算术平均数与几何平均数
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
n
a1a2 ......an
叫做这n个正数的几何平均数。
基本不等式:
a1 a2 ......an n a1a2 ......an n * (n N , ai R ,1 i n)
语言表述:n个正数的算术平均数不小于它们 的几何平均数。
例1.已知a,b,c,d都是源自文库数,求证:
ab cd (ac bd) 4abcd
例2.已知a,b,c>0,求证:
1a
2
b c ab bc ca
2 2 2 2 2
a b c 2 a b c b c a
1 1 1 1 1 1 3 2a 2b 2c a b b c c a ( 4) a b b c c a
注意2:等号取到的条件。
推广:
定理:如果
a, b, c R , 那么a b c 3abc
3 3 3
(当且仅当a=b=c时取“=”)
(当且仅当a=b=c时取“=”)
abc 3 a, b, c R , 那么 abc 3
推论:如果
关于“平均数”的概念:
如果a1 , a2,.......an R , n 1且n N , a1 a2 .......an 叫做n 个正数的算术平均数; n
2 2 2 2 2 2
2 (a b c)
作业: P11练习——1,2;习题6.2—— 1,2,3
ab a 2 b2 ab 例1. 若a, b 0, 证明: 1 1 2 2 a b 2
2 1 1 a b
: 调和平均数;
ab :几何平均数; ab : 算术平均数; 2 a b : 平方平均数。 2
定理1:如果 a, b R, 那么a
2
b 2ab
2
(当且仅当a b时取“=”号)
ab 定理2:如果 a, b是正数,那么 ab 2 (当且仅当a b时取“=”号)
1.语言表述:两个正数的算术平均数不小于 它们的几何平均数。 2.代数意义:正数a,b的等差中项不小于a,b 的等比中项。 3.几何意义:直角三角形中斜边上的中线不 小于斜边上的高。(半弦不大于半径) 注意1:两个定理一个要求a,b大于零,另一 个a,b取任意实数;
n
a1a2 ......an
叫做这n个正数的几何平均数。
基本不等式:
a1 a2 ......an n a1a2 ......an n * (n N , ai R ,1 i n)
语言表述:n个正数的算术平均数不小于它们 的几何平均数。
例1.已知a,b,c,d都是源自文库数,求证:
ab cd (ac bd) 4abcd
例2.已知a,b,c>0,求证:
1a
2
b c ab bc ca
2 2 2 2 2
a b c 2 a b c b c a
1 1 1 1 1 1 3 2a 2b 2c a b b c c a ( 4) a b b c c a
注意2:等号取到的条件。
推广:
定理:如果
a, b, c R , 那么a b c 3abc
3 3 3
(当且仅当a=b=c时取“=”)
(当且仅当a=b=c时取“=”)
abc 3 a, b, c R , 那么 abc 3
推论:如果
关于“平均数”的概念:
如果a1 , a2,.......an R , n 1且n N , a1 a2 .......an 叫做n 个正数的算术平均数; n
2 2 2 2 2 2
2 (a b c)
作业: P11练习——1,2;习题6.2—— 1,2,3
ab a 2 b2 ab 例1. 若a, b 0, 证明: 1 1 2 2 a b 2
2 1 1 a b
: 调和平均数;
ab :几何平均数; ab : 算术平均数; 2 a b : 平方平均数。 2
定理1:如果 a, b R, 那么a
2
b 2ab
2
(当且仅当a b时取“=”号)
ab 定理2:如果 a, b是正数,那么 ab 2 (当且仅当a b时取“=”号)
1.语言表述:两个正数的算术平均数不小于 它们的几何平均数。 2.代数意义:正数a,b的等差中项不小于a,b 的等比中项。 3.几何意义:直角三角形中斜边上的中线不 小于斜边上的高。(半弦不大于半径) 注意1:两个定理一个要求a,b大于零,另一 个a,b取任意实数;