九年级数学上册认识一元二次方程(2)
人教版九年级数学上册《一元二次方程》课件(共13张PPT)
【跟踪训练】
3.把方程 x(2x-1)=1 化成 ax2+bx+c=0 的形式,则 a,
b,c 的一组值是( A )
A.2,-1,-1
B.2,-1,1
C.2,1,-1
D.2,1,1
4.把下列关于 x 的一元二次方程化为一般形式,并指出其 二次项系数、一次项系数和常数项.
(1)3x2=5x-1; (2)a(x2-x)=bx+c(a≠0). 解:(1)一般形式为 3x2-5x+1=0,二次项系数为 3,一次 项系数为-5,常数项为 1. (2)一般形式为 ax2-(a+b)x-c=0,二次项系数为 a,一次 项系数为-(a+b),常数项为-c.
证明:∵关于 x 的一元二次方程 ax2+bx+c=0(a≠0)中的 二次项系数与常数项之和等于一次项系数,
∴a+c=b. ∴当 x=-1 时,ax2+bx+c=a-b+c=b-b=0, ∴-1 必是该方程的一个根.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话, 另一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
第二十一章 一元二次方程
21.1 一元二次方程
1.一元二次方程的概念 只含有__一__个___未知数,并且未知数的最高次数是___2____ 的___整__式___方程,叫做一元二次方程. 注意:一元二次方程有三个特点:(1)只含有一个未知数; (2)未知数的最高次数是 2;(3)是整式方程.
一元二次方程的概念(知识点考点)九年级数学上册知识点考点(解析版)
一元二次方程的概念(知识点考点一站到底)知识点☀笔记1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程概念三要素: (1)只含有一个未知数;(2)且未知数次数最高次数是2; (3)是整式方程。
3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
考点☀梳理考点1:一元二次方程的概念必备知识点:只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。
解题指导:① 要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
② 将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0) 题型1 判断一元二次方程例1.(2022·江苏泰州·八年级期末)下列方程中是一元二次方程的是( ) A .()2224x x -+= B .2220x x ++=C .2130x x+-= D .21xy +=【答案】B【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程解决此题.【详解】解:A .由(x -2)2+4=x 2,得-4x +8=0,那么(x -2)2+4=x 2不是一元二次方程,故不符合题意. B .根据一元二次方程的定义,x 2+2x +2=0是一元二次方程,故符合题意.C .根据一元二次方程的定义,x 2+1x-3=0不是一元二次方程,而是分式方程,故不符合题意.D .根据一元二次方程,xy +2=1不是一元二次方程,故不符合题意. 故选:B .【点睛】本题主要考查一元二次方程的定义,熟练掌握一元二次方程的定义是解决本题的关键. 例2.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键. 练习1.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2 C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键.练习2.(2022·全国·九年级单元测试)下列方程一定是一元二次方程的是( ) A .20ax bx c ++= B .()222322x x x -=-C .3270x x -+=D .()2240x --=【答案】D【分析】根据一元二次方程的定义判断选择即可.【详解】A .当0a =时,原方程不是一元二次方程,故不符合题意; B .原方程整理得:34x -=-,不是一元二次方程,故不符合题意; C .3270x x -+=是一元三次方程,故不符合题意; D .符合一元二次方程的定义,故符合题意; 故选D .【点睛】本题考查判断一元二次方程.掌握一元二次方程的定义是解题关键.练习3.(2022·全国·九年级单元测试)下列方程中,是关于x 的一元二次方程的是( ) A .20ax bx c ++=B .210x y --=C .2210x x += D .()()121x x -+=【答案】D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A 、当a =0时,不是一元二次方程,故本选项不符合题意; B 、含有两个未知数,不是一元二次方程,故本不选项符合题意; C 、不是整式方程,不是一元二次方程,故本选项不符合题意; D 、原方程整理得x 2+x -3=0是一元二次方程,故本选项符合题意; 故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程. 题型2 利用一元二次方程的概念求参数例1.(2022·江苏·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5. (1)为一元二次方程; (2)为一元一次方程. 【答案】(1)m =3 (2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案; (2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧-=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程,得m +1=0或11130m m m ⎧-=⎨++-≠⎩,解得m=﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.例2.(2022·全国·九年级专题练习)若方程(2)310m m x mx --=是关于的一元二次方程,求m 的值. 【答案】2m =-.【分析】根据一元二次方程的定义得出m 2=2,20m -≠再求出答案即可.【详解】根据题意得2220m m ⎧=⎪⎨-≠⎪⎩ 解得22m m ⎧=±⎪⎨≠⎪⎩所以当方程2(2)310m m x mx ---=是关于的一元二次方程时,2m =-.【点睛】本题考查了一元二次方程的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,叫一元二次方程.m 【答案】4【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可 【详解】解:由题意,得4022m m +≠⎧⎨-=⎩解|m|-2=2得m=±4, 当m=4时,m+4=8≠0,当m=-4时,m+4=0不符合题意的要舍去, ∴m 的值为4.【点睛】本题考查一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 32mx x x mx -=-+程,m 应满足什么条件? 