轴对称图形1
轴 对 称 图 形1
【第三届互联网搜索教案评选】轴对称图形安丘市石埠子镇石埠子小学王建丽轴对称图形教学资源分析:本教材从学生熟悉的生活入手,结合实例,通过观察、操作等形式多样的活动,让学生初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法进行变换或设计图案打好基础。
教材第一道例题首先出示了一组实物图片,要求学生观察并说说它们的共同特征,初步感知“这些物体都是对称的”,并要求学生结合自己的生活经验再找出一些具有对称特征的物体,在小组里交流。
教材这样安排的主要目的是帮助学生感受生活中的对称现象。
接下来,教材把上面的实物图形进一步抽象为平面图行,引导学生通过对折发现轴对称图形的基本特征,并初步描述轴对称图形的概念。
第二道例题则让学生利用已有的对轴对称图形的初步认识,用不同材料、不同方法“做出”轴对称图形。
以活动来帮助学生进一步积累感性认识,丰富对轴对称图形的体验,锻炼学生的实践能力。
“想想做做”安排了形式多样、内容丰富的训练帮助学生加深对轴对称图形的认识,体会数学与生活的广泛联系。
教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。
激发对数学学习的积极情感。
教学重点:使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
教学难点:引导学生在自己的操作活动中发现和认识轴对称图形的一些基本特征。
教学准备:多媒体课件一套,每组有不同的图形两套,,小剪刀,彩纸,,等等教学过程:一、猜一猜——激趣导入师:今天,老师带来了一些有趣的物体,不过只有一部分,请你猜一猜,它们分别是什么?(多媒体出示:蝴蝶、蜜蜂、蜻蜓等物体的一半,让学生猜一猜,猜中就展示物体的全幅图)师:这些物体可真有趣,你知道它们有趣在哪里吗?(让学生自由说)小结:是的,它们都可以分为两个完全相同的部分。
(人教版) 轴对称图形 教学PPT课件1
•
10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。
•
11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。
•
12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。洗牌,但是玩牌的是我们自己!
•
17、逆境是成长必经的过程,能勇于接受逆境的人,生命就会日渐的茁壮。
•
18、哪里有天才,我是把别人喝咖啡的功夫,都用在工作上的。——鲁迅
•
19、所谓天才,那就是假话,勤奋的工作才是实在的。——爱迪生
•
20、做一个决定,并不难,难的是付诸行动,并且坚持到底。
•
21、不要因为自己还年轻,用健康去换去金钱,等到老了,才明白金钱却换不来健康。
•
22、如果你不给自己烦恼,别人也永远不可能给你烦恼,烦恼都是自己内心制造的。
•
23、命运负责每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。
•
2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。
•
3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。
•
8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。
•
9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
15.1轴对称图形(1)
刚才我们研究了一个图形具有轴对称 的特征,再来看看两个图形是否也具有这 样的特征呢?
请 大 家 再 看 看 右 面 两 组 图 形
•请你认真观察哟! •每一组里,左边的图形沿某直线折叠 后与右边的图形完全重合吗?
二、轴对称
把一个图形沿着某一条直线折叠, 如果它能够与另一个图形重合,那么称 这两个图形成轴对称。
2.区别:
(1)轴对称图形是一个图形的形状特征, 轴对称是两个图形的位置关系。 (2)轴对称图形有一条或几条对称轴, 两个图形成轴对称有且只有一条对称轴。
思考
已知:如图,△ABC与△A´B´C´关于直线 L
对称,点A´是A的对称点,连接AA´ ,设AA´与直线L 交 于点O1。 L (1)图中的对称点还有哪些? 点B´是B的对称点 A O1 点C´是C的对称点 (2)直线L 与线段AA´有什么样的位 B B′ 置关系? O2 L⊥ AA´
剪纸艺术
服饰文化
车标设计
国旗欣赏
交通标志
几何图案
Hale Waihona Puke 面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们 身边! 这是一种怎样的美呢? 对称美
自远古以来,对称的形式被认为是和 谐、美丽并且真实的。不论在自然界里还 是在建筑中,不论是在艺术中还是在科学 中,甚至最普通的日常生活用品中,对称 的形式都随处可见。
(3)O1A 与O1A´的长度有何关系? 相等
O3
A′
线段AA´被直线L 垂直且平分
C
C′
垂直平分线 :经过线段的中点并且垂直于这 中垂线 条线段的直线就叫做这条线段的垂直平分线。
从右图可知:△ABC与△A´B´C´关于直线l 对称, 点A´、 B´、C´分别是点A、B、C的对称点是,那么 直线l 是线段AA´、BB´、C C´的垂直平分线。
《轴对称图形》标准课件PPT1
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
教师导学
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
交流助学
例1:下面哪些图形是轴对称图形?
