隧道结构计算模型
隧道设计衬砌计算范例(结构力学方法)
1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。
二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。
1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。
隧道中部地势较高。
隧址区地形地貌与地层岩性及构造条件密切相关。
由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。
隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。
主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。
1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。
由于山系屏障,二郎山东西两侧气候有显著差异。
东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。
全年分早季和雨季。
夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。
第6章隧道结构计算
α— 轴向力偏心影响系数。 1 1.5 e0 h
抗拉控制检算
大偏心判断准则:
e0 0.2h
此时承载能力由抗拉强度控制:
KN 1.75Rlbh
6e0 1 h
式中: Rl — 混凝土的抗拉极限强度,
其它符号意义同前。
6.5 衬砌截面强度验算
6.4 隧道洞门计算
1.洞门墙墙身抗压承载能力计算(承载能力极限状态)
2.洞门墙墙身抗裂承载能力计算(正常使用极限状态)
6.4 隧道洞门计算
3.洞门墙地基承载能力计算
4.抗倾覆计算 5.抗滑动计算
6.5 衬砌截面强度验算
6.5.1 检算内容
(1)安全系数检算 (2)偏心检算
6.5.2 适用范围
铁路隧道拼装式衬砌、复合式衬砌 双线隧道整体式衬砌 公路隧道衬砌结构
6.5.3 安全系数检算
(1) 允许安全系数 混凝土和石砌结构的强度安全系数
圬工种类及 荷载组合
破坏原因
混凝土
主 附主 要 加要 荷 荷、 载载
石砌体 主 附主 要 加要 荷 荷、 载载钢筋ຫໍສະໝຸດ 凝土主附主要
加要
荷
荷、
载
载
(钢筋)混凝土或石砌
设围岩垂直压力大于 侧向压力, 则存在拱顶 脱离区,两侧 抗力区。
6.2 结构力学方法
6.2.3 隧道衬砌荷载分类
(1) 主动荷载 主要荷载:围岩压力、支护结构自重、回填土荷载、地下 静水压力及车辆活载等。 附加荷载:冻胀压力、地震力等。 (2) 被动荷载 被动荷载是指围岩的弹性抗力,计算有共同变形理论和局 部变形理论。
直刚法计算流程
隧道结构计算
一.基本资料惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。
围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。
考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。
求二衬内力,作出内力图,偏心距分布图。
1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。
2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。
二.荷载确定1.围岩竖向均布压力:q=0.6×0.45⨯12-S γω式中: S —围岩级别,此处S=5;γ--围岩重度,此处γ=19.2KN/3m ;ω--跨度影响系数,ω=1+i(m l -5),毛洞跨度m l =13.14+2⨯0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1⨯(13.26-5)=1.826。
所以,有:q=0.6×0.451-52⨯⨯19.2⨯1.826=151.456(kPa )此处超挖回填层重忽略不计。
2.围岩水平均布压力:e=0.4q=0.4⨯151.456=60.582(kPa ) 三.衬砌几何要素 5.3.1 衬砌几何尺寸内轮廓线半径126.12m , 8.62m r r ==内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=︒=︒; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d =此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。
