垂径定理说课PPT课件
合集下载
《垂径定理推论》课件
04
答案4
圆上一点P(a,b)到圆心的距离公 式为sqrt((a - h)^2 + (b - k)^2) 。解析:利用两点之间的距离公 式,我们知道点P到圆心的距离 等于点P的横坐标与圆心横坐标 之差的平方和加上点P的纵坐标 与圆心纵坐标之差的平方和的平 方根。
06
总结与展望
本节课的总结
知识要点回顾 垂径定理推论的基本概念和定理表述。
能力目标
能够运用垂径定理及其推 论解决实际问题,提高数 学应用能力。
情感态度与价值观
培养学生对数学的兴趣和 热爱,增强数学学习的自 信心和成就感。
02
垂径定理推论的基本概念
定义与性质
定义
垂径定理推论是关于圆的定理, 它描述了从圆心到圆上任一点的 连线(即半径)与通过该点的圆 的切线之间的关系。
性质
对定理的深入理解
定理的证明过程
深入理解垂径定理推论的证明过程,可以帮助我们更好地掌握其内涵和应用。通 过逐步推导和解析,可以更清晰地理解定理的逻辑和严密性。
定理的几何意义
垂径定理推论不仅是一个数学定理,还具有深刻的几何意义。通过图形演示和实 例分析,可以更直观地理解其在解决实际问题中的应用。
对定理的推广与改进
05
习题与解答
习题
题目1
题目2
若圆心到直线的距离为d,圆的半径为r, 则直线被圆所截得的弦长为多少?
已知圆的方程为x^2 + y^2 = r^2,求圆 上一点P(a,b)到直线x=h的距离公式。
题目3
题目4
若直线l与圆相切于点A,且直线l的方程为 Ax + By + C = 0,求点A到直线l的距离公 式。
垂径定理推论在几何问题解决中的应用实例。
垂径定理说课课件
几何作图
垂径定理是几何作图中的 重要工具,可以用来确定 圆的中心和半径,从而画 出精确的圆。
圆的性质
垂径定理是研究圆的性质 的重要工具,可以用来推 导和证明许多圆的性质和 定理。
解析几何ቤተ መጻሕፍቲ ባይዱ
在解析几何中,垂径定理 可以用来解决一些涉及到 圆的问题,例如求圆的方 程和圆心坐标等。
定理在其他学科中的应用
天文学
CHAPTER 02
定理内容
定理的文字表述
定理名称:垂径定理
总结词:该定理描述了直线与圆的位置关系以及相关的性质。
详细描述:垂径定理是平面几何中一个重要的定理,它指出如果一条直线垂直于圆 的一条直径,那么这条直线将平分这个圆,并且通过圆心。
定理的图形表述
总结词
通过图形直观地展示垂径定理。
详细描述
THANKS
[ 感谢观看 ]
垂径定理说课课件
• 定理内容 • 应用举例 • 练习与巩固 • 总结与回顾
CHAPTER 01
引入
什么是垂径定理
01
垂径定理是圆的基本定理之一, 它描述了通过圆心并与圆相交的 任何直径将平分该圆。
02
该定理可以表述为:如果一条直 径同时垂直于圆上的一条弦和一 条直径,则它也将平分该弦。
垂径定理的重要性
垂径定理是几何学中非常重要的基本 定理之一,它在证明其他定理和解决 几何问题时经常被使用。
它对于理解圆的性质和解决与圆相关 的问题至关重要,是进一步学习几何 学的基础。
为什么学习垂径定理
学习垂径定理有助于培养学生的逻辑思维和推理能力,提高 他们解决问题的能力。
通过学习垂径定理,学生可以更好地理解圆的性质和特点, 为进一步学习更复杂的几何知识打下基础。此外,垂径定理 在日常生活和实际应用中也具有重要意义,例如在建筑设计、 机械制造和自然科学等领域中都有广泛的应用。
垂径定理PPT演示课件
垂径定理
垂直于弦的直径平分这条弦,并且平分这条 弦所对的两条弧
如图 DC为直径 AB垂直于DC 则AE=EB 弧AC 等于弧BC,弧AD= 弧BD
•1
垂径定理证明
如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC,AB、CD 交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD
连OA、OB ∵OA、OB是半径 ∴OA=OB ∴△OAB是等腰三角形 ∵AB⊥DC ∴AE=BE,∠AOE=∠BOE
o
A
D
B
•6
已知如图:圆O中,0B=8, ∠B0C=450 ∠BCD=750 求DC=?