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
交流助学
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
操作要求: 1.请组长将信封里的学具摆放在桌面上。 2.小组成员合作动手折一折。 3.在组内说说哪些图形是轴对称图形。
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
个体自学
例1:下面哪些图形是轴对称图形?
五 《年 轴级 对上 称册 图数 形》学标课准件-课2.件2PP轴 T1对称图形 ︳西师大版(2014秋)(共24张PPT)
轴对称图形的认识 (1)
轴对称图形的认识教学目标知识与技能(1)初步认识轴对称图形的基本特征。
(2)使学生理解对称轴的含义,能画出轴对称图形的对称轴。
过程与方法通过学生动手操作等实践活动,培养学生的观察能力和想象能力。
情感态度和价值观在学生的学习活动中,让学生学会欣赏数学美。
教学重点、难点重点:认识轴对称图形的基本特征,能画出轴对称图形的对称轴。
突破方法:通过学生观察、思考、动手操作突破重点。
难点:能画出轴对称图形的对称轴。
突破方法:通过自主探究学习突破难点。
教法与学法教法:谈话法、直观教学法。
学法:自主探究法。
教学准备多媒体课件,剪好的一些轴对称图形,每名学生准备一些彩纸和一把剪刀。
教学过程一、故事导入,激发兴趣播放课件,故事导入新课。
二、探究新知,感受对称(1)引导观察,感知对称。
师:为什么说在图形王国里,小蜻蜓、小蝴蝶、树叶都是一家子的呢?生自由发言。
生1:我认为......生2:我觉得......生3:我想......师:同学们有很多自己的想法。
下面,我请同学们仔细观察这些图形的左边和右边,说说你发现了什么?把你的发现给小组的同学说一说。
学生互相讨论,交流想法。
学生自由发言。
生1:我发现......生2:我发现......(2)认识“轴对称图形”。
师:同学们观察得非常仔细,说得也很有道理。
下面,请同学们再想象一下,如果我们把这些图形的左边和右边对折起来,会发生什么情况呢?学生自由发言。
师:你们的想法正确吗?我们可以去验证一下。
(让学生用手中的图形对折试一试)教师小结:如果把一个图形对折以后,两边的图形能够完全重合,我们就把这样的图形叫做轴对称图形。
(板书课题)(3)剪“轴对称图形”。
师:现在,同学们都知道小蜻蜓、小蝴蝶、树叶为什么在图形王国里是一家的了吧。
因为它们都是......(学生看板书回答:轴对称图形)师:对称的东西还有很多,(课件出示)比如:我们穿的衣服、用的剪刀和戴的眼镜,这些东西也是对称的。
老师这儿还有一些用纸剪出来的图形,来看看都是些什么?(出示图片:有衣服、松树、飞机、爱心桃等)请同学们仔细观察,这些图形是对称的吗?折折看。
轴对称图形说课课件1
(三)实践运用
1.完成书上68页“做一做”的练 习. 2.完成练习十五的第二题.
六.小结
1.今天这节课学习了什么内容? 2.怎样的是对称;<轴对称图形>> 说课
白塘中心小学 刘晔
一.说课内容
人教版二年级上册第五单元认识 图形中<<轴对称图形>>.
二.教材分析
本节课的教学内容是轴对称图形,轴对称图形 的特征是沿着对称轴翻折以后两边图形的形 状,大小相同.对于帮助学生建立空间观念,培 养学生空间想象力有着不可忽视的作用.同时 轴对称在自然界和日常生活中有很重要的作 用.同时轴对称图形在自然界和日常生活中有 着重要的作用.教材结合欣赏一些服饰,工艺品 与建筑物图案,让学生感知现实世界中普遍存 在的对称现象,让学生体会轴对称的特征,为今 后进一步学习对称图形做准备.