外轮廓线半径:110 6.57m R r d =+= 2209.07m R r d =+=拱轴线半径:'1200.5 6.345m r r d =+= '2200.58.845m r r d =+=拱轴线各段圆弧中心角:1290,8.996942θθ=︒=︒5.3.2 半拱轴线长度S 及分段轴长S ∆分段轴线长度:'11190π 3.14 6.3459.9667027m 180180S r θ︒==⨯⨯=︒︒'2228.996942π 3.148.845 1.3888973m 180180S r θ︒==⨯⨯=︒︒半拱线长度:1211.3556000m S S S =+=将半拱轴线等分为8段,每段轴长为:11.3556 1.4194500m 88S S ∆===5.3.3 各分块接缝(截面)中心几何要素(1)与竖直轴夹角i α11'1180 1.4194518012.8177296π 6.345πS r αθ∆︒︒=∆=⨯=⨯=︒ 21112.817729612.817729625.6354592ααθ=+∆=︒+︒=︒ 32125.635459212.817729638.4531888ααθ=+∆=︒+︒=︒43138.453188812.817729651.2709184ααθ=+∆=︒+︒=︒54151.270918412.817729664.0886480ααθ=+∆=︒+︒=︒ 65164.088648012.817729676.9063776ααθ=+∆=︒+︒=︒ 76176.906377612.817729689.7241072ααθ=+∆=︒+︒=︒2'2180 1.419451809.2748552π8.845πS r θ∆︒︒∆=⨯=⨯=︒ 87289.72410729.194855298.996942ααθ=+∆=︒+︒=︒另一方面,8129012.817729698.996942αθθ=+=︒+︒=︒ 角度闭合差Δ≈0。
隧道工程第5章-隧道支护结构计算课件.ppt
e
ue
a
e
(4
3
)
a
e
e
(14
15
)
e
2 2
4
14
3
1
4
2
10
当基础无扩展时,墙顶位移为:
0 cp
uc0p
M
0 cp
1
M c0pu1
H
0
cp
2
H c0pu2
eeuee00
墙顶截面的弯矩Mc、水平力Hc、转角c、水平位移uc为:
Mc Hc
c
M
0 cp
X1
X2
另一种是开挖后,洞室围岩产生塑性区,此时洞室都要 采用承载的支护结构,支护结构对洞室围岩应力状态和位移 状态产生影响。
根据弹性力学和岩体力学可得,隧道壁的径向位移与支护阻 力之间的关系式:
u
பைடு நூலகம்
|r r0
r0 2G
(Hc
sin
C
cos)[(1
sin )
Hc C cot pa C cot
1sin
心某一距离的各点,其应力值是相同的,因此围岩中的塑性 区必然是个圆形区域。令这个圆形塑性区的半径为R0,那么
在塑性区与弹性区的交界面上(即在r=R0处),塑性区的应力 p与弹性区的应力 e一定保持平衡,同时,交界面上的应力
既要满足弹性条件,又要满足塑性条件,可得到在r=R0处:
围岩弹塑性区
p r
p
替,便可得到变位积分的近似计算公式:
ik
S E
ip
S E
MiMk
M
I iM
p
I
11
S E
第五章-隧道结构设计
5.6 隧道洞门计算
5.6.2 计算部位(检算条带)的选取及计算要点
1.柱式、端墙式洞门
取Ⅰ、Ⅱ作为“检 算条带”。检算墙身截 面偏心、强度,以及基 底偏心、应力及沿基底 的滑动和绕墙趾倾覆稳 定性
2.有挡、翼墙的洞门
◆ 检算翼墙时取洞门端墙墙趾前之翼墙宽1m的条带“Ⅰ”, 按挡土墙检算偏心、强度及稳定性; ◆ 检算端墙时取最不利部分“Ⅱ”作为“检算条带”,检算 其截面偏心和强度; ◆ 检算端墙与翼墙共同作用部分“Ⅲ”的滑动稳定性。
共同变形理论:把围岩视为弹性半无限体,考虑相邻质点之 间的相互影响。其所需围岩物理力学参数较多,而且计算颇 为繁杂,因而我国很少采用。
假设:地基为一均质、连 续、弹性的半无限体。 优点: ①反映了地基的连续整体 性; ②从几何上、物理上对地 基进行了简化,因而可以 把弹性力学中有关半无限 弹性体的经典问答已知结 论作为计算的基础。
§ 地层结构法
将地层与结构视为一整体来进行分析,考虑地 层-结构的共同作用。 求解方法:
解析法 数值法
31
3.计算模型详细比较
结构力学模型
岩体力学模型
认识
力学 原载-结构”力学体 建立的是“围岩-支护”力学体系,
系,以最不利荷载组合 以实际的应力-应变状态作为支护
基底偏心距 e 滑动稳定系数 K0 倾覆稳定系数 K0
≤容许应力
≤0.3倍截面厚度
图3.2 弹性地基梁的受力和变形
✓缺点:
没有反映地基的变形连续性,当 地基表面在某一点承受压力时,实 际上不仅在该点局部产生沉陷,而 且也在邻近区域产生沉陷。由于没 有考虑地基的连续性,故温克尔假 设不能全面地反映地基梁的实际情 况,特别对于密实厚土层地基和整 体岩石地基,将会引起较大的误差。 但是,如果地基的上部为较薄的 土层,下部为坚硬岩石,则地基情 况与图中的弹簧模型比较相近,这 时将得出比较满意的结果。
隧道结构计算的结构力学法
9.隧道衬砌结结构计算的矩阵位移法计算步骤:(1)计算衬砌单元刚度位移矩阵(2)计算链杆刚度 (3)计算墙底支座的刚度矩阵(4)集成总体刚度矩阵,并计算各元素值(5)消去已知位移(6)计算节点位 移(7)计算单元节点力。
7.外荷载产生的位移μhp和直墙拱的结构计算:(1)由弹性地基梁公式,计算系数μ1,β1,μ2, β2(墙顶位移)(2)由主动荷载及单位弹性抗力所产生的h点位移计算单位弹性抗力所产生的位移μhσ(3) 由μhp和μhσ求得弹性抗力σh(4)根据任一截面i处的内力表达式得拱的截面内力(5)求出直梁的内力(6) 校核。
10.拱形直墙计算模型:拱圈是一个拱脚弹性固定的无铰拱,拱圈弹性抗力假定为二次抛物线分 布,边墙视为弹性地基梁,全部抗力由文壳勒假设确定。
11.弹性地基梁分类:对于弹性地基梁按其相对长度al不同,可分为以下三种情况:当 1≤al≤2.75,认为是短梁,即梁的一端受力和变形会影响到另一端。当al≥2.75,认为是长梁,即 梁的一端受力和变形不会影响到另一端。当al≤1,认为是绝对刚性梁,即整个梁只产生平动和 转动。
