多目标规划_matlab程序
如何使用Matlab进行最优化和多目标优化问题求解
如何使用Matlab进行最优化和多目标优化问题求解Matlab是一种强大的数学计算工具,广泛应用于各个领域的科学研究和工程实践中。
其中,最优化和多目标优化问题的求解是Matlab的一项重要功能。
本文将介绍如何使用Matlab进行最优化和多目标优化问题的求解,并提供一些实际应用案例。
一、最优化问题求解最优化问题求解是指在给定的约束条件下,寻找一个使得目标函数取得最大(或最小)值的变量组合。
Matlab提供了多种最优化算法,如线性规划、二次规划、非线性规划等。
下面以非线性规划为例,介绍如何使用Matlab进行最优化问题的求解。
1. 准备工作在使用Matlab进行最优化问题求解之前,需要先定义目标函数和约束条件。
目标函数是最优化问题的核心,可以是线性的或非线性的。
约束条件可以是等式约束或不等式约束。
同时,还需要确定变量的取值范围和初值。
2. 选择合适的算法Matlab提供了多个最优化算法,根据问题的特点选择合适的算法是非常重要的。
常用的算法有fmincon、fminunc、fminsearch等。
例如,fmincon函数适用于求解具有约束条件的非线性规划问题,而fminunc函数适用于求解无约束或有约束的非线性规划问题。
3. 调用相应的函数根据选择的算法,调用相应的函数进行求解。
以fmincon函数为例,其调用方式为:```[x, fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)```其中,fun为目标函数,x0为变量的初值,A、b为不等式约束矩阵和向量,Aeq、beq为等式约束矩阵和向量,lb、ub为变量的下界和上界,nonlcon为非线性约束函数,options为求解选项。
4. 解析结果求解完成后,可以通过解析结果来评估求解器的性能。
Matlab提供了fval和exitflag两个输出参数,其中fval表示最优解的目标函数值,exitflag表示求解器的退出标志。
gurobi多目标问题matlab
Gurobi多目标问题在Matlab中的解决一、Gurobi简介Gurobi是一款强大的商业数学建模工具,广泛应用于优化领域。
它提供了多种优化算法,能够高效地解决线性规划、整数规划、二次规划等各种优化问题。
在实际工程和科学研究中,经常遇到多目标优化问题,即需要同时优化多个目标函数。
本文将介绍如何使用Gurobi在Matlab中解决多目标优化问题。
二、多目标优化问题的定义在多目标优化问题中,我们需要最小化或最大化多个目标函数,而且这些目标函数之间往往存在相互矛盾的关系。
在生产计划中,一个目标函数可能是最大化产量,另一个目标函数可能是最小化成本。
在实际应用中,我们需要找到一组可行的解,使得所有目标函数都达到一个较好的平衡。
三、Gurobi在Matlab中的调用在Matlab中调用Gurobi需要先安装Gurobi的Matlab接口。
安装完成后,我们可以在Matlab命令窗口中输入命令"gurobi"来验证是否成功安装。
接下来,我们需要在Matlab中编写代码,定义优化问题的目标函数、约束条件和变量类型。
在定义目标函数时,我们需要考虑多个目标函数之间的相关性,以及它们之间的权重关系。
在定义约束条件和变量类型时,我们需要考虑多目标函数之间可能存在的约束条件和变量之间的相互制约关系。
四、多目标优化问题的解决方法Gurobi提供了多种解决多目标优化问题的方法,包括加权法、约束法和Pareto最优解法等。
在加权法中,我们将多个目标函数进行线性组合,并引入权重因子来平衡各个目标函数之间的重要性。
在约束法中,我们将多个目标函数作为多个约束条件,通过逐步添加约束条件来找到最优解。
在Pareto最优解法中,我们寻找一组可行解,使得没有其他可行解能比它在所有目标函数上都更好。
五、案例分析以生产计划为例,假设我们需要同时考虑最大化产量和最小化成本两个目标。
我们可以先使用加权法,通过调整权重因子来平衡这两个目标的重要性,找到一个较好的解。
使用Matlab进行多目标优化和约束优化
使用Matlab进行多目标优化和约束优化引言:多目标优化和约束优化是现代科学和工程领域中的重要问题。
在很多实际应用中,我们常常面对的是多个目标参数之间存在冲突的情况,同时还需要满足一定的约束条件。
这就需要我们采用适当的方法和工具进行多目标优化和约束优化。
本文将介绍如何使用Matlab进行多目标优化和约束优化。
一、多目标优化多目标优化是指在优化问题中存在多个目标函数,我们的目标是同时优化这些目标函数。
在Matlab中,可以使用多种方法进行多目标优化,其中常用的方法包括遗传算法、粒子群算法和模拟退火等。
1.1 遗传算法遗传算法是一种模拟生物进化过程的优化算法。
它模拟了遗传的过程,通过交叉、变异和选择等操作,利用群体中不断进化的个体来搜索最优解。
在多目标优化中,遗传算法常用于生成一组非支配解,即没有解能同时优于其他解的情况。
Matlab中提供了相关的工具箱,如Global Optimization Toolbox和Multiobjective Optimization Toolbox,可以方便地进行多目标优化。
1.2 粒子群算法粒子群算法是一种基于群体行为的优化算法。
它通过模拟鸟群或鱼群等群体的行为,寻找最优解。
在多目标优化中,粒子群算法也可以生成一组非支配解。
Matlab中的Particle Swarm Optimization Toolbox提供了相关函数和工具,可以实现多目标优化。
1.3 模拟退火模拟退火是一种模拟金属冶炼过程的优化算法。
它通过模拟金属在高温下退火的过程,通过温度控制来逃离局部最优解,最终达到全局最优解。
在多目标优化中,模拟退火算法可以通过调整温度参数来生成一组非支配解。
Matlab中也提供了相关的函数和工具,可以进行多目标优化。
二、约束优化约束优化是指在优化问题中存在一定的约束条件,我们的目标是在满足这些约束条件的前提下,使目标函数达到最优。
在Matlab中,也有多种方法可以进行约束优化,其中常用的方法包括罚函数法、惩罚函数法和内点法等。
matlab多目标规划模型
李小飞
多目标决策的基本概念 多目标决策的数学模型及其非劣解 多目标决策建模的应用实例
用LINGO软件求解目标规划问题
1. 求解方法概述
• LINGO(或LINDO)不能直接求解目标规 划问题,但可以通过逐级求解线性规划的 方法,求得目标规划问题的满意解。
2. 示例
• 例1 用LINGO求解目标规划问题
需要预先确定各个目标的期望值 fi* ,同时给每一个目标 赋予一个优先因子和权系数,假定有K个目标,L个优先级
多目标决策问题有两个共同的特点,即各目 标的不可公度性和相互之间的矛盾性。所谓目标 的不可公度性指各目标之间没有统一的量纲,因 此难以作相互比较。
目标之间的矛盾性是指,如果改进某 一目标的值,可能会使另一个或一些目标 变差。正因为各目标的不可公度性和相互 之间的矛盾性,多目标决策问题不能简单 的作为单目标问题来处理。必须深入研究 其特征,特别是解的性质。单目标决策一 般有最优解,且往往是唯一的,有时可能 存在无限多个解。但是这里的“最优”往 往带有片面性,不能全而准确的反映决策 者的偏好信息。多目标决策问题不存在所 谓的“最优”解,只存在满意解。满意解 指决策者对于有关的所有目标值都认为满 意。
Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;
多目标规划问题的求解不能只追求一个目标的最优化(最大或 最小),而不顾其它目标。 对于上述多目标规划问题,求解就意味着需要做出如下的复合 选择:
每一个目标函数取什么值,原问题可以得到最满意的解决? 每一个决策变量取什么值,原问题可以得到最满意的解决 ?
max(min) fk ( X )
1( X )
g1
s.t.
(
如何在MATLAB中进行多目标优化
如何在MATLAB中进行多目标优化多目标优化问题是指在存在多个冲突目标的情况下,求解一个能够同时最小化或最大化多个目标函数的问题。
在实际应用中,多目标优化问题被广泛应用于工程优化、金融投资、交通规划等领域。
在MATLAB中,有多种方法可以用来解决多目标优化问题,本文将介绍其中的几种常用方法。
一、多目标优化问题的定义在开始使用MATLAB进行多目标优化之前,首先需要明确多目标优化问题的数学定义。
一般而言,多目标优化问题可以表示为:```minimize f(x) = [f1(x), f2(x), ..., fm(x)]subject to g(x) ≤ 0, h(x) = 0lb ≤ x ≤ ub```其中,f(x)为多个目标函数,g(x)和h(x)为约束条件,lb和ub分别为决策变量的下界和上界。
问题的目标是找到一组决策变量x,使得目标函数f(x)取得最小值。
二、多目标优化问题的解法在MATLAB中,有多种方法可以用来解决多目标优化问题。
下面将介绍其中的几种常见方法。
1. 非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm,NSGA)NSGA是一种经典的多目标优化算法,它将候选解集划分为多个等级或层次,从而使得每个解在候选解集内具备非劣势性。
在MATLAB中,可以使用多目标遗传算法工具箱(Multi-Objective Optimization Toolbox)中的`gamultiobj`函数来实现NSGA算法。
该函数可以通过指定目标函数、约束条件和决策变量范围等参数来求解多目标优化问题。
2. 多目标粒子群优化算法(Multi-objective Particle Swarm Optimization,MOPSO)MOPSO是一种基于群体智能的多目标优化算法,它模拟了粒子的行为,通过不断迭代寻找最优解。
在MATLAB中,可以使用多目标粒子群优化工具箱(Multi-Objective Particle Swarm Optimization Toolbox)中的`mopso`函数来实现MOPSO算法。
如何使用Matlab进行多目标优化
如何使用Matlab进行多目标优化使用Matlab进行多目标优化概述:多目标优化是在现实问题中常见的一种优化方法,即需要优化多个目标函数,而非只有一个目标函数。
这篇文章将介绍如何使用Matlab进行多目标优化,包括问题建模、求解方法和实例分析。
1. 问题建模在进行多目标优化之前,需要将实际问题建模为数学模型。
首先,明确问题的决策变量和目标函数。
决策变量是需要优化的参数或变量,而目标函数是需要最小化或最大化的指标。
例如,我们要优化一个生产系统的成本和产量,可以将成本设为一个目标函数,产量设为另一个目标函数。
2. 目标权重设定由于多目标优化存在矛盾或折衷的情况,需要设定目标函数的权重。
权重反映了各个目标函数的重要性,较高的权重意味着对应的目标更重要。
例如,在上述生产系统的例子中,如果成本比产量更重要,可以给成本赋予较高的权重。
3. 多目标优化求解方法Matlab提供了多种多目标优化求解方法,常用的有基于进化算法的优化方法,例如遗传算法、粒子群优化算法等。
这些方法通过不断迭代搜索解空间,逐步找到最优解。
以下是使用Matlab进行多目标优化的一般步骤:a) 定义优化问题的问题函数,包括目标函数和约束条件。
b) 设定优化问题的求解选项,例如优化算法、迭代次数和收敛准则等。
c) 运行优化求解器,获得最优解或近似最优解。
d) 对求解结果进行分析和评价。
4. 多目标优化实例分析为了更好地理解如何使用Matlab进行多目标优化,我们以一个简单的例子进行分析。
假设有一个三维空间内的旅行商问题,即找到一条路径,使得旅行距离最短、花费最少以及时间最短。
我们可以将问题建模为一个三目标优化问题:目标一:最小化旅行距离。
目标二:最小化旅行花费。
目标三:最小化旅行时间。
通过定义目标函数和约束条件,我们可以使用Matlab的多目标优化求解器,如gamultiobj函数,来获得近似最优解。
在求解过程中,可以通过设置收敛准则、种群大小等选项来调节求解参数。
多目标规划matlab程序实现——【2019数学建模+思路】
优化与决策——多目标线性规划的若干解法及MATLAB 实现摘要:求解多目标线性规划的基本思想大都是将多目标问题转化为单目标规划,本文介绍了理想点法、线性加权和法、最大最小法、目标规划法,然后给出多目标线性规划的模糊数学解法,最后举例进行说明,并用Matlab 软件加以实现。
关键词:多目标线性规划 Matlab 模糊数学。
注:本文仅供参考,如有疑问,还望指正。
一.引言多目标线性规划是多目标最优化理论的重要组成部分,由于多个目标之间的矛盾性和不可公度性,要求使所有目标均达到最优解是不可能的,因此多目标规划问题往往只是求其有效解(非劣解)。
目前求解多目标线性规划问题有效解的方法,有理想点法、线性加权和法、最大最小法、目标规划法。
本文也给出多目标线性规划的模糊数学解法。
二.多目标线性规划模型多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函数,其数学模型表示为:11111221221122221122max n n n nr r r rn nz c x c x c x z c x c x c x z c x c x c x =+++⎧⎪=+++⎪⎨ ⎪⎪=+++⎩ (1)约束条件为:1111221121122222112212,,,0n n n n m m mn n mn a x a x a x b a x a x a x b a x a x a x bx x x +++≤⎧⎪+++≤⎪⎪ ⎨⎪+++≤⎪≥⎪⎩ (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。
我们记:()ij m n A a ⨯=,()ij r n C c ⨯=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = ,12(,,,)T r Z Z Z Z = .则上述多目标线性规划可用矩阵形式表示为:max Z Cx =约束条件:0Ax bx ≤⎧⎨≥⎩(3)三.MATLAB 优化工具箱常用函数[3]在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为:①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub)f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下限和上限, fval 求解的x 所对应的值。
matlab-多目标规划模型
§10.2 多目旳规划问题旳求解
1、主要目旳法
在有些多目旳决策问题中,多种目旳旳主要性程度
往往不同。其中一种主要性程度最高和最为关键旳目
旳,称之为主要目旳法。其他旳目旳则称为非主要目
旳。
optF ( X ) ( f1 ( X ), f2 ( X ),...., f p ( X ))T
2. 过程:无妨设其顺序为 f1, f2,, f p
先求解
min ( P1 )s.t.
f1 ( x) xS
再解
min (P2 )s.t.
f2 ( x) x S1
依次进行,直到
得最优值 f1*
得最优值
f
* 2
,记 S1 x f1(x) f1* S