【答案】1m ≠【分析】先把方程整理为一元二次方程的一般形式,根据二次项系数不为零可得答案. 【详解】解:2232mx x x mx -=-+,()()21320m x m x ∴-+--=结合题意得:10,m -≠ 1.m ∴≠【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键. 练习3.(2020·全国·九年级专题练习)当m 取何值时,方程1(1)320m m x x +-+-=是一元二次方程.【答案】m=-1【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程,列出方程求解即可.【详解】解:由题意可得:12m +=且m -1≠0, 解得:m=-1,∴当m=-1时,方程||1(1)320m m x x +-+-=是一元二次方程.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.考点2:一元二次方程的一般式必备知识点:一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
九年级数学上册 第二章 一元二次方程 2 用配方法求解一元二次方程 解一元二次方程课标解读素材 (新
解一元二次方程课标解读一、课标要求包括配方法、公式法、因式分解法解一元二次方程.?义务教育数学课程标准〔 2022年版〕?对解一元二次方程一节相关内容提出的要求如下。
1.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.3.了解一元二次方程的根与系数的关系.二、课标解读1.学生已经学习一元一次方程的解法和实际应用,知道可以利用运算律、等式的根本性质,通过去括号、移项、合并同类项等求出它的解.学生还学过二元一次方程组以及三元一次方程组的解法和实际应用,知道可以通过消元,将它们转化为一元一次方程.从数学知识的内部开展看,二元、三元一次方程组可以看成是对一元一次方程在“元〞上的推广.自然地,如果在次数上做推广,首先就是一元二次方程.类比二〔三〕元一次方程组的解法,可以想到:能否将一元二次方程转化为一元一次方程?如何转化?因此,利用什么方法将“二次〞降为“一次〞,这是本章学习的另一条主线.与一元一次方程、二元一次方程组的解法相比,一元二次方程的解法涉及更多的知识,可以根据方程的具体特点,选择相关的知识和方法,对方程进行求解.这是培养学生的思维品质,特别是思维的敏捷性、灵活性、深刻性的时机.根据?课程标准〔 2022年版〕?的规定,教科书着重介绍了配方法、公式法和因式分解法等一元二次方程的解法,而且限定解数字系数的一元二次方程.2.解一元二次方程的根本策略是降次,即通过配方、因式分解等,将一个一元二次方程转化为两个一元一次方程来解.具体地,根据平方根的意义,可得出方程和的解法;通过配方,可将一元二次方程转化为的形式再解;一元二次方程的求根公式,就是对方程配方后得出的.如能将分解为两个一次因式的乘积,那么可令每个因式为0来解.一元二次方程的三种解法——配方法、公式法和因式分解法各有特点.一般地,配方法是推导一元二次方程求根公式的工具.掌握了公式法,就可以直接用公式求一元二次方程的根了.当然,也要根据方程的具体特点,选择适当的解法,因式分解法就显示了这样的灵活性.配方法是一种重要的、应用广泛的数学方法,如后面研究二次函数时也要用到它.在推导求根公式的过程中,从到再到,是方程形式的不断推广,表达了从特殊到一般的过程;而求解方程的过程那么是将推广所得的方程转化为已经会解的方程,表达了化归思想.显然,这个过程对于培养学生的推理能力、运算能力等都是很有作用的.3.与?课程标准〔实验稿〕?相比,?课程标准〔 2022年版〕?重新强调了一元二次方程根的判别式和一元二次方程根与系数关系的重要性,要求“会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等〞,“了解一元二次方程的根与系数的关系〞,这是需要注意的一个变化.这里不仅是为了一元二次方程理论的完整性,更重要的是为了解决初高中衔接问题.实际上,一元二次方程根的判别式、一元二次方程根与系数关系在高中数学中有着广泛的应用,是学习高中数学的必备根底.教科书先以一个设计人体雕像的实际问题作为开篇,并在第一节中又给出两个实际问题,通过建立方程,并引导学生思考这些方程的共同特点,从而归纳得出一元二次方程的概念、一般形式,给出一元二次方程根的概念.在这个过程中,通过归纳具体方程的共同特点,定义一元二次方程的概念,表达了研究代数学问题的一般方法;一般形式也是对具体方程从“元〞〔未知数的个数〕、“次数〞和“项数〞等角度进行归纳的结果;a ≠0的规定是由“二次〞所要求的,这实际上也是从不同侧面理解一元二次方程概念的契机.一元二次方程的解法,包括配方法、公式法和因式分解法等,是全章的重点内容之一.教科书在第二节中,首先通过实际问题,建立了一个最简单的一元二次方程,并利用平方根的意义,通过直接开平方法得到方程的解;然后将它一般化为,通过分类讨论得到其解的情况,从而完成解一元二次方程的奠基.接着,教科书安排“探究〞栏目,自然引出解并总结出“降次〞的策略,从而为用配方法解比拟复杂的一元二次方程做好铺垫,然后教科书重点讲解了配方的步骤,并归纳出通过配方将一元二次方程转化为后的解的情况.以配方法为根底,教科书安排了“探究〞栏目,引导学生自主地用配方法解一般形式的一元二次方程(a≠0),得到求根公式.最后,通过实际问题,获得一个显然可以用“提取公因式法〞而到达“降次〞目的的方程,从而引出因式分解法解一元二次方程,并在“归纳〞栏目中总结出几种解法的根本思路、各自特点和适用范围等.上述过程的思路自然,表达了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,并通过将一般性问题化归为特殊问题,获得这一类问题的解.这是具有普适性的数学思想方法.由于限定在实数范围,因此对求根公式,首先要关注判别式的讨论.这是使学生领悟分类讨论数学思想方法的契机.另一方面,求根公式不仅直接反映了方程的根由系数唯一确定〔系数a,b,c确定,方程就确定,其根自然就唯一确定〕,而且也反映了根与系数的联系.这里表达了一种多角度看问题的思想观点,而根与系数的联系表达非常简洁.教科书仍然采用从特殊到一般的方法,先讨论“将方程化为的形式,,与p,q之间的关系〞,在“+,〞的启发下,利用求根公式求和,进而得到根与系数的关系.让学生学习根与系数的关系,不仅能深化对一元二次方程的理解,提高用一元二次方程分析和解决问题的能力,而且也是培养学生发现和提出问题的能力的时机.根与系数的关系是求根公式的自然延伸,得出它的过程并不复杂,而其中蕴含的思想很重要.所以,对于根与系数的关系,教科书着重在其数学思想的启发和引导上,而对用根与系数的关系去解决问题,严格地控制了难度.。
认识一元二次方程 北师大版九年级数学上册
课堂练习
1. 下表是某同学求代数式x²-x的值的情况,根据表格可知方 程x²-x=2的解是( D )
x x2-x
-2 -1 0 1 2 3 …
6
2 0026…
A. x=-1 C. x=2
B. x=0 D. x1=-1,x2=2
课堂练习
2. 根据表格,选取一元二次方程ax²+bx+c=0(a≠0)的一 个近似解取值范围( C )
解:设所求的宽度为 x m,根据 题意可列方程:
(8 - 2x) (5 - 2x) =18
新知讲解
x 满足方程(8-2x)(5-2x)=18.