D
E
0
B
C
•7
小结
有关弦、半径、弦心距的问题常常利用它 们构造的直角三角形来研究
连半径、作弦心距是圆中的一种常见辅助 线添法。
•8
【例题】
如图,⊙O的直径AB和弦CD相交于E,若AE= 2cm,BE=6cm,∠CEA=300,求:
(等腰三角形三线合一) ∴弧AD=弧BD,∠AOC=∠BOC ∴弧AC=弧BC
•2
垂径定理及其推论
一条直线①过圆心;②垂直于一条弦;③ 平分这条弦;④平分弦所对的劣弧;⑤平 分弦所对的优弧。
这五个条件只须知道两个,即可得出另三 个注意Fra bibliotek平分弦时,直径除外
•3
判断
1.弦的垂直平分线一定经过圆心。 2.经过弦的中点的直径一定垂直于弦。 3.平分弦所对的一条弧的直径,平分这条弦
(1)CD的长; (2)C点到AB的距离与D点到AB的距离之比。
D
F
AG E O• H
B
C
•9
例1图
如图,半径为2的圆内有两条互相垂直的弦 AB和CD,它们的交点E到圆心O的距离等于1, 则 AB2+CD2=( )
垂直于弦的直径平分这条弦,并且平分这条 弦所对的两条弧
如图 DC为直径 AB垂直于DC 则AE=EB 弧AC 等于弧BC,弧AD= 弧BD
•1
垂径定理证明
如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC,AB、CD 交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD
连OA、OB ∵OA、OB是半径 ∴OA=OB ∴△OAB是等腰三角形 ∵AB⊥DC ∴AE=BE,∠AOE=∠BOE
o
A
D
B
•6
已知如图:圆O中,0B=8, ∠B0C=450 ∠BCD=750 求DC=?
D
E
0
B
C
•7
小结
有关弦、半径、弦心距的问题常常利用它 们构造的直角三角形来研究
连半径、作弦心距是圆中的一种常见辅助 线添法。
•8
【例题】
如图,⊙O的直径AB和弦CD相交于E,若AE= 2cm,BE=6cm,∠CEA=300,求:
(等腰三角形三线合一) ∴弧AD=弧BD,∠AOC=∠BOC ∴弧AC=弧BC
•2
垂径定理及其推论
一条直线①过圆心;②垂直于一条弦;③ 平分这条弦;④平分弦所对的劣弧;⑤平 分弦所对的优弧。
这五个条件只须知道两个,即可得出另三 个注意Fra bibliotek平分弦时,直径除外
•3
判断
1.弦的垂直平分线一定经过圆心。 2.经过弦的中点的直径一定垂直于弦。 3.平分弦所对的一条弧的直径,平分这条弦
(1)CD的长; (2)C点到AB的距离与D点到AB的距离之比。
D
F
AG E O• H
B
C
•9
例1图
如图,半径为2的圆内有两条互相垂直的弦 AB和CD,它们的交点E到圆心O的距离等于1, 则 AB2+CD2=( )
《圆的垂径定理》课件
第四步
综合第二步和第三步的结论, 得出垂径定理。
定理的应用
01
02
03
计算弦长
已知圆的半径和弦所对的 圆心角,利用垂径定理可 以计算出弦的长度。
计算弧长
已知圆的半径和弧所对的 圆心角,利用垂径定理可 以计算出弧的长度。
计算圆心角
已知圆的半径和弦长,利 用垂径定理可以计算出圆 心角的度数。
03
垂径定理的应用
02
垂径定理在解析几何中可以用于 解决一些实际应用问题,例如计 算桥梁的承重能力、设计圆形工 件等。
垂径定理在实际问题中的应用
在实际生活中,垂径定理的应用非常 广泛,例如在建筑设计、机械制造、 航空航天等领域中,垂径定理都发挥 着重要的作用。
垂径定理在物理学中也有应用,例如 在研究光的反射和折射、地球的重力 场等。
垂径定理在几何问题中的应用
垂径定理在证明圆的性质时发挥了重要作用,例如证明圆周角定 理、圆内接四边形的性质等。
垂径定理是解决几何问题中关于圆的问题的基础,例如求圆的面 积、周长、圆心角等。
垂径定理在解析几何中的应用
01
在解析几何中,垂径定理可以与 其他数学知识结合使用,例如与 三角函数、坐标系等结合,解决 更复杂的几何问题。
详细描述
弦切角定理指出,在圆中,连接弦与切线的交点的线段与弦所夹的角等于该弦 所对应的圆心角。这个定理在解决与弦、切线和圆心角相关的问题时非常有用 。
切线长定理
总结词
切线长定理是关于圆的切线长度的重 要定理。
详细描述
切线长定理指出,过圆外一点向圆作 两条切线,则该点到两切点的线段长 度相等。这个定理在解决与圆的切线 和相关长度相关的问题时非常有用。
定理的应用
垂径定理PPT课件(人教版)
37.4m
7.2m
A
C
D
B
R
O
ห้องสมุดไป่ตู้广探索 二
⊙O半径为10,弦AB=12,CD=16, 且AB∥CD.求AB与CD之间的距离.