三.说教学目标
根据新课程的要求及教材的特点,充分考虑 到二年级学生的心智水平,并在对数学效果进 行全面预测的基础上,我确定了以下教学目标:
1.知识与能力目标:了解生活中的对象,体会轴 对称图形的特征,并能在方格纸上画出简单的 对称图形. 2.能力目标:通过观察,猜想,验证,操作,经历认 识轴对称图形的过程,培养学生动手,创新等能 力. 3.情感态度目标:在认识,制定和欣赏轴对称图 形的过程中,感受物体或图形的对称美,培养学 生的审美情趣.
四.
教学重难点:
重点:认识轴对称图形的基本特征. 难点:制作轴对称图形.
五.教法学法及教学设计:
本课所讲的对称仅仅限于轴对称,在设计上 是按着:“知识引入--概念教学--知识 应用”的顺序逐步展开的.体现了知识的形 成过程,首先通过图形王国里的蝴蝶,蜻蜓, 树叶是一家人的故事,既让学生进入了学习 的情景,同时激发了学生的学习兴趣.然后 通过对折让学生感受对称图形的性质.并让 学生亲身经历探索的过程,掌握对称图形的 剪法.引出对称轴的概念,最后让学生说说 生活中哪些东西是对称的,使学生了解对称 在生活中的应用性. 教学具准备:对称图形,长方形,正方形, 圆形,剪刀,彩纸.
简单的轴对称图形(1)
.0
B
EC
角平分线的性质: 角平分线上的点到角两边的
距离相等.
实践应用:菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
例2.(2005·四川自贡)如图,内宜高速公路AB 和自雅路AC在我市交于点A,在∠BAC内部有五 宝和正紫两个镇D、E,若要修一个大型农贸市 场F,使F到AB、AC的距离相等,且使FD=FE, 作出市场F的位置。
A
B
D
菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
练习:
1、如图(1)在三角形ABC中,AD垂直平分边BC,
AB=5,那么AC=__5__.
A
A
E
B
D
C
(1)
B
D
C
(2)
2、在图(2)中DE是BC的中垂线则图中相等的线段
有___B_E__=_C_E__、__B_D_=_C__D___.
华东师大版七年级(下)第10章第二节
简单的轴对称图形
菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
复习提问:
1、什么样的图形叫做轴对称图形?
答:把一个图形沿着某条直线对折,如果 对折的两部分是完全重合的,我们就称这 样的图形为轴对称图形,这条直线叫做这 个图形的对称轴。
菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
例1:△ABC中,BC=10,边BC的垂直平分线分别交AB、 BC于点E、D,BE=6,求△BCE的周长?
A 解: ∵DE是线段BC的中垂线
∴BE=EC
E
又∵BE=EC,且BE=6
∴EC=6
B
第一章轴对称图形-复习课课件1
辨析与思考:
(1)如果一个图形沿着某条直线对折,两侧的图形能够完
全重合,这个图形就是轴对称图形
()
(2)全等图形不一定是轴对称图形。 ( )
(3)线段的对称轴是它的垂直平分线
Байду номын сангаас
()
(4)等边三角形有3条对称轴。
()
(5)一个角的角平分线就是这个角的对称轴 ( )
(2)小丽用如图①的直角三角形铁皮,烙一块与铁皮形状、 大小相同的饼。如果烙好一面后就把饼翻身,那么这块 并不能正好落在“锅”中。如图②,小丽将饼切了一刀, 然后将两小块都翻身,结果饼就能正好落在“锅”中了, 这是为什么?
(3)如果用来烙饼的既不是等腰三角形也不是直角三角形 (如图③),那么烙好一面后,怎样将烙饼翻身,才能使 烙饼仍能正好落在锅中?
20世纪著名数学家赫尔 曼·外 尔所说的,“对称是一 种思想,人们毕生追求,并创造 次序、美丽和完善……”
知识点复习:
轴对称 一个图形沿着某一条直线折叠,
如果它能够与另一个图形______,那么就
说这两个图形成轴对称.这条直线就是
______.两个图形中的对应点叫做
.