(1)x 可能小于 0 吗?可能大于 4 吗?可能大于 2.5 吗?说说 你的理由.
x 不可能小于 0,因为当x<0时,不符合题意; 不可能大于4,因为当x>4时,8-2x<0,不符合题意; 不可能大于2.5,因为当x>2.5时,5-2x<0不符合题意.
2.1 认识一元二次方程
新知导入
1. 什么是一元二次方程? 只含有一个未知数 x 的整式方程 1 ,并且都可以化成ax²+bx +c =0(a,b,c 为常数,a ≠ 0)的形式,这样的方程叫做一元二次方程.
2. 把一元二次方程3x²+2x=5化成一元二次方程的一般形式, 并说出它的二次项、一次项系数和常数项.
1 < x<1.5
x²+12x -15=0
新知讲解
你还能进一步
缩小范围吗? (3)你能猜出滑动距离 x(m)的大致范围吗?
x
x²+12x-15=0
1.1 -0.59
1.2 0.84
1.3 2.29
1.4 3.75
人教版数学九年级上册21、3 实际问题与一元二次方程 第二课时
实际问题与一元二次方程第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标1.掌握建立数学模型以解决增长率与降低率问题.2.经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重点如何解决增长率与降低率问题.教学难点某些量的变化状况,不能衡量另外一些量的变化状况.教学过程一、导入新课问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?分析:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,•x×100).则每件平均利润应是(0.3-x)元,总件数应是(500+0.1解:设每张贺年卡应降价x元,则x)=120.(0.3-x)(500+1000.1解得:x=0.1.答:每张贺年卡应降价0.1元.我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.二、新课教学例 1 某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从上面可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+0.25y ×34)=120. 即(34-y )(200+136y )=120 整理:得68y 2+49y -15=0y =49268-±⨯ ∴y ≈-0.98(不符题意,应舍去)y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.例2 两年前生产1 t 甲种药品的成本是5 000元,生产1 t 乙种药品的成本是6 000元,随着生产技术的进步,现在生产1 t 甲种药品的成本是3 000元,生产1 t 乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析和解答见教材第20页.三、巩固练习1.填空.(1)一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.(2)甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.(3)一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体x L ,则列出的方程是________.参考答案:(1)2 (2)1 (3)(1-63x )2=2863 2.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg .(2)销售利润y =(销售单价x -销售成本40)×销售量[500-10(x -50)](3)月销售成本不超过10000元,那么销售量就不超过1000040=250kg,在这个提前下,求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6 750元.(2)y=(x-40)[500-10(x-50)]=-10x2+1 400x-40 000(3)由于水产品不超过10 000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8 000.解得:x1=80,x2=60.当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).四、课堂小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.五、布置作业习题21.3 第7题.21.1 一元二次方程【学习目标】1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力.2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项.【重点难点】重点:由实际问题列出一元二次方程和一元二次方程的概念.难点:由实际问题列出一元二次方程,准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项.【自主先学】请观察一下,下列哪些是方程?⑴⑵2x+y=16⑶3x+y -1 ⑷3x-4=2x+6一元一次方程的概念:一元一次方程的一般形式:【课堂活动】一、请根据题目意思列出方程,并化简:1.要设计一座高2 m 的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,求雕像的下部应设计为高多少米?2.有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?二、这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的有什么共同点呢?不同点呢?对照一元一次方程,写出一元二次方程的概念:一元二次方程的一般式:练一练:1、将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项(1)4x(x+2) =25 (2)(3 x -2)(x +1)=x -3 (3)x(x-4)=02、(小组合作)已知关于x的方程(a2— 4)x 2— ax +2x+a —2=0⑴若此方程是一元一次方程,则a的取值范围是什么?⑵若此方程是一元二次方程,则a的取值范围是什么?三、下面哪些数能使方程x2–x– 6 = 0 成立?-3 , -2 ,-1 ,0 , 1, 2, 3一元二次方程的解 : 叫作一元二次方程的解(又叫做根).练一练:若x =2是方程 的一个根,你能求出a 的值吗?四、课堂小结:一元二次方程的概念,一元二次方程的一般式,一元二次方程的解. 2450ax x +-=。
人教版初中数学九年级上册教学课件 第21章 一元二次方程 一元二次方程(第2课时)
5.已知方程x2+bx+a=0有一个根是-a(a≠0),则
下列代数式的值恒为常数的是 (
A.ab
B. a C.a+b D.a-b
D
)
b
解析:把x=-a代入方程可得(-a)2-ab+a=0,即a2ab+a=0,所以a(a-b+1)=0,因为a≠0,所以a-b+1=0, 所以a-b=-1是常数.故选D.
