2014届一轮复习数学试题选编30常用逻辑用语(教师版)
2014高考数学(文科)一轮教材:第一章 集合与常用逻辑用语
第一章集合与常用逻辑用语第一节集__合[知识能否忆起]一、元素与集合1.集合中元素的三个特性:确定性、互异性、无序性.2.集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉. 3.常见集合的符号表示:4.集合的表示法:列举法、描述法、韦恩图.二、集合间的基本关系三、集合的基本运算[小题能否全取]1.(2012·大纲全国卷)已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:选B 选项A 错,应当是B ⊆A .选项B 对,正方形一定是矩形,但矩形不一定是正方形.选项C 错,正方形一定是菱形,但菱形不一定是正方形.选项D 错,应当是D ⊆A .2.(2012·浙江高考)设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)解析:选B 因为∁R B ={x |x >3,或x <-1},所以A ∩(∁R B )={x |3<x <4}. 3.(教材习题改编)A ={1,2,3},B ={x ∈R |x 2-ax +1=0,a ∈A },则A ∩B =B 时a 的值是( )A .2B .2或3C .1或3D .1或2解析:选D 验证a =1时B =∅满足条件;验证a =2时B ={1}也满足条件. 4.(2012·盐城模拟)如图,已知U ={1,2,3,4,5,6,7,8,9,10},集合A ={2,3,4,5,6,8},B ={1,3,4,5,7},C ={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.解析:阴影部分表示的集合为A ∩C ∩(∁U B )={2,8}. 答案:{2,8}5.(教材习题改编)已知全集U ={-2,-1,0,1,2},集合A =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2n -1,x ,n ∈Z ,则∁U A =________.解析:因为A =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2n -1,x ,n ∈Z , 当n =0时,x =-2;n =1时不合题意; n =2时,x =2;n =3时,x =1; n ≥4时,x ∉Z ;n =-1时,x =-1; n ≤-2时,x ∉Z . 故A ={-2,2,1,-1},又U ={-2,-1,0,1,2},所以∁U A ={0}. 答案:{0}1.正确理解集合的概念研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x |y =f (x )}、{y |y =f (x )}、{(x ,y )|y =f (x )}三者的不同.2.注意空集的特殊性空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ⊆B ,则需考虑A =∅和A ≠∅两种可能的情况.典题导入[例1] (1)(2012·新课标全国卷)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10(2)已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2013=________. [自主解答] (1)∵B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },A ={1,2,3,4,5}, ∴x =2,y =1;x =3,y =1,2;x =4,y =1,2,3;x =5,y =1,2,3,4.∴B ={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)}, ∴B 中所含元素的个数为10. (2)由M =N 知⎩⎪⎨⎪⎧n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1,∴⎩⎪⎨⎪⎧m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2,故(m -n )2 013=-1或0. [答案] (1)D (2)-1或0由题悟法1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.以题试法1.(1)(2012·北京东城区模拟)设P 、Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数为( )A .9B .8C .7D .6(2)已知集合A ={a -2,2a 2+5a,12},且-3∈A ,则a =________.解析:(1)∵P +Q ={a +b |a ∈P ,b ∈Q },P ={0,2,5},Q ={1,2,6},∴当a =0时,a +b 的值为1,2,6;当a =2时,a +b 的值为3,4,8;当a =5时,a +b 的值为6,7,11,∴P +Q ={1,2,3,4,6,7,8,11},∴P +Q 中有8个元素. (2)∵-3∈A ,∴-3=a -2或-3=2a 2+5a . ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3, 与元素互异性矛盾,应舍去.当a =-32时,a -2=-72,2a 2+5a =-3.∴a =-32满足条件.答案:(1)B (2)-32典题导入[例2] (1)(2012·湖北高考)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.[自主解答] (1)由x 2-3x +2=0得x =1或x =2, ∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. [答案] (1)D (2)4由题悟法1.判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、V enn 图帮助分析.以题试法2.(文)(2012·郑州模拟)已知集合A ={2,3},B ={x |mx -6=0},若B ⊆A ,则实数m 的值为( )A .3B .2C .2或3D .0或2或3解析:选D 当m =0时,B =∅⊆A ;当m ≠0时,由B =⎩⎨⎧⎭⎬⎫6m ⊆{2,3}可得6m =2或6m =3, 解得m =3或m =2, 综上可得实数m =0或2或3.(理)已知集合A ={y |y =-x 2+2x },B ={x ||x -m |<2 013},若A ∩B =A ,则m 的取值范围是( )A .[-2 012,2 013]B .(-2 012,2 013)C .[-2 013,2 011]D .(-2 013,2 011)解析:选B 集合A 表示函数y =-x 2+2x 的值域,由t =-x 2+2x =-(x -1)2+1≤1,可得0≤y ≤1,故A =[0,1].集合B 是不等式|x -m |<2 013的解集,解之得m -2 013<x <m +2 013,所以B =(m -2 013,m +2 013).因为A ∩B =A ,所以A ⊆B .如图,由数轴可得⎩⎪⎨⎪⎧m -2 013<0,m +2 013>1, 解得-2 012<m <2 013.典题导入[例3] (1)(2011·江西高考)若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( )A .M ∪NB .M ∩NC .(∁U M )∪(∁U N )D .(∁U M )∩(∁U N )(2)(2012·安徽合肥质检)设集合A ={x |x 2+2x -8<0},B ={x |x <1},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |-4<x <2}C .{x |-8<x <1}D .{x |1≤x <2}[自主解答] (1)∵M ∪N ={1,2,3,4}, ∴(∁U M )∩(∁U N )=∁U (M ∪N )={5,6}. (2)∵x 2+2x -8<0, ∴-4<x <2, ∴A ={x |-4<x <2}, 又∵B ={x |x <1},∴图中阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}. [答案] (1)D (2)D将例3(1)中的条件“M ={2,3}”改为“M ∩N =N ”,试求满足条件的集合M 的个数. 解:由M ∩N =N 得M ⊇N .含有2个元素的集合M 有1个,含有3个元素的集合M 有4个, 含有4个元素的集合M 有6个,含有5个元素的集合M 有4个, 含有6个元素的集合M 有1个.因此,满足条件的集合M 有1+4+6+4+1=16个.由题悟法1.在进行集合的运算时要尽可能地借助V enn 图和数轴使抽象问题直观化.一般地,集合元素离散时用V enn 图表示;集合元素连续时用数轴表示,用数轴表示时注意端点值的取舍.2.在解决有关A∩B=∅,A⊆B等集合问题时,一定先考虑A或B是否为空集,以防漏解.另外要注意分类讨论和数形结合思想的应用.以题试法3.(2012·锦州模拟)已知全集U=R,集合A={x|x2-2x>0},B={x|y=lg(x-1)},则(∁UA)∩B等于()A.{x|x>2,或x<0} B.{x|1<x<2}C.{x|1<x≤2} D.{x|1≤x≤2}解析:选C A={x|x(x-2)>0}={x|x>2,或x<0},B={x|y=lg(x-1)}={x|x-1>0}={x|x>1},∁U A={x|0≤x≤2}.∴(∁U A)∩B={x|1<x≤2}.以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,常见的命题形式有新定义、新运算、新性质,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.1.创新集合新定义创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以深入地创新,结合原有集合的相关知识和相应数学知识,来解决新定义的集合创新问题.[典例1]若x∈A,则1x ∈A,就称A是伙伴关系集合,集合M=⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是() A.1B.3C.7 D.31[解析] 具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.[答案] B[题后悟道] 该题是集合新定义的问题,定义了集合中元素的性质,此类题目只需准确提取信息并加工利用,便可顺利解决.2.创新集合新运算创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.[典例2] 设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}[解析] 由log 2x <1,得0<x <2,所以P ={x |0<x <2};由|x -2|<1,得1<x <3,所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.[答案] B[题后悟道] 解决创新集合新运算问题常分为三步: (1)对新定义进行信息提取,确定化归的方向; (2)对新定义所提取的信息进行加工,探求解决方法;(3)对定义中提出的知识进行转换,有效地输出.其中对定义信息的提取和转化与化归是解题的关键,也是解题的难点.3.创新集合新性质创新集合新性质问题是利用创新集合中给定的定义与性质来处理问题,通过创新性质,结合相应的数学知识来解决有关的集合性质的问题.[典例3] 对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b时,b +c +d 等于( )A .1B .-1C .0D .i[解析] ∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i ,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i ,d =-i 或c =-i ,d =i ,∴b +c +d =(-1)+0=-1.[答案] B[题后悟道]此题是属于创新集合新性质的题目,通过非空集合S中的元素属性的分析,结合题目中引入的相应的创新性质,确定集合的元素.1.(2012·新课标全国卷)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B AC.A=B D.A∩B=∅解析:选B A={x|x2-x-2<0}={x|-1<x<2},B={x|-1<x<1},所以B A.2.(2012·山西四校联考)已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2 B.3C.4 D.8解析:选C依题意得,满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2}共4个.3.设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}解析:选B因为P∩Q={0},所以0∈P,log2a=0,a=1,而0∈Q,所以b=0.所以P∪Q={3,0,1}.4.(2012·辽宁高考)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()A.{5,8} B.{7,9}C.{0,1,3} D.{2,4,6}解析:选B因为A∪B={0,1,2,3,4,5,6,8},所以(∁U A)∩(∁U B)=∁U(A∪B)={7,9}.5.(2013·合肥质检)已知集合A={-2,-1,0,1,2},集合B={x∈Z||x|≤a},则满足A B 的实数a的一个值为()A.0 B.1C.2 D.3解析:选D当a=0时,B={0};当a =1时,B ={-1,0,1}; 当a =2时,B ={-2,-1,0,1,2}; 当a =3时,B ={-3,-2,-1,0,1,2,3}, 显然只有a =3时满足条件.6.已知全集U =R ,集合A ={x |3≤x <7},B ={x |x 2-7x +10<0},则∁U (A ∩B )=( ) A .(-∞,3)∪(5,+∞) B .(-∞,3]∪[5,+∞) C .(-∞,3)∪[5,+∞)D .(-∞,3]∪(5,+∞)解析:选C x 2-7x +10<0⇔(x -2)·(x -5)<0⇒2<x <5,A ∩B ={x |3≤x <5}, 故∁U (A ∩B )=(-∞,3)∪[5,+∞).7.(2012·大纲全国卷)已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或3B .0或3C .1或 3D .1或3解析:选B 法一:∵A ∪B =A ,∴B ⊆A .又A ={1,3,m },B ={1,m },∴m =3或m =m .由m =m 得m =0或m =1.但m =1不符合集合中元素的互异性,故舍去,故m =0或m =3.法二:∵B ={1,m },∴m ≠1,∴可排除选项C 、D.又当m =3时,A ={1,3,3},B ={1,3},满足A ∪B ={1,3,3}=A ,故选B. 8.设S ={x |x <-1,或x >5},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( ) A .(-3,-1) B .[-3,-1]C .(-∞,-3]∪(-1,+∞)D .(-∞,-3)∪(-1,+∞) 解析:选A 在数轴上表示两个集合,因为S ∪T =R ,由图可得⎩⎪⎨⎪⎧a <-1,a +8>5,解得-3<a <-1.9.若集合U =R ,A ={x |x +2>0},B ={x |x ≥1},则A ∩(∁U B )=________. 解析:由题意得∁U B =(-∞,1), 又因为A ={x |x +2>0}={x |x >-2}, 于是A ∩(∁U B )=(-2,1). 答案:(-2,1)10.(2012·武汉适应性训练)已知A ,B 均为集合U ={1,2,3,4,5,6}的子集,且A ∩B ={3},(∁U B )∩A ={1},(∁U A )∩(∁U B )={2,4},则B ∩(∁U A )=________.解析:依题意及韦恩图得,B ∩(∁U A )={5,6}. 答案:{5,6}11.已知R 是实数集,M =⎩⎨⎧x ⎪⎪⎭⎬⎫2x <1,N ={y |y =x -1},则N ∩(∁R M )=________.解析:M ={x |x <0,或x >2},所以∁R M =[0,2], 又N =[0,+∞),所以N ∩(∁R M )=[0,2]. 答案:[0,2]12.(2012·吉林模拟)已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:0,1,-1213.(2012·苏北四市调研)已知集合A ={x |x 2+a ≤(a +1)x ,a ∈R },存在a ∈R ,使得集合A 中所有整数元素的和为28,则实数a 的取值范围是________.解析:不等式x 2+a ≤(a +1)x 可化为(x -a )(x -1)≤0,由题意知不等式的解集为{x |1≤x ≤a }.A 中所有整数元素构成以1为首项,1为公差的等差数列,其前7项和为7×(1+7)228,所以7≤a <8,即实数a 的取值范围是[7,8). 答案:[7,8)14.(2012·安徽名校模拟)设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.则S 4的所有奇子集的容量之和为________.解析:∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案:71.(2012·杭州十四中月考)若集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =lg x ,110≤x ≤10,B ={-2,-1,1,2},全集U =R ,则下列结论正确的是( )A .A ∩B ={-1,1} B .(∁U A )∪B =[-1,1]C .A ∪B =(-2,2)D .(∁U A )∩B =[-2,2]解析:选A ∵x ∈⎣⎡⎦⎤110,10,∴y ∈[-1,1],∴A ∩B ={-1,1}.2.设A 是自然数集的一个非空子集,对于k ∈A ,如果k 2∉A ,且k ∉A ,那么k 是A 的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,且集合M中的两个元素都是“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个解析:选C由36-x2>0,解得-6<x<6.