A C
B D
.
A
B
.
C
D
课堂小结
C
O
A
A
E
B
D
A
O
D
B
D
B
O
C
A
C
CB
D
A
O
O
C
B
• 两条辅助线:
半径 弦心距
A
• 一个Rt△:半径 半弦 弦心距
r2 d 2 (a)2 2
在⊙O中,直径CD⊥弦AB
A
① AB是直径 ② CD⊥AB
C
P
┗
D
③ CP=DP
可推得
④
⌒ AC
=
⌒ AD
O
⑤
⌒⌒ BC = BD
B
垂径定理的变式图形一
在⊙O中,半径 OB⊥弦CD
C
① OB是半径 可推得 ② OB⊥CD
③CP=DP,
④ ⌒BC=⌒BD.
O P
D
B
垂径定理的变式图形二
在⊙O中,OP⊥弦CD于P点 C
O P
D
① OP过圆心 ② OP⊥CD
可推得
③CP=DP,
在下列图形中,你能否利用垂径定理找到相等的线 段或相等的圆弧
C
C
B
E
A
O
A
E
B
D C
O
A
E
B
D
A
7.2m
A
C
D
B
R
O
ห้องสมุดไป่ตู้广探索 二
⊙O半径为10,弦AB=12,CD=16, 且AB∥CD.求AB与CD之间的距离.
A C
B D
.
A
B
.
C
D
课堂小结
C
O
A
A
E
B
D
A
O
D
B
D
B
O
C
A
C
CB
D
A
O
O
C
B
• 两条辅助线:
半径 弦心距
A
• 一个Rt△:半径 半弦 弦心距
r2 d 2 (a)2 2
在⊙O中,直径CD⊥弦AB
A
① AB是直径 ② CD⊥AB
C
P
┗
D
③ CP=DP
可推得
④
⌒ AC
=
⌒ AD
O
⑤
⌒⌒ BC = BD
B
垂径定理的变式图形一
在⊙O中,半径 OB⊥弦CD
C
① OB是半径 可推得 ② OB⊥CD
③CP=DP,
④ ⌒BC=⌒BD.
O P
D
B
垂径定理的变式图形二
在⊙O中,OP⊥弦CD于P点 C
O P
D
① OP过圆心 ② OP⊥CD
可推得
③CP=DP,
在下列图形中,你能否利用垂径定理找到相等的线 段或相等的圆弧
C
C
B
E
A
O
A
E
B
D C
O
A
E
B
D
A
《垂径定理》课件
答案:3cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再根据勾股定 理求解。
习题二
题目:已知圆O的半径为5cm,弦AB的长为6cm,则圆心O到弦AB的距 离为 _______.