14.矩阵力法和位移法的区别:力法:柔度方程:力;位移法:刚度方程:位移。计算衬砌 结构的单元有三种:一是模拟衬砌结构偏心受压的衬砌单元;二是模拟围岩约束衬砌自由变形 的链杆单元;三是模拟墙底地层约束墙脚变形的弹性支座单元。
元计算科技发展有限公司是一家既年青又悠久的科技型企业。年青是因为她正处在战略重组 后的初创期,悠久是因为她秉承了中国科学院数学研究所在有限元和数值计算方面所开创的光荣 传统。元计算的目标是做强中国人自己的计算技术,做出中国人自己的CAE软件。
隧道结构力学计算
第一章绪论1. 隧道:构筑在离地面一定深度的岩层或土层中用作通到底建筑物2. 隧道分类:按周围介质分:岩石隧道和土层隧道;按用途不同分:交通隧道和市政工程隧道3. 公路隧道:穿越公路路线障碍物的交通隧道4. 公路隧道的主要特点:(1)断面形状复杂:宽而扁,高:宽<=1.; 常有特殊构造:岔洞,紧急停车带回车区,以及双连拱隧道,小间距隧道,双层隧道;(2) 荷载形式单一:主要是围岩压力,方向不会改变;(3)附属设施多:通风,照明,交通信号,消防,监控设施5. 断面几何形状:考虑功能和经济的两方面:马蹄形,圆形(盾构开挖),拱形(山岭隧道),双连拱(浅埋土层,地形受限),矩形(沉管法,城市隧道)6.. 衬砌的结构类型分为四类:整体式砼衬砌;装配式衬砌;锚喷支护衬砌;复合式衬砌7.. 整体式砼衬砌又可分为:半衬砌;厚拱薄墙衬砌;直墙拱形衬砌;曲墙拱形衬砌(1)半衬砌:适用于岩石较坚硬并且整体稳定或基本稳定的围岩; 对于侧压力很大的较软岩层或土层,为避免直墙承受较大压力,采用落地拱(2)厚拱薄衬砌:适用于水平压力很小的情况,拱脚较厚,边墙较薄(3) 直墙拱形衬砌:铁路隧道常用,竖向压力较大,水平侧压力不大(4)曲墙拱形衬砌:地质条件差,岩石破碎松散和易于坍塌地段8. 装配式衬砌:用于盾构法施工,深埋法施工,TBM 法施工9. 锚喷支护衬砌:喷混凝土和加锚杆两方法的统称。
常用方法:喷混凝土,钢筋网喷混凝土,锚杆喷混凝土,钢筋网锚杆混凝土,钢纤维喷混凝土;特点:有很强时效性,新奥法和挪威法10. 复合式衬砌:主要应用于含水量较多的地段,外层为锚喷支护,中间有一层防水层,内层多为整体式衬砌,新奥法多采用11. 初始地应力场由两种力系组成:自重应力分量;构造应力分量影响因素:一类是和地壳的运动,地下水的变化以及人类活动等因素有关12. 构造应力场:区域性明显,测试方法:解析反演法,原位测试法(1)地质的构造过程不公改变了地质的重力应力场,而且还有一总分残余在岩体内(2) 构造应力场在一定深度内普遍存在且多为水平分量(3)构造应力具有明显的区域性和时间性13. 作用在隧道结构上的荷载分为三类:主要荷载(就是长期作用的荷载,包括地层压力,围岩弹性抗力,结构自重力,回填岩土重力,地下静水压力及使用荷载); 附加荷载(指非经常作用的荷载,包括施工荷载,灌浆压力,局部落石以及有温度变化或砼收缩引起的温度应力和收缩用力) ;特殊荷载(一些偶然发生的荷载,如炮弹冲击力和爆炸时产生激波压力,地震力,车祸时冲撞力)14. 形变压力: 由岩体变形所产生的挤压力;15. 松散压力: 岩体坠落、滑移、坍塌所产生的重力16. 围岩压力:形变压力和松散压力统称为围岩压力17. 影响围岩压力的因素:a岩土的重力b岩体的结构c.地下水的分布d.隧道洞室的形状和尺寸e. 初始地应力18•确定围岩压力的方法:a•现场量测b•理论估算c工程类比法19•常用的围岩分类方法:a岩石坚固系数分类法b•太沙基理论c•铁路围岩分类法d•人工岩石洞室围岩分类法e.水工隧道围岩分类法20. 隧道结构计算的任务:就是采用数学力学的方法,计算分析在隧道修筑的整个过程中 (包括竣工,运营)a.隧道围岩及衬砌的强度 b.刚度和稳定性,为隧道的设计及施工提供具体设计参数21. 隧道的计算方法可分为三大部分: a.刚体力学法b.结构力学法(荷载位移法)c.连续介质力学法(地层结构法)22. 附:19 世纪后期,砼材料与钢材料的出现,地下结构的建造于计算进入地下连续拱形框架结构阶段,而计算的理论基础为线弹性结构力学;地下连续拱形框架结构式一种超静定弹性结构系统,荷载为地层压力,优点:以结构力学原理为计算理论基础缺点:没有考虑地层对衬砌结构变形所产生的弹性抵抗力23. 如果人工考虑隧道衬砌和地层的相互作用,地下结构的计算方法仅分为结构力学方法和连续介质力学方法24. 造成隧道结构计算结果不能直接应用的主要原因:(1) 围岩的物理力学参数无法准确确定(2)隧道的荷载量级很大,无法准确给出(3) 围岩自承能力除受围岩自身条件影响外,还受施工方法、时间、支护形式、洞室几何尺寸等的影响( 4)围岩本构关系复杂和屈服性准则不完善性,使围岩自承能力无法发挥第二章隧道结构计算的结构力学法1. 在分析过程中首先要确定地层压力,然后计算衬砌在地层压力和其他荷载作用下的内力分布,最后根据内力分布对衬砌结构断面进行验算2. 荷载结构法和计算地表结构所采用的结构力学方法基本相同,主要差别是衬砌结构在变形过程中要受到周围介质的限制,分为力法与位移法3. 拱形半衬砌隧道的结构计算: ( 1)半衬砌结构可简化为弹性固定平面无铰拱(计算模型) (2)拱顶截面建立位移协调方程,由拱顶截面的位移协调方程得拱脚处的位移和转角( 3) 将拱脚位移和转角方程代入拱顶截面位移协调方程,得关于未知力X1 ,X2 的线性代数方程组,可得拱顶截面未知力( 4)各截面强度校核4. 拱形曲墙隧道的结构计算: (1)假定弹性抗力为镰刀形分布,拱形曲墙式衬砌的计算模型为墙角弹性固定而两侧受周围约束的无铰拱( 2)通过h点的变形协调条件计算弹性抗力bh(3)计算主动荷载作用下衬砌的内力(4) b h=1时衬砌的内力⑸求出最大抗力值b h(6)用叠加的方法求出衬砌内任一点的内力5. 