C.0
D.0或3
解析:把x=2代入方程,得4+2m+2=0,解得m=-3. 故选A.
3.已知m是方程x2-x-2=0的一个根,则代数式m2m的值等于 ( D )
A.-1
B.0 C.1 D.2
解析:把x=m代入方程可得m2-m-2=0,所以m2m=2.故选D.
4.已知实数a,b(a≠b)满足a2-3a+1=0,b2-3b+1=0,则 关于一元二次方程x2-3x+1=0的根的说法中正确 的是 ( D ) A.x=a,x=b都不是该方程的解 B.x=a是该方程的解,x=b不是该方程的解 C.x=b是该方程的解,x=a不是该方程的解 D.x=a,x=b都是该方程的解
新课标 人
数学
ห้องสมุดไป่ตู้
9年级/上
九年级数学上 新课标 [人]
第二十一章 一元二次方程
学习新知
检测反馈
学习新知
根据下列问题,列出关于x的方程,并将所列
方程化成一般形式.
一个面积为48 m2的矩形苗圃,它的长
北师大版初中九年级上册数学课件 《认识一元二次方程》一元二次方程PPT课件
(2) x表示长方形的实际宽,不可能小于0
(3)不可能,因为长与宽的和是15, x可能大于15.
(1)根据题意列方程。 (2)x可能小于0吗?说出理由. (3)x可能大于15吗?说出理由. (4)能否想一个办法求得长方形的长x?
x
15-x
x
1
2
3
4
5
6
7
x2 -15x+54
40
28
18
10
4
0
解:如果设花边的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:
(8-2x)
(5-2x)
(8-2x)(5 -2x) = 18.
整理, 得
8m
10m
解:设梯子底端滑动x米,则由题意可得方程:
问题2 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
当a=2,b≠0时是一元一次方程;
3、 关于x的方程ax2 -2bx+a=2x2 , 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
变式练习(1): (k+3)x|k|-1 -5x+6=0 是关于x的一元二次方程, 则k= .
变式练习(2):关于x的一元二次方程(m-1)x2 +5x+m2-1=0 的常数项是0, 则m= .
一元二次方程
没有未知数,不是方程
不是等式,不是方程
一元一次方程
二元一次方程
不是等式,不是方程
(1)2+3=5 (2)3x+2 (3)5x+3=18 (4)x-2y=5
一元一次方程、二元一次方程、分式方程
分式方程
新北师大版九年级数学上册《一元二次方程的解》精品课件.ppt
5.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则 6m+2n=_-__2_. 6.关于x的一元二次方程(a-2)x2+x+a2-4=0的一个根为 0,则a=_-__2_.
7.小颖在做作业时,一不小心,一个方程3x2-■x-5=0的 一次项系数被墨水盖住了,但从题目的条件中,她知道方程的 解是x=5,请你帮助她求出被覆盖的数是多少.
x
3.23
3.24 3.25 3.26
ax2+bx+c -0.06 -0.02 0.03 0.09
16.若关于x的一元二次方程ax2+bx+c=0(a≠0),满足 a+b+c=0,则方程必有一个实根为___x_=.1
17.(2014·白银)一元二次方程(a+1)x2-ax+a2-1=0 的一个根为0,则a=__1__.
知识点一:一元二次方程的解
1.下列各数中是x2-3x+2=0的解的是( B )
A.-1
B.1
C.-2
D.0
2.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值是
( C) A.-1 B.0 C.1 D.2
3.已知关于x的一元二次方程2x2-mx-6=0的一个根是2,则m
=__1__.
4.写出一个根为x=-1的一元二次方程,它可以是 x2-1=0(答案不唯一) .
13.观察下表:
x
0 0.5 1 1.5 2 2.5 3 3.5 4
5x2-24x+28 28 17.25 9 3.25 0 -0.75 1 5.25 12
从表中你能得出方程5x2-24x+2方程根的取值范围.
解:一个解为x=2,另一个解的取值范围为2.5<x<3
7…
x2-70x+325 189 124 61 0 -59 -116 …
新北师大版九年级上册第二章一元二次方程全章教案
新北师大版九年级上册第二章一元二次方程全章教案(总21页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第二章 一元二次方程 认识一元二次方程-(1) 晋公庙中学数学组学习目标:1、会根据具体问题列出一元二次方程。
通过“花边有多宽”,“梯子的底端滑动多少米”等问题的分析,列出方程,体会方程的模型思想,2.通过分析方程的特点,抽象出一元二次方程的概念,培养归纳分析的能力 3.会说出一元二次方程的一般形式,会把方程化为一般形式。
学习重点:一元二次方程的概念学习难点:如何把实际问题转化为数学方程 学习过程:一、导入新课:什么是一元一次方程什么是二元一次方程 二、自学指导:1、自主学习:自学课本31页至32页内容,独立思考解答下列问题:1)情境问题:列方程解应用题:一个面积为120 m 2的矩形苗圃,它的长比宽多2m 。
苗圃的长和宽各是多少?设未知数列方程。
你能将方程化成ax 2+bx+c=0的形式吗?阅读课本P48,回答问题: 1)什么是一元二次方程?2)什么是一元二次方程的一般形式二次项及二次项系数、一次项及一次项系数、常数项2、合作交流:1.一元二次方程应用举例:1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m ,宽为5m ,如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?列 方程并化成一般形式。
2)求五个连续整数,使前三个数的平方和等于后两个数的平方和。
如果设中间的一个数为x ,列 方程并化成一般形式。
3)如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简。
如果设梯子底端滑动x m ,列 方程并化成一般形式。
2.知识梳理:1)一元二次方程的概念:强调三个特征:①它是______方程;②它只含______未知数;③方程中未知数的最高次数是__________.8一元二次方程的一般形式: 在任何一个一元二次方程中,_______是必不可少的项.2)几种不同的表示形式:①ax 2+bx+c=0 (a ≠0,b ≠0,c ≠0) ② ___________ (a ≠0,b ≠0,c=0) ③____________ (a ≠0,b=0,c ≠0) ④___________ (a ≠0,b=0,c=0) 三、当堂训练1、判断下列方程是不是一元二次方程,并说明理由。
2.1一元二次方程北师大版九年级数学上册习题PPT课件2
量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x, A.400(1+x2)=90整式方程,满足条件(1).但x的二次项系数含有字母,应分类讨论.