答案:4cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再 根据勾股定理求解。
习题三
01
02
CATALOGUE
垂径定理的表述
定理的文字表述
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的两条弧。
解释
如果一条直径垂直于一条弦,那 么这条直径会平分这条弦,并且 平分弦所对的两条弧。
定理的图形表述
图形示例
可以画出一个圆和经过圆心的一条弦 ,然后画一条垂直于该弦的直径,用 以展示垂径定理。
03
这种方法需要学生掌握相似三角形的 性质和判定方法,适合数学基础较好 的学生理解和掌握。
04
CATALOGUE
垂径定理的应用
在几何作图中的应用
确定圆的中心
利用垂径定理,我们可以确定一个圆 的中心,只需在圆上任取两点,然后 通过这两点作垂直平分线,两条垂直 平分线的交点即为圆心。
作圆的切线
利用垂径定理,我们可以找到一个圆 的切线。在圆上任取一点,然后通过 这一点作圆的切线,切线与过圆心的 垂线交于一点,该点即为切点。
《垂径定理》ppt课 件
目录
• 引言 • 垂径定理的表述 • 垂径定理的证明 • 垂径定理的应用 • 垂径定理的变式 • 习题与解答
01
CATALOGUE
引言
什么是垂径定理
垂径定理
垂径定理是平面几何中一个重要的定理,它描述了垂直于弦的直径与弦之间的 关系。具体来说,如果一条直径垂直于一条弦,则这条直径将该弦平分,并且 平分该弦所对的弧。
《垂径定理》优秀ppt课件2024新版
判断四边形形状问题
判断平行四边形
利用垂径定理证明四边形两组对 边分别平行,从而判断四边形为
平行四边形。
判断矩形和正方形
在平行四边形基础上,利用垂径定 理证明两组对角相等或邻边相等, 进而判断四边形为矩形或正方形。
判断梯形
通过垂径定理证明四边形一组对边 平行且另一组对边不平行,从而判 断四边形为梯形。
利用垂径定理将方程转化为标准形式 判别式判断根的情况
求解根的具体数值
判断二次函数图像与x轴交点问题
利用垂径定理判断交点个数 确定交点的横坐标
结合图像分析交点性质
解决不等式组解集问题
利用垂径定理确定不 等式组的解集范围
结合图像直观展示解 集
分析解集的端点情况
05
垂径定理拓展与延伸
推广到三维空间中直线与平面关系
《垂径定理》优 秀ppt课件
目录
• 垂径定理基本概念与性质 • 垂径定理证明方法 • 垂径定理在几何问题中应用 • 垂径定理在代数问题中应用 • 垂径定理拓展与延伸 • 总结回顾与课堂互动环节
01
垂径定理基本概念与性质
垂径定义及性质
垂径定义
从圆上一点向直径作垂线,垂足 将直径分成的两条线段相等,且 垂线段等于半径与直径之差的平 方根。
在直角三角形中,利用勾 股定理和已知条件进行推 导和证明。
解析法证明
建立坐标系
以圆心为原点建立平面直角坐标系, 将圆的方程表示为$x^2+y^2=r^2$ 。
求解交点
联立垂径方程和圆的方程,求解交点 坐标,进而证明垂径定理。
垂径表示
设垂径的两个端点分别为$(x_1, y_1)$ 和$(x_2, y_2)$,则垂径的方程可表示 为$y-y_1=frac{y_2-y_1}{x_2-x_1}(xx_1)$。
演示文档垂径定理课件PPT.ppt
可推得
平分弦
平分弦所对的劣 (优)弧
..........
7
在下列图形,符合垂径定理的条件吗?
练习1 D
A
B
E
A
O
O
CE
O
A
E
B
AC
B C
O
O
E
C
D
AE
B
B
D..........
D D
O
AE
B
C
8
C
O
A
A
E
B
A
O
D
B
D
B
O
D
C
A
A
O
C
B
C
C
B
D
O
..........
9
判断下列图形,能否使用垂径定理?
④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
..........
14
一、判断是非:
(1)平分弦的直径,平分这条弦所对的弧。
(2)平分弦的直线,必定过圆心。
(3)一条直线平分弦(这条弦不是直径),
那么这 条直线垂直这条弦。
A
C
OD
(1) B
C
•O
A
B
(2) D
..........
拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥
主桥拱的半径吗?
37.4
C
解:如图,设半径为R,
AB=37.4,CD=7.
7.2
A
18.7
AD 1 AB2 1 37.4 18.7,
2
2
D
R
R-7.2
《垂径定理》PPT教学课件
D.圆是轴对称图形,每条直径都是它的对称轴
2.⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是( C )
A.∠AOD=∠BOD
B.AD=BD
C.OD=DC D.
AC BC
3.半径为5的⊙O内有一点P,且OP=4,则过点P的最
长弦的长是10,最短弦的长是
6 .
4.已知⊙O中,弦AB=8 cm,圆心到AB的距离为3 cm,
28.4 垂径定理
学习目标
1.理解垂径定理的证明过程,掌握垂径定理及其
推论.(重点)
2.会用垂径定理进行简单的证明和计算.(难点)
新课导入
操作:在纸上画一个圆,并把这个圆剪下来,再沿着圆的一
条直径所在直线对折,重复做几次,你发现了什么?由此你
能得到什么结论?
问题 :圆是轴对称图形吗?如果是,它的对称轴是什么?
课堂小结
定 理
垂
径
定
理
推论
辅助线
垂直于弦的直径平分弦,
并且平分弦所对的弧
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
推论2:平分弧的直径垂直平分弧所对的弦.
两 类 辅 助 线 :
连半径,作弦心距
构造Rt△,利用勾股定理计算或建立方程
·O
A
E
D
B
想一想:下列图形是否具备垂径定理的条件?如果不是,请说明
为什么?