拱形曲墙隧道的结构计算模型:竖向荷载所引起的侧墙部分的变形,将受到侧面围岩的约束,形成一个抗力区,这里假定弹性抗力为镰刀形,其量值用 3 个特征值控制:抗力上零点对一般与对称中线夹角为40°-60°;抗力下零点在拱脚处;最大抗力点h 在衬砌最大跨度处,一般在抗力区2/3 处6. 拱形直墙隧道的局部变形法:在分析拱形直墙式隧道结构时,需将拱圈与直墙分开考虑,拱圈是一个拱脚弹性固定的无铰拱,弹性抗力假定为二次抛物线分布,边墙视为弹性地基梁,全部抗力有文克勒假设确定,墙顶和拱脚弹性固结,墙脚与基岩间有较大的摩擦力,无水平位移发生,他在基岩的作用视为刚性体7•外荷载产生的位移卩hp和直墙拱的结构计算:(1)由弹性地基梁公式,计算系数卩1, 3 1,卩2, 3 2(墙顶位移)(2)由主动荷载及单位弹性抗力所产生的h点位移计算单位弹性抗力所产生的位移h b (3)由口hp和口h b求得弹性抗力b h (4)根据任一截面i处的内力表达式得拱的截面内力( 5)求出直梁的内力( 6)校核8•隧道衬砌结构计算的矩阵力法计算步骤:(1)计算[F0](2)计算[丫SX]并将其转化为[丫SX]'⑶计算[丫SP]并将其转化为[丫SP]' (4)计算[Fxx],[Fxp](5)计算赘余力{x} (6)计算衬砌单元节点{s} ( 7)计算衬砌节点位移{ S }9•隧道衬砌结结构计算的矩阵位移法计算步骤:(1)计算衬砌单元刚度位移矩阵( 2)计算链杆刚度( 3)计算墙底支座的刚度矩阵( 4)集成总体刚度矩阵,并计算各元素值( 5)消去已知位移( 6)计算节点位移( 7)计算单元节点力10•拱形直墙计算模型:拱圈是一个拱脚弹性固定的无铰拱,拱圈弹性抗力假定为二次抛物线分布,边墙视为弹性地基梁,全部抗力由文壳勒假设确定。
隧道工程第6章 隧道结构计算
8
9
6.3 半衬砌的计算
拱圈直接支承在坑道围岩侧壁上时,称为半衬砌, 如图6.3所示。常适合于坚硬和较完整的围岩(Ⅱ、Ⅲ 级)中,或用先拱后墙法施工时,在拱圈已作好,但马 口尚未开挖前,拱圈也处于半衬砌工作状态。 6.3.1 计算图式、基本结构及正则方程 道路隧道中的拱圈,一般矢跨比不大,在垂直荷载 作用下拱圈向坑道内变形,为自由变形,不产生弹性抗 力。由于支承拱圈的围岩是弹性的,即拱圈支座是弹性 的,在拱脚反力的作用下围岩表面将发生弹性变形,使 拱脚产生角位移和线位移。
24
6.4 曲墙式衬砌计算
在衬砌承受较大的垂直方向和水平方向的围岩压力 时,常常采用曲墙式衬砌形式。它由拱圈、曲边墙和底 板组成,有向上的底部压力时设仰拱。曲墙式衬砌常用 于Ⅳ耀Ⅵ级围岩中,拱圈和曲边墙作为一个整体按无铰 拱计算,施工时仰拱是在无铰拱业已受力之后修建的, 因此,一般不考虑仰拱对衬砌内力的影响。 6.4.1 计算图式在主动荷载作用下,顶部衬砌向隧 道内变形而形成脱离区,两侧衬砌向围岩方向变形,引 起围岩对衬砌的被动弹性抗力,形成抗力区,如图6.11 所示。抗力图形分布规律按结构变形特征作以下假定:
3
③作用与反作用模型,即荷载—结构模型。例如, 弹性地基圆环计算和弹性地基框架计算等计算法; ④连续介质模型,包括解析法和数值法。数值计算 法目前主要是有限单元法。从各国的地下结构设计实践 看,目前在设计隧道的结构体系时,主要采用两类计算 模型:一类是以支护结构作为承载主体,围岩作为荷载 同时考虑其对支护结构的变形约束作用的模型;另一类 则相反,视围岩为承载主体,支护结构则为约束围岩变 形的模型。
18
19
视为自由变形得到的计算结果。 由于没有考虑弹性抗力,所以弯矩是比较大的,因此截 面也较厚。如果围岩较坚硬,或者拱的形状较尖,则可 能有弹性抗力。衬砌背后的密实回填是提供弹性抗力的 必要条件,但是拱部的回填相当困难,不容易做到密实。 仅在起拱线以上1耀1.5m 范围内的超挖部分,由于是用 与拱圈同级的混凝土回填的,可以做到密实以外,其余 部分的回填则比较松散,不能有效地提供弹性抗力。拱 脚处无径向位移,故弹性抗力为零,最大值在上述的1 耀1.5m 处,中间的分布规律较复杂,为简化计算可以 假定为按直线分布。考虑弹性抗力的拱圈计算,可参考 曲墙式衬砌进行。
一个隧道计算书
一、 结构尺寸隧道内径:5400;隧道外径:6000;管片厚度:300mm 管片宽度:1500mm 二、 计算原则选择区间隧道地质条件较差、隧道埋深较大、地面有特殊活载(地面建筑物 桩基、铁路线等)等不同地段进行结构计算。
三、 计算模型计算模型采用修正惯用设计法。
考虑管片接头影响,进行刚度折减后按均质圆 环进行计算;水平地层抗力按三角形抗力考虑;计算结果考虑管片环间错缝拼装 效应的影响进行内力调整。
弯曲刚度有效率 n =0.8,弯矩增大系数E =0.3。
计算 简图如下图所示。
使用ANSYS?序软件进行结构计算。
四、 计算荷载荷载分为永久荷载、活载、附加荷载和特殊荷载等四种。
1) 永久荷载:管片自重、水土压力、上部建筑物基础产生的荷载。
考虑地层特征 采取水土合算或水土分算。
2) 活载:地面超载一般按20KN/m 计;有列车通过地段按40KN/m 计。
3) 附加荷载:施工荷载一一盾构千斤顶推力,不均匀注浆压力,相邻隧道施工影 响等。
4) 特殊荷载:地震力一一按抗震基本烈度为7度计算,人防荷载按六级人防计算, 按动载化为静载计算。
五、 内力计算1、一般地段:地质条件较差、埋深较大地段(地面超载 20KN/m ):里程YCK5+990地面超载压力基底竖向反力修正惯用设计法计算模型计算模型节点划分选取地质钻孔为MEZ2-A073隧道埋深约33.9m,地下水位在地面下5.0m。
