 f(x)=±f(-x).
∴f(x)既是奇函数,又是偶函数.
基础自测
1.下列函数中,所有奇函数的序号是__②__③____.
①f(x)=2x4+3x2;②f(x)=x3-2x; ③f(x)=x2+x 1;④f(x)=x3+1. 解析 由奇偶函数的定义知:①为偶函数;②③为奇函
数;④既不是偶函数,也不是奇函数. 2.若函数 f(x)=2x+2 1+m 为奇函数,则实数 m=_-__1__.
f (x) 0x2 x 1

函数的奇偶性课件PPT(共20张PPT)

函数的奇偶性课件PPT(共20张PPT)

已知f(x),g(x)是定义域为R的函数,
并且f(x)是偶函数,g(x)是奇函数,试将下
图补充完整。
y
y
o
x
f(x)
o
x
g(x)
欣赏下面的图片,你在生活中发现有什么地方用 到了今天的知识吗?
欣赏下面的图片,你在生活中发现有什么地方 用到了今天的知识吗?
欣赏下面的图片,你在生活中发现有什么地方用到 了今天的知识吗?
3、什么是轴对称图形和中心对称图形。
y
y=x
2
9 从图象上你能发 如果定义域关于原点对称,且对定义域内的任意一个x
2、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括力。
8 如果定义域关于原点对称,且对定义域内的任意一个x
从图象上你能发现什么吗?
现什么吗?
已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
f(-1)=1 =f(1) 已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
-3 -2 -1 0 1 2 3 已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
观察图象,你能发现它们的共同特征吗?
6 4
y
y=x
2
6y 4
y=
1 x
2
42 -2 -4 -6
246 x
42 -2 -4 -6
246 x
f(-3)=3 =-f(3) f(-2)=2 =-f(2)
f(-1)=1 =-f(1)
f(-3)=- 13=-f(3) f(-2)=- 12=-f(2)

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课教学课件复习(函数奇偶性的概念)

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课教学课件复习(函数奇偶性的概念)

课件 课件
课件 课件
课件 课件
课件
课件
课件
(2)已知 f(x)=x7-ax5+bx3+cx+2,若 f(-3)=-3,则 f(3)=________.
[思路点拨] (1) fx是偶函数 定原义―点―域对→关称于 求a的值 图y―轴象―对关→称于 求b的值
(2)
令gx=x7-ax5+bx3+cx
―→
判断gx 的奇偶性
(2)由图象知,使函数值 y<0 的 x 的取值集合为(-2,0)∪(2,5).
栏目导航
(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.
[解]
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
(1)如图所示 课件 课件
课件 课件
课件
课件
(2)由(1)可知,使函数值y<0的x的取值集合为(-5,-2)∪(2,5).
需多项式的奇次项系数为 0,即 a-4=0,则 a=4.
法三:根据二次函数的奇偶性可知,形如 f(x)=ax2+c 的都是偶函数,
因而本题只需将解析式看成是平方差公式,则 a=4.]
栏目导航
1.奇偶性是函数“整体”性质,只有对函数 f(x)定义域内的每一个值 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件

新人教版高中数学《函数的奇偶性说课稿》精品PPT课件

新人教版高中数学《函数的奇偶性说课稿》精品PPT课件

-x0
0
x0
x
问题1:这两个函数图象的共同特征是什么? 问题2:如何用函数解析式表达该图象的这个特征?
教学过程分析
概 首先形成直观观念在“形”上图象关于Y轴对称,然后 念 引导学生从简单的特殊值发现, 比如f(-2)=f(2), 形 f(-3)=f(3)等,再通过独立思考、合作探究、动 成 手操作的学习方式得出对定义域内任意的x都有

例3、判断下列函数的奇偶性,并结合图程拓 度展象的重
学 在
生 思
都 维
有 训
发 练
展 ,
。 多
念 观察结论的正确性:
点想,少点算。
深 化
f(x)=x2 , x∈ [-1,2] f(x)=3x,x ∈[-1,1)
f(x)=1,x ∈ R
f(x)=√x-2+ √ 2-x
y
例4、已知y=f(x) (x∈R)是偶函数,
性的方法。
过程与方法目标:
1, 通过函数y=x2,y=|x|图象的观察、分析、讨论等数学活动过程,初步形成
偶函数的概念,类比研究y=x与y=1/x的图象,得出奇函数的概念。同时渗
透“数形结合” 、“由特殊到一般”、 “类比” 的思想方法。
2, 在概念运用的过程中,初步掌握从“数”与“形”两个途径判断奇偶性
f(-x)=f(x),师生共同总结出偶函数的概念。
教学过程分析
y

f(x1)