C
C
A
O
C
B
O
A
A
E
D
是
B
不是,因为
没有垂直
O
O
E
是
B
A
E
D
B
不是,因为CD
2.⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是( C )
A.∠AOD=∠BOD
B.AD=BD
C.OD=DC D.
AC BC
3.半径为5的⊙O内有一点P,且OP=4,则过点P的最
长弦的长是10,最短弦的长是
6 .
4.已知⊙O中,弦AB=8 cm,圆心到AB的距离为3 cm,
28.4 垂径定理
学习目标
1.理解垂径定理的证明过程,掌握垂径定理及其
推论.(重点)
2.会用垂径定理进行简单的证明和计算.(难点)
新课导入
操作:在纸上画一个圆,并把这个圆剪下来,再沿着圆的一
条直径所在直线对折,重复做几次,你发现了什么?由此你
能得到什么结论?
问题 :圆是轴对称图形吗?如果是,它的对称轴是什么?
课堂小结
定 理
垂
径
定
理
推论
辅助线
垂直于弦的直径平分弦,
并且平分弦所对的弧
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
推论2:平分弧的直径垂直平分弧所对的弦.
两 类 辅 助 线 :
连半径,作弦心距
构造Rt△,利用勾股定理计算或建立方程
·O
A
E
D
B
想一想:下列图形是否具备垂径定理的条件?如果不是,请说明
为什么?
C
C
A
O
C
B
O
A
A
E
D
是
B
不是,因为
没有垂直
O
O
E
是
B
A
E
D
B
不是,因为CD
《垂径定理》课件1
通过计算或观察图像,确定函数的最值。
判断函数单调性
利用垂径定理确定函数图 像的对称轴,进而判断函 数在不同区间的单调性。
结合函数的导数,分析函 数在不同区间的增减性。
通过比较函数值或观察图 像,确定函数的单调区间。
分析函数图像特征
利用垂径定理确定函数图像的对称轴,分 析图像的对称性。
结合函数的奇偶性,分析图像关于原点的 对称性。
其他领域应用举例
航海和航空导航
在航海和航空导航中,垂径定理可以用于计算航向和距离。通过观察天体(如太阳、星星)的位置和角度,可以 利用垂径定理确定航行方向和距离,实现准确的导航。
地理测量
垂径定理在地理测量中也有应用。例如,在测量地球表面上两点之间的距离时,可以利用垂径定理计算出大圆距 离,这是一种更精确的距离测量方法。
建立平面直角坐标系
以圆心为原点,以过圆心的直线为x轴 建立平面直角坐标系。
设圆的方程和弦的方程
联立方程求解
将两个方程联立,消去y得到关于x的 二次方程,由根与系数的关系可得垂 线平分弦的结论。
设圆的方程为x^2 + y^2 = r^2,设 弦所在直线的方程为y = kx + b。
向量法证明
1 2
定义向量 设圆心为O,弦的两个端点分别为A和B,垂足为 C,则向量OC垂直于向量AB。
利用向量数量积的性质 由向量数量积的性质可知,OC·AB = 0,即 |OC|·|AB|·cos90° = 0,由此可推出垂线平分弦。
3
利用向量加法的性质 由向量加法的性质可知,向量OA + 向量OB = 2 向量OC,由此可推出垂线平分弦。
03
垂径定理在几何问题中应用
求解三角形问题
利用垂径定理求解直角三角形中的边长和角度
判断函数单调性
利用垂径定理确定函数图 像的对称轴,进而判断函 数在不同区间的单调性。
结合函数的导数,分析函 数在不同区间的增减性。
通过比较函数值或观察图 像,确定函数的单调区间。
分析函数图像特征
利用垂径定理确定函数图像的对称轴,分 析图像的对称性。
结合函数的奇偶性,分析图像关于原点的 对称性。
其他领域应用举例
航海和航空导航
在航海和航空导航中,垂径定理可以用于计算航向和距离。通过观察天体(如太阳、星星)的位置和角度,可以 利用垂径定理确定航行方向和距离,实现准确的导航。
地理测量
垂径定理在地理测量中也有应用。例如,在测量地球表面上两点之间的距离时,可以利用垂径定理计算出大圆距 离,这是一种更精确的距离测量方法。
建立平面直角坐标系
以圆心为原点,以过圆心的直线为x轴 建立平面直角坐标系。
设圆的方程和弦的方程
联立方程求解
将两个方程联立,消去y得到关于x的 二次方程,由根与系数的关系可得垂 线平分弦的结论。