又因为x∈N,所以S={0,1,2,3,4,5}.依题意,可知若k是集合M的“酷元”是指k2与k都不属于集合M.显然k=0,1都不是“酷元”.若k=2,则k2=4;若k=4,则k=2.所以2与4不同时在集合M中,才能成为“酷元”.显然3与5都是集合S中的“酷元”.综上,若集合M中的两个元素都是“酷元”,则这两个元素的选择可分为两类:(1)只选3与5,即M={3,5};(2)从3与5中任选一个,从2与4中任选一个,即M={3,2}或{3,4}或{5,2}或{5,4}.所以满足条件的集合M共有5个.3.(2013·河北质检)已知全集U=R,集合M={x|x+a≥0},N={x|log2(x-1)<1},若M∩(∁N)={x|x=1,或x≥3},那么()UA.a=-1 B.a≤1C.a=1 D.a≥1解析:选A由题意得M={x|x≥-a},N={x|1<x<3},所以∁U N={x|x≤1,或x≥3},又M∩(∁U N)={x|x=1,或x≥3},因此-a=1,a=-1.4.给定集合A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合,给出如下三个结论:①集合A={-4,-2,0,2,4}为闭集合;②集合A={n|n=3k,k∈Z}为闭集合;③若集合A1,A2为闭集合,则A1∪A2为闭集合.其中正确结论的序号是________.解析:①中,-4+(-2)=-6∉A,所以不正确;②中设n1,n2∈A,n1=3k1,n2=3k2,k1,k2∈Z,则n1+n2∈A,n1-n2∈A,所以②正确;③令A1={-4,0,4},A2={-2,0,2},则A1,A2为闭集合,但A1∪A2不是闭集合,所以③不正确.答案:②5.已知集合A={x|x2-2x-3≤0,x∈R},B={x|m-2≤x≤m+2}.(1)若A∩B=[1,3],求实数m的值;(2)若A ⊆∁R B ,求实数m 的取值范围.解:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[1,3],∴⎩⎪⎨⎪⎧m -2=1,m +2≥3,得m =3.(2)∁R B ={x |x <m -2,或x >m +2}. ∵A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.即m 的取值范围为(-∞,-3)∪(5,+∞).6.(2012·衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2}, ∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2}, 当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,综上所述,所求a 的取值范围为{a |a ≥3}.1.现有含三个元素的集合,既可以表示为⎩⎨⎧⎭⎬⎫a ,b a,1,也可表示为{a 2,a +b,0},则a 2 013+b 2 013=________.解析:由已知得ba =0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 013+b 2 013=(-1)2 013=-1.答案:-12.集合S ={a ,b ,c ,d ,e },包含{a ,b }的S 的子集共有( ) A .2个 B .3个 C .5个D .8个解析:选D 包含{a ,b }的S 的子集有:{a ,b };{a ,b ,c },{a ,b ,d },{a ,b ,e };{a ,b ,c ,d },{a ,b ,c ,e },{a ,b ,d ,e };{a ,b ,c ,d ,e }共8个.3.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.解析:由题意知,同时参加三个小组的人数为0,设同时参加数学和化学小组的人数为x ,V enn 图如图所示,∴(20-x )+6+5+4+(9-x )+x =36,解得x =8. 答案:84.已知集合A ={x |x 2+2x +a ≤0},B ={x |a ≤x ≤4a -9},若A ,B 中至少有一个不是空集,则a 的取值范围是________.解析:若A ,B 全为空集,则实数a 满足4-4a <0且a >4a -9,即1<a <3,则满足题意的a 的取值范围为(-∞,1]∪[3,+∞).答案:(-∞,1]∪[3,+∞)5.(2012·重庆高考)设平面点集A =(x ,y )(y -x )·⎭⎬⎫⎝⎛⎭⎫y -1x ≥0,B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为( )A.34π B.35π C.47πD.π2解析:选D A ∩B 表示的平面图形为图中阴影部分,由对称性可知,S C =S F ,S D =S E .因此A ∩B 所表示的平面图形的面积是圆面积的一半,即为π2.第二节命题及其关系、充分条件与必要条件[知识能否忆起]一、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.二、四种命题及其关系 1.四种命题2.四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 三、充分条件与必要条件1.如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件. 2.如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[小题能否全取]1.(教材习题改编)下列命题是真命题的为( ) A .若1x =1y ,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:选A 由1x =1y 得x =y ,A 正确,易知B 、C 、D 错误.2.(2012·湖南高考)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选C 以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”. 3.(2012·温州适应性测试)设集合A ,B ,则A ⊆B 是A ∩B =A 成立的( ) A .充分不必要条件B .必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由A⊆B,得A∩B=A;反过来,由A∩B=A,且(A∩B)⊆B,得A⊆B.因此,A⊆B是A∩B=A成立的充要条件.4.“在△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为:____________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A、∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A、∠B不都是锐角”.答案:“在△ABC中,若∠C≠90°,则∠A、∠B不都是锐角”5.下列命题中所有真命题的序号是________.①“a>b”是“a2>b2”的充分条件;②“|a|>|b|”是“a2>b2”的必要条件;③“a>b”是“a+c>b+c”的充要条件.解析:①由2>-3⇒/ 22>(-3)2知,该命题为假;②由a2>b2⇒|a|2>|b|2⇒|a|>|b|知,该命题为真;③a>b⇒a+c>b+c,又a+c>b+c⇒a>b,∴“a>b”是“a+c>b+c”的充要条件为真命题.答案:②③1.充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”;(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件.注意区分“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的不同,前者是“p⇒q”而后者是“q⇒p”.2.从逆否命题,谈等价转换由于互为逆否命题的两个命题具有相同的真假性,因而,当判断原命题的真假比较困难时,可转化为判断它的逆否命题的真假,这就是常说的“正难则反”.典题导入[例1]下列命题中正确的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x-312是有理数,则x是无理数”的逆否命题.A.①②③④B.①③④C.②③④D.①④[自主解答]①中否命题为“若x2+y2=0,则x=y=0”,正确;③中,Δ=1+4m,当m>0时,Δ>0,原命题正确,故其逆否命题正确;②中逆命题不正确;④中原命题正确故逆否命题正确.[答案] B由题悟法在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可.对涉及数学概念的命题的判定要从概念本身入手.以题试法1.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b ∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④典题导入[例2](1)(2012·福州质检)“x<2”是“x2-2x<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)(2012·北京高考)设a,b∈R,“a=0”是“复数a+b i是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[自主解答](1)取x=0,则x2-2x=0,故由x<2不能推出x2-2x<0;由x2-2x<0得0<x<2,故由x2-2x<0可以推出x<2.所以“x<2”是“x2-2x<0”的必要而不充分条件.(2)当a=0,且b=0时,a+b i不是纯虚数;若a+b i是纯虚数,则a=0.故“a=0”是“复数a+b i是纯虚数”的必要而不充分条件.[答案](1)B(2)B由题悟法充要条件的判断,重在“从定义出发”,利用命题“若p,则q”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“A是B的什么条件”中,A是条件,B是结论,而“A的什么条件是B”中,A是结论,B是条件.有时还可以通过其逆否命题的真假加以区分.以题试法2.下列各题中,p是q的什么条件?(1)在△ABC中,p:A=B,q:sin A=sin B;(2)p:|x|=x,q:x2+x≥0.解:(1)若A=B,则sin A=sin B,即p⇒q.又若sin A=sin B,则2R sin A=2R sin B,即a=b.故A=B,即q⇒p.所以p是q的充要条件.(2)p:{x||x|=x}={x|x≥0}=A,q:{x|x2+x≥0}={x|x≥0,或x≤-1}=B,∵A B,∴p是q的充分不必要条件.典题导入[例3]已知p:-4<x-a<4,q:(x-2)(x-3)<0,且q是p的充分而不必要条件,则a 的取值范围为________.[自主解答]设q,p表示的范围为集合A,B,则A=(2,3),B=(a-4,a+4).由于q 是p 的充分而不必要条件,则有A B ,即⎩⎪⎨⎪⎧ a -4≤2,a +4>3或⎩⎪⎨⎪⎧a -4<2,a +4≥3,解得-1≤a ≤6. [答案] [-1,6]由题悟法利用充分条件、必要条件可以求解参数的值或取值范围,其依据是充分、必要条件的定义,其思维方式是:(1)若p 是q 的充分不必要条件,则p ⇒q 且q ⇒/ p ; (2)若p 是q 的必要不充分条件,则p ⇒/ q ,且q ⇒p ; (3)若p 是q 的充要条件,则p ⇔q .以题试法3.(2013·兰州调研)“x ∈{3,a }”是不等式2x 2-5x -3≥0成立的一个充分不必要条件,则实数a 的取值范围是( )A .(3,+∞) B.⎝⎛⎭⎫-∞,-12∪[)3,+∞ C.⎝⎛⎦⎤-∞,-12D.⎝⎛-∞,-12∪()3,+∞ 解析:选D 由2x 2-5x -3≥0得x ≤-12或x ≥3.∵x ∈{3,a }是不等式2x 2-5x -3≥0成立的一个充分不必要条件,又根据集合元素的互异性a ≠3,∴a ≤-12或a >3.[典例] (2012·山东高考)设a >0且a ≠1,则 “函数f (x )=a x 在R 上是减函数”是“函数g (x )= (2-a )x 3在R 上是增函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D.既不充分也不必要条件[常规解法]“函数f(x)=a x在R上是减函数”的充要条件是p:0<a<1.因为g′(x)=3(2-a)x2,而x2≥0,所以“函数g(x)=(2-a)x3在R上是增函数”的充要条件是2-a>0,即a<2.又因为a>0且a≠1,所以“函数g(x)=(2-a)x3在R上是增函数”的充要条件是q:0<a<2且a≠1.显然p⇒q,但q⇒/ p,所以p是q的充分不必要条件,即“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.[答案] A——————[高手支招]———————————————————————————1.充分、必要条件的判定方法有定义法、集合法和等价转化法.2.三种不同的方法各适用于不同的类型,定义法适用于定义、定理判断性问题,而集合法多适用于命题中涉及字母的范围的推断问题,等价转化法适用于条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.[巧思妙解]p:“函数f(x)=a x在R上是减函数”等价于0<a<1.q:“函数g(x)=(2-a)x3在R上是增函数”等价于2-a>0,即a<2.而{a|0<a<1}是{a|a<2}的真子集,故答案为A.针对训练命题p:|x+2|>2;命题q:13-x>1,则綈q是綈p的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B解|x+2|>2,即x+2<-2或x+2>2,得x<-4或x>0,所以p:x<-4或x>0,故綈p:-4≤x≤0;解13-x>1,得2<x<3,所以q:2<x<3,綈q:x≤2或x≥3.显然{x|-4≤x≤0} {x|x≤2,或x≥3},所以綈q是綈p的必要不充分条件.1.(2012·福建高考)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ) A .x =-12 B .x =-1C .x =5D .x =0解析:选D a ⊥b ⇔2(x -1)+2=0,得x =0.2.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析:选B 原命题的逆命题是:若一个数的平方是正数,则它是负数. 3.(2013·武汉适应性训练)设a ,b ∈R ,则“a >0,b >0”是“a +b2>ab ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选D 由a >0,b >0不能得知a +b 2>ab ,如取a =b =1时,a +b 2=ab ;由a +b2>ab不能得知a >0,b >0,如取a =4,b =0时,满足a +b2>ab ,但b =0.综上所述,“a >0,b >0”是“a +b2>ab ”的既不充分也不必要条件. 4.已知p :“a =2”,q :“直线x +y =0与圆x 2+(y -a )2=1相切”,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由直线x +y =0与圆x 2+(y -a )2=1相切得,圆心(0,a )到直线x +y =0的距离等于圆的半径,即有|a |2=1,a =± 2.因此,p 是q 的充分不必要条件.5.(2012·广州模拟)命题:“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D x 2<1的否定为:x 2≥1;-1<x <1的否定为x ≥1或x ≤-1,故原命题的逆否命题为:若x ≥1或x ≤-1,则x 2≥1.6.(2011·天津高考)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C A ∪B ={x ∈R |x <0,或x >2},C ={x ∈R |x <0,或x >2}, ∵A ∪B =C ,∴x ∈A ∪B 是x ∈C 的充分必要条件. 7.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题解析:选A 对于A ,其逆命题是:若x >|y |,则x >y ,是真命题,这是因为x >|y |≥y ,必有x >y ;对于B ,否命题是:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题是:若x ≠1,则x 2+x -2≠0,由于x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题与它的逆否命题都是假命题.8.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若y =f (x )是奇函数,则f (-x )=-f (x ), ∴|f (-x )|=|-f (x )|=|f (x )|,∴y =|f (x )|的图象关于y 轴对称,但若y =|f (x )|的图象关于y 轴对称,如y =f (x )=x 2,而它不是奇函数.9.命题“若x >0,则x 2>0”的否命题是________命题.(填“真”或“假”) 解析:其否命题为“若x ≤0,则x 2≤0”,它是假命题. 答案:假10.已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若P :“x ∈A ”是Q :“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:A ={x |x <4},由题意得A B 结合数轴易得a >4. 答案:(4,+∞)11.(2013·绍兴模拟)“-3<a <1”是“方程x 2a +3+y 21-a =1表示椭圆”的____________条件.解析:方程表示椭圆时,应有⎩⎪⎨⎪⎧a +3>0,1-a >0,a +3≠1-a解得-3<a <1且a ≠-1,故“-3<a <1”是“方程表示椭圆”的必要不充分条件. 答案:必要不充分12.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________.解析:由x 2>1,得x <-1或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-1 13.