数学·九年级(上)·配北师
解:(1)∵关于 x 的方程(k+1)xk2+1+(k-3)·x-1=0 是一元一次方程,∴
k+1=0, k-3≠0,
或kk2++11+=k1-,3≠0,
解得 k=-1 或 k=0.∴当 k=-1 或 k=0 时,关
于 x 的方程(k+1)xk2+1+(k-3)x-1=0 是一元一次方程.
1T2变式】把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 分 C.析1:00观(1察 +等 x)3号=两61边6 ,是关于x的整式方程,满足条件(1).但x的二次项系数含有字母,应分类讨论.
2x)=3600.化为一般形式为x -75x+350=0. 9长知(2.)率识当据为 点k报取x3道,何,根依值为据题时推实意,进际可它福问列是州题方一绿列程元色一为二农元(次业二方发次程) 展方?,程并2写01出8~这2个02一0年元,二福次州方市程2将的完二成次绿项色系农数业、发一展次项项目系总数投、资常6数16项亿.元,已知福州2018年已完成项目投资100亿元.假设后两年该项目投资的平均增
A.400(1+x )=900 B.400(1+2x)=900 9.据报道,为推进福州绿色农业发展,22018~2020年,福州市将完成绿色农业发展项目总投资616亿元,已知福州2018年已完成项目投资100亿元.假设后两年该项目投资的平均增
【湘教版】九年级数学上册:2.5《一元二次方程的应用》(2)教案(含答案)
一元二次方程的应用教学目标【知识与技能】会建立一元二次方程的模型解决实际问题,并能根据具体问题的实际意义,对方程解的合理性作出解释.【过程与方法】进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力,培养学生用数学的意识.【情感态度】让学生进一步感受一元二次方程的应用价值,提高学生的数学应用意识.【教学重点】应用一元二次方程解决实际问题.【教学难点】从实际问题中建立一元二次方程的模型.教学过程一、情景导入,初步认知复习列方程解应用题的一般步骤:(1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知数以及它们之间的关系;(2)设未知数:用字母(如x)表示题中的未知数,通常是求什么量,就设这个量为x;( 3)列方程:根据题中已知量和未知量之间的关系列出方程;( 4)解方程:求出所给方程的解;( 5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际问题有意义;( 6)作答:根据题意,选择合理的答案.2. 说一说,矩形的面积与它的两邻边长有什么关系?【教学说明】复习相关知识,为本节课的学习作准备.二、思考探究,获取新知1. 思考:如图,在一长为40cm,宽为28cm的矩形铁皮的四角截去四个全等的小正方形后,折成一个无盖的长方体盒子,若已知长方体盒子的底面积为364平方厘米,求截去的四个小正方形的边长.(1) 弓I导学生审题,弄清已知数、未知数以及它们之间的关系;(2) 确定本题的等量关系是:盒子的底面积=盒子的底面长X盒子的底面宽;(3) 引导学生根据题意设未知数;(4) 引导学生根据等量关系列方程;(5) 引导学生求出所列方程的解;(6) 检验所求方程的解合理性;(7) 根据题意作答.【教学说明】设未知数和作答时都不要漏写单位,多项式时要加括号再写单位•2. 如图,一长为32m,宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化,若已知绿化面积为540m2,求道路的宽.分析:本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.还要注意根据题意考虑根的合理性,从而确定根的取舍. 本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了( 32-x )( 20-x )米2,进而即可列出方程,求出答案.解:设道路宽为x米(32-x ) (20-x)=540解得:x i=2, X2=50 (不合题意,舍去)答:设道路宽为2米3. 如图所示,在厶ABC 中,/ C=90° ,AC=6cm.BC=8cm,点P 沿AC 边从点A 向终点C 以1cm/s 的速度移动,同时点 Q 沿CB 边从C 向终点B 以2cm/s 的速度移动,且当其中一点达到终点 时,另一点也随之停止移动,问点 P 、Q 出发几秒后,可使△ PCQ 的面积为9cm?解:设xs 后,可使△ PCQ 的面积为9cm2.由题意得,AP=xcm PC= (6-x ) cm, CQ=2xcmi 则 1/2 • (6 — x) • 2x=9 .2整理,得 x -6x+9=0 ,解得 X 1=X 2=3.所以P 、Q 同时出发,3s 后可使△ PCQ 的面积为9cm2.【教学说明】使学生感受、明白在几何图形中利用一元二次方程解决实际问题的过程与方法.三、运用新知,深化理解准备在长 30m,宽20m 的矩形草坪上修两横两纵四条路宽为3xcm,则可列方程为.3xm 则纵路宽为2xm,我们利用“图形经过移动,它的面横四条路移动一下(目的是求出路面的宽, 至于实际施工, 2 x 的代数式表示为(30-4x)(20-6x)m ,又由题意可知余下草坪的面积为原草坪面积的四分之三,可列方程则可列方程:(30 — 4x)(20 — 6x)=3/4 X 30 X 20【答案】 (30-4x ) (20-6x)=3/4 X 30 X 20 小路,横纵路的宽度之比为 3 : 2,若使余下的草坪面积是原来草坪面积的四分之三,若横 1.如图,某中学为方便师生活动,分析:若设小路的横路宽为 积大小不会改变”的道理,把纵、 仍可按原图的位置修路),则余下的草坪面积可用含2.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()2A. x +130x-1400=02B. x +65x-350=02C. x -130x-1400=02D. x -65x-350=0【答案】B3. 如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为75001?⑵能否使所围矩形场地的面积为810m2,为什么?解:(1)设所围矩形ABCD勺长AB为x米,则宽AD为12( 80-x )米.