-x1

0
y=x
x1
x
f(-x1)
概念课的教学,应走出 “概念一带而过,练习铺 天盖地”的误区,走向 “重视过程、重视探究、 重视交流y” 的新天地。
y=1/x

北师大版高中数学必修一第二章 函数第五节简单的幂函数之函数的奇偶性说课课件(共22张PPT)

北师大版高中数学必修一第二章 函数第五节简单的幂函数之函数的奇偶性说课课件(共22张PPT)

教材分析 教学重点、难点
教法、学法
学情分析 教学目标
教学过程
教学反思
板书设计
教材分析
奇偶性是函数的一条重要性质,教材从学 生熟悉的函数入手,从特殊到一般,从具体到 抽象,注重信息技术的应用,比较系统地介绍 了函数的奇偶性。从知识结构看,它既是函数 概念的拓展和深化,又是后续研究指数函数、 对数函数、幂函数、三角函数的基础。因此, 本节课起着承上启下的重要作用
指导观察、形成概念
考察下列函数:
f (x) x2
思考1:观察这个函数的图象,并讨论有何特征?
思考2:对于上述函数,f(1)与f(-1),f(2)与f(-2)有什么
关系? 12
f(a)与f1(0 -a)f呢x =?x2
8
思考3:怎样定义偶函数? 6
思考4:函数 f (x) x2 , x [3, 2] 偶函数吗? 4
f(x)≠0
若f(-x)/f(x)=-1,则f(x)为奇函数;
若f(-x)/f(x)=1,则f(x)为偶函数。
完成“函数奇偶性”概念的第三 个层次。
讲练结合,巩固新知
例. 利用定义判断下列函数的奇偶性
f (x) x3 2x
练习:利用定义判断下列函数的奇偶性
(1)f (x) x 1 (2)f (x) x2 -1
f (x) x -2
(1)f (x) x3 , x [1,1]
(2)f (x) x3 , x [1,1) -4
(3)f (x) x3, x [2,1) [1,2]-6
-8
强化定义,深化内涵
对奇函数、偶函数定义的说明: (1)如果一个函数f(x)是奇函数或偶函数,那么
我们就说函数f(x) 具有奇偶性。 (2)函数具有奇偶性的前提是:定义域关于原点对称。 (3)若f(x)为奇函数, 则对于定义域中的任意x,

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

函数的奇偶性引入大家好,我是现代数学教师,今天我来给大家讲解《函数的奇偶性》这一话题。

让我们开始这一趟数学之旅!首先,让我们回顾一下数学中的“奇偶性”概念。

在数学中,奇偶性通常用来描述一个数或者一个函数在变量变化时的规律性。

对于数学函数,我们可以通过对函数的自变量奇偶性的变化来探索这个函数的奇偶性质。

学习目标在学习完本节课后,我们将了解以下内容:•掌握函数奇偶性的定义•能够判断一个函数的奇偶性•能够利用函数的奇偶性来简化计算函数的奇偶性定义首先,让我们来定义函数的奇偶性。

对于一个函数f(x),我们称它为: - 奇函数,当且仅当f(−x)=−f(x)对于所有x成立; - 偶函数,当且仅当f(−x)=f(x)对于所有x成立; - 既不是奇函数也不是偶函数,当存在至少一个x使得f(−x)eqf(x)且f(−x)eq−f(x)成立。

上述定义意味着,如果一个函数既不是奇函数也不是偶函数,那么我们称它为“无奇偶性”的函数。

判断函数的奇偶性现在我们已经了解了函数奇偶性的定义,接下来我们就来看看如何判断一个函数的奇偶性。

奇函数对于奇函数而言,我们起始于f(−x)=−f(x)的假设,推导至一一般情况的有效方法是:•将f(x)变为−f(−x);•利用f(−x)=−f(x)替代−f(−x);•得到结果中−f(x)=f(−x)。

通过这些步骤我们得知,如果一个函数f(x)满足f(−x)=−f(x),那么这个函数一定是奇函数。

偶函数同样的,对于偶函数而言,我们起始于f(−x)=f(x)的假设,推导至一般情况的有效方法是:•将f(x)变为f(−x);•利用f(−x)=f(x)替代f(−x);•得到结果f(x)=f(−x)。