下列命题: ①若ac 2>bc 2,则a >b ; ②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f (x )=log 2x ,则f (|x |)是偶函数. 其中正确命题的序号是________.解析:对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°⇒/ 30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2⇒/ A 2C 1,所以③正确;④显然正确.答案:①③④14.已知集合A =⎩⎨⎧⎭⎬⎫x ⎝⎛12x 2-x -6<1,B ={x |log 4(x +a )<1},若x ∈A 是x ∈B 的必要不充分条件,则实数a 的取值范围是________.解析:由⎝⎛⎭⎫12x 2-x -6<1,即x 2-x -6>0,解得x <-2或x >3,故A ={x |x <-2,或x >3};由log 4(x +a )<1,即0<x +a <4,解得-a <x <4-a ,故B ={x |-a <x <4-a },由题意,可知B A ,所以4-a ≤-2或-a ≥3,解得a ≥6或a ≤-3.答案:(-∞,-3]∪[6,+∞)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,则“A <B ”是“cos 2A >cos 2B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由大边对大角可知,A <B ⇔a <b . 由正弦定理可知a sin A =bsin B ,故a <b ⇔sin A <sin B .而cos 2A =1-2sin 2A ,cos 2B =1-2sin 2B ,又sin A >0,sin B >0,所以sin A <sin B ⇔cos 2A >cos 2B .所以a <b ⇔cos 2A >cos 2B ,即“A <B ”是“cos 2A >cos 2B ”的充要条件.2.设x 、y 是两个实数,命题“x 、y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:选B 命题“x 、y 中至少有一个数大于1”等价于“x >1或y >1”. 若x +y >2,必有x >1或y >1,否则x +y ≤2;而当x =2,y =-1时,2-1=1<2,所以x >1或y >1不能推出x +y >2. 对于x +y =2,当x =1,且y =1时,满足x +y =2,不能推出x >1或y >1. 对于x 2+y 2>2,当x <-1,y <-1时,满足x 2+y 2>2,故不能推出x >1或y >1. 对于xy >1,当x <-1,y <-1时,满足xy >1,不能推出x >1或y >1,故选B.3.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.解析:由题意知:“13x <12”是“不等式|x -m |<1”成立的充分不必要条件.所以⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12是{x ||x -m |<1}的真子集. 而{x ||x -m |<1}={x |-1+m <x <1+m },所以有⎩⎨⎧-1+m ≤13,1+m ≥12,解得-12≤m ≤43.所以m 的取值范围是⎣⎡⎦⎤-12,43. 答案:⎣⎡⎦⎤-12,434.在“a ,b 是实数”的大前提之下,已知原命题是“若不等式x 2+ax +b ≤0的解集是非空数集,则a 2-4b ≥0”,给出下列命题:①若a 2-4b ≥0,则不等式x 2+ax +b ≤0的解集是非空数集; ②若a 2-4b <0,则不等式x 2+ax +b ≤0的解集是空集; ③若不等式x 2+ax +b ≤0的解集是空集,则a 2-4b <0; ④若不等式x 2+ax +b ≤0的解集是非空数集,则a 2-4b <0; ⑤若a 2-4b <0,则不等式x 2+ax +b ≤0的解集是非空数集; ⑥若不等式x 2+ax +b ≤0的解集是空集,则a 2-4b ≥0.其中是原命题的逆命题、否命题、逆否命题和命题的否定的命题的序号依次是________(按要求的顺序填写).解析:“非空集”的否定是“空集”,“大于或等于”的否定是“小于”,根据命题的构造规则,题目的答案是①③②④.答案:①③②④5.设条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,求实数a 的取值范围.解:条件p 为:12≤x ≤1,条件q 为:a ≤x ≤a +1.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫xx >1,或x <12,綈q 对应的集合B ={x |x >a +1,或x <a }.∵綈p 是綈q 的必要不充分条件,∴B A ,∴a +1>1且a ≤12或a +1≥1且a <12.∴0≤a ≤12.故a 的取值范围是⎣⎡⎦⎤0,12.6.已知集合M ={x |x <-3,或x >5},P ={x |(x -a )·(x -8)≤0}. (1)求M ∩P ={x |5<x ≤8}的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件. 解:(1)由M ∩P ={x |5<x ≤8},得-3≤a ≤5,因此M ∩P ={x |5<x ≤8}的充要条件是-3≤a ≤5;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件,就是在集合{a |-3≤a ≤5}中取一个值,如取a =0,此时必有M ∩P ={x |5<x ≤8};反之,M ∩P ={x |5<x ≤8}未必有a =0,故a =0是M ∩P ={x |5<x ≤8}的一个充分不必要条件.1.(2012·济南模拟)在命题p 的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,正确命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )=( )A .1B .2C .3D .4解析:选B 若两条直线l 1:a 1x +b 1y +c 1=0与l 2:a 2x +b 2y +c 2=0平行,则必有a 1b 2-a 2b 1=0,但当a 1b 2-a 2b 1=0时,直线l 1与l 2不一定平行,还有可能重合,因此命题p 是真命题,但其逆命题是假命题,从而其否命题为假命题,逆否命题为真命题,所以在命题p 的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,有2个正确命题,即f (p )=2.2.条件p :π4<α<π2,条件q :f (x )=log tan αx 在(0,+∞)内是增函数,则p 是q 的( )A .充要条件B .充分不必要条件。
2014全国名校高中数学试题分类解析汇编:A单元 集合与常用逻辑术语
A 单元 集合与常用逻辑用语目录A1 集合及其运算 ............................................................................................................................ 1 A2 命题及其关系、充分条件、必要条件 .................................................................................... 4 A3 基本逻辑联结词及量词 .......................................................................................................... 14 A4 单元综合 . (14)A1 集合及其运算【数学(理)卷·2015届浙江省重点中学协作体高考摸底测试(201408)】A11.已知全集R U =,集合},12|{},0|{2Z n n x x N x x x M ∈+===-=,则N M( )。
A .{0}B .{1}C .{0,1}D .φ 【知识点】集合的交集.【答案解析】B 解析 :解:由题意可知集合{}0,1M =,集合{}N =奇数,所以{}1MN =,故选B.【思路点拨】先求出两个集合在求交集即可.【数学(文)卷·2015届湖北省部分重点中学高三上学期起点考试(201408)】A11.若全集U ={1,2,3,4,5,6},M ={1,4},N ={2,3},则集合{5,6}等于( ) A .M ∪N B .M∩N C .(∁UM)∪(∁UN) D .(∁UM)∩(∁UN) 【知识点】补集及其运算;并集及其运算. 【答案解析】D 解析 :解:由题意全集{}1,2,3,4,5,6{1,4}{2,3}U M N =,=,=,观察知,集合(){56}U C M N =?,,又()()()U UUC M N C M C N ?∴()(){56}UUC M C N =,.故选D .【思路点拨】利用直接法求解.观察发现,集合{56},恰是M N È的补集,再由()()()U UUC M N C M C N ?选出答案.【数学(文)卷·2015届浙江省重点中学协作体高考摸底测试(201408)】A11.已知集合{}{}()12,1R A x x B x x A C B =-≤≤=<⋂,则=( )。
高考数学一轮精品复习 A单元 集合与常用逻辑用语(含解析)-人教版高三全册数学试题
A单元集合与常用逻辑用语A1 集合及其运算1.A1[2014·卷] 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=( )A.{0} B.{0,1}C.{0,2} D.{0,1,2}1.C [解析] ∵A={0,2},∴A∩B={0,2}∩{0,1,2}={0,2}.15.A1、M1[2014·某某卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.15.6 [解析] 若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4.若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4;若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2;综上所述,满足条件的有序数组的个数为6.1.A1[2014·某某卷] 已知集合M={-1,0,1},N={0,1,2,},则M∪N=( )A.{0,1} B.{-1,0,2}C.{-1,0,1,2} D.{-1,0,1}1.C [解析] 本题考查集合的运算.因为M={-1,0,1},N={0,1,2},所以M∪N ={-1,0,1,2}.3.A1 A2[2014·某某卷] U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.C [解析] 若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A∩B=∅,由维思图可知,一定存在C=A,满足A⊆C,B⊆∁U C,故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.故选C.1.A1[2014·某某卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}1.D [解析] 由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.2.A1、E3[2014·全国卷] 设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=( )A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]2.B [解析] 因为M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.1.A1[2014·新课标全国卷Ⅰ] 已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1] B.[-1,2)B.[-1,1] D.[1,2)1.A [解析] 集合A=(-∞,-1]∪[3,+∞),所以A∩B=[-2,-1].1.A1[2014·新课标全国卷Ⅱ] 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N =( )A.{1} B.{2} C.{0,1} D.{1,2}1.D [解析] 集合N=[1,2],故M∩N={1,2}.2.A1,B6[2014·某某卷] 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=( )A.[0,2] B.(1,3) C.[1,3) D.(1,4)2.C [解析] 根据已知得,集合A={x|-1<x<3},B={y|1≤y≤4},所以A∩B={x|1≤x<3}.故选C.1.A1[2014·某某卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.[0,1) C.(0,1] D.(0,1)1.B [解析] 由M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|-1<x<1,x∈R},得M∩N =[0,1).1.A1[2014·某某卷] 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=( ) A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}1.A [解析] 由题意可知,集合A={x|-1≤x≤2},其中的整数有-1,0,1,2,故A∩B={-1,0,1,2},故选A.19.A1、D3、E7[2014·某某卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q -1)+(q -1)q +…+(q -1)q n -2-qn -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .1.A1[2014·某某卷] 设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( )A .∅B .{2}C .{5}D .{2,5}1.B[解析] ∁U A ={x ∈N |2≤x <5}={2},故选B.11.A1[2014·某某卷] 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.11.{7,9} [解析] 由题知∁U A ={4,6,7,9,10}, ∴(∁U A )∩B ={7,9}.A2 命题及其关系、充分条件、必要条件2.A2[2014·某某卷] “x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.B [解析] ln(x +1)<0⇔0<1+x <1⇔-1<x <0,而(-1,0)是(-∞,0)的真子集,所“x <0”是“ln(x +1)<0”的必要不充分条件.5.A2[2014·卷] 设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.D [解析] 当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.故选D.6.A2、H4[2014·某某卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.A [解析] 由直线l 与圆O 相交,得圆心O 到直线l 的距离d =1k 2+1<1,解得k ≠0.当k =1时,d =12,|AB |=2r 2-d 2=2,则△OAB 的面积为12×2×12=12;当k =-1时,同理可得△OAB 的面积为12,则“k =1”是“△OAB 的面积为12”的充分不必要条件.3.A1 A2[2014·某某卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.C [解析] 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由维思图可知,一定存在C =A ,满足A ⊆C ,B ⊆∁U C ,故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.故选C.8.A2[2014·某某卷] 原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 8.B [解析] 设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.7.A2[2014·某某卷] 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件7.C [解析] 当ab ≥0时,可得a >b 与a |a |>b |b |等价.当ab <0时,可得a >b 时a |a |>0>b |b |;反之,由a |a |>b |b |知a >0>b ,即a >b .2.L4、A2[2014·某某卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A. 6.A2[2014·某某卷] 已知命题p :对任意x ∈R ,总有2x>0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q6.D [解析] 根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.A3 基本逻辑联结词及量词5.A3[2014·某某卷] 已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④5.C [解析] 依题意可知,命题p 为真命题,命题q 为假命题.由真值表可知p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假.5.A3、F1[2014·某某卷] 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b∥c ,则a∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )5.A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.9.E5、A3[2014·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值X 围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.A4 单元综合2.