设圆的方程为x^2 + y^2 = r^2,设 弦所在直线的方程为y = kx + b。
向量法证明
1 2
定义向量 设圆心为O,弦的两个端点分别为A和B,垂足为 C,则向量OC垂直于向量AB。
利用向量数量积的性质 由向量数量积的性质可知,OC·AB = 0,即 |OC|·|AB|·cos90° = 0,由此可推出垂线平分弦。
3
利用向量加法的性质 由向量加法的性质可知,向量OA + 向量OB = 2 向量OC,由此可推出垂线平分弦。
03
垂径定理在几何问题中应用
求解三角形问题
利用垂径定理求解直角三角形中的边长和角度
垂径定理公开课用的课件
THANKS
感谢观看
4. 根据全等三角形的对应边相等,我们得出 $AM=BM$。
证明中的数学思想
01
垂径定理的证明涉及了圆的性质 、三角形的全等关系以及逻辑推 理等数学思想。
02
通过构造辅助线和利用已知条件 ,逐步推导出结论,体现了数学 证明中的严谨性和逻辑性。
03
垂径定理的应用
在几何作图中的应用
01
02
03
确定圆心位置
在垂径定理中,如果弦变为直径,则直径所对的圆周角为直角。
从平面图形到立体图形
将垂径定理从平面图形推广到立体图形,例如球体,可以得到类似 的性质。
推广后的应用场景
建筑设计
在建筑设计时,可以利用 垂径定理的推广情势来确 保建筑结构的稳定性。
工程测量
在测量中,可以利用垂径 定理的推广情势来确定某 些线段或角度是否满足设 计要求。
数学教育
在数学教育中,垂径定理 的推广可以帮助学生深入 理解几何图形的性质,提 高解题能力。
对推广情势的进一步思考
统一性
视察垂径定理的各种推广情势,可以发现它们都遵循“从特 殊到一般”的逻辑,这种统一性有助于理解几何图形的本质 。
局限性
虽然垂径定理的推广情势具有广泛的应用价值,但在实际应 用中仍需考虑图形的复杂性和具体条件,避免生搬硬套。
答案及解析
题目2答案及解析
答案:解得,CD:AB=3:5。
解析:根据垂径定理,我们知道OE垂 直于CD,所以E是CD的中点。又因为 OE:BE=5:1,所以AB:OE=5:3。然后 利用勾股定理计算出CE的长度为 sqrt(AB^2OE^2)=sqrt(5^2*3^2)=sqrt(75)=5 *sqrt(3)。最后得出CD的长度为 2*CE=2*5*sqrt(3)=10*sqrt(3)。所 以弦CD与直径AB的比值为 CD:AB=10*sqrt(3):5=2*sqrt(3):1=6 :5。
垂径定理的说课课件 PPT
推论:平分弦(不是直径)的直径垂直于弦,并且 平分弦所对的两条弧.
教
三、徜徉美——问题变式发散
学
过
程 1、剖析定理结构,总结出二推三模型。 设
计
剖析定理结构
垂直于弦的直径平分这条弦,并且 平分弦所对的两条弧。
题设
(1)过圆心 (2)垂直于弦
结论
(3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
(1)交换条件与结论,重新组合新命题;
(2)从作图角度提出新问题;
(3)回到生活实际——赵州石拱桥问题。
重组命题游戏
根据垂径定理与推论可知对于一个圆和一条直线来说。如 果具备下列五个条件中的任何两个条件都可以推出其他三个 结论:
(1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
A
C
·O
B D
教
二、探究美——揭秘核心问题
学
过
程
1、提出核心问题
设
计
2、折叠实验,解决问题(1)
折叠实验,解决问题(1)
把一个圆沿着它的任意一条直径对折, 重复几次,你发现了什么?由此你能得到 什么结论?
公理: 圆是轴对称图形,任何一条直径所在直线
都是它的对称轴.
教
二、探究美——揭秘核心问题
学
等腰三角形等图形的轴对称性,是初中
阶段轴对称中集大成者。它也是今后计
算和证明圆的相关问题的重要基石。
教
2、学生情况分析
学
背
景
学生已经学习了线段、等腰三角
分 形等图形的轴对称性。对轴对称性方
析 面的数学直感已初步形成,同时也初
步具备探究某些特殊图形的轴对称性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以发现: 圆是轴对称图形,任何一条直径所在直线都是 它的对称轴.
