平行四边形的判定1
平行四边形五个判定方法
平行四边形五个判定方法
1、通过角度判定:如果四个内角相等就是平行四边形;
2、通过边长判定:如果有两条对角线长度相等,其余边长也都相等,就是平行四边形;
3、通过平分线判定:如果可以在四边形内部划出两条平分线,使得两条平分线交于两个对角线的中点,那么这个四边形就是平行四边形;
4、通过三角形判定:将一个平行四边形分成两个三角形,如果这两个三角形的外角和内角都相等,则说明四边形是平行四边形;
5、通过中心矩判定:如果四边形的中心矩是正方形,则这个四边形就是平行四边形。
判定平行四边形五种方法
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD 中,E 、F 在对角线AC 上,且AE =CF ,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD .解:连接BD 交AC 于点O .因为四边形ABCD 是平行四边形,所以AO =CO ,BO =DO . 又AE =CF ,所以AO -AE =CO -CF ,即EO =FO .所以四边形DEBF 是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF =BC =1,AB =FC =1,所以四边形ABCF 是平行四边形.同样可知四边形FCDE 、四边形ACDF 都是平行四四边形.因为AE =DB =2,AB =DE =1,所以四边形ABDE 也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,DF =BE ,DF ∥BE ,试说明四边形ABCD 是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD 是平行四边形,但仔细观察可知,由已知条件可得△ADF ≌△CBE ,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF ∥BE ,所以∠AFD =∠CEB .因为AE =CF ,所以AE +EF =CF +EF ,即AF =CE .又DF =BE ,所以△ADF ≌△CBE ,所以AD =BC ,∠DAF =∠BCE ,所以AD ∥BC .所以四边形ABCD 是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判图1 图2 A B C D EF 图3别例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=21∠DAB ,∠2=21∠BCD , 所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF .所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
八年级数学平行四边形的判定1
我的依据是:两组对边分别相等的四
形是平行四边形(判定定理2)
证明方法二:
A
D F O E BCBiblioteka 证明:连结AC交BD于O点
∵四边形ABCD是平行四边形, ∴ OA=OC OD=OB 又∵BE=DF ∴ OF=0E ∵OA=OC ∴四边形AECF是平行四边形
回顾
思考
1
平行四边形的性质
• 你还记得我们探索过的平行四边形的性 质及判别条件吗? • 你能利用公理和已有的定理证明它们吗?
心动
不如行动
我思,我进步
1
平行四边形的性质
定理:平行四边形的对边相等.
已知:如图,四边形ABCD是平行四边形. 求证:AB=CD,BC=DA. A 分析:要证明AB=CD,BC=DA可转 1 化全等三角形的对应边来证明, B 于是可作辅助线来达到目的. 证明:连接AC. ∵四边形ABCD是平行四边形, ∴AB∥CD,BC∥DA. 从上面的 ∴∠1=∠2, ∠3=∠4. 证明过程 ∵AC=CA, ,你还能 ∴△ABC≌△CDA(ASA). 得到什么 ∴AB=CD,BC=DA. 结论?
4 2 3 C
D
定理1 一组对边平行且相等的四边形
是平行四边形
两组对边分别相等的四形是平行四边形
1.已知:四边形ABCD中,AB=CD,AD=BC 求证:四边形ABCD是平行四边形 A D C
B
对角线互相平分的四边形是平行四边形
已知:四边形ABCD中,对角线AC、BD 相交于O点,且OA=OC,OB=OD 求证:四边形ABCD是平行四边形
18.1.2平行四边形的判定1
AD ∥ BC
AB ∥ DC∥ EF
DE ∥ CF
如下图,在四边形ABCD中,对角线AC,BD相 交于点O,这个四边形必须具备哪些条件才 能成为一般的平行四边形?(看谁写的多) D A
0 B C
例如:(1)AB∥CD,AD∥BC
(2) (3) (4) (5) (6)
已知:四边形ABCD的 对角线AC、BD 相交于 点O,并且AO = CO , BO =DO 。 B 求证:四边形ABCD是 平行四边形。 A
O
D C
证明:?
数学语言: ∵AO=CO ,BO=DO ∴四边形ABCD是平行四边形
方法 一 两组对边分别平行的四边形是平 行四边形。 定义
方法 二 边
方法 三 角 方法 四 对角线
A D
证明:?