[2014·某某期末] 已知全集U =R ,集合A ={1,2,3,4,5},B =[3,+∞),则图X11中阴影部分所表示的集合为(A .{0,1,2}B .{0,1}C .{1,2}D .{1}2.C [解析] 由题意,阴影部分表示A ∩(∁U B ).因为∁U B ={x |x <3},所以A ∩(∁U B )={1,2}.4.[2014·某某十三校一联] 下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x 20+x 0-1<0”的否定是“∀x ∈R ,x 2+x -1>0” C .命题“若x =y ,则sin x =sin y ”的逆否命题为假命题 D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题4.D [解析] A 中否命题应为“若x 2≠1,则x ≠1”;B 中否定应为“∀x ∈R ,x 2+x -1≥0”;C 中原命题为真命题,故逆否命题为真命题;易知D 正确.6.[2014·某某质检] 已知集合A ={x |x >2},B ={x |x <2m },且A ⊆(∁R B ),则m 的值可以是( )A .1B .2C .3D .46.A [解析] 易知∁R B ={x |x ≥2m },要使A ⊆(∁R B ),则2m ≤2,∴m ≤1,故选A.9.[2014·某某八市联考] 已知集合M =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪y -3x -2=3,N ={(x ,y )|ax +2y +a=0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-29.A [解析] 易知集合M 中的元素表示的是过(2,3)点且斜率为3的直线上除(2,3)点外的所有点.要使M ∩N =∅,则N 中的元素表示的是斜率为3且不过(2,3)点的直线,或过(2,3)点且斜率不为3的直线,∴-a2=3或2a +6+a =0,∴a =-6或a =-2.11.[2014·某某实验中学模拟] 已知集合A ={1,2a},B ={a ,b }.若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B =____________.11.{-1,12,1} [解析] ∵A ∩B =12,∴2a=12,∴a =-1,∴b =12,∴A =⎩⎨⎧⎭⎬⎫1,12,B=-1,12,∴A ∪B ={-1,12,1}.12.[2014·某某一模] “λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的____________条件.12.充分不必要 [解析] ∵{a n }为递增数列⇔a n +1>a n ⇔2n +1-2λ>0⇔2n +1>2λ⇔3>2λ⇔λ<32,∴“λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的充分不必要条件.。
2014高考数学(文科)一轮精练A单元集合与常用逻辑用语(2013高考真题+模拟新题).DOC
A单元集合与常用逻辑用语A1集合及其运算3.A1[2013·福建卷] 若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2B.3C.4 D.163.C[解析] A∩B={1,3},子集共有22=4个,故选C.1.A1[2013·全国卷] 设全集U={1,2,3,4,5},集合A={1,2},则∁U A=() A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.1.B[解析] 所求的集合是由全集中不属于集合A的元素组成的集合,显然是{3,4,5}.1.A1[2013·北京卷] 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}1.B[解析] ∵-1∈B,0∈B,1B,∴A∩B={-1,0},故选B.2.A1[2013·安徽卷] 已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=() A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}2.A[解析] 因为A={x|x>-1},所以∁R A={x|x≤-1},所以(∁R A)∩B={-2,-1}.1.A1[2013·天津卷] 已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=() A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]1.D[解析] A∩B={x∈R|-2≤x≤2}∩{x∈R|x≤1}={x∈R|-2≤x≤1}.1.A1[2013·四川卷] 设集合A={1,2,3},集合B={-2,2},则A∩B=()A.B.{2}C.{-2,2} D.{-2,1,2,3}1.B[解析] 集合A与B中公共元素只有2.1.A1[2013·陕西卷] 设全集为R,函数f(x)=1-x的定义域为M,则∁R M为()A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)1.B[解析] M={x|1-x≥0}={x|x≤1},故∁R M=(1,+∞).2.A1[2013·山东卷] 已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.2.A[解析] ∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3},又∵B={1,2},∴{3}A{1,2,3},∴∁U B={3,4},A∩∁U B={3}.1.A1[2013·新课标全国卷Ⅱ] 已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}1.C[解析] M∩N={-2,-1,0}.故选C.1.A1[2013·辽宁卷] 已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=() A.{0} B.{0,1}C.{0,2} D.{0,1,2}1.B[解析] 由题意可知,|x|<2,得-2<x<2,从而B={x|-2<x<2},A∩B={0,1},故选B.4.A1[2013·江苏卷] 集合{-1,0,1}共有________个子集.4.8[解析] 集合{-1,0,1}共有3个元素,故子集的个数为8.10.A1[2013·湖南卷] 已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B =________.10.{6,8}[解析] 由已知得∁U A={6,8},又B={2,6,8},所以(∁U A)∩B={6,8}.1.A1[2013·湖北卷] 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁U A)=()A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}1.B[解析] ∁U A={3,4,5},B∩(∁U A)={3,4}.1.A1[2013·广东卷] 设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T =()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}1.A[解析] S={-2,0},T={0,2},S∩T={0},故选A.1.A1[2013·广东卷] 设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T =()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}1.A[解析] S={-2,0},T={0,2},S∩T={0},故选A.1.A1[2013·新课标全国卷Ⅰ] 已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B =()A.{1,4} B.{2,3}C.{9,16} D.{1,2}1.A[解析] 集合B={1,4,9,16},所以A∩B={1,4}.1.A1[2013·浙江卷] 设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]1.D[解析] 从数轴可知,S∩T=(-2,1].所以选择D.1.A1[2013·重庆卷] 已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4}C.{3} D.{4}1.D [解析] 因为A ∪B ={1,2,3} ,所以∁U (A ∪B)={4},故选D.A2 命题及其关系、充分条件、必要条件4.A2[2013·安徽卷] “(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] (2x -1)x =0x =12或x =0;x =0(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.8.A2[2013·山东卷] 给定两个命题p ,q ,若瘙 綈p是q的必要而不充分条件,则p是瘙 綈q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.A[解析] ∵“若q,则瘙 綈p”与“若p,则瘙 綈q”互为逆否命题,又“若q,则瘙 綈p”为真命题,故p是瘙 綈q的充分而不必要条件.2.A2[2013·湖南卷] “1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.A[解析] 1<x<2,一定有x<2;反之,x<2,则不一定有1<x<2,如x=0.故“1<x<2”是“x<2”成立的充分不必要条件,选A.3.A2[2013·湖北卷] 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(q) B.p∨(瘙 綈q)C.(q) D .p ∨q3.A [解析] “至少一位学员没降落在指定区域”即为“甲没降落在指定区域或乙没降落在指定区域”,可知选A.2.A2[2013·福建卷] 设点P(x ,y),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 当x =2,y =-1时,x +y -1=0;但x +y -1=0不能推出x =2,y =-1,故选A.7.A2,H6[2013·北京卷] 双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( ) A .m>12B .m ≥1C .m>1D .m>27.C [解析] 双曲线的离心率e =c a =1+m>2,解得m>1.故选C.4.A2[2013·天津卷] 设a ,b ∈R ,则“(a -b)·a 2<0”是“a<b”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.A [解析] 当(a -b)·a 2<0时,易得a<b ,反之当a =0,b =1时,(a -b)·a 2=0,不成立.故选A.4.A2[2013·四川卷] 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :x ∈A ,2x ∈B ,则( )A .瘙 綈p:x∈A,2x∈B B.瘙 綈p:x A,2x∈BC.瘙 綈p:x∈A,2x B D.瘙 綈p :x A ,2x B4.C [解析] 注意“全称命题”的否定为“特称命题”.6.A2,L4[2013·陕西卷] 设z 是复数,则下列命题中的假.命题是( ) A .若z 2≥0,则z 是实数B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0D .若z 是纯虚数,则z 2<06.C [解析] 设z =a +bi(a ,b ∈R ),则z 2=a 2-b 2+2abi ,若z 2≥0,则⎩⎪⎨⎪⎧ab =0,a 2-b 2≥0, 即b =0,故z 是实数,A 正确.若z 2<0,则⎩⎪⎨⎪⎧ab =0,a 2-b 2<0,即⎩⎪⎨⎪⎧a =0,b ≠0, 故B 正确.若z 是虚数,则b ≠0,z 2=a 2-b 2+2abi 无法与0比较大小,故C 是假命题.若z 是纯虚数,则⎩⎪⎨⎪⎧a =0,b ≠0, z 2=-b 2<0,故D 正确.3.A2[2013·浙江卷] 若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.A [解析] 若α=0,则sin 0=0<cos 0=1,而sin α<cos α,则2sin α-π4<0,所以α=0是sin α<cos α的充分不必要条件.所以选择A.A3 基本逻辑联结词及量词5.A3[2013·新课标全国卷Ⅰ] 已知命题p :x ∈R ,2x <3x ;命题q :x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .C.p∧q D.q5.B[解析] 命题p假、命题q真,所以瘙 綈p ∧q 为真命题.2.A3[2013·重庆卷] 命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x ∈R ,使得x 2<02.A [解析] 根据定义可知命题的否定为:存在x 0∈R ,使得x 20<0,故选A.A4 单元综合16.A4,B14[2013·福建卷] 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f(x)满足:(i)T ={f(x)|x ∈S};(ii)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f(x 1)<f(x 2),那么称这两个集合“保序同构”.现给出以下3对集合:①A =N ,B =N *;②A ={x|-1≤x ≤3},B ={x|-8≤x ≤10};③A ={x|0<x<1},B =R .其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号)16.①②③ [解析] 函数f(x)为定义域S 上的增函数,值域为T.构造函数f(x)=x +1,x ∈N , 则f(x)值域为N ,且为增函数,①正确.构造过两点(-1,-8),(3,10)的线段对应的函数f(x)=92x -72,-1≤x ≤3,满足题设条件,②正确.构造函数f(x)=tanx -12π,0<x<1,满足题设条件,③正确.1.[2013·惠州三调] 已知集合A ={-1,1},B ={x|ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为( )A .{-1}B .{1}C .{-1,1}D .{-1,0,1}1.D [解析] 因为B ⊆A ,所以考虑B ≠∅即a ≠0时B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =-1a ,因此有-1a ∈A ,所以a =±1.特殊地,B =∅即a =0时满足条件,所以实数a 的所有可能取值的集合是{-1,0,1}.[规律解读] 此类问题容易忽略B =∅的情况,也就是容易忽略a =0的情况,误选C.所以对于B ⊆A 时,集合B 的情况要考虑清楚.解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论思想的应用.空集作为一个特殊集合与非空集合间的关系,在解题中漏掉它极易导致错解.要特别注意集合中的元素所代表的特征,如:A ={y|y =x 2+2},B ={(x ,y)|y =x 2+2},其中A 表示数集,B 表示二次函数y =x 2+2的图像上所有点组成的集合,二者不能混淆.2.[2013·哈尔滨第三中学期末] 已知集合A ={2,3,4},B ={2,4,6,8},C ={(x ,y)|x ∈A ,y ∈B ,且log x y ∈N *},则C 中元素个数是( )A .2B .3C .4D .52.C [解析] 依据集合C 的定义对对数底数、真数的取值一一考虑,所有的对数是1,2,log 26,3,log 32,log 34,log 36,log 38,12,log 46,32,其中满足log x y ∈N *的有4个元素,分别为(2,2),(2,4),(2,8),(4,4),因此选择C.[规律解读] 元素与集合的关系:元素与集合的关系是属于与不属于的关系,一个元素要么属于一个集合,要么不属于一个集合,两者必居其一.要判断一个元素是否属于一个集合,关键是判断该元素是否具有该集合元素的公共属性.3.[2013·福州模拟] 设集合A ={ |(x ,y )4x +y =6},B ={ |(x ,y )3x +2y =7},则A ∩B =( )A .{x =1或y =2}B .{1,2}C .{(1,2)}D .(1,2) 3.C [解析] 解方程组⎩⎪⎨⎪⎧4x +y =6,3x +2y =7,得⎩⎪⎨⎪⎧x =1,y =2, 故得到一个公共点,则交集为单元素点集,故选C.4.[2013·成都模拟] 设全集U =R ,A ={x|2x(x -2)<1},B ={x|y =ln(1-x)},则阴影部分表示的集合为( )图K1-1A .{x|x ≥1}B .{x|1≤x<2}C .{x|0<x ≤1}D .{x|x ≤1}4.B [解析] 图中阴影部分表示 A ∩(∁U B),而A ={x|0<x<2} ,B ={x|x<1} ,所以A ∩(∁U B)= {x|0<x<2}∩{x ≥1}={x|1≤x<2}.5.[2013·广州模拟] 已知集合A ={x|x 2-5x +4≤0}与B ={x|x 2-2ax +a +2≤0},若A ⊆B ,则a 的取值范围是________.5.[3,+∞) [解析] 集合A ={x|1≤x ≤4} ,由A ⊆B 得⎩⎪⎨⎪⎧1-2a +a +2≤0,42-2×4a +a +2≤0,解得a ≥3. [规律解读] 已知集合间的关系求参数的值,主要是利用数形结合(数轴),把集合的包含关系转化为参数满足的条件关系式得解.。
2014届高考数学(北师大版)一轮复习讲义课件:1.2常用逻辑用语-PPT精品文档
与原命题等价的性质.可知,如果 p 是 q 成立的充分条件,那么 q 就是 p 成立的必要条件.