,S2
x
f2(x)
f
* 2
S1
(Pp )ms.ti.n
f p (x) x
则
Sp
x
f p (x)
f
* p
S p1
是在分层序列意义下旳最优解集合。
3.
性质:
Sp
S
* pa
,即在分层序列意义下旳最优解是有
效解。
证明:反证。设
~
xSp
,但
~
x
S
* pa
,则必存在
~
yS
使
~
~
F(y) F(x)
即至少有一种j0 ,使
~
~
f j ( y) f j (x), j 1,, j0 1,
成本型指标
可靠性和敏捷性都属于效益型指标,其打分如下
可靠性 一般 低
高
很高
5
敏捷 高 性
3
多目标非线性规划程序Matlab完整版
多目标非线性规划程序M a t l a bDocument serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】f u n c t i o n[e r r m s g,Z,X,t,c,f a i l]=BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,setts,options1,options2,maxSQPit,varargin );%·Dêy1£Díóa·§¨μü′ú·¨£úDê1ó£DèOptimization toolbox §3% Minimize F(x)%subject to: xlb <= x <=xub% A*x <= B% Aeq*x=Beq% C(x)<=0% Ceq(x)=0%% x(i)éaáD±á£êy£ò1ì¨μ% ê1óê%[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',setts)%fun£o Mt£±íê×Dˉ±êoˉêyf=fun(x)%x0: áDòᣱíê±á3μ%xstat£o áDòá£xstat(i)=0±íêx(i)aáD±á£1±íêêy£2±íê1ì¨μ%xl£o áDòᣱíê±á%xu: áDòᣱíê±áé%A: ó, ±íêD2μèêêμêy%B: áDòá, ±íêD2μèêêé%Aeq: ó, ±íêDμèêêμêy%Beg: áDòá, ±íêD2μèêêóòμ%nonlcon: Mt£±íê·Dêoˉêy[C,Ceq]=nonlin(x),DC(x)a2μèêê,% Ceq(x)aμèêê%setts: ·¨éè%errmsq: ·μ′íóìáê%Z: ·μ±êoˉêy×Dμ%X: ·μ×óa%%àyìa% max x1*x2*x3% -x1+2*x2+2*x3>=0% x1+2*x2+2*x3<=72% 10<=x2<=20% x1-x2=10% èD′ Moˉêy% function f=discfun(x)% f=-x(1)*x(2)*x(3);%óa% clear;x0=[25,15,10]';xstat=[1 1 1]';% xl=[20 10 -10]';xu=[30 20 20]';% A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10;% [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq);% XMAX=X',ZMAX=-Z%% BNB18 Finds the constrained minimum of a function of several possibly integer variables.% Usage: [errmsg,Z,X,t,c,fail] =%BNB18(fun,x0,xstatus,xlb,xub,A,B,Aeq,Beq,nonlcon,settings,options1,options2,maxSQPiter ,P1,P2,...)%% BNB solves problems of the form:% Minimize F(x) subject to: xlb <= x0 <=xub% A*x <= B Aeq*x=Beq% C(x)<=0 Ceq(x)=0% x(i) is continuous for xstatus(i)=0% x(i) integer for xstatus(i)= 1% x(i) fixed for xstatus(i)=2%% BNB uses:% Optimization Toolbox Version (R11) 09-Oct-1998% From this toolbox is called. For more info type help fmincon.%% fun is the function to be minimized and should return a scalar. F(x)=feval(fun,x).% x0 is the starting point for x. x0 should be a column vector.% xstatus is a column vector describing the status of every variable x(i).% xlb and xub are column vectors with lower and upper bounds for x.% A and Aeq are matrices for the linear constrains.% B and Beq are column vectors for the linear constrains.% nonlcon is the function for the nonlinear constrains.% [C(x);Ceq(x)]=feval(nonlcon,x). Both C(x) and Ceq(x) should be column vectors.%% errmsg is a string containing an error message if BNB found an error in the input.% Z is the scalar result of the minimization, X the values of the accompanying variables.% t is the time elapsed while the algorithm BNB has run, c is the number of BNB cycles and% fail is the number of unsolved leaf sub-problems.%% settings is a row vector with settings for BNB:% settings(1) (standard 0) if 1: use phase 1 by relaxation. This sometimes makes the algorithm% faster, because phase 1 means the algorithm first checks if there is a feasible solution% for a sub-problem before trying to find a best solution. If there is no feasible solution BNB% will not try to find a best solution.