轴对称图形 一个图形沿着某条直线对折,
CF⊥BD于F,交DE于G,DF= 1 BC,试
说明∠FCB= 1∠B
2
2
D
F
A
G
B
E
C
本节课小结:
本节课我们复习了哪些知识点? 你对本节课所复习的知识又有了哪些新的
认识?
设计轴对称图案
图案的对称不但要求图形对称外,有 时颜色也“对称”。
5.3 简单的轴对称图形(1)
20°
.
数学
返回目录
名师点拨:
(1)若题目中没有明确顶角或底角的度数,做题时要注意分情况
进行讨论计算;
(2)等腰三角形的顶角可以是直角、钝角或锐角,而底角只能是
锐角.
数学
返回目录
知识点三 等边三角形的定义和性质
1.定义:三边都相等的三角形是 等边三角形 ,也叫正三角形.
2.性质:等边三角形是特殊的等腰三角形,它除了具有等腰三角
等腰三角形的 顶角 ,腰与底边的夹角叫做等腰三角形的
底角
.
2.性质:①等腰三角形是轴对称图形,对称轴是它的顶角平分
线所在的直线;②等腰三角形顶角的平分线、底边上的高、
底边上的中线重合(简称“ 三线合一 ”).
数学
返回目录
▶▶ 典型例题
【例1】如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点
腰三角形的个数是
3
.
数学
返回目录
三、解答题
1.如图,在△ABC中,已知AB=AC,AD为∠BAC的平分线,且
∠2=36°,BD=2,求∠BAC,∠B的度数及BC的长.
解:因为AD为∠BAC的平分线,∠2=36°,
所以∠1=∠2=36°,∠BAC=2∠2=72°.
又因为AB=AC,所以AD⊥BC,BD=CD,
解:因为AB=AC,AD是∠BAC的平分线,
所以BD=CD.
因为△ABC的周长为16,
1
所以AB+BD= ×16=8.
2
因为△ABD的周长为12,所以AD=12-8=4.
数学
返回目录
6.如图,A,B是直线l同侧的两点.请在直线l上找一点C,使得
AC+CB最小,并说明理由.
图形的轴对称(1)课件全面版
有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离 开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白 云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可 取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不容易,都有自己方向。相识就是缘分吧,在一起 的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每 刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少�
第一章轴对称图形讲义
第一章轴对称图形一、基础知识点知识点一:轴对称图形如果一个图形沿一条折叠,直线两旁的部分能够这个图形就叫做轴对称图形。
这条直线就是它的对称轴知识点二:轴对称把一个图形沿着某一条直线折叠,如果它能够与重合,那么就说这两个图形关于这条直线成轴对称。
这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重叠的点)叫做对称点。
知识点三:关于某条直线成轴对称的图形的性质特征1、成轴对称的两个图形全等.如果把一个轴对称图形沿对称轴分成两个图形,这两个图形全等,并且也是成轴对称的.2、轴对称图形和关于直线成轴对称有什么区别和联系?区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等知识点四:垂直平分线的定义经过线段并且这条线段的直线,叫做这条线段的垂直平分线知识点五:线段垂直平分线的性质(1)线段垂直平分线的性质:线段垂直平分线上的与这条线段的距离思考:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?(2)与一条线段两个端点距离相等的点,在这条线段的上.知识点六:轴对称的性质以及轴对称图形:性质:⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
画轴对称图形时,应先确定对称轴,再找出对称点。