如 α=45°是 tanα=1 的充分条件,反过来 tanα=1 就是 α=45° 的必要条件.
(2)必要条件 ①在命题“若 p 则 q”中,如果由 q 能推出 p,即 q⇒p 则称 p
件和结论同时否定,所以原命题与否命题是互否关系.
交换原命题的条件和结论,并且同时否定所得命题就是逆否命 题.如果原命题为“若 p 则 q”,则逆否命题就是“若綈 q 则綈 p”,
反过来把逆否命题“若綈 q 则綈 p”的条件綈 q 与结论綈 p 交换后
再否定就是“若 p 则 q”,这就是原命题,所以原命题与逆否命题 是互为逆否的关系.
考点串串讲
1.命题与逻辑联结词 (1)命题 初中课本中给命题下的定义是:判断一件事情的句子,叫作命 题.而高中课本中的定义是:可以判断真假的语句叫作命题.说法 不同,实质一样.语句是不是命题,关键是它能不能判断真假,不 能判断真假的语句就不是命题.如: ①3 是 12 的约数吗? ②他是一个大胖子. ③x>5. 它们都不是命题.语句①不涉及真假,语句②中“大胖子”没 有界定,所以不能判断,语句③,由于 x 是未知数也不能判断“x >5”是否成立.
(5)用集合的包含关系来分析充分条件、必要条件与充要条件 设集合 A={x|x 满足 p},B={x|x 满足 q}. ①若 A⊆B,即 A 中的任何一个元素都是 B 中的元素,所以由 p 可推出 q,即 p⇒q. ∴当 A⊆B 时,p 是 q 的充分条件. 如:“张三是湖北人”是“张三是中国人”的充分条件.
cosα=12的充分条件(但不是必要条件).
高考数学一轮复习 常用逻辑用语讲义
高考数学一轮复习专题1.2 常用逻辑用语1.与函数、不等式、解析几何等知识结合考查充分条件与必要条件的判断及应用,凸显逻辑推理的核心素养;2.以函数、不等式为载体考查全称命题、特称命题的否定及真假判断的应用,凸显逻辑推理、数学运算的核心素养.1. 充分条件、必要条件与充要条件的概念A B B A A B 2.全称量词与存在量词 1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“ ”表示. (2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为,()x M p x ∀∈,读作“对任意x 属于M ,有p (x )成立”. 2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为00,()x M p x ∃∈,读作“存在M 中的元素x 0,使p (x 0)成立”. 3.全称命题与特称命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)含有一个量词的命题的否定充分条件、必要条件的判断【方法储备】充要关系的几种判断方法:(1)定义法:①若p ⇒q,q ⇏p ,则p 是q 的充分而不必要条件; ②若p ⇏q,q ⇒p ,则p 是q 的必要而不充分条件; ③若p ⇒q,q ⇒p ,则p 是q 的充要条件;④若p ⇏q,q ⇏p ,则p 是q 的既不充分也不必要条件.(2)等价转化法:即利用p ⇒q 与¬q ⇒¬p ;q ⟹p 与¬p ⇒¬q ;p ⟺q 与¬q⇒¬p的等价关系,对于条件或结论是否定形式的命题,一般运用等价转化法. (3)集合关系法:从集合的观点理解,根据使p,q成立的对象的集合之间的包含关系.【精研题型】1.已知a∈R,则“a>1”是“<1”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件2.(多选)下列命题中为真命题的是A.“a-b=0”的充要条件是“=1”B.“a>b”是“<”的既不充分也不必要条件C.命题“x R,-<0”的否定是x R,-0”D.“a>2,b>2”是“ab>4”的必要条件3.某班从A,B,C,D四位同学中选拔一人参加校艺术节展演,在选拔结果公布前,甲、乙、丙、丁四位教师预测如下:甲说:“C或D被选中,”乙说:“B被选中,”丙说:“A,D均未被选中,”丁说:“C被选中.”若这四位教师中只有两位说的话是对的,则被选中的是A.AB.BC.CD.D【思维升华】4.满足“闭合开关K1”是“灯泡R亮”的充要条件的电路图是A. B.C. D.5.设a,b∈R,则“a>b”是“a|a|>b|b|”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件充分条件、必要条件的应用【方法储备】1.求参数的取值范围:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,由集合之间的关系列不等式(或不等式组)求解;(2)要注意区间端点值的检验........,不等式是否能够取等号决定端点值得取舍,处理不当容易出现漏解或增解的现象.2.探求某结论成立的充分、必要条件:(1)准确化简条件,即求出每个条件对应的充要条件;(2)问题的形式:①“p是q的……”,②“p的……是q”,②要转化为①,再求解;(3)准确判断两个条件之间的关系:①转化为两个命题关系的判断;②借助两个集合之间的关系来判断.【精研题型】6.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若q是p的必要不充分条件,则实数a的取值范围是A. B.C. D.7.“,”为真命题的一个充分不必要条件是A. B. C. D.【思维升华】8.“关于的方程有解”的一个必要不充分条件是A. B.C. D.9.已知函数的定义域是,不等式的解集是.(1)若,求实数的取值范围;(2)若,且是的充分不必要条件,求的取值范围.【特别提醒】对于不等式问题:小范围可以推出大范围,大范围推不出小范围全称命题与特称命题【方法储备】1.全称(或特称)命题的否定:①将全称(或存在)量词改为存在 (或全称) 量词; ②结论否定;即全称命题的否定是特称命题;特称命题的否定是全称命题. 2. 全称命题与特称命题真假的判断:3.常见词语的否定形式有:【精研题型】10.命题“∃x∈R,”的否定是A.∀x∈R,B.∃x∈R,C.∀x∈R,D.∃x∈R,11.(多选)若“∀x∈M,|x|>x”为真命题,“∃x∈M,x>3”为假命题,则集合M可以是A.{x|x<-5}B.{x|-3<x<-1}C.{x|x>3}D.{x|0≤x≤3}12.公元1637年前后,法国学者费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的”.被提出后,经历许多著名数学家猜想论证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明.其中“一般地,将一个高于二次的幂分成两个同次幂之和,这是不可能的”,这句话用数学语言可以表示为A.∀x,y,z,n,m,p∈Z且n≥2,x n+y m≠z p恒成立B.∀x,y,z,n,p∈Z且n>2,x n+y n≠z p恒成立C.∀x,y,z,n∈Z且n>2,x n+y n≠z n恒成立D.∀x ,y ,z ,n ∈Z 且n≥2,x n +y n ≠z n 恒成立【思维升华】13. (多选)下列四个关于三角函数的全称量词命题与存在量词命题,其中真命题为 A., B.,C.,D.,14. 在①∃x ∈R ,x 2+2x +2-a =0,②存在集合A ={x |2<x <4},非空集合B ={x |a <x <3a },使得A ∩B =∅这两个条件中任选一个,补充在下面问题中,并求解问题中的实数a .问题:求解实数a ,使得命题p :∀x ∈{x |1≤x ≤2},x 2-a ≥0,命题q :_______都是真命题.注:如果选择多个条件分别解答,按第一个解答计分.全称(存在)量词命题的综合应用【方法储备】含有量词的命题求参数的问题是恒成立或有解问题:(1)全称量词命题()x M a f x ∀∈>,(或()a f x <)为真:不等式恒.成立问题,通常转化为求()f x 的最大值(或最小值),即max ()a f x >(或min ()a f x <);(2)存在量词命题()x M a f x ∃∈>,(或()a f x <)为真:不等式能.成立问题,通常转化为求()f x 的最小值(或最大值),即min ()a f x >(或max ()a f x <).【精研题型】15. 若“,使得成立”是假命题,则实数的取值范围是 .16.已知定义在R上的函数f(x)满足f(x)+f(−x)=2,且在[0,+∞)上单调递减,若对任意的x∈R,f(x2−a)+f(x)<2恒成立,则实数a的取值范围为A. B.(-∞,-1) C. D.(1,+∞)17.若∃x0∈R,为假,则实数a的取值范围为.【思维升华】18.已知函数f(x)=x,g(x)=-x2+2x+b,若对任意的x1∈[1,2],总存在x2∈[1,9],19.(多选)已知p:,q:,则下列说法正确的是A.p的否定是:B.q的否定是:C.p为真命题时,D.q为真命题时,。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
名校2014届高三12月月考数学试题分类汇编2:常用逻辑用语
江苏省名校2014届高三12月月考数学试题分类汇编常用逻辑用语一、填空题1、(江苏省扬州中学2014届高三上学期12月月考)已知命题:p “若b a =,则||||b a =”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是 ▲ .答案:22、(江苏省南京市第一中学2014届高三12月月考)函数a x f x +-=131)( ()0≠x ,则“1)1(=f ”是“函数)(x f 为奇函数”的 条件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填写)答案:充要3、(江苏省诚贤中学2014届高三12月月考)由命题“02,2≤++∈∃m x x R x ”是假命题,求得实数m 的取值范围是),(+∞a ,则实数a 的值是 ▲ .答案:14、(江苏省东海县第二中学2014届高三第三次学情调研)不等式111x <-的解集记为p ,关于x 的不等式2(1)0x a x a +-->的解集记为q ,已知p q 是的充分不必要条件,则实数a 的取值范围是 ▲ .答案:(2,1]--5、(江苏省东台市创新学校2014届高三第三次月考)命题“0x ∀>,20x >”的否定是 . 答案:6、(江苏省东台市创新学校2014届高三第三次月考)已知抛物线C :y 2=x 与直线l :y =kx+1.“k ≠0”是“直线l 与抛物线C 有两个不同的交点”的 条件 (填“必要不充分、充分不必要、充要、既不充分又不必要)答案:必要不充分7、(江苏省灌云高级中学2014届高三第三次学情调研)直线x +ay +3=0与直线ax +4y +6=0平行的充要条件是_________.答案:a =-2;8、(江苏省如东县掘港高级中学2014届高三第三次调研考试)已知x 为实数,则“3x ≥”是“2230x x --≥”的 条件答案:充分不必要9、(江苏省无锡市洛社高级中学等三校2014届高三12月联考)命题:,sin 2x R x ∀∈<的否定是 命题(填“真”、“假”)答案:假10、(江苏省兴化市安丰高级中学2014届高三12月月考)设等比数列{}n a 的公比为q ,前n 项和为n S.则“||q =627S S =”的充分而不必要条件.答案:充分而不必要11、(江苏省张家港市后塍高中2014届高三12月月考)命题“∃x ∈R ,x 2+ax +1<0” 的否定是 ▲答案:2,10x R x ax ∀∈++≥二、解答题1、(江苏省东台市创新学校2014届高三第三次月考)已知m 为实常数.命题:p 方程表示焦点在y 轴上的椭圆;命题q. (1)若命题p 为真命题,求m 的取值范围;(2)若命题q 为假命题,求m 的取值范围;(3) 若命题p 或q 为真命题,且命题p 且q 为假命题,求m 的取值范围.解:(1)据题意6020(6)2m m m m -<⎧⎪>⎨⎪-->⎩,解之得0<m <2; 故命题p 为真命题时m 的取值范围为(0,2);…………5分(2)若命题q 为真命题,则(1)(1)0m m +-<,解得11m -<<,故命题q 为假命题时m 的取值范围(,1][1,)-∞-+∞ ;…………10分2、(江苏省兴化市安丰高级中学2014届高三12月月考)已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围.解: (1) 由题意知,方程20x x m --=在()1,1-上有解,即m 的取值范围就为函数x x y -=2在()1,1-上的值域,易得124M m m ⎧⎫=-≤<⎨⎬⎩⎭(2) 因为x ∈N 是x ∈M 的必要条件,所以N M ⊆当1=a 时,解集N 为空集,不满足题意当1>a 时,a a ->2,此时集合{}a x a x N <<-=2| 则⎪⎩⎪⎨⎧≥-<-2412a a ,解得49>a 当1<a 时,a a -<2,此时集合{}a x a x N -<<=2| 则⎪⎩⎪⎨⎧≥--<2241a a ,解得41-<a 综上,94a >或 14a <-。
上海市各区2014届高三数学一模试题分类汇编 常用逻辑用语(理)无答案
上海市各区2014届高三数学(理科)一模试题分类汇编常用逻辑用语2014.01.26(普陀区2014届高三1月一模,理)15.若)(x f 和)(x g 都是定义在R 上的函数,则“)(x f 与)(x g 同是奇函数或偶函数”是“)()(x g x f ⋅是偶函数”的………………………………………………………………( ))(A 充分非必要条件. )(B 必要非充分条件.)(C 充要条件. )(D 既非充分又非必要条件(长宁区2014届高三1月一模,理)4、已知命题1|211:|≤+-x p ,命题)0(012:22><-+-m m x x q ,若p 是q 的充分不必要条件,则实数m 的范围是 .(嘉定区2014届高三1月一模,理)15.设向量)1,1(-=x a ,)1,3(+=x b ,则“a ∥b ”是“2=x ”的………………( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件(杨浦区2014届高三1月一模,理)14.已知函数()21(0)xf x a a =⋅+≠,定义函数(),0,()(),0.f x x F x f x x >⎧=⎨-<⎩ 给出下列命题: ①()()F x f x =; ②函数()F x 是奇函数;③当0a <时,若0mn <,0m n +>,总有()()0F m F n +<成立,其中所有正确命题的序号是 .(徐汇区2014届高三1月一模,理)17. 函数()f x x x a b =++是奇函数的充要条件是------------------------------------------------------------------( )(A) 0ab = (B) 0a b += (C) 220a b += (D) a b =)(C 充要条件. )(D 既非充分又非必要条件. (长宁区2014届高三1月一模,理)15、下列命题中,错误..的是( )A. 一条直线与两个平行平面中的一个相交,则必与另一个平面相交B.平行于同一平面的两个不同平面平行C.如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面βD.若直线l 不平行平面α,则在平面α内不存在与l 平行的直线(虹口区2014届高三1月一模,理)10、给出以下四个命题:(1)对于任意的0>a ,0>b ,则有a b b a lg lg =成立; (2)直线b x y +⋅=αtan 的倾斜角等于α;(3)在空间..如果两条直线与同一条直线垂直,那么这两条直线平行;(4)在平面..将单位向量的起点移到同一个点,终点的轨迹是一个半径为1的圆. 其中真命题的序号是 .。