活动二
在自己的圆形纸片中做一条弦AB,再做直径CD,使CD⊥AB, 垂足为E.沿CD所在的直线折叠,你能发现图中有那些相等的 线段和弧?为什么?
C
线弧段::A⌒ACE==BBE⌒C ,A⌒D=B⌒D
⌒ ⌒ 把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
▪ 情感与态度:通过创建和引导学生所参与的情景, 激发学生强烈的好奇心和求知欲,在探究中体验 成功的喜悦。培养独立思考、敢于质疑、善于表 达的习惯。
教学重难点
▪ 重点:探究,发现,理解和掌 握垂径定理。
▪ 难点:定理的证明及它的几个 推论之间实质性的联系和应用。
教学方法和手段
▪ 以参与式探究教学法为主 ▪ 以学生手中的圆形纸片为工具 ▪ 以多媒体演示为辅助
在解决有关圆的问题时,可以利用垂径定理将其转化 为解直角三角形的问题 。
板书设计
探索一: 圆的对称性 探索二: 垂径定理 推论
垂直于弦的直径
定理问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
A
点A与点B重合,AE与BE重合,AC 和 BC
⌒ ⌒ 重合,AD和 BD重合.
·O
E B
D
C
O
A
EB
垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
D
由 ① CD是直径 ② CD⊥AB
可推得
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
讨论
(1)过圆心(2)垂直于 弦 (3)平分弦 (4)平 分弦所对优弧 (5)平分 弦所对的劣弧
⌒
AB
⌒
如图,用 AB 表示主桥拱,设 AB所在圆的圆心为O,半
径为R.经过圆心O 作弦AB 的垂线OC,D为垂足,OC与AB
相交于点D,根据前面的结论,D 是AB 的中点,C是AB
的中点,CD 就是拱高.
C
18.7 D A
B
7.2 R
O
现有一宽16米,船舱顶部为长方形,且高出水 面5.9米的船能否通过这座弓桥?
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
实践探究
把一个圆沿着它的任意一条直径对折, 重复几次,你发现了什么?由此你能得到 什么结论?
C
M
N
H
A
E
DF
B
O
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴. 垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
根据垂径定理与推论可知对于一个圆和一条直线来 说。如果具备
(1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
上述五个条件中的任何两个条件都可以推出其他三个结论
(3)平分弦所对的一条弧的直径,垂直平分弦, 并且平分弦所对的另一条弧
(4) …(5)… (6)…
(7)… (8)… (9)…
1.半径为4cm的⊙O中,弦AB=4cm, 那么圆心O到弦AB的距离是 。
O AE B
2. ⊙O的直径为10cm,圆心O到弦AB的 距离为3cm,则弦AB的长是 。
O AE B
▪ 本节课在教材中起承上启下的作用,是今 后进一步研究圆,圆与其它知识综合的重 要的预备知识。
教学目标
▪ 知识与技能:经历将实际问题抽象为数学问题的 过程,理解圆的轴对称性,掌握垂径定理及其推 论,并能运用其解决相关的计算和证明,养成勇 于探索,敢于创新的习惯。
▪ 过程与方法:在研究过程中,进一步体验“实 验——归纳——猜测——证明”的方法及用 数 学语言表达数学问题的能力.
C
A E└
B
●O
D
结论
根据垂径定理与推论可知对于一个圆和 一条直线来说。如果具备
(1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
上述五个条件中的任何两个条件都可以 推出其他三个结论
(1)平分弦(不是直径)的直径垂直于弦,并且 平分弦所对的两条弧
(2)弦的垂直平分线经过圆心,并且平分弦所对 的两条弧
3.半径为2cm的圆中,过半径中点且
垂直于这条半径的弦长是
。
O
AE
B
4:已知:如图,在以O为圆心的两 个同心圆中,大圆的弦AB交小圆于 C,D两点。
求证:AC=BD。
O.
A
E C
DB
解决有关弦的问题,经常是过圆心作弦的垂 线,或作垂直于弦的直径,连结半径等辅助 线,为应用垂径定理创造条件。
解决求赵州桥拱半径的问题
我从以下三个方面对本课的设计进行说明:
▪ 一 教材分析 ▪ 二 教学方法和手段 ▪ 三 教学程序
教材的地位和作用
▪ 本节课垂直于弦的直径是圆的轴对称性的 具体化,它将几何中的垂直等问题在圆中 进一步延续和深化。
▪ 在本节课的学习中,能使学生经历“观察, 体验,猜想,证明”等数学学习过程,培 养学生数学建模能力。
活动二
在自己的圆形纸片中做一条弦AB,再做直径CD,使CD⊥AB, 垂足为E.沿CD所在的直线折叠,你能发现图中有那些相等的 线段和弧?为什么?