% settings(2) (standard 0) if 1: if the sub-problem did not converge do not branch. If a sub-% problem did not converge this means BNB did not find a solution for it. Normally BNB will% branch the problem so it can try again to find a solution.% A sub-problem that is a leaf of the branch-and-bound-three can not be branched. If such% a problem does not converge it will be considered unfeasible and the parameter fail will be% raised by one.% settings(3) (standard 0) if 1: if 1 a sub-problem that did not converge but did return a feasible% point will be considered convergent. This might be useful if fmincon is having a hard time with% a certain problem but you do want some results.% options1 and options2 are options structures for phase 1 and phase 2.% For details about the options structure type help optimset.% maxSQPiter is a global variable used by fmincon (if modified as described in .% maxSQPiter is 1000 by default.% P1,P2,... are parameters to be passed to fun and nonlcon.% F(x)=feval(fun,x,P1,P2,...). [C(x);Ceq(x)]=feval(nonlcon,x,P1,P2,...).% Type edit BNB18 for more info.% . Kuipers% e-mail% FI-Lab% Applied Physics% Rijksuniversiteit Groningen% To get rid of bugs and to stop fmincon from hanging make the following chances:%% In optim/private/ ($Revision: $ $Date: 1998/08/24 13:46:15 $):% Get EXITFLAG independent of verbosity.% After the lines: disp(' less than 2* but constraints are not satisfied.')% end% EXITFLAG = -1;% end% end% status=1;% add the line: if (strncmp(howqp, 'i',1) & mg > 0), EXITFLAG = -1; end;%% In optim/private/ ($Revision: $ $Date: 1998/09/01 21:37:56 $):% Stop qpsub from hanging.% After the line: % Andy Grace 7-9-90. Mary Ann Branch 9-30-96.% add the line: global maxSQPiter;% and changed the line: maxSQPiters = Inf;% to the line: if exist('maxSQPiter','var'), maxSQPiters = maxSQPiter; else maxSQPiters=inf; end;% I guess there was a reason to put maxSQPiters at infinity, but this works fine for me.global maxSQPiter;% STEP 0 CHECKING INPUTZ=[]; X=[]; t=0; c=0; fail=0;if nargin<2, errmsg='BNB needs at least 2 input arguments.'; return; end;if isempty(fun), errmsg='No fun found.'; return; end;if isempty(x0), errmsg='No x0 found.'; return;elseif size(x0,2)>1, errmsg='x0 must be a column vector.'; return; end;xstatus=zeros(size(x0));if nargin>2 & ~isempty(xstat)if all(size(xstat)<=size(x0))xstatus(1:size(xstat))=xstat;else errmsg='xstatus must be a column vector the same size as x0.'; return;end;if any(xstatus~=round(xstatus) | xstatus<0 | 2<xstatus)errmsg='xstatus must consist of the integers 0,1 en 2.'; return;end;end;xlb=zeros(size(x0));xlb(find(xstatus==0))=-inf;if nargin>3 & ~isempty(xl)if all(size(xl)<=size(x0))xlb(1:size(xl,1))=xl;else errmsg='xlb must be a column vector the same size as x0.'; return;end;end;if any(x0<xlb)errmsg='x0 must be in the range xlb <= x0.'; return;elseif any(xstatus==1 & (~isfinite(xlb) | xlb~=round(xlb)))errmsg='xlb(i) must be an integer if x(i) is an integer variabele.'; return;end;xlb(find(xstatus==2))=x0(find(xstatus==2));xub=ones(size(x0));xub(find(xstatus==0))=inf;if nargin>4 & ~isempty(xu)if all(size(xu)<=size(x0))xub(1:size(xu,1))=xu;else errmsg='xub must be a column vector the same size as x0.'; return;end;end;if any(x0>xub)errmsg='x0 must be in the range x0 <=xub.'; return;elseif any(xstatus==1 & (~isfinite(xub) | xub~=round(xub)))errmsg='xub(i) must