高考数学一轮复习效果监测 集合与常用逻辑用语.pdf
【一轮效果监测】2014届高考数学一轮复习检测:《集合与常用逻辑用语 》 (时间:120分钟 满分:150分) 【选题明细表】 知识点、方法题号集合的概念、关系、运算1、6、8、17、20、22四种命题及真假判断3、13充分必要条件及应用2、7、11、14、21逻辑联结词4、9全称命题与特称命题5、9、15、18参数问题10、12、16、17、19一、选择题(每小题5分,共60分) 1.(2013福州市高三第一学期期末质量检查)已知集合A={x|x>3},B={x|2<x3} (B){x|2<x<3} (C){x|3<x<4}(D){x|x3}∩{x|2<x<4}={x|3<x<4},故选C. 2.(2013河北省衡水中学期末检测)若集合A={0,m2},B={1,2},则“m=1”是“A∪B={0,1,2}”的( B ) (A)充要条件 (B)充分不必要条件 (C)必要不充分条件(D)既不充分又不必要条件 解析:当m=1时,m2=1,A={0,1},A∪B={0,1,2}, 若A∪B={0,1,2}, 则m2=1或m2=2,m=±1或m=±,故选B. 3.(2013宿州模拟)下列命题: ①“若a2<b2,则a1,则ax2-2ax+a+3>0的解集为R”的逆否命题;④“若x (x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是( A ) (A)③④(B)①③(C)①②(D)②④ 解析:①的否命题为“若a2≥b2,则a≥b”,为假命题; ②的逆命题为“面积相等的三角形全等”,为假命题, 故排除选项B、C、D,选A. 4.已知命题p1:函数y=2-x-2x在R上为减函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:( p1)∨p2和q4:p1∧(p2)中,真命题是( C ) (A)q1,q3(B)q2,q3 (C)q1,q4(D)q2,q4 解析:易知p1是真命题,而对p2,y'=2xln 2-ln 2=ln 2(2x-),当x∈[0,+∞)时,2x≥,又ln 2>0,所以y'≥0,函数单调递增;同理得,当x∈(-∞,0)时,函数单调递减,故p2是假命题.由此可知q1真,q2假,q3假,q4真.故选C. 5.命题“?x0∈R,使log2x0≤0成立”的否定为( D ) (A)?x0∈R,使log2x0>0成立 (B)?x0∈R,使log2x0≥0成立 (C)?x∈R,均有log2x≥0成立 (D)?x∈R,均有log2x>0成立 解析:由特称命题与全称命题的关系知,选D. 6.(2013合肥模拟)如图,已知R是实数集,集合A={x|lo(x-1)>0}, B=,则阴影部分表示的集合是( D ) (A)[0,1](B)[0,1)(C)(0,1)(D)(0,1] 解析:图中阴影部分表示集合B∩?RA, 又A={x|1<x<2},B=, ∴?RA={x|x≤1或x≥2}, B∩?RA={x|0<x≤1}.故选D. 7.已知条件p:x≤1,条件q:<1,则p是q成立的( B ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 解析:q:1或x0},则A×B等于( A ) (A)[0,1]∪(2,+∞)(B)[0,1]∪[2,+∞) (C)[0,1] (D)[0,2] 解析:∵A=[0,2],B=(1,+∞),∴A×B={x|x∈(A∪B)且x?(A∩B)}=[0,1]∪(2,+∞).故选A. 9.(2013山西四校联考)下列选项中叙述错误的是( D ) (A)命题“若x2-3x+2=0,则x=1”的逆否命题为假命题 (B)若命题p:?x∈R,x2+x+1≠0,则p:?x∈R,x2+x+1=0 (C)“x>2”是“x2-3x+2>0”的充分不必要条件 (D)若“p∨q”为假命题,则“p∧q”也为假命题 解析:对于选项A, 命题“若x2-3x+2=0,则x=1”是假命题, 因此命题“若x2-3x+2=0,则x=1”的逆否命题也是假命题; 对于选项B,命题p:?x∈R,x2+x+1≠0, 则p:?x∈R,x2+x+1=0; 对于选项C,由x>2可得 x2-3x+2=(x-1)(x-2)>0, 反过来,由x2-3x+2>0不能得知x>2, 因此“x>2”是“x2-3x+2>0”的充分不必要条件; 对于选项D,若“p∨q”为假命题,则p、q均为假命题, 所以“p∧q”是真命题. 综上所述,选D. 10.(2013广东番禺模拟)已知命题p:“?x∈[0,1],a≥ex”,命题q:“?x∈R,x2+4x+a=0”,若“p∧q”是真命题,则实数a的取值范围是( A ) (A)[e,4](B)[1,4] (C)(4,+∞)(D)(-∞,1] 解析:若p真,则a≥e;若q真,则16-4a≥0?a≤4,所以若“p∧q”是真命题,则实数a的取值范围是[e,4].故选A. 11.(2013宝鸡模拟)在△ABC中,条件甲:Acos2 B,则甲是乙的( C ) (A)充分非必要条件 (B)必要非充分条件 (C)充要条件 (D)既非充分也非必要条件 解析:依题意,由A<B得0<sin A<sin B,sin2 A 1-sin2 B,cos2 A>cos2 B;反过来,由cos2 A>cos2 B得1-sin2 A> 1-sin2 B,sin2 A<sin2 B,0<sin A<sin B,A30°”是“sin A>”的充分不必要条件; ④“函数f(x)=tan(x+φ)为奇函数”的充要条件是φ=kπ(k∈Z)”. 其中真命题的序号是 (把真命题的序号都填上).? 解析:“?x∈R,x2-x+1≤0”的否定为“?x∈R,x2-x+1>0”,①是真命题;“若x2+x-6≥0,则x>2”的否命题为“若x2+x-630°”是“sin A>”的必要不充分条件,③是假命题;“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=(k∈Z)”,④是假命题.综上可得真命题的序号为①②. 答案:①② 14.(2013山东日照模拟)已知两个单位向量a与b的夹角为135°,则|a+λb|≥1的充要条件是 .? 解析:由|a+λb|≥1得|a+λb|2≥1,即|a|2+λ2|b|2+2λa·b≥1,又因为a与b为单位向量,且夹角为135°,所以1+λ2-λ≥1,即λ2-λ≥0,解得λ≥或λ≤0,此即为|a+λb|≥1的充要条件. 答案:λ≥或λ≤0 15.已知命题:“?x∈[1,2],使x2+2x-a≥0”为真命题,则a的取值范围是 .? 解析:由题知?x∈[1,2],使a≤x2+2x, 又当x∈[1,2]时,(x2+2x)∈[3,8], 所以a≤8. 答案:a≤8 16.已知命题p:“?x∈[1,2],x2-ln x-a≥0”与命题q:“?x0∈R, +2ax0-8-6a=0”都是真命题,则实数a的取值范围是 .? 解析:若p真,则?x∈[1,2],≥a,∴a≤;若q真,则(2a)2-4×(-8-6a)=4(a+2)(a+4)≥0,∴a≤-4或a≥-2.∴实数a的取值范围为 (-∞,-4]∪. 答案:(-∞,-4]∪ 三、解答题(共74分) 17.(本小题满分12分) (2013北京朝阳期中)设关于x的不等式x(x-a-1)<0(a∈R)的解集为M,不等式x2-2x-3≤0的解集为N. (1)当a=1时,求集合M; (2)若M?N,求实数a的取值范围. 解:(1)当a=1时,由已知得x(x-2)<0, 解得0<x<2, 所以M={x|0<x<2}. (2)由已知得 N={x|-1≤x≤3}. ①当a<-1时,因为a+1<0, 所以M={x|a+1<x<0}. 因为M?N,所以-1≤a+1<0, 所以-2≤a-1时,因为a+1>0, 所以M={x|0<x0时,A=,若A-B=,则≤2,即a≥3; 当a-,即a<-12. 综上所述:实数a的取值范围是a0).若p是q的必要而不充分条件,求实数m的取值范围. 解:∵x2-2x+1-m2≤0, 即[x-(1-m)][x-(1+m)]≤0. 又m>0, ∴1-m≤x≤1+m, 即q:1-m≤x≤1+m, 记为集合Q={x|1-m≤x≤1+m}. 又p:-2≤x≤10, 记为集合P={x|-2≤x≤10}. ∵p是q的必要而不充分条件, ∴p是q的充分而不必要条件, ∴PQ, ∴ 解得m≥9. 所以实数m的取值范围为[9,+∞). 22.(本小题满分14分) (2013宁波模拟)已知集合P=,函数f(x)=log2(ax2-2x+2)的定义域为Q. (1)若P∩Q=,P∪Q=(-2,3],求实数a的值; (2)若P∩Q=,求实数a的取值范围. 解:(1)由条件知Q=, 即-2,为方程ax2-2x+2=0的根且a0时,g>1显然不合题意. 当a<0时,由函数g(x)的对称轴为x=<0, 所以g(x)在上单调递减, ∴即 ∴a≤-4.综上,a的取值范围为(-∞,-4].。
江苏省2014届一轮复习数学试题选编30:常用逻辑用语(教师版)
江苏省2014届一轮复习数学试题选编30:常用逻辑用语(教师版)填空题错误!未指定书签。
.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)“3x >”是“5x >”的_____条件(请在“充要、充分不必要、必要不充分、既不充分也不必要”中选择一个合适的填空).【答案】必要不充分错误!未指定书签。
.(江苏省扬州市2013届高三上学期期中调研测试数学试题)已知命题p :|52|3x -<,命题q :21045x x <+-,则p 是q 的____条件.( 在“充分不必要”、“必要不充分”、“既不充分又不必要”、“充要”选择并进行填空)【答案】充分不必要错误!未指定书签。
.(江苏省海门市四校2013届高三11月联考数学试卷 )已知下列两个命题: p :x ∀∈+R ,不等式1x ≥恒成立;q :2log (1)a y x ax =-+(0,1)a a >≠有最小值.若两个命题中有且只有一个是真命题,则实数a 的取值范围是____________..【答案】(2,4)错误!未指定书签。
.(江苏海门市2013届高三上学期期中考试模拟数学试卷)命题"1),,0(:"xx x p >+∞∈∃,命题p 的否定为命题q ,则q 的真假性为______.(填真或假).【答案】假错误!未指定书签。
.(江苏省海门市四校2013届高三11月联考数学试卷 )给出定义:若2121+≤<-m x m (其中m 为整数),则m 叫做离实数x 最近的整数,记作{x },即m x =}{.在此基础上给出下列关于函数}{)(x x x f -=的四个命题: ①函数)(x f y =的定义域是R,值域是⎥⎦⎤⎢⎣⎡21,0;②函数)(x f y =的图像关于直线)(2Z k k x ∈=对称;③函数)(x f y =是周期函数,最小正周期是1;④函数)(x f y =在⎦⎤⎢⎣⎡-21,21上是增函数.则其中真命题是_______________.【答案】错误!未指定书签。
浙江省2014届高三理科数学一轮复习考试试题精选1分类汇编16:常用逻辑用语 Word版含答案
浙江省2014届高三理科数学一轮复习考试试题精选(1)分类汇编16:常用逻辑用语一、选择题1 .(浙江省杭州市西湖高级中学2014届高三9月月考数学(理科)试题)已知,αβ的终边在第一象限,则“αβ>”是“sin sin αβ>” ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分与不必要条件【答案】D2 .(浙江省建人高复2014届高三上学期第一次月考数学(理)试题)命题P:若,则与的夹角为锐角;命题q 若函数在及上都是减函数,则在上是减函数,下列说法中正确的是( )A .“p 或q ”是真命题B .“ p 或q ”是假命题C .为假命题D .为假命题【答案】B3 .(浙江省湖州中学2014届高三第一次月考数学(理)试题)“对于任意正整数n ,不等式()()lg 1lg 0a n a n a a <+>都成立”的一个充分不必要条件是( )A .01a <<B .1012a a <<>或C .02a <<D .102a <<【答案】D4 .(浙江省临海市杜桥中学2014届高三上学期第二次月考数学(理)试题)若“01x <<”是“()[(2)]0x a x a --+≤”的充分而不必要条件,则实数a 的取值范围是 ( )A .[1,0]-B .(1,0)-C .(,0][1,)-∞+∞ D .(,1)(0,)-∞-+∞【答案】A5 .(浙江省建人高复2014届高三上学期第一次月考数学(理)试题)若a ,b 都是实数,则“a-b >0”是“a 2-b 2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D6 .(浙江省温州中学2014届高三10月月考数学(理)试题)“22ab >”是“11a b<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D7 .(浙江省杭州高级中学2014届高三上学期第一次月考数学(理)试题)已知a ,b 都是实数,那么“22a b >”是“a b >”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D8 .(浙江省乐清市白象中学2014届高三上学期第二次月考数学(理)试题)“p ∨q 为真”是“⌝p 为假”的( )A .充分不必要条件.B .必要不充分条件C .充要条件D . 既不充分也不必要条件【答案】B9 .(浙江省台州中学2014届高三上学期第二次统练数学(理)试题)“6πα=”是“1cos 22α=”的 ( )A .充分必要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件【答案】C10.