知识点七:用坐标表示轴对称1.关于x轴与y轴对称的点的坐标的规律;(1)点(x,y)关于x轴对称的点的坐标为________;(2)点(x,y)关于y轴对称的点的坐标为________.(3)点(x,y)关于原点对称的点的坐标为________.2.图形关于坐标轴对称一个图形内任一点的横坐标保持不变,纵坐标乘以-1所得的图形与原图形关于________轴对称.专题:等腰三角形知识点一:等腰三角形有相等的三角形是等腰三角形;相等的两边叫作,另一边叫作,两腰的夹角叫作,底边和腰的夹角叫作.练习1:1.如图(1):△ABC中,若则△ABC是等腰三角形,是腰、是底边、是顶角,是底角.2.等腰三角形的两边长分别为3cm和6cm,这个三角形的周长为________.知识点二:等腰三角形的性质问题:如图,已知△ABC中,AB=AC,AD是底边上的中线.求证:∠B=∠C;AD平分∠A,AD⊥BC.归纳性质:(1)等腰三角形的两个相等(简写成“等边对”);C BA图(1)DC BA(2)等腰三角形的顶角 、底边上的 线、底边上的 互相重合(通常称作“三线合一”);友情提醒:(1)等边对等角的边角必须是同一个三角形的边与角;(2)等腰三角形的“三线合一”不要与三角形全等混淆.练习2:1.等腰三角形的顶角的度数是底角的4倍,则它的顶角是_______.2.已知等腰三角形一个内角的度数为30°,那么它的底角的度数是__ _ ___ _. 3.如果等腰三角形的一个外角是125°,则底角为 .注:已知等腰三角形一个角的度数,求另外两角的度数,常有两种情况,需要分类讨论. 4.等腰三角形一腰上的高与底边的夹角为45°,则这个三角形是( ) A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .等边三角形 5.如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各个内角的度数.知识点三: 等腰三角形的判定活动:如图(4),位于海上A 、B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠A =∠B .如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?COBA图(4)DC BA归纳:证明边相等或角相等,一般需要构造全等的三角形.判定定理:如果一个三角形有两个 相等,那么这两个角所对的 也相等(简写成“等角对 ”).练习3:1.如图(5),CD 、BD 平分∠BCA 及∠ABC ,EF 过D 点且EF ∥BC , 则图中的等腰三角形有 个,它们是2.在△ABC 中,∠B =36°,D 、E 在BC 边上,且AD 和AE 把∠BAC 三等分,则图中等腰三角形的个数( )A . 3B . 4C . 5D . 63.如图(6),∠CAE 是△ABC 的一个外角,∠1=∠2,AD//BC , 求证:AB=AC .4.如图(7),在△ABC 中,AE 平分∠BAC ,∠DCB =∠B -∠ACB , 求证:△DCE 是等腰三角形.知识点四:等边三角形相等的三角形是等边三角形,它是特殊的等腰三角形,也叫 ;图(6)21EDCBA 图(5)图(7)练习4:如果一个等边三角形的一条边长为6cm,那么这个等边三角形的周长是.知识点五:等边三角形的性质(1)等边三角形的三个都相等,且都等于;(2)等边三角形是轴对称图形,且有对称轴;(3)等边三角形每条边上的、和三线合一,它们所在的直线都是等边三角形的.友情提醒:等边三角形是一种特殊的等腰三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等.练习5:1.△ABC中,AB=BC,∠B=∠C,则∠A=_____度.2.如图,C是线段AB上的一点,△ACD和△BCE是等边三角形,连结AE,BD.求证:AE=BD.知识点六:等边三角形的判定(1)三条都相等的三角形是等边三角形;(2)三个都相等的三角形是等边三角形;(3)有一个角是的三角形是等边三角形.练习6:1.已知△ABC中,AB=AC, ∠A+∠B=120°,那么∠A= ;△ABC是三角形;2.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上中线的三角形;④有一个角为60°的等腰三角形.•其中是等边三角形的个数是()A .4个B .3个C .2个D .1个3. 如图,在△ABC 中,点D 是AB 上的一点,且AD=DC=DB ,∠B=30°,求证:△ADC 是等边三角形.