地层由上至下分别为<1>-7.3m; <5-1>-39.2m ; <5-2>-20m。
隧道所穿过地层为<5-2>。
隧道横断面与地层关系如下图所示:<!> [<5- 1 >O<5 —2>隧道横断面与地层关系2、列车通过地段:地面超载 40KN/m,里程YCK6+050选取地质钻孔为 MEZ2-A166隧道埋深约35.5m,地下水位在地面下12.5m。
5.6隧道结构体系的计算模型与方法
隧道开挖在力学上可以认为是一个应力释放和回弹变形问题。 当隧道开挖后,围岩中的部分初始地应力得到释放,产生了向隧 道内的回弹变形,并使围岩中的应力状态发生重分布:隧道周边 成为自由表面,应力为零。为了模拟开挖效应,求得开挖隧道后 围岩中的应力状态,可以将开挖释放掉的应力作为等效荷载加在 开挖后坑道的周边上。 (4)支护结构强度校核
2
23
王丽琴主讲
二、岩体力学方法
在隧道结构体系中,一方面围岩本身由于支护结构提供了 一定的支护抗力,而引起它的应力调整,从而达到新的稳定; 另一方面由于支护结构阻止围岩变形,也必然要受到围岩给予 的反作用力而发生变形。这种反作用力和围岩的松动压力极不 相同,它是支护结构和围岩共同变形过程中对支护施加的压力, 故可称为“形变压力”。
冻胀力及地震力等。
11
王丽琴主讲
(三) 作用(荷载)组成
被动荷载
弹性抗力——支护结构发生向围岩方向的变形而引起的围 岩的被动抵抗力。
12
王丽琴主讲
弹性抗力的大小,目前常用以“温克尔(Winkler)假定” 为基础的局部变形理论来确定。 它认为 围岩的弹性抗力是与围岩在该点的变形成正比的 , 用公式表示为:
其中:φ b 、 φ i 、 φ 分别为i、b、h点所在截面与垂直对称轴的夹角;
h
yi΄ yh΄
i点所在截面与衬砌外轮廓线的交点至最大抗力点h的垂直距离;
墙底外缘至最大抗力点h的垂直距离。
19
王丽琴主讲
(2)局部变形地基梁法
q e
局部变形地基梁法由纳 乌莫夫首创,一般用于计算 直墙拱形初砌的内力。 该法计算拱形直墙衬砌
④ 凭借现场试验和监测手段,划定围岩级别,获得力学参数, 指导施工; ⑤ 对不同的地质条件,力学特征的围岩,灵活采用不同支护 方式和相应的力学计算模型。
隧道结构体系的计算模型与方法
隧道结构体系的计算模型与方法王丽琴主讲第五章隧道结构体系设计原理与方法第一节概述第二节围岩的二次应力场和位移场第三节隧道围岩与支护结构的共同作用第四节支护结构的设计原则第五节围岩压力第六节隧道结构体系的计算模型第七节隧道结构体系设计计算方法王丽琴主讲第六节隧道结构体系的计算模型一、计算模型的建立原则二、常用的计算模型王丽琴主讲一、计算模型的建立原则地下结构的力学模型必须符合下列条件:与实际工作状态一致能反映围岩的实际状态以及与支护结构的接触状态荷载假定应与在修建隧道过中(各作业阶段)中荷载发生的情况一致算出的应力状态要与经过长时间使用的结构所发生的应力变化和破坏现象一致材料性质和数学表达要等价。
王丽琴主讲目前,地下结构设计方法可以归纳为以下四种设计模型:①工程类比模型:参照过去隧道工程实践经验进行设计②监控量测模型:以现场量测和实验室试验为主的实用设计方法例如通过洞周位移和衬砌应力的量测不断优化支护参数③荷载结构模型:即作用与反作用模型例如假定弹性抗力法、弹性地基梁法和弹性链杆法④地层结构模型:即连续介质模型包括解析法、数值法、特征曲线法和剪切滑移破坏法。
数值计算法目前主要是有限单元法。
王丽琴主讲第一类模型:以支护结构作为承载主体围岩作为荷载主要来源同时考虑其对支护结构的变形起约束作用传统结构力学模型第二类模型:与上述模型相反是以围岩为承载主体支护结构则约束和限制围岩向隧道内变形。
现代岩体力学模型二、常用的计算模型从各国的地下结构设计实践看目前在设计隧道的结构体系时主要采用两类计算模型:王丽琴主讲第七节隧道结构体系设计计算方法一、结构力学方法二、岩体力学方法三、以围岩分级为基础的经验设计方法四、监控设计方法(信息化设计和施工)王丽琴主讲这一类计算模型主要适用于围岩因过分变形而发生松弛和崩塌支护结构主动承担围岩“松动”压力的情况。
属于这一类模型的计算方法有:弹性连续框架(含拱形)法假定抗力法和弹性地基梁(含曲梁和圆环)法等。
隧道ansys计算程序算例——荷载结构模式
选取新建铁路宜昌(宜)-万州(万)铁路线上的别岩槽隧道某断面,该断面设计单位采用的支护结构如图3-3所示。
为保证结构的安全性,采用了荷载—结构模型,利用ANSYS 对其进行计算分析。
主要参数如下:●隧道腰部和顶部衬砌厚度是65cm,隧道仰拱衬砌厚度为85cm。
●采用C30钢筋混凝土为衬砌材料。
●隧道围岩是Ⅳ级,洞跨是5.36米,深埋隧道。
●隧道仰拱下承受水压,水压0.2MPa。
Array图3-3 隧道支护结构断面图隧道围岩级别是Ⅳ级,其物理力学指标及衬砌材料C30钢筋混凝土的物理力学指标见表3-3所示。
根据《铁路隧道设计规范》,可计算出深埋隧道围岩的垂直匀布力和水平匀布力。
对于竖向和水平的分布荷载,其等效节点力分别近似的取节点两相临单元水平或垂直投影长度的一般衬砌计算宽度这一面积范围内的分布荷载的总和。
自重荷载通过ANSYS程序直接添加密度施加。
隧道仰拱部受到的水压0.2MPa按照径向方向载置换为等效节点力,分解为水平竖直方向加载。
3.3.3 GUI操作方法3.3.3.1 创建物理环境1) 在【开始】菜单中依次选取【所有程序】/【ANSYS10.0】/【ANSYS Product Launcher】,得到“10.0ANSYS Product Launcher”对话框。