依题意,得x • 1/2 (80-x ) =750.2即,x -80x+1500=0 ,解此方程,得x仁30, X2=50.•••墙的长度不超过45m,「. x2=50不合题意,应舍去.当x=30 时,1/2 (80-x ) =1/2 X( 80-30 ) =25,所以,当所围矩形的长为30m宽为25m时,能使矩形的面积为750nt(2)不能.因为由x • 1/2 (80-x ) =810 得x2-80x+1620=0 .2 2又••• b-4ac= (-80) -4 x 1 x 1620=-80 v 0,•••上述方程没有实数根.因此,不能使所围矩形场地的面积为810m2.4. 如图①,在一幅矩形地毯的四周镶有宽度相同的边. 如图②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米.求花边的宽.① ②分析:本题可根据地毯的面积为40平方米来列方程,其等量关系式可表示为:(矩形图案的长+两个花边的宽)X(矩形图案的宽+两个花边的宽)=地毯的面积.解:设花边的宽为x米,根据题意得(2x+6)(2x+3)=40,解得x i=1, X2=-11/2 ,X2=-11/2不合题意,舍去.答:花边的宽为1米.5. 我校原有一块正方形空地,后来在这块空地上划出部分区域栽种花草(如图),原空地一边减少了1m另一边减少了2m使剩余的空地面积为12m2,求原正方形的边长.分析:本题可设原正方形的边长为xm,则剩余的空地长为(x-1 )m宽为(x-2 )m根据长方形的面积公式方程可列出,进而可求出原正方形的边长.解:设原正方形的边长为xm,依题意有(x-1 )( x-2 ) =122整理,得x -3x-10=0 ./•(x-5 )(x+2)=0,••• X1=5, X2=-2 (不合题意,舍去)答:原正方形的边长5m6. 小明家有一块长8m宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中x值.解:据题意,得(8-x )( 6-x ) =1/2 X 8 X 6.解得x1=12,x2=2.X1不合题意,舍去./• x=2.【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想, 而后以小组为单位派代表进行总结. 教师作以补充.课后作业布置作业:教材“习题 2.5 ”中第3、4、7题.教学反思本节课以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题. 这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运. 既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用.。
北师大版九年级数学-第二章-一元二次方程知识点
(北大师)九年级上册 第二章 一元二次方程知识点一:认识一元一次方程(一)一元二次方程的定义:只含有一个未知数(一元)并且未知数的次数是2(二次)的整式方程,这样的方程叫一元二次方程。
(注意:一元二次方程必须满足以下三个条件:是整式方程;一元;二次)(二) 一元二次方程的一般形式:把20ax bx c ++=(a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式。
其中a 为二次项系数;b 为一次项系数;c 为常数项。
【例题】1、一元二次方程3x 2=5x -1的一般形式是 ,二次项系数是 ,一次项系数是 ,常数项是 。
2、一元二次方程(x+1)(3x -2)=10的一般形式是 。
3、当m= 时,关于x 的方程5)3(72=---x x m m是一元二次方程。
4、下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0C.(x+3)(x-2)=x+5D.2332057x x +-=知识点二:求解一元一次方程(一)一元二次方程的根定义:使得方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
【例题】例1、关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( ) A 、1 B 、1- C 、1或1- D 、12(二)解一元二次方程的方法: 1.配方法 <即将其变为2()0x m +=的形式> 配方法解一元二次方程的基本步骤: ①把方程化成一元二次方程的一般形式; ②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方; ⑤把方程转化成2()0x m +=的形式; ⑥两边开方求其根。
【例题】例2 一元二次方程x 2-8x-1=0配方后可变形为( )A .(x+4)2=17B .(x+4)2=15C .(x-4)2=17D .(x-4)2=15例3 用配方法解一元二次方程x 2-6x-4=0,下列变形正确的是( ) A .(x-6)2=-4+36B .(x-6)2=4+36C .(x-3)2=-4+9D .(x-3)2=4+9例4 x 2-6x-4=0; x 2-4x=1; x 2-2x-2=02.公式法242b b acx a-±-=(注意在找abc 时须先把方程化为一般形式)【例题】例5若一元二次方程x 2+2x+a=0的有实数解,则a 的取值范围是( ) A .a <1B .a≤4C .a≤1D .a≥1例6 已知一元二次方程2x 2-5x+3=0,则该方程根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .两个根都是自然数D .无实数根例7 已知关于x 的方程x 2+2x+a-2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.3.分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
1 第2课时 一元二次方程的根及近似解
全品教学课件
数学
九年级 上册
新课标(BS)
第二章 一元二次方程
1 认识一元二次方程
第二章 一元二次方程
第2课时 一元二次方程的根
及近似解
知识回顾
情知景识导回入顾
获取新知
例知题识讲回解顾
随堂演练
课堂小结
第2课时 一元二次方程的根及近似解 问1:一元二次方程有哪些特点?