(浙江省绍兴市第一中学2014届高三上学期期中考试数学(理)试题)若2:(0,:2p x x q x ++≥-,则p 是q 的( )( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B11.(浙江省绍兴市第一中学2014届高三上学期期中考试数学(理)试题)设非空集合{}S x m x n =≤≤满足:当x S ∈时,有2x S ∈,给出如下三个命题:①若1,m =则{}1S =;②若1,2m =-则114n ≤≤; ③若1,2n =则0m ≤≤.其中正确命题的是( D .) ( ) A .①B .①②C .②③D .①②③【答案】D12.(浙江省台州市黄岩中学2013-2014学年高三第一学期第一次月考数学(理)试题)已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a为等差数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A13.(浙江省湖州市菱湖中学2014届高三10月月考数学(理)试题)下列命题错误的是.A 命题“若m>0,则方程02=-+m x x 有实数根”的逆否命题为“若方程02=-+m x x 无实数根,则m ≤0”;.B “1=x ”是“0232=+-x x ”的充分不必要条件; .C 若q p ∧为假命题,则p ,q 均为假命题;.D 对于命题p:R x ∈∃,使得012<++x x ,则R x p ∈∀⌝:,均有012≥++x x【答案】C14.(浙江省温州市十校联合体2014届高三10月阶段性测试数学(理)试题)已知()1,0,∈b a ,则1=+b a 是不等式()222by ax by ax +≥+ 对任意的R y x ∈,恒成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A15.(浙江省平阳县第三中学2014届高三上学期第一次月考数学(理)试题)已知α,β为第一象限的两个角,则“αβ>”是“sin sin αβ>”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D16.(浙江省湖州市八校2014届高三上学期第二次联考数学(理)试题)设{1,2}M =,2{}Na =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A17.(浙江省嘉兴一中2014届高三上学期期中数学理试卷)命题“2[1,2],0x xa ∀∈-≤”为真命题的一个充分不必要条件是( )A .4a ≥B .4a ≤C .5a ≥D .5a ≤【答案】C18.(浙江省温州市十校联合体2014届高三上学期期初联考数学(理)试题)若b a ,都是实数,则“0>-b a ”是“022>-b a ”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A19.(浙江省金华一中2014届高三10月月考数学(理)试卷)在ABC ∆中,""a b =是"cos cos "a A b B =的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】C20.(浙江省嘉兴市2014届高三9月月考数学理试题)“a>b”是“11a b<”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D 21.(浙江省杭州高级中学2014届高三上学期第一次月考数学(理)试题)下列命题中的假命题是( )A .,lg 0x R x ∃∈=B .,tan 1x R x ∃∈=C .3,0x R x ∀∈> D .02,>∈∀xR x 【答案】C22.(浙江省2014届金华一中高三9月月考数学试卷(理))已知命题p :在△ABC 中,“C B >”是“sin sin C B >”的充分不必要条件;命题q :“a b >”是“22ac bc >”的充分不必要条件,则下列选项中正确的是 ( )A .p 真q 假B .p 假q 真C .“p q ∨”为假D .“p q ∧”为真【答案】C 二、填空题23.(浙江省绍兴市第一中学2014届高三上学期回头考数学(理)试题 )若至少存在一个0x >,使得关于x 的不等式22||x x a <--成立,则实数a 的取值范围为_______.【答案】9(2,)4-24.(浙江省湖州市菱湖中学2014届高三10月月考数学(理)试题)命题:p 2{|0}a M x x x ∈=-<;命题:q {|||2}a N x x ∈=<, p 是q 的___条件. (从充分不必要、必要不充分、充要、既不充分也不必要选择)【答案】充分不必要三、解答题 25.(浙江省2014届金华一中高三9月月考数学试卷(理))已知命题:p x A ∈,且{|11}A x a x a =-<<+,命题:q x B ∈,且2{|430}B x x x =-+≥.(Ⅰ)若,A B A B R =∅=,求实数a 的值; (Ⅱ)若p 是q 的充分条件,求实数a 的取值范围.【答案】解:(Ⅰ) {}|13A x x x =≤≥或,由题意得,11a a -=且+1=3,所以a=2.(Ⅱ) 由题意得1113,0 4.a a a a +≤-≥≤≥或或26.(浙江省杭州高级中学2014届高三上学期第一次月考数学(理)试题)已知条件p :{}2|230,,x A x x x x R ∈=--≤∈条件q :{}22|240,,x B x x mx m x R m R ∈=-+-≤∈∈(1)若[]0,3AB =,求实数m 的值;(2)若p 是q ⌝的充分条件,求实数m 的取值范围.【答案】解:(Ⅰ)]3 ,1[-=A ,]2 ,2[m m B ++-=,若[]0,3A B =,则⎩⎨⎧≥+=+-3202m m ,故2=m(Ⅱ)) ,2()2 ,(∞++⋃+--∞=m m B C R ,若⊆A B C R , 则 m +-<23 或 12-<+m , 故 3-<m 或 5>m27.(浙江省2014届金华一中高三9月月考数学试卷(理))已知命题:p 方程2220x ax a +-=在[-1,1]上有解;命题:q 只有一个实数0x 满足不等式200220x ax a ++≤,若命题“p ∨q ”是假命题,求实数a 的取值范围.【答案】解:由2220x ax a +-=得(2)()0x a x a -+=,∴2ax x a ==-或, ∴当命题p 为真命题时122aa a ≤-≤∴≤1或 又“只有一个实数0x 满足200220x ax a ++≤”,即抛物线222y x ax a =++与x 轴只有一个交点,∴2480a a ∆=-=,∴0a =或2a =.∴当命题q 为真命题时,0a =或2a =.∴命题“p ∨q ”为真命题时,2a ≤.∵命题“p ∨q ”为假命题,∴2a >或2a <-. 即a 的取值范围为(,2)(2,)-∞-+∞.28.(浙江省金华一中2014届高三10月月考数学(理)试卷)已知命题p :关于x 的不等式2240x ax ++>对一切x R ∈恒成立,命题q :函数()(32)x f x a =-是增函数,若p q ∨为真,p q ∧为 假,求实数a 的取值范围.【答案】解:29.(浙江省台州中学2014届高三上学期第二次统练数学(理)试题)设命题p :实数x 满足03422<+-a ax x ,其中0<a ;命题q :实数x 满足2280,x x +->且p q ⌝⌝是的必要不充分条件,求实数a 的取值范围.【答案】30.(浙江省绍兴市第一中学2014届高三上学期期中考试数学(理)试题)命题p :不等式a x x >-+-|3||1|对一切实数x 都成立;命题q :已知函数23)(nx mx x f +=的图像在点)2,1(-处的切线恰好与直线12=+y x 平行,且)(x f 在]1,[+a a 上单调递减.若命题p 或q 为真,求实数a 的取值范围.【答案】31.(浙江省临海市杜桥中学2014届高三上学期第二次月考数学(理)试题)已知m R ∈,设命题P :函数f (x )=3x 2+2mx +m +43有两个不同的零点;命题Q :函数 2(3)xy m =-是增函数.(1)若命题P 为真,求实数m 的取值范围.(2)求使命题“P 或Q ”为真命题的实数m 的取值范围. 【答案】(1):P 由0∆>得4m >或1m <- (2):Q 231m ->得2m >或2m <-当,P Q 都为假时,则1422m m -≤≤⎧⎨-≤≤⎩得12m -≤≤P ∴或Q 为真时,m 的取值范围是2m >或1m <-。
2014年高考数学常用逻辑用语专题
常用逻辑连接用语1.“0<x ”是“0)1ln(<+x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件3.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的( ) .A 充分而不必要条件 .B 必要而不充分条件.C 充分必要条件 .D 既不充分又不必要条件4. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件5.已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④6.设,,a b c 是非零向量,学科 网已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝7.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假9. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件 (C )充分必要条件 (D )既非充分又非必要条件 10设,a b R Î,则|“a b >”是“a a b b >”的( )(A )充要不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充要也不必要条件11已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件12.已知命题:p 对任意x R ∈,总有20x>; :"1"q x >是"2"x >的充分不必要条件 则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝13. 在ABC ∆中,角,,A B C 所对应的变分别为,,a b c ,则a b ≤“”是sin sin A B ≤“”的A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件14.命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R xD. 0||,2000≥+∈∃x x R x15.设a 、b 是实数,则“a b >”是“22a b >”的( ) A.充分而不必要条件 B.必要而不必要条件C.充分必要条件D.既不充分不必要条件16.命题“[)30,.0x x x ∀∈+∞+≥”的否定是 ( )()()[)[)3333000000.,0.0.,0.0.0,.0.0,.0A x x x B x x x C x x x D x x x ∀∈-∞+<∀∈-∞+≥∃∈+∞+<∃∈+∞+≥17.命题“x ∀∈R ,2x x ≠”的否定是A .x ∀∉R ,2x x ≠B .x ∀∈R ,2x x =C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =18.设命题2:,10p x R x ∀∈+>,则p ⌝为( )200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤200.,10C x R x ∃∈+< 200.,10D x R x ∀∈+≤19.下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”.D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ20原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆 否命题真假性的判断依次如下,正确的是( )(A )真,真,真 (B )假,假,真 (C )真,真,假 (D )假,假,假21.已知命题p :0x ">,总有()11x x e +>,则p Ø为( )(A )00x $£,使得()0011x x e £+ (B )00x $>,使得()0011xx e £+ (C )0x ">,总有()11x x e +£ (D )0x "£,总有()11x x e +£22.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件23设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A. 充分不必要条件B. 必要不成分条件C. 充分必要条件D. 既不充分也不必要条件24.已知命题x≥;:p对任意x R∈,总有||0q x=是方程"20":"1"x+=的根则下列命题为真命题的是()∧⌝∧.D p q.A p q∧⌝.B p q⌝∧.C p q。
河南省高三理科数学一轮复习试题选编常用逻辑用语含答案
河南省2014届高三理科数学一轮复习试题选编15:常用逻辑用语一、选择题1 .(河南省信阳高中2013届高三4月模拟考试(一)数学理试题)“a = 1"是“复数21(1)a a i -++(a R ∈,i 为虚数单位)是纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C2 .(河南省开封市2013届高三第二次质量检测数学(理)试题)若集合A={0,1},B= {—1,a 2),则“a=l”是“A∩B={1}”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】A3 .(河南省2013届高三新课程高考适应性考试(一)数学(理)试题)已知命题:,p x R ∃∈使得12,x x+<命题2:,10q x R xx ∀∈++>,下列命题为真的是 ( )A .p ∧ qB .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝【答案】A4 .(河南省郑州市2013届高三第三次测验预测数学(理)试题)下列命题中的假命题是( )A .0,2≥∈∀x R x B .02,1>∈∀-x R x C .1lg ,<∈∃x R xD .2cos sin ,=+∈∃x x R x【答案】D5 .(河南省郑州四中2013届高三第六次调考数学(理)试题)给出下列四个命题:①命题1sin ,:≤∈∀x R x p ,则1sin ,:<∈∃⌝x R x p 。