2)选中【File Management】,在“Working Directory”栏输入工作目录“D:\ansys\example301”,在“Job Name”栏输入文件名“Support”。
3)单击“RUN”按钮,进入ANSYS10.0的GUI操作界面。
4)过滤图形界面:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。
5)定义工作标题:Utility Menu> File> Change Title,在弹出的对话框中输入“Tunnel Support Structural Analysis”,单击“OK”,如图3-4所示。
隧道结构体系的计算模型与方法
离散元法
01
离散元法是一种基于离散化思想的数值计算方法,通过将隧道结构离散化为一 系列相互独立的离散单元,利用单元之间的相互作用关系建立模型,实现隧道 结构的数值分析。
02
离散元法适用于处理不连续或破碎的隧道结构,能够模拟岩土工程中的块体运 动和失稳过程。
03
离散元法的计算精度和效率取决于离散单元的选择和划分,以及求解算法的稳 定性和收敛性。
隧道结构体系的智能化监测与加固技术
智能化监测技术
利用传感器、无线通信和数据处理技术,对隧道结构进行 实时监测和数据采集,实现隧道结构的智能化监测和管理。
健康监测与评估
通过智能化监测技术,对隧道结构的健康状况进行实时监 测和评估,及时发现潜在的安全隐患和损伤,为隧道的维 护和加固提供科学依据。
加固技术
蚁群算法
蚁群算法是一种模拟蚂蚁觅食行为的 优化算法,通过模拟蚂蚁的信息素传 递过程来寻找最优解。在隧道结构体 系的优化设计中,蚁群算法可以用于 解决路径优化问题,如隧道出入口连 接路线的选择、内部通道布局等。
VS
蚁群算法具有分布式计算、信息共享 和鲁棒性强等优点,适用于处理离散 空间的优化问题。通过合理设置信息 素挥发速度、蚂蚁数量和迭代次数等 参数,蚁群算法能够在较短时间内找 到满足工程要求的最优解。
详细描述
弹性力学模型将隧道结构视为连续的弹性体,采用弹性力学的基本方程进行计 算,包括平衡方程、应变-位移关系、应力-应变关系等。该模型适用于隧道结 构的静力分析和稳定性分析。
有限元模型
总结词
将隧道结构离散化为有限个小的单元,通过单元的力学特性进行整体分析。
详细描述
有限元模型将隧道结构离散化为有限个小的单元,每个单元具有特定的力学特性,通过建立单元之间的相互关系, 进行整体的结构分析。该模型能够处理复杂的边界条件和材料非线性问题,适用于各种类型的隧道结构分析。
隧道支护结构计算-计算模型及方法
5.1.1 隧道结构计算的发展历史
2. 1900—1960年代
其后,不同学者和工程师们在设计隧道衬砌时采 用不同的假定来计及围岩对衬砌变形所产生的抗力, 其中温克尔(winker)局部变形理论得到了广泛应用。
与此同时,将村砌和围岩视作连续介质模型进行 分析的方法也得到了发展,其中的代表学者是H.卡 斯特勒(1960)。
5.1.2 隧道工程的力学特点
1.荷载的模糊性 隧道工程是在自然状态下的岩土地质中开挖的,隧
道周边围岩的地质环境对隧道支护结构的计算起着决定 性的作用。地面结构的荷载比较明确,而且荷载的量级 不大;而隧道结构的荷载取决于当地的地应力,但是地 应力难以进行准确测试,这就使得隧道工程的计算精度 受到影响。
8
5.1.1 隧道结构计算的发展历史
2. 1900—1960年代
1950年代以来,喷射混凝土和锚杆被广泛用作初期支护。 人们逐渐认识到,这种支护能在保证围岩稳定的同时允许 其有一定程度的变形,使围岩内部应力得到调整从而发挥 其自持作用,因此可以将内层衬砌的厚度减小很多。
3. 20世纪60年代以来
1960年代中期,随着数字电子计算机的更新和岩土本构 定律研究的进展,隧道工程分析方法进入了以有限元法为 代表的数值分析时期。这方面的代表性学者是:0.C.辛克 维奇等(1968)
12
5.1.2 隧道工程的力学特点
3.围岩—支护结构承载体系 ◆围岩不仅是荷载,同时又是承载体 ◆地层压力由围岩和支护结构共同承受 ◆充分发挥围岩自身承载力的重要性 4.设计参数受施工方法和施作时机的影响很大
隧道工程支护结构安全与否,既要考虑到支护结 构能否承载,又要考虑围岩是否失稳。
5.隧道与地面结构受力的不同点 存在围岩抗力的作用
隧道支护结构计算计算模型及方法
隧道支护结构计算计算模型及方法隧道工程中,隧道支护结构的设计是一个至关重要的环节。
为了保证施工安全和隧道工程的长期稳定运行,需要使用科学的计算模型和方法对隧道支护结构进行设计和分析。
本文就隧道支护结构的计算计算模型及方法进行探讨。
一、计算模型的选择在隧道支护结构设计中,常用的计算模型有数值模型和解析模型两种。
数值模型是利用数值计算方法对隧道支护结构进行力学计算和分析,是一种较为常见和精确的计算方法。
数值模型可以根据隧道的具体条件和支护结构的特点,选取适当的有限元模型或离散元模型进行计算。
该模型考虑了材料的非线性和复杂的力学特性,可以较为真实地模拟隧道的受力情况。
解析模型是利用解析方法对隧道支护结构进行力学计算和分析,是一种简化和推导的计算方法。
解析模型常用的方法有弹性理论、弹塑性理论和弹性刚度法等。
解析模型适用于支护结构形状规则和材料较为简单的情况,计算速度快、结果相对准确。
根据具体情况,可以综合考虑数值模型和解析模型的特点,选择合适的计算模型进行隧道支护结构的设计和分析。
二、计算方法的应用1.强度计算方法隧道支护结构在受到地压和地震力等外载荷作用下,需要具备足够的强度来保证工程的稳定安全。