be an integer if x(i) is an integer variabale.'; return;end;xub(find(xstatus==2))=x0(find(xstatus==2));if nargin>5if ~isempty(A) & size(A,2)~=size(x0,1), errmsg='Matrix A not correct.'; return; end; else A=[]; end;if nargin>6if ~isempty(B) & any(size(B)~=[size(A,1) 1]), errmsg='Column vector B not correct.'; return; end;else B=[]; end;if isempty(A) & ~isempty(B), errmsg='A and B should only be nonempty together.'; return; end;if isempty(B) & ~isempty(A), B=zeros(size(A,1),1); end;if nargin>7 & ~isempty(Aeq)if size(Aeq,2)~=size(x0,1), errmsg='Matrix Aeq not correct.'; return; end;else Aeq=[]; end;if nargin>8if ~isempty(Beq) & any(size(Beq)~=[size(Aeq,1) 1]), errmsg='Column vector Beq not correct.'; return; end;else Beq=[]; end;if isempty(Aeq) & ~isempty(Beq), errmsg='Aeq and Beq should only be nonempty together'; return; end;if isempty(Beq) & ~isempty(Aeq), Beq=zeros(size(Aeq,1),1); end;if nargin<10, nonlcon=''; end;settings = [0 0 0];if nargin>10 & ~isempty(setts)if all(size(setts)<=size(settings))settings(setts~=0)=setts(setts~=0);else errmsg='settings should be a row vector of length 3.'; return; end;end;if nargin<12, options1=[]; end;options1=optimset(optimset('fmincon'),options1);if nargin<13, options2=[]; end;options2=optimset(optimset('fmincon'),options2);if nargin<14, maxSQPiter=1000;elseif isnumeric(maxSQPit) & all(size(maxSQPit))==1 & maxSQPit>0 &round(maxSQPit)==maxSQPitmaxSQPiter=maxSQPit;else errmsg='maxSQPiter must be an integer >0'; return; end;eval(['z=',fun,'(x0,varargin{:});'],'errmsg=''fun caused error.''; return;');if ~isempty(nonlcon)eval(['[C, Ceq]=',nonlcon,'(x0,varargin{:});'],'errmsg=''nonlcon caused error.''; return;');if size(C,2)>1 | size(Ceq,2)>1, errmsg='C en Ceq must be column vectors.'; return; end;end;% STEP 1 INITIALISATIONcurrentwarningstate=warning;warning off;tic;lx = size(x0,1);z_incumbent=inf;x_incumbent=inf*ones(size(x0));I = ceil(sum(log2(xub(find(xstatus==1))-xlb(find(xstatus==1))+1))+size(find(xstatus==1),1)+1);stackx0=zeros(lx,I);stackx0(:,1)=x0;stackxlb=zeros(lx,I);stackxlb(:,1)=xlb;stackxub=zeros(lx,I);stackxub(:,1)=xub;stacksize=1;xchoice=zeros(size(x0));if ~isempty(Aeq)j=0;for i=1:size(Aeq,1)if Beq(i)==1 & all(Aeq(i,:)==0 | Aeq(i,:)==1)J=find(Aeq(i,:)==1);if all(xstatus(J)~=0 & xchoice(J)==0 & xlb(J)==0 & xub(J)==1) if all(xstatus(J)~=2) | all(x0(J(find(xstatus(J)==2)))==0)j=j+1;xchoice(J)=j;if sum(x0(J))==0, errmsg='x0 not correct.'; return; end;end;end;end;end;end;errx=optimget(options2,'TolX');errcon=optimget(options2,'TolCon');fail=0;c=0;% STEP 2 TERMINIATIONwhile stacksize>0c=c+1;% STEP 3 LOADING OF CSPx0=stackx0(:,stacksize);xlb=stackxlb(:,stacksize);xub=stackxub(:,stacksize);x0(find(x0<xlb))=xlb(find(x0<xlb));x0(find(x0>xub))=xub(find(x0>xub));stacksize=stacksize-1;% STEP 4 RELAXATION% PHASE 1con=BNBCON(x0,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if abs(con)>errcon & settings(1)~=0[x1 dummyfeasflag]=fmincon('0',x0,A,B,Aeq,Beq,xlb,xub,nonlcon,options1,varargin{:});if settings(3) & feasflag==0con=BNBCON(x1,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if con<errcon, feasflag=1; end;end;else x1=x0; feasflag=1; end;% PHASE 2if feasflag>0[x z convflag]=fmincon(fun,x1,A,B,Aeq,Beq,xlb,xub,nonlcon,options2,varargin{:});if