②当1≥a 时,不等式a x x <-+-34的解集为非空. ③当1>x 时,有2ln 1ln ≥+x x 。
④设有五个函数x y x y x y x y xy 2,,,,23211=====-,其中既是偶函数又在),0(+∞上是增函数的有2个。
其中真命题的个数是 ( )A .1B .2C .3D .4【答案】A6 .(2012年新课标理)下面是关于复数21z i=-+的四个命题:其中的真命题为1:2p z =22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p()B 12,p p()C ,p p 24()D ,p p 34【答案】选C22(1)11(1)(1)i z i i i i --===---+-+-- 7 .(河南省洛阳市2013届高三二练考试数学(理)试题)已知命题22:,11,:,10,P x R mx q x R x mx ∃∈+≤∀∈++≥若 ()p q ∨⌝为假命题,则实数m 的取值范围是 ( )A .((,0)(2,)-∞+∞B .[0,2]C .RD .φ【答案】B8 .(2010年高考(全国新课标理))已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是( )A .1q ,3qB .2q ,3qC .1q ,4q D .2q ,4q【答案】C解析:易知1p 是真命题,而对2p :112ln 2ln 2ln 2(2)22xxx xy '=-=-,当[0,)x ∈+∞时,122xx≥,又ln 20>,所以0y '≥,函数单调递增;同理得当(,0)x ∈-∞时,函数单调递减,故2p 是假命题.由此可知,1q 真,2q 假,3q 假,4q 真. 另解:对2p 的真假可以取特殊值来判断,如取1212xx =<=,得1251724y y =<=;取3412x x =->=-,得3451724y y =<=即可得到2p 是假命题,下略.9 .(河南省郑州市2013年高中毕业年级第二次质量预测数学(理)试题)设a,β分别为两个不同的平面,直线l a ,则“l 丄β"是“a 丄β成立的A 。
广东省始兴县风度中学高考数学一轮复习 集合与常用逻辑用语晚练 新人教A版
广东省始兴县风度中学2014高考数学一轮复习 集合与常用逻辑用语晚练 新人教A 版一、选择题(每小题5分共40分)1.(2012湖南)设集合M={-1,0,1},N={x|x 2≤x},则M ∩N=( )A.{0}B.{0,1}C.{-1,1}D.{-1,0,0}2.(2012北京).已知全集U=R,集合P={x ︱x 2≤1},那么( )A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)3 .集合P ={m 2|m ∈N *},若a ,b ∈P ,则a ⊗b ∈P ,那么运算⊗可能是 ( )A.加法B.减法C.乘法D.除法4.(2012全国)下面四个条件中,使a b >成立的充分而不必要的条件是( )(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 5.(2012北京).设a ,b ∈R 。
“a=0”是“复数a+bi 是纯虚数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.下列特称命题中,假命题是 ( )A.∃x ∈R ,x 2-2x -3=0 B.至少有一个x ∈Z ,x 能被2和3整除C.存在两个相交平面垂直于同一直线D.∃x ∈{x |x 是无理数},使x 2是有理数7.(2012天津)设R ϕ∈,则 “=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的( )(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件8.已知集合A ={x ∈R|12<2x <8},B ={x ∈R|-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是 ( )A.m ≥2B.m ≤2C.m >2D.-2<m <2二、填空题(每小题5分共30分)9.(2012上海)若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A10.(2012浙江) 设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=11.(2012安徽) 设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=12.(2012湖南) .命题“若α=4π,则tan α=1”的逆否命题是 13.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人.14. 已知{}{}121,01032-≤≤+=≥++-=m x m x B x x x A ,若A B A = ,则实数m 的取值范围是 .三、解答题15(30分)已知函数"24:"12cos 32)4(sin 4)(2πππ≤≤--+=x P x x x f 且给定条件.(Ⅰ)求)(x f 的最大值及最小值;(Ⅱ)若又给条件q :“|f (x )-m|<2”且P 是q 的充分条件,求实数m 的取值范围参考答案15.解:(Ⅰ)∵12cos 322sin 212cos 32)]22cos(1[2)(+-=--+-=x x x x x f π1)32sin(4+-=πx 又∵3232624πππππ≤-≤∴≤≤x x 即 51)32sin(43≤+-≤πx∴y max =5, y min =3 (Ⅱ)∵2)(22|)(|+<<-∴<-m x f m m x f 又∵P 为q 的充分条件∴⎩⎨⎧≥+≤-5232m m解得53≤≤m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2014届一轮复习数学试题选编30:常用逻辑用语(教师版)
填空题
1 .(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)“3x >”是“5x >”
的_____条件(请在“充要、充分不必要、必要不充分、既不充分也不必要”中选择一个合适的填空).
【答案】必要不充分
2 .(江苏省扬州市2013届高三上学期期中调研测试数学试题)已知命题p :|52|3x -<,命题
q :21045
x x <+-,则p 是q 的____条件.( 在“充分不必要”、“必要不充分”、“既不充分又不必要”、“充要”选择并进行填空)
【答案】充分不必要
3 .(江苏省海门市四校2013届高三11月联考数学试卷 )已知下列两个命题: p :x ∀∈+R ,不等式1x a x ≥-恒成立;
q :2log (1)a y x ax =-+(0,1)a a >≠有最小值.
若两个命题中有且只有一个是真命题,则实数a 的取值范围是____________..
【答案】(2,4)
4 .(江苏海门市2013届高三上学期期中考试模拟数学试卷)命题"1),,0(:"x
x x p >+∞∈∃,命题p 的否定为命题q ,则q 的真假性为______.(填真或假).
【答案】假
5 .(江苏省海门市四校2013届高三11月联考数学试卷 )给出定义:若2
121+≤<-m x m (其中m 为整数),则m 叫做离实数x 最近的整数,记作{x },即m x =}{.在此基础上给出下列关于函数}{)(x x x f -=的四个命题:
①函数)(x f y =的定义域是R,值域是⎥⎦
⎤⎢⎣⎡21,0;②函数)(x f y =的图像关于直线)(2
Z k k x ∈=对称;③函数)(x f y =是周期函数,最小正周期是1;④函数)(x f y =在⎥⎦
⎤⎢⎣⎡-21,21上是增函数.则其中真命题是_______________. 【答案】
6 .(2013届江苏省高考压轴卷数学试题)在整数集Z 中,被5除所得余数为k 的所有整数组
成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论: ①2011∈[1]; ②-3 ∈ [3]; ③z=[0]∪[1] ∪[2] ∪[3] ∪[4];
④“整数a,b 属于同一‘类”的充要条件是“a -b∈[0]”
其中,正确结论的个数是________个
【答案】3
7 .(江苏省2013届高三高考模拟卷(二)(数学) )已知2()23f x x x =-+,()1g x kx =-,则
“|k |≤2”是“f (x )≥g (x )在R 上恒成立”的______(填“充分但不必要条件”、“必要但不充分条件”、“充要条件”、“既不充分也不必要条件”中的一个.)
【答案】充分但不必要条件
8 .(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)设a R ∈,s: 数列
{}2
()n a -是递增数列;t:a 1≤,则s 是t 的____________条件 【答案】必要不充分
9 .(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)“M N >”
是“22log log M N >”成立的______条件.(从“充要”,“充分不必要”,“必要不充
分”中选择一个正确的填写)
【答案】必要不充分
10.(南通市2013届高三第一次调研测试数学试卷)已知命题p :“正数a 的平方不等于0”,
命题q :“若a 不是正数,则它的平方等于0”,则p 是q 的________.(从“逆命题、否命题、逆否命题、否定”中选一个填空)
【答案】答案:否命题.
本题考查简易逻辑的知识.应注意四种命题及其关系,注意全称命题与特称性命题的转换.
11.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))命题“∃x∈R,x+l≥0”
的否定为_________________.
【答案】,10x R x ∀∈+<
12.(江苏省无锡市2013届高三上学期期末考试数学试卷)已知P:|x-a|<4;q:(x-2)(3-x)>0,
若⌝p 是⌝q 的充分不必要条件,则a 的取值范围为________________.
【答案】16a -≤≤
13.(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)由命题
“02,2≤++∈∃m x x R x ”是假命题,求得实数m 的取值范围是),(+∞a ,则实数a 的值是_____.
【答案】1
14.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)已知m 为实数,直线
1:30l mx y ++=,2:(32)20l m x my -++=,
则“1m =”是“12//l l ”的__________条件(请在“充要、充分不
必要、必要不充分、既不充分也不必要”中选择一个天空).
【答案】充分不必要
15.(江苏省徐州市2013届高三期中模拟数学试题)设0)1)((:;1|34:|≤---≤-a x a x q x p ,
若p 是q 的充分不必要条件,则实数a 的取值范围是_______________. 【答案】
]21,0[
16.(江苏省苏州市五市三区2013届高三期中考试数学试题 )如果p 和q 是两个命题,若p ⌝是
q ⌝的必要不充分条件,则p 是q 的_____________条件.
【答案】充分不必要.
17.(江苏省泰兴市2013届高三上学期期中调研考试数学试题)已知命题“[1,2]x ∃∈,使x 2
+2x +a ≥0”为真命题,则a 的取值范围是___.
【答案】8a -≥.
18.(江苏省南京市四校2013届高三上学期期中联考数学试题)若命题
“R x ∈∀,02
≥+-a ax x ”为真命题,则实数a 的取值范围是________.
【答案】[0,4];
19.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修物理))设条件:0p a >,条件2
:0q a a +≥,那么p 是q 的________条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中之一).
【答案】充分不必要
20.(江苏省苏南四校2013届高三12月月考试数学试题)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的________条件.(填充分必要条件,充分不必要条件,必要不充分条件,既不充分又不必要条件之一)
【答案】必要不充分条件
解答题
21.(镇江市2013届高三上学期期末考试数学试题)已知:p 128x <<;:q 不等式
240x mx -+≥恒成立,
若p ⌝是q ⌝的必要条件,求实数m 的取值范围.
【答案】解::p 128x <<,即30<<x , p ⌝是q ⌝的必要条件,
∴p 是q 的充分条件, ∴不等式240x mx -+≥对()3,0∈∀x 恒成立,
x
x x x m 442+=+≤∴对()3,0∈∀x 恒成立, 4424x x x x
+≥⋅= ,当且仅当2x =时,等号成立 4≤∴m 【说明】本题考查简易逻辑、命题真假判断、简单指数不等式的解法、函数的最值、基本不等式应用;考查不等式恒成立问题;考查转化思想.
22.(江苏省海门市四校2013届高三11月联考数学试卷 )设p:实数x 满足22
430x ax a -+<,
其中0a >,命题:q 实数x 满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.
(Ⅰ)若1,a =且p q ∧为真,求实数x 的取值范围;
(Ⅱ)若p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.
【答案】解: 由22
430x ax a -+<得(3)()0x a x a --<, 又0a >,所以3a x a <<,
当1a =时,1<3x <,即p 为真时实数x 的取值范围是1<3x <.
由2260280
x x x x ⎧--≤⎪⎨+->⎪⎩,得23x <≤,即q 为真时实数x 的取值范围是23x <≤. 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x << (Ⅱ) p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q
⌝⇒/p ⌝,
设A ={|}x p ⌝,B ={|}x q ⌝,则A B ,
又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={23x x ≤>或}, 则0<2a ≤,且33a >所以实数a 的取值范围是12a <≤。