① 只含有一个未知数; ②未知数的最高次项系数是2; ③整式方程; ④二次项的系数不能为0
问2:一元二次方程的一般形式是什么? ax2 +bx + c = 0(a , b , c为常数, a≠0)
第2课时 一元二次方程的根及近似解
情景导入
上节中我们遇到了这样一个问题 1.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去, 横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门 的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你 知道竹竿有多长吗? 我们得到了方程x2-12 x +20 = 0 如何求解x呢?
第2课时 一元二次方程的根及近似解
(2)继续列表,依次取x=2.1,2.2,2.3,2.4,2.5,…
x
2.2
2.3
2.4
2.5
…
x2 - 2x - 1 -0.79 -0.31 -0.04
0.25
…
由表发现,当2.4<x<2.5时,-0.04< x2 -2x-1<0.25; (3)取x=2.45,则x2 - 2x - 1≈0.1025. ∴2.4<x<2.45, ∴x≈2.4.
根据题意,x的取值范围大致是0 < x < 11. 解方程 x2 + 2x - 120 = 0. 完成下表(在0 < x < 11这个范围内取值计算,逐步逼近):
北师大版九年级上册2.6:应用一元二次方程(2)课件 %28共18张PPT%29
四、随堂练习
5.某公司今年10月的营业额为2500万元,按计划第四季的总营业额要达到 9100万元,问该公司11月,12月两个月营业额的月均增长率是多少?
增长后的量=增长前的量×(1+增长率)
解:设该公司11月,12月两个月营业额的月均增长率是x. 则: 2500+2500(1+x)+2500(1+x)2=9100, 解得: x1=0.2,x2=−3.2(不合题意,舍去). 答:该公司11月,12月两个月营业额的月均增长率是20%.
03
能根据具体问题的实际意义检验结果的合理性, 增强数学应用意识和能力.
一、复习回顾
一元二次方程解决实际问题的一般步骤: 审:审清题意; 找:找出等量关系; 设:设出未知数; 列:用代数式表示等量关系,列出方程; 解:解分式方程; 检:必须检验根的正确性与合理性; 答:写出答案.
二、典例分析
例.新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场 调研表明,当销售价定为2900元时,平均每天能售出8台;而当销售价每降 低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均 每天达到5000元,每台冰箱的定价应为多少元?
五、课堂小结 实际问题
实际问题 的答案
找等量 关系
建模
检验
数学问题 (方程)
方程的解
五、课堂小结
方程
一元一次方程:kx +b = 0( k ? 0)
二元一次方程:
ax +by +c = 0( a 构 0且b 0)
二元一次方程组: 分式方程:
一元二次方程:ax2 +bx +c = 0( a ? 0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号: 79542258933684215856544447 学校: 课程胜市会五声镇田进小学* 教师: 诏证第* 班级: 滑行参班*
第二章 一元二次方程
2.1 认识一元二次方程(2)
第1题. 若方程2231kx x x +=+是一元二次方程,则k 的取值范围是
.
第2题. 下列方程中,不是整式方程的是(
)
A.
2
1523
x x += 3
720x +-= C.221
3x x
+=
D.1725
x -
=
第3题. 下列各方程中一定是关于x 的一元二次方程的是( )
A.234x x m =+ B.280ax -= C.2
0x y +=
D.560xy x -+=
第4题. 若方程2
(1)1m x -=是关于x 的一元二次方程,则m 的取值范围是(
)
A.1m ≠ B.m ≥0 C.0m ≥且1m ≠ D.m 为任意实数
第5题. 把下列方程整理成一般形式,然后写出其二次项系数,一次项系数及常数项. (1)232232
m x mx m x nx px q +=+++
(2)2
)(3)x x x =-
第6题. 设33100a x x -+-=和34680b x x -++=都是一元二次方程,求
20042002()()a b a b -+的值.
第7题. 关于x 的方程1
(1)10k k x kx -+++=是一元二次方程,求k 的值.
第8题. 方程2
14y y --=-化为一般形式后,二次项系数是 ,一次项系数是
,常数项是
.
第9题. 若2950ax x -+=是一元二次方程,则不等式360a +>的解集是 .
第10题. 下列方程中,不是整式方程的是(
)
A.2
1523
x x += B.3
2720x x +-= C.221
3x x
+=
D.1725
x -
=
第11题. 若方程2
(1)1m x mx -+=是关于x 的一元二次方程,则m 的取值范围是(
)
A.1m ≠
B.m ≥0
C.0m ≥且1m ≠
D.m 为任意实数
第12题. 求关于x 的一元二次方程22
2(31)(1)m mx m x m x -+-=+的二次项系数、一次项系数及常数项.
第13题. 下列各方程中属于一元二次方程的是( ) (1)
214y y -= (2)22t = (3)21
3x
= (420x x -= (5)32
5x x -= (6)2
2
(1)20x x ++-=
A.(1)(2)(3). B.(2)(3)(4). C.(1)(2)(6). D.(1)(2).