这说明,如果一个函数f(x)满足f(−x)=f(x),那么这个函数一定是偶函数。

无奇偶性的函数当一个函数f(x)既不是奇函数也不是偶函数时,表示我们无法通过f(x)和−f(x)的关系得到关于函数的更多信息。

《函数的奇偶性》函数 PPT教学课件

《函数的奇偶性》函数 PPT教学课件
∴f(x)是偶函数.
解:(1)∵由
课堂篇
探究学习
探究一
探究二
探究三
(4)设 f(x)=(x-2)
∵由
+2
-2
≥ 0,
思维辨析
当堂检测
+2
.
-2
得 x≤-2 或 x>2,
-2 ≠ 0,
∴函数的定义域为(-∞,-2]∪(2,+∞),
不关于原点对称.
∴f(x)=(x-2)
+2
既不是奇函数也不是偶函数.
课前篇
自主预习


3.做一做
(1)下列函数是偶函,2]
B.y=x3-x2
C.y=x3
D.y=x2,x∈[-1,0)∪(0,1]
答案:D
(2)下列函数中,既是奇函数又是减函数的为(
A.y=x-1
B.y=3x2
1
C.y=2
答案:D
D.y=-x|x|
)
课前篇
探究三
思维辨析
当堂检测
4.已知函数f(x)是定义在R上的偶函数,当x∈(-∞,0)时,f(x)=x-x4;当
x∈(0,+∞)时,f(x)=
.
解析:方法一:由于是填空题,故可采用直接代换法,将x用-x代替,
D.f(x)=x2+x4
答案:AD
当堂检测
)
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
当堂检测
2.有下列说法:
①偶函数的图像一定与y轴相交;
②若y=f(x)是奇函数,则由f(-x)=-f(x)可知f(0)=0;
③既是奇函数也是偶函数的函数一定是f(x)=0,x∈R;

3.2.1 函数的奇偶性 课件(共26张PPT)(2024年)

3.2.1 函数的奇偶性  课件(共26张PPT)(2024年)

f(x)
g(x) f(x)+g(x) f(x)-g(x)
偶函数 偶函数 偶函数
f(x)g(x
)
f[g(x)]

意:f[g(x)]
偶函数 偶函数 偶函数 中,g(x)的
偶函数 奇函数 不能确定 不能确定 奇函数 偶函数 值域是f(x)
奇函数 偶函数 不能确定 不能确定 奇函数 偶函数 的定义域
奇函数 奇函数 奇函数
活动二:新知探究
偶函数的定义:
一般地,设函数 f(x)的定义域为 I ,如果∀x∈I,都
有-x∈I,且f(-x)=f(x), 那么函数 f(x)就叫做偶函数.
活动二:新知探究
偶函数的几点说明:
(1)偶函数的定义域必关于原点对称,即若 x 是定义域内的
一个值,则 –x 也一定在定义域内.
(2)“函数 f(x)为偶函数”是“函数 f(x)图象关于y轴对
奇函数 偶函数 奇函数 的子集.
活动二:新知探究
类比函数单调性,你能用符号语言精确地描述“函数图象
关于y轴对称”这一特征吗?
不妨取自变量的一些特殊值,观察相应函数值的情况
x
···
-3
-2
-1
0
1
2
3
···
f(x)=x²
···
9
4
1
0
1
4
9
···
g(x)=2-|x|
···
-1
0
1
2
1
0
-1
···
可以发现,当自变量取一对相反数时,相应的两个函数值相等.
称”的充要条件.
活动二:新知探究
1

探究:观察函数 f(x)=x和g(x)= 的图象,你能发现这两个函数

1 第1课时 函数奇偶性的概念(共45张PPT)

1 第1课时 函数奇偶性的概念(共45张PPT)