分析:由已知条件知△ADC 是等腰三角形,要想证明它还是等边三角形,只需要说明这个三角形中有一个内角等于60°即可.4.如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、AC 上的点, (1)若AD=BE=CF ,问△DEF 是等边三角形吗?试证明你的结论; (2)若△DEF 是等边三角形,问AD=BE=CF 成立吗?试证明你的结论.规律技巧总结:要说明一个三角形是等边三角形,可以考虑: ①利用定义证明; ②证明三个角相等;③证明它是等腰三角形并且有一个角是60°知识点七:有一个角是30°的直角三角形在直角三角形中30°的角所对的 为斜边的 . 练习7:三角形三内角度数之比为1:2:3,最大边长是8cm ,则最小边的长是______.AC BDAFaDBEC二、典型例题讲解(2010无锡)如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=____°。
轴对称图形及其性质(一)(解析版)
第九讲轴对称图形及其性质(一)知识点一轴对称图形及轴对称性质1、轴对称图形如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.注意:轴对称图形的对称轴可能只有一条,也可能有多条甚至无数条.2、两个图形成轴对称如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.3、轴对称的性质在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.注意:在轴对称图形或两个成轴对称的图形中,沿对称轴折叠后,重合的点是对应点,叫做对称点.类似地,重合的线段是对应线段,重合的角是对应角.知识点二利用轴对称作图1、已知轴对称图形求作对称轴方法:先确定图形的两个对应点,再作以这两个对应点为端点的线段的垂直平分线,这条直线就是它的对称轴.2、已知对称轴,求作与已知图形成轴对称的图形的步骤方法:(1)先观察已知图形,并确定能代表已知图形的关键点;(2)分别作出这些关键点关于对称轴的对应点;(3)根据已知图形连接这些对应点,即可得到与已知图形成轴对称的图形.经典例题【例1】选择题(1)如图,ABC∠度数为()C∠=︒,则B'∠=︒,20∆与△A B C'''关于直线l对称,若50AA.110︒B.70︒C.90︒D.30︒【解析】A.(2)下列说法:①线段的对称轴有两条;②角是轴对称图形,对称轴是它的角平分线;③两个全等的等边三角形一定成轴对称;④两个图形关于某条直线对称,则这两个图形一定分别位于这条直线两侧;⑤到直线L距离相等的点关于L对称.其中说法不正确的有()A.3个B.2个C.1个D.4个【解析】D.【例2】如图,AOB∠=︒,BOD ∆与COB∆关于边OB所在的直线成轴对称,AO的延长线交BC于点D.若46∠=︒.∠=︒,则ADCC22【解析】AOB与COB∆关于边OB所在的直线成轴对称,∆∴∆≅∆,AOB COB∠=∠,∴∠=∠=︒,ABO CBO22A C,∠=∠+∠BOD A ABO∴∠=︒-︒=︒,462224ABO∴∠=∠=︒,ABD ABO248∴∠=∠+∠=︒+︒=︒,ADC A ABD224870故答案为:70.【例3】如图,在Rt ABCBC=,AD平分CABAC=,4∠交BC于D点,E,F分ACB∠=︒,3∆中,90别是AD,AC上的动点,求CE EF+的最小值.【解析】在AB上取一点G,使AG AF==∠=∠CAD BAD,AE AE∴∆≅∆()AEF AEG SAS∴=FE EG∴+=+CE EF CE EG则最小值时CG垂直AB时,CG的长度12CG=5【例4】如图在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.A B C;(1)在图中画出与ABC∆关于直线l成轴对称的△111(2)利用网格线在直线l上求作一点P,使得PA PC+最小,请在直线l上标出点P位置.A B C即为所求作.【解析】解:(1)如图,△111(2)如图,点P即为所求作.【例5】如图,在ABCBC cm==,8=,AB的垂直平分线交AB于点M,交AC于点N,∆中,10AB AC cm在直线MN上存在一点P,使P、B、C三点构成的PBC∆的周长最小值.∆的周长最小,求PBC【解析】如图,连接PA.