settings(3) & convflag==0con=BNBCON(x,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if con<errcon, convflag=1; end;end;else convflag=feasflag; end;% STEP 5 FATHOMINGK = find(xstatus==1 & xlb~=xub);separation=1;if convflag<0 | (convflag==0 & settings(2))% FC 1separation=0;elseif z>=z_incumbent & convflag>0% FC 2separation=0;elseif all(abs(round(x(K))-x(K))<errx) & convflag>0% FC 3z_incumbent = z;x_incumbent = x;separation = 0;end;% STEP 6 SELECTIONif separation == 1 & ~isempty(K)dzsep=-1;for i=1:size(K,1)dxsepc = abs(round(x(K(i)))-x(K(i)));if dxsepc>=errx | convflag==0xsepc = x; xsepc(K(i))=round(x(K(i)));dzsepc = abs(feval(fun,xsepc,varargin{:})-z);if dzsepc>dzsepdzsep=dzsepc;ixsep=K(i);end;end;end;% STEP 7 SEPARATIONif xchoice(ixsep)==0% XCHOICE==0branch=1;domain=[xlb(ixsep) xub(ixsep)];while branch==1xboundary=(domain(1)+domain(2))/2;if x(ixsep)<xboundarydomainA=[domain(1) floor(xboundary)];domainB=[floor(xboundary+1) domain(2)];elsedomainA=[floor(xboundary+1) domain(2)];domainB=[domain(1) floor(xboundary)];end;stacksize=stacksize+1;stackx0(:,stacksize)=x;stackxlb(:,stacksize)=xlb;stackxlb(ixsep,stacksize)=domainB(1);stackxub(:,stacksize)=xub;stackxub(ixsep,stacksize)=domainB(2);if domainA(1)==domainA(2)stacksize=stacksize+1;stackx0(:,stacksize)=x;stackxlb(:,stacksize)=xlb;stackxlb(ixsep,stacksize)=domainA(1);stackxub(:,stacksize)=xub;stackxub(ixsep,stacksize)=domainA(2);branch=0;elsedomain=domainA;branch=1;end;end;else% XCHOICE~=0L=find(xchoice==xchoice(ixsep));M=intersect(K,L);[dummy,N]=sort(x(M));part1=M(N(1:floor(size(N)/2))); part2=M(N(floor(size(N)/2)+1:size(N))); stacksize=stacksize+1;stackx0(:,stacksize)=x;O = (1-sum(stackx0(part1,stacksize)))/size(part1,1);stackx0(part1,stacksize)=stackx0(part1,stacksize)+O;stackxlb(:,stacksize)=xlb;stackxub(:,stacksize)=xub;stackxub(part2,stacksize)=0;stacksize=stacksize+1;stackx0(:,stacksize)=x;O = (1-sum(stackx0(part2,stacksize)))/size(part2,1);stackx0(part2,stacksize)=stackx0(part2,stacksize)+O;stackxlb(:,stacksize)=xlb;stackxub(:,stacksize)=xub;stackxub(part1,stacksize)=0;if size(part2,1)==1, stackxlb(part2,stacksize)=1; end;end;elseif separation==1 & isempty(K)fail=fail+1;end;end;% STEP 8 OUTPUTt=toc;Z = z_incumbent;X = x_incumbent;errmsg='';eval(['warning ',currentwarningstate]);function CON=BNBCON(x,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin); if isempty(A), CON1=[]; else CON1 = max(A*x-B,0); end;if isempty(Aeq), CON2=[]; else CON2 = abs(Aeq*x-Beq); end; CON3 = max(xlb-x,0);CON4 = max(x-xub,0);if isempty(nonlcon)CON5=[]; CON6=[];else[C Ceq]=feval(nonlcon,x,varargin{:});CON5 = max(C,0);CON6 = abs(Ceq);end;CON = max([CON1; CON2; CON3; CON4; CON5; CON6]);。
多目标优化实例和matlab程序
NSGA-II 算法实例目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。
本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。
一、 数值例子多目标优化问题424221*********422421221211212min (,)10min (,)55..55f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤⎧⎨-≤≤⎩二、 Matlab 文件1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2;y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2);2. 调用gamultiobj 函数,及参数设置:clearclcfitnessfcn=@f; %适应度函数句柄nvars=2; %变量个数lb=[-5,-5]; %下限ub=[5,5]; %上限A=[];b=[]; %线性不等式约束Aeq=[];beq=[]; %线性等式约束options=gaoptimset('paretoFraction',,'populationsize',100,'ge nerations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFc ns',@gaplotpareto);% 最优个体系数paretoFraction 为;种群大小populationsize 为100,最大进化代数generations 为200,% 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端[x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)3. 计算结果-40-35-30-25-20-15-10-5-505101520253035Objective 1O b j e c t i v e 2Pareto front图1. 实例1对应的Pareto 前沿图从图1可以看出Pareto 前分布较均匀,多样性较好。