【解】 (1)因为 x∈R, 所以-x∈R, 又因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-(|x+1|-|x-1|) =-f(x), 所以 f(x)为奇函数. (2)因为函数 f(x)的定义域为{-1,1}, 关于原点对称,且 f(x)=0, 所以 f(-x)=-f(x),f(-x)=f(x), 所以 f(x)既是奇函数又是偶函数.
解:(1)由题意作出函数图象如图所示:
(2)由图可知,单调递增区间为(-1,1). (3)由图可知,使 f(x)<0 的 x 的取值集合为(-2,0)∪(2,+∞).
巧用奇偶性作函数图象的步骤 (1)确定函数的奇偶性. (2)作出函数在[0,+∞)(或(-∞,0])上对应的图象. (3)根据奇(偶)函数关于原点(y 轴)对称得出在(-∞,0](或[0,+∞))上对应的 函数图象. [注意] 作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称 点为(-x0,-y0),关于 y 轴的对称点为(-x0,y0).
C.坐标原点对称
D.直线 y=x 对称
解析:选 C.函数 f(x)=1x-x 是奇函数,其图象关于坐标原点对称.
3.(2020·武汉高一检测)函数 f(x)=x+x22+a+8 3为奇函数,则实数 a=
(
)
A.-1
B.1
C.-32
D.32
解析:选 C.由题得 f(x)为奇函数,则 f(0)=0,即 0+2a+3=0,所以 a=
探究点 2 奇、偶函数的图象 已知函数 y=f(x)是定义在 R 上的偶函数,且当 x≤0 时,f(x)=x2+2x.
现已画出函数 f(x)在 y 轴左侧的图象,如图所示.
(1)请补出完整函数 y=f(x)的图象; (2)根据图象写出函数 y=f(x)的递增区间; (3)根据图象写出使 f(x)<0 的 x 的取值集合.

函数的奇偶性说课稿ppt

函数的奇偶性说课稿ppt

偶函数的定义与性质
偶函数的定义:如果对于函数$f(x)$的定 义域内任意$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
3. 若偶函数在$x=0$处有定义,则一定 有$f(0)=0$。
2. 偶函数在y轴两侧是对称的。
偶函数的性质 1. 偶函数的图像关于y轴对称。
奇偶性的判断方法
在数学分析中,奇函数和偶函数具有不同的性质。奇函数 图像关于原点对称,而偶函数图像关于y轴对称。这些性 质在解决一些数学问题时非常有用,例如求函数的积分、 求解微分方程等。
在微积分中的应用
在微积分中,奇偶性也是研究函数的重要工具之一。奇偶性可以帮助我们简化函 数的积分和微分计算。例如,对于一些具有对称性的函数,我们可以通过奇偶性 来简化计算过程,提高计算效率。
奇函数的定义与性质
95% 85% 75% 50% 45%
0 10 20 30 40 5
奇函数的定义:如果对于函数$f(x)$的定义域内任意$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。 奇函数的性质
1. 奇函数的图像关于原点对称。
2. 奇函数在原点有定义则一定过原点。
3. 若奇函数在$x=0$处有定义,则$f(0)=0$。
在微积分中,奇偶性还与一些重要的数学概念相关联,例如周期性和傅里叶分析 。奇偶性可以帮助我们更好地理解这些概念,并进一步研究函数的性质和行为。
在实际生活中的应用
奇偶性在实际生活中也有广泛的应用。例如,在物理学中,一些物理量(如质量、电荷等)是具有奇 偶性的,它们的性质和行为可以用奇偶性来描述和预测。
05
总结与展望
总结
回顾函数的奇偶性的定义和性质,包括奇函数、偶 函数、既奇又偶函数和非奇非偶函数。

函数的奇偶性课件-2024届高三数学一轮复习

函数的奇偶性课件-2024届高三数学一轮复习
,

的最小值为

x
1 e
m n
− = −
−x ∈ A,且_______________,那么函数f
x 就叫作奇函数
图象
关于

______
对称
关于
坐标原点
_______
对称
【微点拨】奇、偶函数定义域的特点是关于原点对称,函数的定义域关于原点
对称是函数具有奇偶性的必要不充分条件.
1.函数f x 具有奇偶性的前提是什么?
D.f c > f b > f a
1
log 2 ,
4
活动四 奇偶性的应用(求参数)
34页 2.已知函数f x = a −
2
ex +1
1
a ∈ 是奇函数,则a =___.
[例4] (1)若函数f x = x + a ln
A.−1
(2)若f x = ln a +
B.0

1
1−x
2x−1
2x+1
为偶函数,则a =(
B.c < b < a
C.b < c < a
2.(2024·常州调研)已知f x = lg e
则f a ,f b ,f c 的大小关系为(
A.f c

x
+ 1 ,a =
20.3 ,b
)
D.a < b < c
= log 3 2,c =
)
>f a >f b
B.f b > f a > f c
C.f a > f b > f c
3.已知f x = ax 2 + bx是定义在[a − 1,2a]上的偶函数,那么a + b的值是(