数学语言表示为: ∵AB=CD ,AD=BC ∴四边形ABCD是平行四 边形
B
C
方法 一 两组对边分别平行的四边形是平 行四边形。 定义
方法 二 边
两组对边分别相等的四边形 是平行四边形
探究2
两组对角分别相等的四边形是平行四边形 已知:四边形ABCD,∠A=∠C,∠B=∠D 求证:四边形ABCD是平行四边形
方法 一 两组对边分别平行的四边形是平 行四边形。 定义
方法 二 边
方法 三 角 方法 四 对角线 方法 五
两组对边分别相等的四边形 是平行四边形 两组对角分别相等的四边形 是平行四边形 两条对角线互相平分的四边 形是 平行四边形。 一组对边平行且相等的四边 形是平行四边形
如图,AB =DC=EF, AD=BC,DE=CF, 则图中有哪些互相平行的线段?
18.1.2 平行四边形的判定
平行四边形判定的数学公式
平行四边形判定的数学公式一、平行四边形的性质:1.对角线互相平分:平行四边形的对角线互相平分。
2.对边等长:平行四边形的对边长度相等。
3.各个角度对应相等:平行四边形的对应角相等。
下面我们将介绍一些判定平行四边形的数学公式。
二、判定平行四边形的数学公式:1.利用坐标判定:设平行四边形的四个顶点分别为A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)。
首先判断对边AB是否平行,可以通过计算斜率来判断:如果两条线段AB和CD的斜率相等,则它们是平行的。
斜率的计算公式为:斜率k=(y2-y1)/(x2-x1)计算斜率k1=(y2-y1)/(x2-x1)计算斜率k2=(y4-y3)/(x4-x3)如果k1=k2,则对边AB和CD平行。
同理,可以判断对边BC和AD是否平行,以及对边AC和BD是否平行。
如果对边AB、BC、CD、DA都平行,则四边形ABCD为平行四边形。
2.利用向量判定:设平行四边形的四个顶点分别为A,B,C,D。
定义向量AB、BC、CD、DA,分别为:AB=(x2-x1,y2-y1)BC=(x3-x2,y3-y2)CD=(x4-x3,y4-y3)DA=(x1-x4,y1-y4)如果向量AB与CD平行且向量BC与DA平行,则四边形ABCD为平行四边形。
向量平行的判断公式为:向量a与向量b平行,当且仅当两个向量的比例相等,即:a/b=k(k为常数)对于向量AB与CD,如果(x2-x1)/(x4-x3)=(y2-y1)/(y4-y3),则向量AB与CD平行。
对于向量BC与DA,如果(x3-x2)/(x1-x4)=(y3-y2)/(y1-y4),则向量BC与DA平行。
如果AB与CD平行且BC与DA平行,则四边形ABCD为平行四边形。
3.利用斜率判定:设平行四边形的四个顶点分别为A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)。
先计算斜率k1=(y2-y1)/(x2-x1)再计算斜率k2=(y3-y2)/(x3-x2)再计算斜率k3=(y4-y3)/(x4-x3)再计算斜率k4=(y1-y4)/(x1-x4)如果k1=k3且k2=k4,则四边形ABCD为平行四边形。
平行四边形的判定(一)
A
B
D C
在下面的格点图中,以格点为顶点你能画出 多少个平行四边形?
在▱ABCD中,已知M和N分别是AB、DC上的
中点,试说明四边形
BMDN也是平行四边形。
B
A
M C N
D
解:∵四边形ABCD是平行四边形
∴AB∥CD 且 AB=CD
∵ M和N分别是AB、DC上的中点
∴ BM∥DN 且 BM=DN ∴四边形BMDN也是平行四边形
1
两组对边分别相等的四边形是平行四边形
A
D
B
C
想一想:一组对边平行且相等的四边形是平行四边形吗?
平行四边形的识别方法三
一组对边平行且相等的四边形是平行四边形
A B ABCD C
D
∥ ∵AD = BC
∴四边形ABCD是 平行四边形
Байду номын сангаас
例一,在▱ABCD中,已知点F和点E分 别在AD和BC上,且AF=CE,连结CF 和AE,说明四边形AFCE是平行四边形。
平行四边形的判定(一)
平行四边形的定义
有两组对边分别平行的四边形是平行四边形
A B D A 如果 AB∥CD B AD∥BC ABCD D C
C 四边形ABCD
是中心对称图形
对边分别平行 对边分别相等 对角相等 对角线互相平分
平行四边形的识别方法一(定义法)
有两组对边分别平行的四边形是平行四边形
要说明四边形AFCE是平行四边形 A F C
D
两组对边分别平行 两组对边分别相等 有一组对边平行且相等
B
E
1、在四边形ABCD中如果AB∥DC,可
AD∥BC 或 AB=DC 可使四 添加条件__________________
19.1.2平行四边形的判定(1)
平行四边形的判别方法
(1)根据定义:两组对边分别平行的四 边形叫做平行四边形. (2)两条对角线互相平分的四边形是平 行四边形. (3)一组对边平行且相等的四边形是平 行四边形.