C
线弧段::A⌒ACE==BBE⌒C ,A⌒D=B⌒D
⌒ ⌒ 把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
▪ 情感与态度:通过创建和引导学生所参与的情景, 激发学生强烈的好奇心和求知欲,在探究中体验 成功的喜悦。培养独立思考、敢于质疑、善于表 达的习惯。
教学重难点
▪ 重点:探究,发现,理解和掌 握垂径定理。
▪ 难点:定理的证明及它的几个 推论之间实质性的联系和应用。
教学方法和手段
▪ 以参与式探究教学法为主 ▪ 以学生手中的圆形纸片为工具 ▪ 以多媒体演示为辅助
在解决有关圆的问题时,可以利用垂径定理将其转化 为解直角三角形的问题 。
板书设计
探索一: 圆的对称性 探索二: 垂径定理 推论
垂直于弦的直径
定理问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
A
点A与点B重合,AE与BE重合,AC 和 BC
⌒ ⌒ 重合,AD和 BD重合.
·O
E B
D
C
O
A
EB
垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
D
由 ① CD是直径 ② CD⊥AB
可推得
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
讨论
(1)过圆心(2)垂直于 弦 (3)平分弦 (4)平 分弦所对优弧 (5)平分 弦所对的劣弧
⌒
AB
⌒
如图,用 AB 表示主桥拱,设 AB所在圆的圆心为O,半
径为R.经过圆心O 作弦AB 的垂线OC,D为垂足,OC与AB
相交于点D,根据前面的结论,D 是AB 的中点,C是AB
的中点,CD 就是拱高.
C
18.7 D A
B
7.2 R
O
现有一宽16米,船舱顶部为长方形,且高出水 面5.9米的船能否通过这座弓桥?
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
实践探究
把一个圆沿着它的任意一条直径对折, 重复几次,你发现了什么?由此你能得到 什么结论?
C
M
N
H
A
E
DF
B
O
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴. 垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
根据垂径定理与推论可知对于一个圆和一条直线来 说。如果具备
(1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
上述五个条件中的任何两个条件都可以推出其他三个结论
(3)平分弦所对的一条弧的直径,垂直平分弦, 并且平分弦所对的另一条弧
(4) …(5)… (6)…
(7)… (8)… (9)…
1.半径为4cm的⊙O中,弦AB=4cm, 那么圆心O到弦AB的距离是 。
O AE B
2. ⊙O的直径为10cm,圆心O到弦AB的 距离为3cm,则弦AB的长是 。
O AE B
▪ 本节课在教材中起承上启下的作用,是今 后进一步研究圆,圆与其它知识综合的重 要的预备知识。
教学目标
▪ 知识与技能:经历将实际问题抽象为数学问题的 过程,理解圆的轴对称性,掌握垂径定理及其推 论,并能运用其解决相关的计算和证明,养成勇 于探索,敢于创新的习惯。
▪ 过程与方法:在研究过程中,进一步体验“实 验——归纳——猜测——证明”的方法及用 数 学语言表达数学问题的能力.
C
A E└
B
●O
D
结论
根据垂径定理与推论可知对于一个圆和 一条直线来说。如果具备
(1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
上述五个条件中的任何两个条件都可以 推出其他三个结论
(1)平分弦(不是直径)的直径垂直于弦,并且 平分弦所对的两条弧
(2)弦的垂直平分线经过圆心,并且平分弦所对 的两条弧
3.半径为2cm的圆中,过半径中点且
垂直于这条半径的弦长是
。
O
AE
B
4:已知:如图,在以O为圆心的两 个同心圆中,大圆的弦AB交小圆于 C,D两点。
求证:AC=BD。
O.
A
E C
DB
解决有关弦的问题,经常是过圆心作弦的垂 线,或作垂直于弦的直径,连结半径等辅助 线,为应用垂径定理创造条件。
解决求赵州桥拱半径的问题
我从以下三个方面对本课的设计进行说明:
▪ 一 教材分析 ▪ 二 教学方法和手段 ▪ 三 教学程序
教材的地位和作用
▪ 本节课垂直于弦的直径是圆的轴对称性的 具体化,它将几何中的垂直等问题在圆中 进一步延续和深化。
▪ 在本节课的学习中,能使学生经历“观察, 体验,猜想,证明”等数学学习过程,培 养学生数学建模能力。