第14题. 把下列方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项:
(1)22469154x x x x +=-+; (2)2
(31)(2)51x x x x -+=-++ (3)2
2(23)2(5)41t t +--=-.
第15题. 不解方程,估计方程2410x x --=的根的大小(精确到0.1)
第16题. 下列方程中属于一元二次方程的是( ) A.2
2(3)4x x
-=-+
. B.0ax b +=. C.2
25x x -=. D.121x x -=+.
第17题. 关于x 的一元二次方程2
2
(32)0x m x n n ---=中,二次项系数、一次项系数、常数项分别是( )
A.1,3mn ,22mn n -. B.1,3m -,22mn n -. C.1,m -,2n -. D.1,3m ,22mn n -.
第18题. 在下列方程中一定是关于x 的一元二次方程的是( ) A.29ax bx c ++=. B.3560k x k ++=.
C.
23320342
x x --=. D.2(3)230m x x -+-=.
一元二次方程
一般形式
二次项系数
一次项系数
常数项
224x x -= 2250y y -=
24x = 2(3)x x x =-
第20题. 若方程210ax bx c ++-=是一元二次方程,则必须满足条件 . 若此方程是一元一次方程,则必须满足条件 .
第21题. 当k 时,方程2223kx x x -=-是关于x 的一元二次方程.
第22题. 关于x 的一元二次方程(3)(3)2(2)4x x a x a -+-+=,化成一般形式是 .二次项系数是 ,一次项系数是 ,常数项是 .
第23题. 解方程2214133x x x x -+=-时,设21
x
y x =-,则原方程化成关于y 的整式方程是 .
.
第24题. 已知a ,b ,c 均为有理数,判定关于x 的方程22
3521ax x x x c b --++=-是不是一元二次方程?如果是,请写出二次项系数、一次项系数及常数项.如果不是,请说明理由.
第25题. m 为何值时,关于x 的方程2
(2)31m
m x mx m +--=是一元二次方程?写出
这个一元二次方程的一般形式.
第26题. 下列各式哪个不是二次三项式( ) A.2
(0)ax bx c a ++≠,a ,b ,c 为实数
B.22
285x xy y +-
C.21
32
x x -- D.2
1
32x x --
第27题. 将方程2
352x x x +=-化成一般形式是 .
第28题. 用一块长宽分别为8cm ,6cm 的矩形薄铁片,在四个角处裁去四个相同的小正方形,再折叠成一个无盖且底面积为15cm 2
的长方体盒子,据上述题意,可得方
程: .
第29题. 若1x =-是2
0(0)ax bx c a ++=≠的一个解,你能求出b a c --的值吗?
第30题. k 时,关于x 的方程2
2
(1)(1)10k x k x ---+=是一元二次方程.
第31题. 某种洗衣机的包装箱外形是长方体,其高为1.2米,体积 为1.2立方米,底面是正方形,则该包装箱的底面边长为 米.
1.答案:3k ≠
2.答案:C
3.答案:A
4.答案:(1)2
()0m n x px q ---=,二次项系数为:m n -,一次项系数p -,常数项为q -.
(2)22630x x --=,二次项系数为2,一次项系数为6-,常数项为3-. 5.答案:C 6.答案:32342a b -=⎧⎨
-=⎩1
2a b =⎧⎨
=⎩
∴ 2004200222002220022
2002
(()())()]()()(12)(12)322
a b a b a b a b a b a b a b +==-=-=-
7.答案:1231
31.10k k k k k k ⎧-===-⎧⎪=⎨
⎨≠-+≠⎪⎩⎩
或,,∴∴
8.答案:1,4-,1 9.答案:2a >-且0a ≠
10.答案:C 11.答案:C
12.答案:解:将方程2
2
2(31)(1)m mx m x m x -+-=+化为一般式:
223(31)0mx m x m m -++-=.
∵已知该方程是一元二次方程,所以0m ≠.
此方程的二次项系数为3m ,一次项系数为(31)m -+,常数项为2m m -. 13.答案:D 题号 一般形式
二次项系数
一次项系数
常数项 (1) 252140x x -+= 5 21-
4
(2) 2430x -= 4 0 3-
(3)
2160t t +=
1
16
15.答案:解:分别取与时,
有:2
(0.3)4(0.3)10.09 1.210.290--⨯--=+-=>,
2(0.2)4(0.2)10.160----=<.于是,方程2410x x --=必有一根在0.3-与0.2-之间.
分别取 4.2x =与 4.3x =时,有:24.24 4.210.160-⨯-=-<,
24.34 4.310.290-⨯-=>
因此,方程2410x x --=必有一根在4.2与4.3之间.
16.答案:C 17.答案:B 18.答案:C 19.答案: 一元二次方程
二次项系数
一次项系数
常数项
224x x -= 2 1- 4-
2250y y -=
5 2-
24x = 1 0
4-
2(3)x x x =-
1
32--
20答案:0a ≠;0a =,0b ≠ 21.答案:3k ≠-
22.答案:一般形式是22890x ax a ++-=;二次项系数是1,一次项系数是2a ,常数项是
89a -.
23.答案:2
3410y y -+=
24.答案:是一元二次方程,二次项系数为2a +,一次项系数为35--,常数项为
1c b -+.
25.答案:2m =,一般形式为22232210x x ---=
26.答案:D
27.答案:2
5(21)30x x -=
28.答案:(82)(62)15x x --= 29.答案:1 30.答案:1≠±
31.答案:0,将1x =-代入2
0ax bx c ++=,得0a b c -+=,从而0b c a --=。