如图AC∥ED,点B 在AC上且 AB=ED=BC .找出 图中的平行四边形.
E
D
A
B
C
一组对边平行且相等的四边 形是平行四边形.
小明的爸爸在钉制平行四边形框架时采用了
下面两种方法.
方法一:将两根木条AC,BD的中点重叠,
并用钉子固定,则四边形ABCD就是平行四
边形.
两条对角线互相平分的四边形是平行四边 形.
方法二:将两根同样长的木条AB,CD
平行放置,再用木条AD,BC加固,得 到的四边形ABCD 就是平行四边形.
一组对边平行且相等的四边形是平 行四边形.
判 文字语言 定 定 两组对边分别平行的 义 四边形是平行四边形
图形语言 符号语言 D C ∵AB∥CD,AD∥
BC A B ∴…是平行四边形 定 两组对边分别相等的 D C ∵AB=CD,AD= BC ∴…是平行 理 四边形是平等四边形 1 四边形 A B C ∵OA=OC,OB= 定 对角线互相平分的四 D 理 边形是平行四边形 OD ∴…是平行 O 2 A B 四边形 C ∵∠A=∠C,∠B= 推 两组对角分别相等的 D 论 四边形是平行四边形 ∠0—92习题19.1 4、5、 9. 2. 继续预习“平行四边形的判 定”一节
19.1.2 平行四边形的判定(1)
复习回顾
边
平行四边形的对边平行 平行四边形的对边相等
平行四边形的性质: 角
平行四边形的对角相等 平行四边形的邻角互补
对角线 平行四边形的对角线
平行四边形判定1
1.两组对边分别相等的四边形是 平行四边形
已知:四边形ABCD, AB=CD, AD=BC 求证:四边形ABCD是平行四边形 证明:
连结AC, ∵ AB=CD,AD=BC (已知) 又∵ AC=AC (公共边) ∴△ABC≌△CDA(SSS)
B A
D
1 4 3 2
C
∴∠1=∠2,∠3=∠4(全等三角形的对应边相等)
判定一个四边形是平行四边形需要几个条件?
你能从四边形的边、角、对角线的位置关系和数 量关系出发,还找出其它的平行四边形的判定方 法吗?
一组对边平行且相等的四边形 是平行四边形.
1、请你识别下列四边形哪些是平行四边形?
A O B
⑴
D
5㎝
A
120°
60° D 5㎝
C
A D
110° 110°
B A
4.8㎝
∴ AB∥CD,AD∥BC (内错角相等,两直线平行)
∴四边形ABCD是平行四边形
平行四边形判定定理1:
两组对边分别相等的四边形 是平行四边形
平行四边形性质定理1:
平行四边形的两组对边相等;
平行四边形判定定理1:
两组对边分别相等的四边形 是平行四边形
平行四边形的判定: 定义:有两组对边平行的四边形是平行四 边形. 平行四边形的性质: 定义:平行四边形的两组对边分别平行.