Matlab中的多目标优化算法实现指南
Matlab中的多目标优化算法实现指南简介:多目标优化是在现实问题中常见的一种情况,例如在工程设计、金融投资和决策支持等领域。
Matlab作为一种强大的数值计算和工程仿真软件,提供了多种多目标优化算法的工具箱,如NSGA-II、MOGA等。
本文将介绍如何使用Matlab实现多目标优化算法,并给出一些应用示例。
一、多目标优化问题多目标优化问题是指在存在多个冲突的目标函数的情况下,找到一组最优解,使得这些目标函数能够达到最优。
在现实问题中,通常会涉及到多个目标,例如在工程设计中同时考虑成本和性能,或者在金融投资中同时考虑风险和收益等。
二、Matlab的多目标优化工具箱Matlab提供了多种多目标优化算法的工具箱,如Global Optimization Toolbox、Optimization Toolbox等。
这些工具箱可以帮助用户快速实现多目标优化算法,并且提供了丰富的优化函数和评价指标。
三、NSGA-II算法实现NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,它通过遗传算法的方式来搜索最优解。
在Matlab中,我们可以使用NSGA-II工具箱来实现该算法。
1. 确定目标函数首先,我们需要确定待优化的问题中具体的目标函数,例如最小化成本和最大化性能等。
在Matlab中,我们可以使用函数句柄来定义这些目标函数。
2. 设定决策变量决策变量是影响目标函数的参数,我们需要确定这些变量的取值范围。
在Matlab中,可以使用函数句柄或者向量来定义这些变量。
3. 设定其他参数除了目标函数和决策变量,NSGA-II算法还需要其他一些参数,例如种群大小、迭代次数等。
在Matlab中,我们可以使用结构体来存储这些参数。
4. 运行算法将目标函数、决策变量和其他参数传递给NSGA-II工具箱,然后运行算法。
Matlab会自动进行优化计算,并给出一组最优解。
Matlab学习系列27.-多目标规划
Matlab学习系列27.-多目标规划27. 多目标规划一、线性规划的局限性1. 线性规划要求所求解问题必须满足全部的约束,而实际问题中并非所有约束都需要严格的满足;2. 线性规划只能处理单目标的优化问题,从而对一些次目标只能转化为约束处理,而实际问题中,目标和约束是可以相互转化的,处理时不一定要严格区分;3. 线性规划在处理问题时,将各个约束(也可看成目标)的地位看成同等重要,实际问题中,各个目标的重要性有层次上的差别,在同一层次也可能有不同权重;4. 线性规划寻找最优解,而许多实际问题只要找到满意解就可以了。
例1 (线性规划——生产安排问题) 某企业生产甲、乙两种产品,需要用到A,B,C三种设备,每天产品盈利与设备使用工时及限制如下表:甲乙设备生产能力/hA/(h/件) 2 2 12B/(h/件) 4 0 16C/(h/件) 0 5 15盈利/(元/件) 200 300问:该企业应如何安排生产,能使总利润最大?解:设甲乙产品的产量分别为x 1, x 2,建立线性规划模型:12121212max 200300 s. t. 2212 416 515 ,0z x x x x x x x x =++≤≤≤≥用Lingo 可求得最优解:x 1=3, x 2=3, z *=1500.但实际上,企业的经营目标不仅仅是利润,还需要考虑多个方面,比如:增加下列因素(目标)(1) 力求使利润不低于1500元;(2) 考虑市场需求,甲乙两种产品的产量比应尽量保持1:2; (3) 设备A 位贵重设备,严格禁止超时使用;(4)设备C 可以适当加班,但要控制,设备B 既要求充分利用,又尽可能不加班,在重要性上,设备B 是设备C 的3倍。
这就需要用目标规划。
二、目标规划的基本概念1. 设置偏差变量偏差变量——表示实际值与目标值之间的差异;d +——表示超出目标的差值,称为正偏差变量;当实际值超过目标值时,有d - = 0,d + > 0;d -——表示未达到目标的差值,称为负偏差变量;当实际值未达到目标值时,有d + = 0,d - > 0.注:若实际值与目标值一致,有d - = d + = 0. 2. 统一处理目标与约束目标规划中,约束有两类,一类是对资源有严格限制的,用严格的等式或不等式约束来处理(同线性规划),例如,例1中设备A 禁止超时使用,则有刚性约束:122212x x +≤另一类约束是可以不严格限制的,连同原线性规划的目标,构成柔性约束,例如,例1中希望利润不低于1500元,则目标可表示为12min{}2003001500d x x d d --+⎧⎨+++=⎩甲乙两种产品产量尽量保持1:2的比例,则目标可表示为12min{} 20d d x x d d +--+⎧+⎨-+-=⎩设备C 可以适当加班,但要控制,则目标可表示为2min{} 515d x d d +-+⎧⎨+-=⎩设备B 要求充分利用,又尽可能不加班,则目标可表示为1min{} 416d d x d d +--+⎧+⎨+-=⎩结论:若希望不等式保持大于等于,则极小化负偏差;若希望不等式保持小于等于,则极小化正偏差;若希望保持等式,则同时极小化正负偏差。
matlab 多目标规划模型PPT课件
X(x1,x2,...x.n), 为决策变量
如对于求极大(max)型,其各种解定义如下: 绝对最优解:若对于任意的X,都有F(X*)≥F(X) 有效解:若不存在X,使得F(X*)≤ F(X)
弱有效解:若不存在X,使得F(X*)<F(X)
2、多目标优选问题的模型结构
可用效用函数来表示。设方案的效用是目标属性
矛盾性、不可公度性。
一般来说,多目标决策问题有两类.一类是多目标规划问题,其对 象是在管理决策过程中求解使多个目标都达到满意结果的最优方案. 另一类是多目标优选问题,其对象是在管理决策过程中根据多个目标 或多个准则衡量和得出各种备选方案的优先等级与排序.
多目标决策由于考虑的目标多,有些目标之间又 彼此有矛盾,这就使多目标问题成为一个复杂而困难 的问题.但由于客观实际的需要,多目标决策问题越来 越受到重视,因而出现了许多解决此决策问题的方法. 一般来说,其基本途径是,把求解多目标问题转化为求 解单目标问题.其主要步骤是,先转化为单目标问题,然 后利用单目标模型的方法,求出单目标模型的最优解, 以此作为多目标问题的解.
对于上述模型的三个目标,工厂 确定利润最大为主要目标。另两 个目标则通过预测预先给定的希
max( f 3 ( X )) 3 x 1 2 x 2
9 x1 4 x 2 240
4 3
x1 x1
5x2 10 x
200 2 300
x 1 , x 2 0
望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
2. 过程:无妨设其次序为 f1, f2,, fp
先求解
min (P1)s.t.