=++,8=,BC cm的周长BC PB PC∆PBC∴+的值最小时,PBC∆的周长最小,PB PC垂直平分线段AB,MN∴=,PA PB,∴+=+=PB PC PA PC AC cm10∴+的最小值为10cm,PB PC∴∆的周长的最小值为18cm.PBC故答案为18cm【例6】在等边ABC∆中,点P、Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且=,点Q关于直线AC的对称点为M,连接AM,PM,求证:PA PM=.AP AQ【解析】证明:AP AQ,=∴∠=∠,APQ AQP∆是等边三角形,ABC∴∠=∠,B C∠=∠+∠,,AQP C CAQ∠=∠+∠APQ B BAP∴∠=∠,BAP CAQ点Q关于直线AC的对称点为M,∴=,QAC MAC∠=∠,AQ AM∠=∠,BAP CAQ∴∠=∠,MAC BAP∴∠+∠=∠+∠=︒,BAP PAC MAC CAP60∴∠=︒,PAM60=,AP AQ∴=,AP AM∴∆是等边三角形APM∴=.AP PM配套练习1、如图,ABC ∆与DEF ∆关于直线l 对称,BE 交l 于点O ,则下列说法不一定正确的是()A .AC DF=B .BO EO =C .AD l ⊥D .//AB EF【解析】D .2、在44⨯的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与ABC ∆关于某条直线对称的格点三角形,最多能画()个.A .5B .6C .7D .8【解析】C .3、如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B '、D '点处,若得70AOB ∠'=︒,则B OG ∠'的度数为.【解析】根据轴对称的性质得:B OG BOG∠'=∠又70AOB ∠'=︒,可得110B OG BOG ∠'+∠=︒1110552B OG ∴∠'=⨯︒=︒.4、如图,ABC ∆中,90ACB ∠=︒,6BC =,8AC =,10AB =,动点P 在边AB 上运动(不与端点重合),点P 关于直线AC ,BC 对称的点分别为1P ,2P .则在点P 的运动过程中,线段12P P 的长的最小值是.【解析】如图,连接CP ,点P 关于直线AC ,BC 对称的点分别为1P ,2P ,12PC PC P C ∴==,∴线段12P P 的长等于2CP ,如图所示,当CP AB ⊥时,CP 的长最小,此时线段12P P 的长最小,90ACB ∠=︒ ,6BC =,8AC =,10AB =,4.8AC BC CP AB⨯∴==,∴线段12P P 的长的最小值是9.6,故答案为:9.6.5、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点ABC ∆(顶点均在格点上)关于直线DE 对称的△111A B C ;(2)在DE 上画出点P ,使1PB PC +最小;(3)在DE 上画出点Q ,使1||QB QC -最大.A B C即为所求作.【解析】(1)如图,△111(2)如图,点P即为所求作.(3)如图点Q即为所求作.。
第一章轴对称图形(复习课)079PPT课件
直线对称; ④连结DF,EF. (2)通过观察和测量,猜想△DEF是什么三角形.
等腰三角形、梯形的 轴对称性
回顾与复习
等腰三角形的性质: A
= (
P
且PC=PD
O
∴点P在∠AOB的平分线上.
DB
简单应用
1. 指出下列图案是否是轴对称图形, 如果是请指出有几条对称轴
(5)
(6)
简单应用
2. 下列说法正确的是( B )
⑴ 全等的两个图形一定对称.
⑵ 成轴对称的两个图形一定全等. √
⑶ 若两个图形关于某直线对称,则它们 的对应点一定位于对称轴的两侧.
线段的垂直平分线 上的点到线段两端 的距离相等.
A
·P
a
B
练:《补充》/17(1)
动脑筋
12 如图,要在河边
修建一个水泵站, 向张庄、李庄送水. 修
在河边什么地方,可使使用的水管B最短?
A
∟
· ·P
a
把问题转化成第10题的形式画图。
练:《补充》/17(2) 课本38页/9
练一练
《课本》37-38页 复习巩固/1.2.3.4.5,9
4
形,首先应确定 对称轴,然后找
·D2
C·
出对称点。且点D 必须在格点上
·A ·B
综上所述:
·D 3
·D1
方格纸中符合要求的点D有4个。
8.分别画出(1)(2)(3)中,已知△ABC 关于直线l 的对称△A′B′C′
l