实是八十几座小型の传送塔,还有壹些古井,这里应该就是风家の壹些上古传送阵了.壹般来说,每壹个圣地,或者是大家族,都会有壹些这样の上古传送阵.至于这些上古传送阵是哪里来の,很大壹部分,都是出自陈三六の先祖之手,也就是炼金术士们留下の.这些传送阵也是各大势力の资 源,随时可以传送到别の地方去,也是壹种能力,是大势力の实力配备.根汉他们三人来到了这外面,白狼马和陈
平行四边形9个判定
平行四边形9个判定平行四边形是初中数学中常见的图形之一,平行四边形的判定方法也是比较经典的问题。
本文将围绕“平行四边形9个判定”进行讲解。
一、平行四边形的定义平行四边形是有四边的四边形,其中相邻两边两两平行。
二、平行四边形的基本性质1. 对角线互相平分2. 对角线相交于中心点3. 相邻角互补,即相邻两角和为180度4. 对角线长度相等5. 对边平等6. 具有对称性三、平行四边形的判定平行四边形的判定方法有很多,根据实际条件选择不同的判定方法即可。
下面列举9种平行四边形的判定方法。
1. 对边平等:如果一个四边形的对边平等,那么它就是平行四边形。
2. 对角线互相平分:如果一个四边形的对角线互相平分,那么它就是平行四边形。
3. 对角线互相垂直:如果一个四边形的对角线互相垂直,那么它就是平行四边形。
4. 一组对边平行:如果一个四边形的一组对边平行,那么它就是平行四边形。
5. 同位角相等:如果两个平行线之间的同位角相等,那么它们所对应的四边形是平行四边形。
6. 利用夹角的性质:如果一个四边形的内部相邻两角是补角,则它是平行四边形。
7. 直角定理:如果一个四边形有两个相对的直角,则它是平行四边形。
8. 垂直平分线的性质:如果一个四边形有一个内部点与相邻两边垂直平分线相交,则它是平行四边形。
9. 等角平分线的性质:如果一个四边形有一个内部点与相邻两边等角平分线相交,则它是平行四边形。
四、总结平行四边形是初中数学中比较基础的图形,学好平行四边形的属性和判定方法,有利于以后的学习。
通过以上的九种判定方法,学生们可以灵活运用,来解决实际的问题。
建议同学们在学习过程中注重实际运用,并多做习题来加深理解,从而真正理解和掌握平行四边形的知识。
平行四边形的判定(1)课件
O
D A
C∵∠A=∠C,
∠B=∠D
(1)判断下列四边形是否是平行四边形?并说明理 由.
A
⑴ 110° 110° C
D 定义 两组对边分别平行的四边形是平行四边形
B 70°
请你谈一谈
学习了本节课你有哪 些收获?
判 定
文字语言
图形语言 D
符号语言
定 两组对边分别平行的 义 四边形是平行四边形
C ∵AB∥CD,
AD∥BC B ∴…是平行四边形 C ∵AB=CD, AD= BC B ∴…是平行四边形 C ∵OA=OC, OB=OD B ∴…是平行四边形
A 定 两组对边分别相等的 D
由上面的证明你得到了 什么结论? 平行四边形判定定理: B 两组对边分别相等的四边形是平行四边形
几何语言:∵AB=CD,AD=BC
∴四边形ABCD是平行四边形
你也试一试
如图,将两根细木条AC、BD的中 心重叠,用小钉绞合在一起,用橡皮筋连 接木条的顶点,做成一个四边形ABCD, 转动两根木条,它一直是一个平行四边形 吗?你能证明吗?你又能得到什么结论?
大显身手
例1:已知:E、F是平行四边形ABCD对角线 AC上的两点,并且AE=CF. 求证:四边形BFDE是平行四边形
A
E O F
D
证明:连接BD,交AC于点O. ∵四边形ABCD是平行四边形 ∴ AO=CO,BO=DO
B
14
C
∵AE=CF
∴AO-AE=CO-CF 即EO=FO
又∵ BO=DO ∴ 四边形BFDE是平行四边形
§6.2平行四边形的判定(1)
几何语言: ∵AB=CD,AD=BC ∴四边形ABCD是平行四边形
‹# ›
平行四边形判定定理2 一组对边平行且相等的四边形是平行四边形。 已知:如图,在四边形ABCD中,AB∥CD,且AB=CD 求证:四边形ABCD是平行四边形。 证明:连结AC. ∵AB∥CD ∵∠1=∠2 ∵AB=CD,AC=CA, ∴△ABC≌△CDA(SAS) 几何语言: ∵ AB∥CD,且AB=CD ∴AD=CB ∴四边形ABCD是平行四边形 ∴AB=CD ∴四边形ABCD是平行四边形(根判断正误 1.一组对边相等的四边形是平行四边形 × 2.一组对边平行且另一组对边相等的四边形是平行四边形 × 3. 一组对边平行且相等的四边形是平行四边形 √
‹# ›
判定平行四边形的五种方法
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F 在对角线AC上,且AE=CF,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,图1AB C DEF并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判图3别平行四边形所需的“一组对边平行且相等”的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别例 4 如图4,在平行四边形ABCD中,∠DAB、∠BCD的平分线分别交BC、AD边于点E、F,则四边形AECF是平行四边形吗?为什么?分析:由平行四边形的性质易得AF∥EC,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF是平行四边形.AB CDEF图41 32理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB=∠BCD ,所以AF ∥EC.又因为∠1=21∠DAB ,∠2=21∠BCD ,所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3, 所以∠1=∠3,所以AE ∥CF.所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
人教版数学八年级下册《 平行四边形的判定一》ppt课件
课堂检测
能力提升题
如图,五边形ABCDE是正五边形,连接BD , CE,交于点P.