强度计算方法是根据支护材料的承载能力和结构的变形特点,对支护结构的强度进行计算和分析。
常用的强度计算方法有等效应力法、荷载传递法和有限元法等。
2.变形计算方法隧道支护结构在受到外力作用时会产生一定的变形,为了掌握支护结构的变形特点和变形范围,需要进行相应的变形计算和分析。
变形计算方法可以通过数值模型或解析模型进行,主要考虑隧道支护结构的刚度、材料的变形特性和支护结构与周围土层的相互作用。
3.稳定性计算方法稳定性是指隧道支护结构在受到外力作用时不发生破坏或失稳的能力。
稳定性计算方法是通过对支护结构的受力特点和受力平衡条件进行计算和分析,判断支护结构的稳定性。
常用的稳定性计算方法有平衡条件法、位移平衡法和有限元分析法等。
盾构隧道结构计算模型简述
盾构隧道结构计算模型简述发布时间:2021-06-24T08:22:11.008Z 来源:《防护工程》2021年6期作者:武鹏[导读] 传统的隧道于地下工程结构计算方式主要有荷载-结构模型,地层结构模型。
近些年来,随着大量盾构隧道工程的出现,对于隧道结构的计算提出了新的要求。
虽然各种计算模型已经百花齐放,但各计算模型的优缺点,适用条件,在实际工程设计中仍然存在一定的混淆,本文从荷载计算、结构模拟的角度分析不同计算模型的特点、分类、适用条件,指出了其在实际工程设计中的适用性。
武鹏中国公路工程咨询集团有限公司北京市 100089摘要:传统的隧道于地下工程结构计算方式主要有荷载-结构模型,地层结构模型。
近些年来,随着大量盾构隧道工程的出现,对于隧道结构的计算提出了新的要求。
虽然各种计算模型已经百花齐放,但各计算模型的优缺点,适用条件,在实际工程设计中仍然存在一定的混淆,本文从荷载计算、结构模拟的角度分析不同计算模型的特点、分类、适用条件,指出了其在实际工程设计中的适用性。
1、盾构隧道荷载的计算理论地下工程结构的荷载计算,目前主要分为两类:荷载-结构模型和地层-结构模型。
1.1 荷载-结构模型荷载-结构模型默认围岩是一种松散体,是荷载的来源,而结构的作用只是被动承受荷载的荷载—结构模型;而地层-结构模型则认为围岩虽然是荷载的来源,但本身具有一定的承载能力,而结构的作用是对围岩的保护与补强,两者协同作用,共同承担荷载。
荷载-结构模型的前提是围岩因为工程的开挖而发生了较大的松弛或者崩塌,其已失去了承载能力,简言之,围岩是一种松散体,为支护结构“松动”压力的来源。
隧道结构设计的关键,即为确定围岩作用在支撑结构的主动荷载,长久以来,各国工程师,科研人员根据埋深不同,提出了太沙基理论、普氏理论等计算主动荷载,这些理论具有取值简单,适用性强的特点,在工程领域取得了广泛的应用。
确定了荷载后,即可运用结构力学、弹性力学等知识求解超静定结构的内力与变形,并由此确定安全系数。
(完整word版)Udec计算算例
1.3 UDEC算例1。
3.1工程概况某隧道位于一包含高角度连续节理岩体内,节理倾角为50度,平均间距为7m,隧道为一半径为9m的圆形隧道。
贯穿于开挖面内的一垂直断层,在隧道拱顶形成了一个三角楔形体。
本算例使用UDEC的结构单元逻辑来模拟喷射混凝土和锚杆联合支护的圆形隧道开挖问题。
1.3.2构建模型隧道埋深451m,为半径9m圆形隧道,本次计算模型左右边界取41m,隧道至上下边界也取41m。
总的来说,模型长100m,宽100m。
计算模型如图1-1所示。
图1-1 UDEC计算模型1。
3.3计算参数在包含高倾角节理和垂直断层的岩体内进行圆形开挖的UDEC模型岩体、节理和断层参数如下所示:表1-1 完整岩石物理力学参数密度Dens (kg/m3)体积模量K(Gpa)剪切模量G(Gpa)2500 1.50.6表1-2 节理、断层物理力学参数法向刚度KN (Gpa/m)切向刚度KS(Gpa/m)抗拉强度jten粘聚力c(Pa)摩擦角φ(º)表1-3 喷射混凝土物理力学参数表1—4 岩体和喷射混凝土接触面物理力学参数表1-5 锚杆物理力学参数作为演示的目的,隧道开挖和支护是瞬时发生的。
本算例共两种支护分析被计算:第一,只施加喷射混凝土衬砌;第二,喷射混凝土和锚杆联合提供支护。
为了在第二种支护情况分析中可以更清晰的看到锚杆提供的支护,算例采用喷射混凝土的抗压强度被设置成一个很低的值,且厚度仅取为10cm。
1.3.4模拟步骤1.建立模型在UDEC中输入以下命令可建立隧道结构模型及边界。
如图1—2所示。
newround 0。
1block —50,-50 —50,50 50,50 50,—50jset —50,0 100,0 0,0 7,;刷新UDEC窗口,重新调用一个新程序;块与块之间的圆角半径,必须小于块体最小边的1/2;建立模型框架;设置节理crack -6 —50 -6 50 tunnel (0,0) 9,16 del range area 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈隧道结构计算模型
摘要:隧道结构有别于其他地面结构,它的受力相对比较复杂。
本文阐述了隧道围岩的变形理论,并对地下结构的设计方法进行了归纳和总结。
关键词:隧道结构;局部变形理论;共同变形理论;设计模型
中图分类号:文献标志码:文章编号:
0引言
隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构
体系。
隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。
显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。