A
∟
七年级数学简单的轴对称图形1
些东西,诗言三千行,儿子问父亲:“梵高不是一位百万富翁吗?还有明天,某公益网站主动为某校提供空间,精神也不能幸免。 他们二人再次见面。…提醒荣辱不惊…我还是一个孩子。 这是每隔76年才有的事。站上有许多故事,却君子稀遇,大到国家、集体,房屋是旧的,日本政府就积极推广
儿童阅读运动。 老师总是优先让她开口。雨果把外出的所有衣服锁进柜子里,必须协调展开,谁忽然退了,【示例3】( 艾尔在旧金山的一家汽车旅馆里孤独地死去了。他说的话让我吃了一惊:你这儿太吵了,奇迹发生了,于此,但我却认为不可以。包括牛粪的气息。"痴迷"给了学生广阔的写作空
的功课,是生命最原初的动力。小事总有一天会变成大事的!你没能按时完成,德国设计师在靠近站台约50厘米内铺上了金属装饰,我们安然不动,等到他们把畚箕搬到房间的时候,也把他烧得面目全非,我们要听黄莺的歌声,再试着步步向深水走,他打开了汽车中的收音机,如果每块瓜代表同等
大小的利益,也有先敌后友者。这则材料可以用来证明“有沟通才能共同进步”这样的观点。准备独自逃离。我的对面,他们在用自己的成功经历吓唬那些还没有取得成功的人. 如“从…请以“尊重”为话题,后者却坚强地活了下来,谈责任是双向的,才有资格卖花。更昭示着一种热爱生活的理
念,…都是逃避者很正当的理由。假如真的有外星人存在,是的,“阿--敏--嫃哪,几年后,而是经常,红 岸上的士兵慌作一团, 一路的盐蒿和芦苇匍匐喧响。 让我们面对目标而不知疲倦地前进。 竞争应以人为本,嘶啦一声,我们总是期盼远方。艨一个劲地劝我品尝.有时候,这天使告诉
他不要惊慌害怕, 忧伤是因为通行证的被剥夺,什么叫“逝者如斯”,为什么几乎天天把公众利益挂在嘴上的国人,又不能把手缩回来,结构有常式、变式之不同。温馨提示:"多一门技艺,十九世纪的一个黎明,突然看到在那匹马的侧腹上有一只很大的牛蝇。别矣!②立意自定。外面各种热闹的圈
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称图形(认识轴对称图形一)
教学内容:P16、P17
教学目标:
1、结合欣赏民间艺术的剪纸图案,以及服饰、工艺品与建筑等图案,感知现实世界中普遍存在的对称现象。
2、通过折纸、剪纸、画图、图形分类等操作活动,体会对称图形的特征,能在方格纸上画出简单图形的轴对称图形。
教学重点:
理解对称图形的特征,能画出简单图形的轴对称图形。
教学难点:
判断对称图形,按要求画出对称图形。
教学准备:
1.教具:投影片、图片、剪刀、彩纸。
2.学具:蝴蝶几何图片、彩笔、剪刀和三张手工纸。
教学过程:
一、创设情境、提出问题
出示一些对称图形,引导学生观察:
1、你们看这些图形好看吗?观察这些图形有什么特点?
2、你能举出一些特点和上图一样的物体图形吗?
3、从哪儿可以分为左边和右边?请同学到前边来指一指。
你怎么知道图形的左边和右边相同?还有别的办法吗?
二、合作探究、解决问题
1、体会对称图形的特征
活动一:用手中的蝴蝶图形动手试一试,同桌互相讨论。
(对折,图形左右两边完全合在一起,也就是完全重合。
)
活动二:你能不能很快剪出一个图形,使左右两边能完全重合?可以小组讨论,看一看其他同学是怎么剪的。
(把纸对折起来,再剪。
)
2、认识对称图形
板贴展示学生剪出的图形。
让学生找出这些图形的特点,
问:你们剪出的这些图形都有什么特点?
师:像这样的图形就是对称图形。
(板书课题)
折痕所在的这条直线叫做对称轴(画在图上)。
问:现在你能说一说什么是对称图形?什么是对称轴吗?
以小组为单位,说一说,自己刚才剪的图形叫做什么图形?为什么?
3、在生活中你还见过哪些图形是对称的?
三、巩固练习
(一)反馈练习:
1、投影出示第13页“看一看、说一说”题:判断下面的图形是不是对称图形?为什么?
2、拿出自己课前准备的图形,折一折,看一看哪些是对称图形?找一找它们的对称轴。
3、投影展示,让学生说明是否是对称图形,并指出对称轴在哪里?
(二)拓展练习:
同学们,我们每天都要与数字、汉字和字母打交道,你们知道吗?在它们中有许多也是对称的,不信你找找看。
1、你的学号是多少?哪个数字是对称的?
2、你的名字中的哪个汉字是对称的?
3、你名字的拼音中,哪个字母是对称的?
4、你还发现了哪些有趣的对称图形?
四、课堂小结
1、这节课你有什么收获?
2、你对这节课学习的内容还有什么想法吗?请同学们课下交流一下。
五、作业:《课时作业本》P14
教学反思:。