D
110°
70° B
110°C
A
是
B 120°
C 60°
D
不是
能判定四边形ABCD是平行四边形的条件: ∠A:∠B:∠C:∠D的值为 ( )D
A. 1:2:3:4
B. 1:4:2:3
C. 1:2:2:1
D. 3:2:3:2
探究新知
知识点 3 平行四边形的判定定理3
如图,将两根木条AC,BD的中点重叠,用小钉绞合在一
人教版 数学 八年级 下册
18.1 平行四边形 18.1.2 平行四边形的判定
(第1课时)
导入新知
一天,八年级的李明同学在生物实验室做实验时,不小心碰碎 了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示 部分,他想去割一块赔给学校,带上玻璃剩下部分去玻璃店不安 全,于是他想把原来的平行四边形重新在纸上画出来,然后带 上图纸去就行了,可原来的平行四边形怎么画出来呢?
E
OF
B
C
∴ A∵BO=DO,
∴四边形BFDE是平行四边形.
巩固练习
根据下列条件,不能判定四边形为平行四边形的是( C )
A.两组对边分别相等 B.两条对角线互相平分
C.两条对角线相等
D.两组对边分别平行
如图,在四边形ABCD中,AC与BD交于点O.
平行四边形的判定(1)
D
B
E
C
4.如图, ABCD中 分别是对边BC BC和 4.如图,在□ABCD中,E、F分别是对边BC和 如图 AD上的两点 上的两点, AF=CE,连结AE AE、 AD上的两点,且AF=CE,连结AE、CF 求证:AC、EF互相平分 求证:AC、EF互相平分 F A
D
B
E
C
5.如图,AB=DE,AF=CD,EF=BC, 5.如图,AB=DE,AF=CD,EF=BC,∠A=∠D, 如图 试说明: 试说明:BF∥CE
∵AD∥CB, ∴∠3=∠4, ∵AD=CB, ∵AD=CB,AC=CA,
B
A 1 4
D
3 2 C
ADC≌△ ∴△ADC≌△CBA ∴∠1=∠2 ,∴AB∥CD, ∴ 四边形ABCD为平行四边形. ABCD为平行四边形 ∴四边形ABCD为平行四边形.
一组对边平行且相等的四边形是平行四边形. 一组对边平行且相等的四边形是平行四边形. 平行且相等的四边形是平行四边形
A H E G F B C D
5.已知:AD为 ABC的角平分线,DE∥AB, AB上 5.已知:AD为△ABC的角平分线,DE∥AB,在AB上 已知 的角平分线 截取BF AE, BF= 截取BF=AE, A 求证:EF= 求证:EF=BD 12 F 3 B D C E
6.如图, 6.如图,D、E、G分别是△ABC三边上的点,DG与 如图 分别是△ABC三边上的点,DG与 三边上的点 AC平行 平行, =CE,延长EG EG至 使得EF=2EG EF=2EG, AC平行,且DG =CE,延长EG至F点,使得EF=2EG, 连接CF 试说明CF DG互相平分 CF, CF与 互相平分。 连接CF,试说明CF与DG互相平分。
平行四边形的判定
平行四边形的判定
根据平行四边形的定义来判断:两组对边分别平行的四边形是平行四边形。
简单记就是:两组对边分别平行。
平行四边形的判定方法
1、两组对边分别平行的四边形是平行四边形(定义判定法);
2、一组对边平行且相等的四边形是平行四边形;
3、两组对边分别相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);
5、对角线互相平分的四边形是平行四边形。
补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
平行四边形性质
有两组对边分别平行的四边形叫做平行四边形,包括长方形、菱形、正方形和一般平行四边形,其边与边、角与角、对角线之间存在着各种各样的关系,即是平行四边形性质定理。
两组对边平行且相等;
两组对角大小相等;
相邻的两个角互补;
对角线互相平分;
对于平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;
四边边长的平方和等于两条对角线的平方和。
平行四边形的判定1
C
15
作业: 作业:
P90 习题4 习题
、
5
A
是平行四边形ABCD对 例1:已知:E、F是平行四边形 :已知: 、 是平行四边形 对 角线AC上的两点 上的两点, 角线 上的两点,并且 BE∥DF 求证:四边形 求证:四边形BFDE是平行四边形 是平行四边形
D
E
O
F
B
C
大 显 身 手
A