《函数的奇偶性》说课稿-获奖说课稿

《函数的奇偶性》说课稿-获奖说课稿

函数的奇偶性尊敬的评委、各位老师、亲爱的同学们:大家好!今天我要说课的内容是《函数的奇偶性》。

在这堂课中,我们将一起探讨函数的奇偶性这一重要概念。

一、教学目标1.理解奇函数和偶函数的概念,掌握判断函数奇偶性的方法;2.会根据函数的奇偶性对函数进行分类;3.培养学生观察、分析、归纳和解决问题的能力。

二、教学内容与过程1.导入新课我们通过观察一些生活中的实例,如车轮、时钟等,可以发现这些物体的形状具有对称性。

那么,这种对称性在数学中是否也有对应的概念呢?答案是肯定的。

今天我们将一起探讨函数的奇偶性这一数学概念。

2.概念引入首先,我们来看一下函数的概念。

函数是一种关系,它将一个数集中的每一个元素映射到另一个数集中唯一确定的值。

为了更好地理解函数的概念,我们可以从以下几个方面进行探讨:(1)函数的定义域和值域定义域是指输入的数的范围,而值域是指输出的数的范围。

在函数的定义域中,每一个数都唯一对应着值域中的一个数。

(2)函数的对应关系函数的对应关系是函数的核心。

它描述了如何将输入转化为输出。

在定义域中,每一个数都对应着值域中唯一确定的一个数。

现在,我们来看一个函数的基本性质:奇偶性。

如果一个函数f(x)对于定义域内的任意x,都有f(-x)=f(x),那么这个函数就是偶函数;如果对于定义域内的任意x,都有f(-x)=-f(x),那么这个函数就是奇函数。

现在我们知道了如何判断一个函数的奇偶性,接下来我们来探讨奇偶性在数学中的应用。

3.奇偶性的应用(1)简化计算利用函数的奇偶性,我们可以简化一些复杂的计算。

例如,对于一个偶函数,它的图像是关于y轴对称的,因此我们只需要计算一半区域内的值就可以得到整个区域的值。

(2)对称性的应用函数的奇偶性反映了函数的对称性。

例如,我们可以利用函数的奇偶性来判断一个函数的图像是否具有对称性。

对于一个奇函数,它的图像是关于原点对称的;对于一个偶函数,它的图像是关于y轴对称的。

(3)化归思想的应用化归思想是一种非常重要的数学思想方法,它将复杂的问题转化为简单的问题进行处理。

奇偶性第课时函数奇偶性的概念公开课一等奖优质课大赛微课获奖课件

奇偶性第课时函数奇偶性的概念公开课一等奖优质课大赛微课获奖课件
f (x) (x)4 x4 f (x),
因此,函数f(x)=x4为偶函数。
第17页
(2)对于函数f(x)=x5,其定义域为 (, .) 由于对定义域内每一个x,都有
f (x) (x)5 x5 f (x), 因此,函数f(x)=x5为奇函数.
第18页
(3)对于函数 f (x) x,其1 定义域是{x|x≠0}. x
第11页
函数奇偶性与单调性区别
(1)奇偶性是反应函数在定义域上对称性,是相对于函数整 个定义域来说,奇偶性是函数“整体”性质. (2)单调性是反应函数在某一区间上函数值改变趋势,此区 间是定义域子集,因此单调性是函数“局部”性质.
第12页
思考: 对于定义在R上函数f(x),若f(-3)=f(3), 则函数f(x)一定是偶函数吗? 提醒:不一定,仅有f(-3)=f(3)不足以拟定 函数奇偶性,不满足定义中“任意”,故 不一定是偶函数.
第15页
例.判断下列函数奇偶性:
(1) f (x) x4 ;
(3) f (x) x 1 ;
x
(2) f (x) x5 ;
(4) f(x)=xx3- -1x2.
分析:只要按照函数奇偶性定义,检查各个函
数是否符合即可.
第16页
解:(1)对于函数f(x)=x4,其定义域是(, .) 由于对定义域内每一个x,都有
第8页
依据图象判断下列函数哪个是偶函数,哪个 是奇函数?
偶函数
偶函数
第9页
奇函数
奇函数
第10页
【提升总结】奇函数与偶函数定义中三性 (1)对称性:奇、偶函数定义域关于原点对称; (2)整体性:奇偶性是函数整体性质,是对定义域内 每一个x都成立; (3)可逆性:f(-x)=-f(x)⇔f(x)是奇函数, f(-x)= f(x)⇔ f(x)是偶函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起ห้องสมุดไป่ตู้却有 久久不会退去的余香。
函数的奇偶性说课PPT幻灯片 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
相关文档
最新文档