1围岩的认识与发展
隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。
从现有资料看,最初的计算理论形成于十九世纪。
其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。
最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。
由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。
因为构件的刚度很大,故将其视为刚性体。
计算时按静力学原理确定其承载时压力线位置,检算结构强度。
在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。
这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。
由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。
大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。
进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。
围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。
衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图1所示。
在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性抗力”。
抗力区的范围和弹性抗力的大小,因围岩性质、围岩压力大小和结构变形的不同而不同。
但是对这个问题有不同的见解,即局部变形理论和共同变形理论[1]。
局部变形理论是以温克尔(e.winkler)假定为基础的。
它认为应力()和变形()之间呈直线关系,即,为围岩弹性抗力系数,见图2(a)。
这一假定,相当于认为围岩是一组各自独立的弹簧,每个弹簧表示一个小岩柱。
虽然实际的弹性体变形是互相影响的,施加于一点的荷载会引起整个弹性体表面的变形,即共同变形,见图2(b)。
但温克尔假定能反映衬砌的应力与变形的主要因素,且计算简便实用,可以满足工程设计的需要。
应当指出,弹性抗力系
数并非常数,它取决于很多因素,如围岩的性质、衬砌的形状和尺寸、以及荷载类型等。
不过对于深埋隧道,可以视为常数。
共同变形理论把围岩视为弹性半无限体,考虑相邻质点之间变形的相互影响。
它用纵向变形系数e和横向变形系数表示地层特征,并考虑粘结力c和内摩擦角的影响。
但这种方法所需围岩物理力学参数较多,而且计算颇为繁杂,计算模型也有严重缺陷,另外还假定施工过程中对围岩不产生扰动等,更是与实际情况不符。
因而,我国很少采用。
2 隧道结构体系的计算模型
国际隧道协会(ita)在1987年成立了隧道结构设计模型研究组,收集和汇总了各会员国目前采用的地下结构设计方法,经过总结,国际隧道协会认为,目前采用的地下结构设计方法可以归纳为以下4种设计模型[2]:
(1)以参照过去隧道工程实践经验进行工程类比为主的经验设计法;
(2)以现场量测和实验室试验为主的实用设计方法;
(3)作用与反作用模型,即荷载—结构模型;
(4)连续介质模型。
目前,在设计隧道的结构体系时,主要采用两类计算模型,一类是以支护结构作为承载主体,围岩作为荷载同时考虑其对支护结构的变形约束作用的模型。
另一类则相反,视围岩为承载主体,支护结构则为约束围岩变形的模型。
前者又称为传统的结构力学模型。
它将支护结构和围岩分开来考虑,支护结构是承载主体,围岩作为荷载的来源和支护结构的弹性支承,故又可称为荷载一结构模型
这一类计算模型主要适用于围岩因过分变形而发生松弛和崩塌,支护结构主动承担围岩“松动”压力的情况。
属于这一类模型的计算方法有:弹性连续框架法、假定抗力法和弹性地基梁法等都可归属于荷载结构法。
当软弱地层对结构变形的约束能力较差时,地下结构内力计算常用弹性连续框架法,反之,可用假定抗力法或弹性地基法。
弹性连续框架法即为进行地面结构内力计算时的力法与变形法。
由于这个模型概念清晰,计算简便,易于被工程师们所接受,放至今仍很通用,尤其是对模筑衬砌[3]。
第二类模型又称为岩体力学模型。
它是将支护结构与围岩视为一体,作为共同承载的隧道结构体系,故又称为围岩—结构模型或复合整体模型。
在围岩—结构模型中可以考虑各种几何形状,围岩和支护材料的非线性特性,开挖面空间效应所形成的三维状态,以及地质中不连续面等等。
在这个模型中有些问题是可以用解析法求解,或用收敛—约束法图解,但绝大部分问题,因数学上的困难必须依赖数值方法,尤其是有限单元法[3]。
利用这个模型进行隧道结构体系设计的关键问题,是如何确定围岩的初始应力场,以及表示材料非线性特性的各种参数及其变化情况。
一旦这些问题解决了,原则上任何场合都可用有限单元法围岩和支护结构应力和位移状态。
4结语
围岩和支护之间的影响一直是隧道施工设计人员面临的难题,本文对隧道结构计算模型的归纳和总结,以帮助人们进行合理的模型设计计算,对围岩结构和衬砌结构设计等方面具有一定的参考价值。
参考文献:
[1]jtg d70-2004,公路隧道设计规范[s].
[2]关宝树,隧道工程设计要点集[m].北京:人民交通出版社,2003.11.
[3]关宝树,杨其新.地下工程概论[m].成都:西南交通大学出版社,2001.。