是平行四边形ABCD对 例1:已知:E、F是平行四边形 :已知: 、 是平行四边形 对 角线AC上的两点 上的两点, 角线 上的两点,并且 BE⊥AC于E,DF⊥AC于F 求证:四边形BFDE是平行四边形 求证:四边形 是平行四边形
D
O B C
边
两组对边分别平行 两组对边分别相等 ??? 的四边形是 平行四边形
角
对角线
两组对角分别相等 对角线互相平分
大 显 身 手
A
是平行四边形ABCD对 例1:已知:E、F是平行四边形 :已知: 、 是平行四边形 对 角线AC上的两点 并且AE=CF。 上的两点, 角线 上的两点,并且 。 求证:四边形 求证:四边形BFDE是平行四边形 是平行四边形
证明:作对角线 , 于点O。 证明:作对角线BD,交AC于点 。 于点 ∵四边形ABCD是平行四边形 四边形 是平行四边形 ∴ AO=CO,BO=DO , ∵AE=CF
D
E O F
B
C
∴AO-AE=CO-CF ∴EO=FO 又 BO=DO 四边形BFDE是平行四边形 ∴ 四边形 是平行四边形
大 显 身 手
已知:在平行四边形 已知 在平行四边形ABCD中,对角线 在平行四边形 中 对角线 AC 、BD相交于点,M 、 N 、 P、 相交于点, 相交于点 、 Q分别是 分别是OA 、OB 、OC 、 OD 分别是 的中点 四边形MNPQ是平行四边形 求证 四边形 是平行四边形 A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容19.1.2(一)平行四边形的判定
教学目标知识与技能
使学生掌握用平行四边形的定义判定一个四边形是否是平行四边形。
过程与方法
理解并掌握用两组对边分别相等的四边形是平行四边形这个判定方法来判定一个四边形
是平行四边形。
情感、态度与价值观
培养用类比、逆向联想及运动的思维方法来研究问题.
重点平行四边形的判定方法及应用.
难点平行四边形的判定定理与性质定理的灵活应用.
教材分析平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行
四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续
与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.
教学方法自主、合作、探究
课时安排 1
学情分析
教学过程
展示目标自主学习
师生活动设计意图一、课堂引入
通过前面的学习,我们知道平行四边形的对边相等,对角相等,
对角线互相平分,反过来对边相等,对角相等,对角巷互相平分的四
边形是平行四边形吗?也就是说平行四边形的性质定理的逆定理成
立吗?
1.经历平行四边形判定定理的猜想与证明过程,体会类比思想
及探究图形判定的一般思路;
2.掌握平行四边形的三个判定定理,能根据不同条件灵活
选取适当的判定定理进行推理
从探究中得到:
平行四边形判定方法1 两组对边分别相等的四边形是平行四边
形。
平行四边形判定方法2 两组对角分别相等的四边形是平行四边形
平行四边形判定方法2 对角线互相平分的四边形是平行四边
形。
小组合作达标测验二、例习题分析
例1(教材P46例3)已知:如图ABCD
的对角线AC、BD交于点O,E、F是AC上的两
点,并且AE=CF.
求证:四边形BFDE是平行四边形.
分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)
问;你还有其它的证明方法吗?比较一下,哪种
证明方法简单.
在上题中,若点E,F 分别在AC 两侧的延长线上,
如图,其他条件不变,结论还成立吗?请证明你的结论
例1如图,AB=DC=EF,AD=BC,
DE=CF.求证:
AB∥EF.
三、随堂练习
1.如图,在四边形ABCD中,AC、BD相交于点O,
(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD 为平行四边形;
(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD 为平行四边形.
2.已知:如图,ABCD中,点E、F分别在CD、
AB上,DF∥BE,EF交BD于点O.求证:EO=OF.
四、课后练习(见课本)
作业练习册上的相关习题
小组评价与总结平行四边形的判定定理: (1)两组对边分别相等的四边形是平行四边形; (2)两组对角分别相等的四边形是平行四边形; (3)对角线互相平分的四边形是平行四边形
教学反思。