f1(x) xS
matlab多目标拟合
matlab多目标拟合
在MATLAB中进行多目标拟合通常涉及使用最小二乘法或者其他
优化算法来拟合多个目标函数。
这种情况下,你需要考虑以下几个
方面:
1. 数据准备,首先,你需要准备好你的数据。
这包括输入数据
和对应的目标数据。
确保数据格式正确,并且没有缺失值。
2. 目标函数定义,接下来,你需要定义你要拟合的多个目标函数。
这些函数可以是线性的、非线性的,甚至可以是自定义的复杂
函数。
3. 拟合方法选择,MATLAB提供了许多优化工具箱,包括lsqcurvefit、fmincon等,你可以根据你的问题选择合适的优化算
法进行多目标拟合。
4. 初始参数估计,对于多目标拟合,初始参数的选择尤为重要。
一个好的初始参数估计可以大大加快拟合的收敛速度。
5. 拟合结果评估,拟合完成后,你需要对拟合结果进行评估。
这包括拟合误差的计算、拟合参数的置信区间等。
在MATLAB中,你可以使用内置的优化函数来实现多目标拟合。
例如,使用lsqcurvefit函数可以对多个目标函数进行最小二乘拟合。
此外,MATLAB还提供了许多示例和文档,可以帮助你更好地理
解和实现多目标拟合。
总之,进行多目标拟合需要充分考虑数据准备、目标函数定义、拟合方法选择、初始参数估计和拟合结果评估等方面。
在MATLAB中,你可以利用其丰富的工具箱和文档资源来实现多目标拟合,从而解
决各种实际问题。
目标管理-matlab多目标规划 精品
其中: x x1 x2
xn T ;Fx f1 x f2 x
f p x, p 2
令 R x | gi x 0, i 1,2,...,m,则称 R 为问题的可行域,V-min Fx指的是
对向量形式的 p 个目标函数求最小,且目标函数F x和约束函数 gi x 、hi x 可以
是线性函数也可以是非线性函数。
f x
f x
f1 x f2 x
f2 x f1 x
Re* a,b
O
ab
x
a
O a cd
b
bx
多目标规划的解集
❖ 解集之间的关系
(1)
p
若
i1
Ri*
,则 Ra*b
p
i 1
Ri*
(2) Re* Rw*e R
(3) Ri* Rw*e (i 1, 2,..., p)
(4) Ra*b Re*
优解。多目标规划问题的绝对最优解的全体可以记为 Ra*b ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n 1, p 2 时绝对最优解的示意图。
f x
f x
f2 x f1 x
f1 x
f2 x
Ra*b a,b
O
x*
a
x
O
ab
x
b
多目标规划问题的的绝对最优解一般情况下是不存在的。事实上,如果把多目标
x1 x2 x3 40 0.48x1 0.65x2 0.42x3 20 20x1 700 25x2 800 15x3 500 x1, x2 , x3 0
多目标规划问题的数学模型
上述问题可以归结为标准形式:
V- min s.t.
Fx gi x 0 (i 1,2,...,m) hi x 0 (i 1,2,...,l)
多目标规划MATLABwgx
where mycon is a MATLAB function such as
function [c,ceq] = mycon(x) c = ... % compute nonlinear inequalities at x. ceq = ... % compute nonlinear equalities at
v attainfactor = v -0.3863
二、举例---有关循环控制系统优化问题
如果至少保证38.63%的目标精确匹配,设置‘GoalsExactAchieve’参数值为3 voptions = optimset('GoalsExactAchieve',3); v[K,fval,attainfactor] = fgoalattain(... v @(K)eigfun(K,A,B,C),K0,goal,weight,[],[],[],[],lb,ub,[],...options) vAfter about seven iterations, a solution is vK = v -1.5954 1.2040 v -0.4201 -2.9046 vfval = v -5.0000 v -3.0000 v -1.0000 vattainfactor = v 1.0859e-20表明目标已完全匹配
x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
在MATLAB中使用多目标优化进行系统设计
在MATLAB中使用多目标优化进行系统设计介绍MATLAB作为一种广泛应用于工程和科学领域的编程语言和开发环境,具有强大的优化功能。
其中,多目标优化是一种常用的技术,用于解决涉及多个目标函数的系统设计问题。
本文将介绍如何在MATLAB中使用多目标优化进行系统设计的方法和步骤,以及相应的应用案例。
一、多目标优化简介多目标优化是指在一个问题中同时考虑多个目标函数的优化问题。
常见的单目标优化问题只有一个目标函数作为优化目标,而多目标优化问题需要在保证各个目标函数都达到一定程度的优化的情况下找到一个较好的平衡点。
多目标优化问题通常包含多个决策变量和多个约束条件。
在MATLAB中,可以使用多种求解器来求解多目标优化问题,其中最常见的是使用遗传算法和粒子群优化算法。
这些算法可以根据不同问题的特点选择合适的求解器。
二、使用多目标优化进行系统设计的方法在进行系统设计时,通常会涉及到多个目标函数,如性能指标的最大化、功耗的最小化、成本的最小化等。
使用多目标优化可以有效地解决这些问题,并找到一个较好的平衡点。
下面是在MATLAB中使用多目标优化进行系统设计的一般步骤:1. 定义目标函数:根据具体的系统设计问题,首先需要定义目标函数。
各个目标函数应该根据设计需求进行量化,并将其定义为MATLAB中的函数。
这些函数可以包含决策变量作为参数,并返回目标函数的值。
2. 定义决策变量和约束条件:系统设计通常涉及多个决策变量,如参数设置、设计规格等。
这些决策变量应该在优化过程中被调整,以达到最优的效果。
同时,系统设计也可能涉及到约束条件,如硬件性能要求、资源限制等。
这些约束条件也应该在优化过程中得到满足。
3. 选择求解器:根据具体问题的特点,选择合适的求解器来解决多目标优化问题。
在MATLAB中,常见的求解器包括遗传算法、粒子群优化算法等。
这些求解器可以根据具体问题的特点进行调整和优化。
4. 进行优化:根据选择的求解器以及定义的目标函数、决策变量和约束条件,使用MATLAB提供的优化函数进行优化。